4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
61 char core_pattern[CORENAME_MAX_SIZE] = "core";
62 int suid_dumpable = 0;
64 /* The maximal length of core_pattern is also specified in sysctl.c */
66 static LIST_HEAD(formats);
67 static DEFINE_RWLOCK(binfmt_lock);
69 int register_binfmt(struct linux_binfmt * fmt)
73 write_lock(&binfmt_lock);
74 list_add(&fmt->lh, &formats);
75 write_unlock(&binfmt_lock);
79 EXPORT_SYMBOL(register_binfmt);
81 void unregister_binfmt(struct linux_binfmt * fmt)
83 write_lock(&binfmt_lock);
85 write_unlock(&binfmt_lock);
88 EXPORT_SYMBOL(unregister_binfmt);
90 static inline void put_binfmt(struct linux_binfmt * fmt)
92 module_put(fmt->module);
96 * Note that a shared library must be both readable and executable due to
99 * Also note that we take the address to load from from the file itself.
101 asmlinkage long sys_uselib(const char __user * library)
105 char *tmp = getname(library);
106 int error = PTR_ERR(tmp);
109 error = path_lookup_open(AT_FDCWD, tmp,
111 FMODE_READ|FMODE_EXEC);
118 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
122 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
125 error = inode_permission(nd.path.dentry->d_inode,
126 MAY_READ | MAY_EXEC | MAY_OPEN);
130 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
131 error = PTR_ERR(file);
137 struct linux_binfmt * fmt;
139 read_lock(&binfmt_lock);
140 list_for_each_entry(fmt, &formats, lh) {
141 if (!fmt->load_shlib)
143 if (!try_module_get(fmt->module))
145 read_unlock(&binfmt_lock);
146 error = fmt->load_shlib(file);
147 read_lock(&binfmt_lock);
149 if (error != -ENOEXEC)
152 read_unlock(&binfmt_lock);
158 release_open_intent(&nd);
165 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
171 #ifdef CONFIG_STACK_GROWSUP
173 ret = expand_stack_downwards(bprm->vma, pos);
178 ret = get_user_pages(current, bprm->mm, pos,
179 1, write, 1, &page, NULL);
184 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
188 * We've historically supported up to 32 pages (ARG_MAX)
189 * of argument strings even with small stacks
195 * Limit to 1/4-th the stack size for the argv+env strings.
197 * - the remaining binfmt code will not run out of stack space,
198 * - the program will have a reasonable amount of stack left
201 rlim = current->signal->rlim;
202 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
211 static void put_arg_page(struct page *page)
216 static void free_arg_page(struct linux_binprm *bprm, int i)
220 static void free_arg_pages(struct linux_binprm *bprm)
224 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
227 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
230 static int __bprm_mm_init(struct linux_binprm *bprm)
233 struct vm_area_struct *vma = NULL;
234 struct mm_struct *mm = bprm->mm;
236 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
240 down_write(&mm->mmap_sem);
244 * Place the stack at the largest stack address the architecture
245 * supports. Later, we'll move this to an appropriate place. We don't
246 * use STACK_TOP because that can depend on attributes which aren't
249 vma->vm_end = STACK_TOP_MAX;
250 vma->vm_start = vma->vm_end - PAGE_SIZE;
252 vma->vm_flags = VM_STACK_FLAGS;
253 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
254 err = insert_vm_struct(mm, vma);
256 up_write(&mm->mmap_sem);
260 mm->stack_vm = mm->total_vm = 1;
261 up_write(&mm->mmap_sem);
263 bprm->p = vma->vm_end - sizeof(void *);
270 kmem_cache_free(vm_area_cachep, vma);
276 static bool valid_arg_len(struct linux_binprm *bprm, long len)
278 return len <= MAX_ARG_STRLEN;
283 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
288 page = bprm->page[pos / PAGE_SIZE];
289 if (!page && write) {
290 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
293 bprm->page[pos / PAGE_SIZE] = page;
299 static void put_arg_page(struct page *page)
303 static void free_arg_page(struct linux_binprm *bprm, int i)
306 __free_page(bprm->page[i]);
307 bprm->page[i] = NULL;
311 static void free_arg_pages(struct linux_binprm *bprm)
315 for (i = 0; i < MAX_ARG_PAGES; i++)
316 free_arg_page(bprm, i);
319 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
324 static int __bprm_mm_init(struct linux_binprm *bprm)
326 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
330 static bool valid_arg_len(struct linux_binprm *bprm, long len)
332 return len <= bprm->p;
335 #endif /* CONFIG_MMU */
338 * Create a new mm_struct and populate it with a temporary stack
339 * vm_area_struct. We don't have enough context at this point to set the stack
340 * flags, permissions, and offset, so we use temporary values. We'll update
341 * them later in setup_arg_pages().
343 int bprm_mm_init(struct linux_binprm *bprm)
346 struct mm_struct *mm = NULL;
348 bprm->mm = mm = mm_alloc();
353 err = init_new_context(current, mm);
357 err = __bprm_mm_init(bprm);
373 * count() counts the number of strings in array ARGV.
375 static int count(char __user * __user * argv, int max)
383 if (get_user(p, argv))
397 * 'copy_strings()' copies argument/environment strings from the old
398 * processes's memory to the new process's stack. The call to get_user_pages()
399 * ensures the destination page is created and not swapped out.
401 static int copy_strings(int argc, char __user * __user * argv,
402 struct linux_binprm *bprm)
404 struct page *kmapped_page = NULL;
406 unsigned long kpos = 0;
414 if (get_user(str, argv+argc) ||
415 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
420 if (!valid_arg_len(bprm, len)) {
425 /* We're going to work our way backwords. */
431 int offset, bytes_to_copy;
433 offset = pos % PAGE_SIZE;
437 bytes_to_copy = offset;
438 if (bytes_to_copy > len)
441 offset -= bytes_to_copy;
442 pos -= bytes_to_copy;
443 str -= bytes_to_copy;
444 len -= bytes_to_copy;
446 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
449 page = get_arg_page(bprm, pos, 1);
456 flush_kernel_dcache_page(kmapped_page);
457 kunmap(kmapped_page);
458 put_arg_page(kmapped_page);
461 kaddr = kmap(kmapped_page);
462 kpos = pos & PAGE_MASK;
463 flush_arg_page(bprm, kpos, kmapped_page);
465 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
474 flush_kernel_dcache_page(kmapped_page);
475 kunmap(kmapped_page);
476 put_arg_page(kmapped_page);
482 * Like copy_strings, but get argv and its values from kernel memory.
484 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
487 mm_segment_t oldfs = get_fs();
489 r = copy_strings(argc, (char __user * __user *)argv, bprm);
493 EXPORT_SYMBOL(copy_strings_kernel);
498 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
499 * the binfmt code determines where the new stack should reside, we shift it to
500 * its final location. The process proceeds as follows:
502 * 1) Use shift to calculate the new vma endpoints.
503 * 2) Extend vma to cover both the old and new ranges. This ensures the
504 * arguments passed to subsequent functions are consistent.
505 * 3) Move vma's page tables to the new range.
506 * 4) Free up any cleared pgd range.
507 * 5) Shrink the vma to cover only the new range.
509 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
511 struct mm_struct *mm = vma->vm_mm;
512 unsigned long old_start = vma->vm_start;
513 unsigned long old_end = vma->vm_end;
514 unsigned long length = old_end - old_start;
515 unsigned long new_start = old_start - shift;
516 unsigned long new_end = old_end - shift;
517 struct mmu_gather *tlb;
519 BUG_ON(new_start > new_end);
522 * ensure there are no vmas between where we want to go
525 if (vma != find_vma(mm, new_start))
529 * cover the whole range: [new_start, old_end)
531 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
534 * move the page tables downwards, on failure we rely on
535 * process cleanup to remove whatever mess we made.
537 if (length != move_page_tables(vma, old_start,
538 vma, new_start, length))
542 tlb = tlb_gather_mmu(mm, 0);
543 if (new_end > old_start) {
545 * when the old and new regions overlap clear from new_end.
547 free_pgd_range(tlb, new_end, old_end, new_end,
548 vma->vm_next ? vma->vm_next->vm_start : 0);
551 * otherwise, clean from old_start; this is done to not touch
552 * the address space in [new_end, old_start) some architectures
553 * have constraints on va-space that make this illegal (IA64) -
554 * for the others its just a little faster.
556 free_pgd_range(tlb, old_start, old_end, new_end,
557 vma->vm_next ? vma->vm_next->vm_start : 0);
559 tlb_finish_mmu(tlb, new_end, old_end);
562 * shrink the vma to just the new range.
564 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
569 #define EXTRA_STACK_VM_PAGES 20 /* random */
572 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
573 * the stack is optionally relocated, and some extra space is added.
575 int setup_arg_pages(struct linux_binprm *bprm,
576 unsigned long stack_top,
577 int executable_stack)
580 unsigned long stack_shift;
581 struct mm_struct *mm = current->mm;
582 struct vm_area_struct *vma = bprm->vma;
583 struct vm_area_struct *prev = NULL;
584 unsigned long vm_flags;
585 unsigned long stack_base;
587 #ifdef CONFIG_STACK_GROWSUP
588 /* Limit stack size to 1GB */
589 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
590 if (stack_base > (1 << 30))
591 stack_base = 1 << 30;
593 /* Make sure we didn't let the argument array grow too large. */
594 if (vma->vm_end - vma->vm_start > stack_base)
597 stack_base = PAGE_ALIGN(stack_top - stack_base);
599 stack_shift = vma->vm_start - stack_base;
600 mm->arg_start = bprm->p - stack_shift;
601 bprm->p = vma->vm_end - stack_shift;
603 stack_top = arch_align_stack(stack_top);
604 stack_top = PAGE_ALIGN(stack_top);
605 stack_shift = vma->vm_end - stack_top;
607 bprm->p -= stack_shift;
608 mm->arg_start = bprm->p;
612 bprm->loader -= stack_shift;
613 bprm->exec -= stack_shift;
615 down_write(&mm->mmap_sem);
616 vm_flags = VM_STACK_FLAGS;
619 * Adjust stack execute permissions; explicitly enable for
620 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
621 * (arch default) otherwise.
623 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
625 else if (executable_stack == EXSTACK_DISABLE_X)
626 vm_flags &= ~VM_EXEC;
627 vm_flags |= mm->def_flags;
629 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
635 /* Move stack pages down in memory. */
637 ret = shift_arg_pages(vma, stack_shift);
639 up_write(&mm->mmap_sem);
644 #ifdef CONFIG_STACK_GROWSUP
645 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
647 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
649 ret = expand_stack(vma, stack_base);
654 up_write(&mm->mmap_sem);
657 EXPORT_SYMBOL(setup_arg_pages);
659 #endif /* CONFIG_MMU */
661 struct file *open_exec(const char *name)
667 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
668 FMODE_READ|FMODE_EXEC);
673 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
676 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
679 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
683 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
687 err = deny_write_access(file);
696 release_open_intent(&nd);
701 EXPORT_SYMBOL(open_exec);
703 int kernel_read(struct file *file, unsigned long offset,
704 char *addr, unsigned long count)
712 /* The cast to a user pointer is valid due to the set_fs() */
713 result = vfs_read(file, (void __user *)addr, count, &pos);
718 EXPORT_SYMBOL(kernel_read);
720 static int exec_mmap(struct mm_struct *mm)
722 struct task_struct *tsk;
723 struct mm_struct * old_mm, *active_mm;
725 /* Notify parent that we're no longer interested in the old VM */
727 old_mm = current->mm;
728 mm_release(tsk, old_mm);
732 * Make sure that if there is a core dump in progress
733 * for the old mm, we get out and die instead of going
734 * through with the exec. We must hold mmap_sem around
735 * checking core_state and changing tsk->mm.
737 down_read(&old_mm->mmap_sem);
738 if (unlikely(old_mm->core_state)) {
739 up_read(&old_mm->mmap_sem);
744 active_mm = tsk->active_mm;
747 activate_mm(active_mm, mm);
749 arch_pick_mmap_layout(mm);
751 up_read(&old_mm->mmap_sem);
752 BUG_ON(active_mm != old_mm);
753 mm_update_next_owner(old_mm);
762 * This function makes sure the current process has its own signal table,
763 * so that flush_signal_handlers can later reset the handlers without
764 * disturbing other processes. (Other processes might share the signal
765 * table via the CLONE_SIGHAND option to clone().)
767 static int de_thread(struct task_struct *tsk)
769 struct signal_struct *sig = tsk->signal;
770 struct sighand_struct *oldsighand = tsk->sighand;
771 spinlock_t *lock = &oldsighand->siglock;
774 if (thread_group_empty(tsk))
775 goto no_thread_group;
778 * Kill all other threads in the thread group.
781 if (signal_group_exit(sig)) {
783 * Another group action in progress, just
784 * return so that the signal is processed.
786 spin_unlock_irq(lock);
789 sig->group_exit_task = tsk;
790 zap_other_threads(tsk);
792 /* Account for the thread group leader hanging around: */
793 count = thread_group_leader(tsk) ? 1 : 2;
794 sig->notify_count = count;
795 while (atomic_read(&sig->count) > count) {
796 __set_current_state(TASK_UNINTERRUPTIBLE);
797 spin_unlock_irq(lock);
801 spin_unlock_irq(lock);
804 * At this point all other threads have exited, all we have to
805 * do is to wait for the thread group leader to become inactive,
806 * and to assume its PID:
808 if (!thread_group_leader(tsk)) {
809 struct task_struct *leader = tsk->group_leader;
811 sig->notify_count = -1; /* for exit_notify() */
813 write_lock_irq(&tasklist_lock);
814 if (likely(leader->exit_state))
816 __set_current_state(TASK_UNINTERRUPTIBLE);
817 write_unlock_irq(&tasklist_lock);
822 * The only record we have of the real-time age of a
823 * process, regardless of execs it's done, is start_time.
824 * All the past CPU time is accumulated in signal_struct
825 * from sister threads now dead. But in this non-leader
826 * exec, nothing survives from the original leader thread,
827 * whose birth marks the true age of this process now.
828 * When we take on its identity by switching to its PID, we
829 * also take its birthdate (always earlier than our own).
831 tsk->start_time = leader->start_time;
833 BUG_ON(!same_thread_group(leader, tsk));
834 BUG_ON(has_group_leader_pid(tsk));
836 * An exec() starts a new thread group with the
837 * TGID of the previous thread group. Rehash the
838 * two threads with a switched PID, and release
839 * the former thread group leader:
842 /* Become a process group leader with the old leader's pid.
843 * The old leader becomes a thread of the this thread group.
844 * Note: The old leader also uses this pid until release_task
845 * is called. Odd but simple and correct.
847 detach_pid(tsk, PIDTYPE_PID);
848 tsk->pid = leader->pid;
849 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
850 transfer_pid(leader, tsk, PIDTYPE_PGID);
851 transfer_pid(leader, tsk, PIDTYPE_SID);
852 list_replace_rcu(&leader->tasks, &tsk->tasks);
854 tsk->group_leader = tsk;
855 leader->group_leader = tsk;
857 tsk->exit_signal = SIGCHLD;
859 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
860 leader->exit_state = EXIT_DEAD;
861 write_unlock_irq(&tasklist_lock);
863 release_task(leader);
866 sig->group_exit_task = NULL;
867 sig->notify_count = 0;
871 flush_itimer_signals();
873 if (atomic_read(&oldsighand->count) != 1) {
874 struct sighand_struct *newsighand;
876 * This ->sighand is shared with the CLONE_SIGHAND
877 * but not CLONE_THREAD task, switch to the new one.
879 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
883 atomic_set(&newsighand->count, 1);
884 memcpy(newsighand->action, oldsighand->action,
885 sizeof(newsighand->action));
887 write_lock_irq(&tasklist_lock);
888 spin_lock(&oldsighand->siglock);
889 rcu_assign_pointer(tsk->sighand, newsighand);
890 spin_unlock(&oldsighand->siglock);
891 write_unlock_irq(&tasklist_lock);
893 __cleanup_sighand(oldsighand);
896 BUG_ON(!thread_group_leader(tsk));
901 * These functions flushes out all traces of the currently running executable
902 * so that a new one can be started
904 static void flush_old_files(struct files_struct * files)
909 spin_lock(&files->file_lock);
911 unsigned long set, i;
915 fdt = files_fdtable(files);
916 if (i >= fdt->max_fds)
918 set = fdt->close_on_exec->fds_bits[j];
921 fdt->close_on_exec->fds_bits[j] = 0;
922 spin_unlock(&files->file_lock);
923 for ( ; set ; i++,set >>= 1) {
928 spin_lock(&files->file_lock);
931 spin_unlock(&files->file_lock);
934 char *get_task_comm(char *buf, struct task_struct *tsk)
936 /* buf must be at least sizeof(tsk->comm) in size */
938 strncpy(buf, tsk->comm, sizeof(tsk->comm));
943 void set_task_comm(struct task_struct *tsk, char *buf)
946 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
950 int flush_old_exec(struct linux_binprm * bprm)
954 char tcomm[sizeof(current->comm)];
957 * Make sure we have a private signal table and that
958 * we are unassociated from the previous thread group.
960 retval = de_thread(current);
964 set_mm_exe_file(bprm->mm, bprm->file);
967 * Release all of the old mmap stuff
969 retval = exec_mmap(bprm->mm);
973 bprm->mm = NULL; /* We're using it now */
975 /* This is the point of no return */
976 current->sas_ss_sp = current->sas_ss_size = 0;
978 if (current_euid() == current_uid() && current_egid() == current_gid())
979 set_dumpable(current->mm, 1);
981 set_dumpable(current->mm, suid_dumpable);
983 name = bprm->filename;
985 /* Copies the binary name from after last slash */
986 for (i=0; (ch = *(name++)) != '\0';) {
988 i = 0; /* overwrite what we wrote */
990 if (i < (sizeof(tcomm) - 1))
994 set_task_comm(current, tcomm);
996 current->flags &= ~PF_RANDOMIZE;
999 /* Set the new mm task size. We have to do that late because it may
1000 * depend on TIF_32BIT which is only updated in flush_thread() on
1001 * some architectures like powerpc
1003 current->mm->task_size = TASK_SIZE;
1005 /* install the new credentials */
1006 if (bprm->cred->uid != current_euid() ||
1007 bprm->cred->gid != current_egid()) {
1008 current->pdeath_signal = 0;
1009 } else if (file_permission(bprm->file, MAY_READ) ||
1010 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1011 set_dumpable(current->mm, suid_dumpable);
1014 current->personality &= ~bprm->per_clear;
1016 /* An exec changes our domain. We are no longer part of the thread
1019 current->self_exec_id++;
1021 flush_signal_handlers(current, 0);
1022 flush_old_files(current->files);
1030 EXPORT_SYMBOL(flush_old_exec);
1033 * install the new credentials for this executable
1035 void install_exec_creds(struct linux_binprm *bprm)
1037 security_bprm_committing_creds(bprm);
1039 commit_creds(bprm->cred);
1042 /* cred_exec_mutex must be held at least to this point to prevent
1043 * ptrace_attach() from altering our determination of the task's
1044 * credentials; any time after this it may be unlocked */
1046 security_bprm_committed_creds(bprm);
1048 EXPORT_SYMBOL(install_exec_creds);
1051 * determine how safe it is to execute the proposed program
1052 * - the caller must hold current->cred_exec_mutex to protect against
1055 void check_unsafe_exec(struct linux_binprm *bprm)
1057 struct task_struct *p = current;
1059 bprm->unsafe = tracehook_unsafe_exec(p);
1061 if (atomic_read(&p->fs->count) > 1 ||
1062 atomic_read(&p->files->count) > 1 ||
1063 atomic_read(&p->sighand->count) > 1)
1064 bprm->unsafe |= LSM_UNSAFE_SHARE;
1068 * Fill the binprm structure from the inode.
1069 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1071 * This may be called multiple times for binary chains (scripts for example).
1073 int prepare_binprm(struct linux_binprm *bprm)
1076 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1079 mode = inode->i_mode;
1080 if (bprm->file->f_op == NULL)
1083 /* clear any previous set[ug]id data from a previous binary */
1084 bprm->cred->euid = current_euid();
1085 bprm->cred->egid = current_egid();
1087 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1089 if (mode & S_ISUID) {
1090 bprm->per_clear |= PER_CLEAR_ON_SETID;
1091 bprm->cred->euid = inode->i_uid;
1096 * If setgid is set but no group execute bit then this
1097 * is a candidate for mandatory locking, not a setgid
1100 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1101 bprm->per_clear |= PER_CLEAR_ON_SETID;
1102 bprm->cred->egid = inode->i_gid;
1106 /* fill in binprm security blob */
1107 retval = security_bprm_set_creds(bprm);
1110 bprm->cred_prepared = 1;
1112 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1113 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1116 EXPORT_SYMBOL(prepare_binprm);
1119 * Arguments are '\0' separated strings found at the location bprm->p
1120 * points to; chop off the first by relocating brpm->p to right after
1121 * the first '\0' encountered.
1123 int remove_arg_zero(struct linux_binprm *bprm)
1126 unsigned long offset;
1134 offset = bprm->p & ~PAGE_MASK;
1135 page = get_arg_page(bprm, bprm->p, 0);
1140 kaddr = kmap_atomic(page, KM_USER0);
1142 for (; offset < PAGE_SIZE && kaddr[offset];
1143 offset++, bprm->p++)
1146 kunmap_atomic(kaddr, KM_USER0);
1149 if (offset == PAGE_SIZE)
1150 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1151 } while (offset == PAGE_SIZE);
1160 EXPORT_SYMBOL(remove_arg_zero);
1163 * cycle the list of binary formats handler, until one recognizes the image
1165 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1167 unsigned int depth = bprm->recursion_depth;
1169 struct linux_binfmt *fmt;
1171 retval = security_bprm_check(bprm);
1175 /* kernel module loader fixup */
1176 /* so we don't try to load run modprobe in kernel space. */
1179 retval = audit_bprm(bprm);
1184 for (try=0; try<2; try++) {
1185 read_lock(&binfmt_lock);
1186 list_for_each_entry(fmt, &formats, lh) {
1187 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1190 if (!try_module_get(fmt->module))
1192 read_unlock(&binfmt_lock);
1193 retval = fn(bprm, regs);
1195 * Restore the depth counter to its starting value
1196 * in this call, so we don't have to rely on every
1197 * load_binary function to restore it on return.
1199 bprm->recursion_depth = depth;
1202 tracehook_report_exec(fmt, bprm, regs);
1204 allow_write_access(bprm->file);
1208 current->did_exec = 1;
1209 proc_exec_connector(current);
1212 read_lock(&binfmt_lock);
1214 if (retval != -ENOEXEC || bprm->mm == NULL)
1217 read_unlock(&binfmt_lock);
1221 read_unlock(&binfmt_lock);
1222 if (retval != -ENOEXEC || bprm->mm == NULL) {
1224 #ifdef CONFIG_MODULES
1226 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1227 if (printable(bprm->buf[0]) &&
1228 printable(bprm->buf[1]) &&
1229 printable(bprm->buf[2]) &&
1230 printable(bprm->buf[3]))
1231 break; /* -ENOEXEC */
1232 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1239 EXPORT_SYMBOL(search_binary_handler);
1241 void free_bprm(struct linux_binprm *bprm)
1243 free_arg_pages(bprm);
1245 abort_creds(bprm->cred);
1250 * sys_execve() executes a new program.
1252 int do_execve(char * filename,
1253 char __user *__user *argv,
1254 char __user *__user *envp,
1255 struct pt_regs * regs)
1257 struct linux_binprm *bprm;
1259 struct files_struct *displaced;
1262 retval = unshare_files(&displaced);
1267 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1271 retval = mutex_lock_interruptible(¤t->cred_exec_mutex);
1276 bprm->cred = prepare_exec_creds();
1279 check_unsafe_exec(bprm);
1281 file = open_exec(filename);
1282 retval = PTR_ERR(file);
1289 bprm->filename = filename;
1290 bprm->interp = filename;
1292 retval = bprm_mm_init(bprm);
1296 bprm->argc = count(argv, MAX_ARG_STRINGS);
1297 if ((retval = bprm->argc) < 0)
1300 bprm->envc = count(envp, MAX_ARG_STRINGS);
1301 if ((retval = bprm->envc) < 0)
1304 retval = prepare_binprm(bprm);
1308 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1312 bprm->exec = bprm->p;
1313 retval = copy_strings(bprm->envc, envp, bprm);
1317 retval = copy_strings(bprm->argc, argv, bprm);
1321 current->flags &= ~PF_KTHREAD;
1322 retval = search_binary_handler(bprm,regs);
1326 /* execve succeeded */
1327 mutex_unlock(¤t->cred_exec_mutex);
1328 acct_update_integrals(current);
1331 put_files_struct(displaced);
1340 allow_write_access(bprm->file);
1345 mutex_unlock(¤t->cred_exec_mutex);
1352 reset_files_struct(displaced);
1357 int set_binfmt(struct linux_binfmt *new)
1359 struct linux_binfmt *old = current->binfmt;
1362 if (!try_module_get(new->module))
1365 current->binfmt = new;
1367 module_put(old->module);
1371 EXPORT_SYMBOL(set_binfmt);
1373 /* format_corename will inspect the pattern parameter, and output a
1374 * name into corename, which must have space for at least
1375 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1377 static int format_corename(char *corename, long signr)
1379 const struct cred *cred = current_cred();
1380 const char *pat_ptr = core_pattern;
1381 int ispipe = (*pat_ptr == '|');
1382 char *out_ptr = corename;
1383 char *const out_end = corename + CORENAME_MAX_SIZE;
1385 int pid_in_pattern = 0;
1387 /* Repeat as long as we have more pattern to process and more output
1390 if (*pat_ptr != '%') {
1391 if (out_ptr == out_end)
1393 *out_ptr++ = *pat_ptr++;
1395 switch (*++pat_ptr) {
1398 /* Double percent, output one percent */
1400 if (out_ptr == out_end)
1407 rc = snprintf(out_ptr, out_end - out_ptr,
1408 "%d", task_tgid_vnr(current));
1409 if (rc > out_end - out_ptr)
1415 rc = snprintf(out_ptr, out_end - out_ptr,
1417 if (rc > out_end - out_ptr)
1423 rc = snprintf(out_ptr, out_end - out_ptr,
1425 if (rc > out_end - out_ptr)
1429 /* signal that caused the coredump */
1431 rc = snprintf(out_ptr, out_end - out_ptr,
1433 if (rc > out_end - out_ptr)
1437 /* UNIX time of coredump */
1440 do_gettimeofday(&tv);
1441 rc = snprintf(out_ptr, out_end - out_ptr,
1443 if (rc > out_end - out_ptr)
1450 down_read(&uts_sem);
1451 rc = snprintf(out_ptr, out_end - out_ptr,
1452 "%s", utsname()->nodename);
1454 if (rc > out_end - out_ptr)
1460 rc = snprintf(out_ptr, out_end - out_ptr,
1461 "%s", current->comm);
1462 if (rc > out_end - out_ptr)
1466 /* core limit size */
1468 rc = snprintf(out_ptr, out_end - out_ptr,
1469 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1470 if (rc > out_end - out_ptr)
1480 /* Backward compatibility with core_uses_pid:
1482 * If core_pattern does not include a %p (as is the default)
1483 * and core_uses_pid is set, then .%pid will be appended to
1484 * the filename. Do not do this for piped commands. */
1485 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1486 rc = snprintf(out_ptr, out_end - out_ptr,
1487 ".%d", task_tgid_vnr(current));
1488 if (rc > out_end - out_ptr)
1497 static int zap_process(struct task_struct *start)
1499 struct task_struct *t;
1502 start->signal->flags = SIGNAL_GROUP_EXIT;
1503 start->signal->group_stop_count = 0;
1507 if (t != current && t->mm) {
1508 sigaddset(&t->pending.signal, SIGKILL);
1509 signal_wake_up(t, 1);
1512 } while_each_thread(start, t);
1517 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1518 struct core_state *core_state, int exit_code)
1520 struct task_struct *g, *p;
1521 unsigned long flags;
1524 spin_lock_irq(&tsk->sighand->siglock);
1525 if (!signal_group_exit(tsk->signal)) {
1526 mm->core_state = core_state;
1527 tsk->signal->group_exit_code = exit_code;
1528 nr = zap_process(tsk);
1530 spin_unlock_irq(&tsk->sighand->siglock);
1531 if (unlikely(nr < 0))
1534 if (atomic_read(&mm->mm_users) == nr + 1)
1537 * We should find and kill all tasks which use this mm, and we should
1538 * count them correctly into ->nr_threads. We don't take tasklist
1539 * lock, but this is safe wrt:
1542 * None of sub-threads can fork after zap_process(leader). All
1543 * processes which were created before this point should be
1544 * visible to zap_threads() because copy_process() adds the new
1545 * process to the tail of init_task.tasks list, and lock/unlock
1546 * of ->siglock provides a memory barrier.
1549 * The caller holds mm->mmap_sem. This means that the task which
1550 * uses this mm can't pass exit_mm(), so it can't exit or clear
1554 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1555 * we must see either old or new leader, this does not matter.
1556 * However, it can change p->sighand, so lock_task_sighand(p)
1557 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1560 * Note also that "g" can be the old leader with ->mm == NULL
1561 * and already unhashed and thus removed from ->thread_group.
1562 * This is OK, __unhash_process()->list_del_rcu() does not
1563 * clear the ->next pointer, we will find the new leader via
1567 for_each_process(g) {
1568 if (g == tsk->group_leader)
1570 if (g->flags & PF_KTHREAD)
1575 if (unlikely(p->mm == mm)) {
1576 lock_task_sighand(p, &flags);
1577 nr += zap_process(p);
1578 unlock_task_sighand(p, &flags);
1582 } while_each_thread(g, p);
1586 atomic_set(&core_state->nr_threads, nr);
1590 static int coredump_wait(int exit_code, struct core_state *core_state)
1592 struct task_struct *tsk = current;
1593 struct mm_struct *mm = tsk->mm;
1594 struct completion *vfork_done;
1597 init_completion(&core_state->startup);
1598 core_state->dumper.task = tsk;
1599 core_state->dumper.next = NULL;
1600 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1601 up_write(&mm->mmap_sem);
1603 if (unlikely(core_waiters < 0))
1607 * Make sure nobody is waiting for us to release the VM,
1608 * otherwise we can deadlock when we wait on each other
1610 vfork_done = tsk->vfork_done;
1612 tsk->vfork_done = NULL;
1613 complete(vfork_done);
1617 wait_for_completion(&core_state->startup);
1619 return core_waiters;
1622 static void coredump_finish(struct mm_struct *mm)
1624 struct core_thread *curr, *next;
1625 struct task_struct *task;
1627 next = mm->core_state->dumper.next;
1628 while ((curr = next) != NULL) {
1632 * see exit_mm(), curr->task must not see
1633 * ->task == NULL before we read ->next.
1637 wake_up_process(task);
1640 mm->core_state = NULL;
1644 * set_dumpable converts traditional three-value dumpable to two flags and
1645 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1646 * these bits are not changed atomically. So get_dumpable can observe the
1647 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1648 * return either old dumpable or new one by paying attention to the order of
1649 * modifying the bits.
1651 * dumpable | mm->flags (binary)
1652 * old new | initial interim final
1653 * ---------+-----------------------
1661 * (*) get_dumpable regards interim value of 10 as 11.
1663 void set_dumpable(struct mm_struct *mm, int value)
1667 clear_bit(MMF_DUMPABLE, &mm->flags);
1669 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1672 set_bit(MMF_DUMPABLE, &mm->flags);
1674 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1677 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1679 set_bit(MMF_DUMPABLE, &mm->flags);
1684 int get_dumpable(struct mm_struct *mm)
1688 ret = mm->flags & 0x3;
1689 return (ret >= 2) ? 2 : ret;
1692 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1694 struct core_state core_state;
1695 char corename[CORENAME_MAX_SIZE + 1];
1696 struct mm_struct *mm = current->mm;
1697 struct linux_binfmt * binfmt;
1698 struct inode * inode;
1700 const struct cred *old_cred;
1705 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1706 char **helper_argv = NULL;
1707 int helper_argc = 0;
1710 audit_core_dumps(signr);
1712 binfmt = current->binfmt;
1713 if (!binfmt || !binfmt->core_dump)
1716 cred = prepare_creds();
1722 down_write(&mm->mmap_sem);
1724 * If another thread got here first, or we are not dumpable, bail out.
1726 if (mm->core_state || !get_dumpable(mm)) {
1727 up_write(&mm->mmap_sem);
1733 * We cannot trust fsuid as being the "true" uid of the
1734 * process nor do we know its entire history. We only know it
1735 * was tainted so we dump it as root in mode 2.
1737 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1738 flag = O_EXCL; /* Stop rewrite attacks */
1739 cred->fsuid = 0; /* Dump root private */
1742 retval = coredump_wait(exit_code, &core_state);
1748 old_cred = override_creds(cred);
1751 * Clear any false indication of pending signals that might
1752 * be seen by the filesystem code called to write the core file.
1754 clear_thread_flag(TIF_SIGPENDING);
1757 * lock_kernel() because format_corename() is controlled by sysctl, which
1758 * uses lock_kernel()
1761 ispipe = format_corename(corename, signr);
1764 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1765 * to a pipe. Since we're not writing directly to the filesystem
1766 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1767 * created unless the pipe reader choses to write out the core file
1768 * at which point file size limits and permissions will be imposed
1769 * as it does with any other process
1771 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1775 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1776 /* Terminate the string before the first option */
1777 delimit = strchr(corename, ' ');
1780 delimit = strrchr(helper_argv[0], '/');
1784 delimit = helper_argv[0];
1785 if (!strcmp(delimit, current->comm)) {
1786 printk(KERN_NOTICE "Recursive core dump detected, "
1791 core_limit = RLIM_INFINITY;
1793 /* SIGPIPE can happen, but it's just never processed */
1794 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1796 printk(KERN_INFO "Core dump to %s pipe failed\n",
1801 file = filp_open(corename,
1802 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1806 inode = file->f_path.dentry->d_inode;
1807 if (inode->i_nlink > 1)
1808 goto close_fail; /* multiple links - don't dump */
1809 if (!ispipe && d_unhashed(file->f_path.dentry))
1812 /* AK: actually i see no reason to not allow this for named pipes etc.,
1813 but keep the previous behaviour for now. */
1814 if (!ispipe && !S_ISREG(inode->i_mode))
1817 * Dont allow local users get cute and trick others to coredump
1818 * into their pre-created files:
1820 if (inode->i_uid != current_fsuid())
1824 if (!file->f_op->write)
1826 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1829 retval = binfmt->core_dump(signr, regs, file, core_limit);
1832 current->signal->group_exit_code |= 0x80;
1834 filp_close(file, NULL);
1837 argv_free(helper_argv);
1839 revert_creds(old_cred);
1841 coredump_finish(mm);