2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.6"
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
45 MV_IO_BAR = 2, /* offset 0x18: IO space */
46 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
48 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
52 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
53 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
54 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
55 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
56 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
57 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
59 MV_SATAHC0_REG_BASE = 0x20000,
60 MV_FLASH_CTL = 0x1046c,
61 MV_GPIO_PORT_CTL = 0x104f0,
62 MV_RESET_CFG = 0x180d8,
64 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
65 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
66 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
67 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
69 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
72 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
74 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
75 * CRPB needs alignment on a 256B boundary. Size == 256B
76 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
77 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
79 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
80 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
82 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
83 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
86 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
88 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
92 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
93 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
94 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
95 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
97 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
99 CRQB_FLAG_READ = (1 << 0),
101 CRQB_CMD_ADDR_SHIFT = 8,
102 CRQB_CMD_CS = (0x2 << 11),
103 CRQB_CMD_LAST = (1 << 15),
105 CRPB_FLAG_STATUS_SHIFT = 8,
107 EPRD_FLAG_END_OF_TBL = (1 << 31),
109 /* PCI interface registers */
111 PCI_COMMAND_OFS = 0xc00,
113 PCI_MAIN_CMD_STS_OFS = 0xd30,
114 STOP_PCI_MASTER = (1 << 2),
115 PCI_MASTER_EMPTY = (1 << 3),
116 GLOB_SFT_RST = (1 << 4),
119 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
120 MV_PCI_DISC_TIMER = 0xd04,
121 MV_PCI_MSI_TRIGGER = 0xc38,
122 MV_PCI_SERR_MASK = 0xc28,
123 MV_PCI_XBAR_TMOUT = 0x1d04,
124 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
125 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
126 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
127 MV_PCI_ERR_COMMAND = 0x1d50,
129 PCI_IRQ_CAUSE_OFS = 0x1d58,
130 PCI_IRQ_MASK_OFS = 0x1d5c,
131 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
133 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
134 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
135 PORT0_ERR = (1 << 0), /* shift by port # */
136 PORT0_DONE = (1 << 1), /* shift by port # */
137 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
138 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
140 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
141 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
142 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
143 GPIO_INT = (1 << 22),
144 SELF_INT = (1 << 23),
145 TWSI_INT = (1 << 24),
146 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
147 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
148 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
151 /* SATAHC registers */
154 HC_IRQ_CAUSE_OFS = 0x14,
155 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
156 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
157 DEV_IRQ = (1 << 8), /* shift by port # */
159 /* Shadow block registers */
161 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
164 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
165 SATA_ACTIVE_OFS = 0x350,
172 SATA_INTERFACE_CTL = 0x050,
174 MV_M2_PREAMP_MASK = 0x7e0,
178 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
179 EDMA_CFG_NCQ = (1 << 5),
180 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
181 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
182 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
184 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
185 EDMA_ERR_IRQ_MASK_OFS = 0xc,
186 EDMA_ERR_D_PAR = (1 << 0),
187 EDMA_ERR_PRD_PAR = (1 << 1),
188 EDMA_ERR_DEV = (1 << 2),
189 EDMA_ERR_DEV_DCON = (1 << 3),
190 EDMA_ERR_DEV_CON = (1 << 4),
191 EDMA_ERR_SERR = (1 << 5),
192 EDMA_ERR_SELF_DIS = (1 << 7),
193 EDMA_ERR_BIST_ASYNC = (1 << 8),
194 EDMA_ERR_CRBQ_PAR = (1 << 9),
195 EDMA_ERR_CRPB_PAR = (1 << 10),
196 EDMA_ERR_INTRL_PAR = (1 << 11),
197 EDMA_ERR_IORDY = (1 << 12),
198 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
199 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
200 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
201 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
202 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
203 EDMA_ERR_TRANS_PROTO = (1 << 31),
204 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
205 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
206 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
207 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
208 EDMA_ERR_LNK_DATA_RX |
209 EDMA_ERR_LNK_DATA_TX |
210 EDMA_ERR_TRANS_PROTO),
212 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
213 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
215 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
216 EDMA_REQ_Q_PTR_SHIFT = 5,
218 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
219 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
220 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
221 EDMA_RSP_Q_PTR_SHIFT = 3,
228 EDMA_IORDY_TMOUT = 0x34,
231 /* Host private flags (hp_flags) */
232 MV_HP_FLAG_MSI = (1 << 0),
233 MV_HP_ERRATA_50XXB0 = (1 << 1),
234 MV_HP_ERRATA_50XXB2 = (1 << 2),
235 MV_HP_ERRATA_60X1B2 = (1 << 3),
236 MV_HP_ERRATA_60X1C0 = (1 << 4),
237 MV_HP_ERRATA_XX42A0 = (1 << 5),
238 MV_HP_50XX = (1 << 6),
239 MV_HP_GEN_IIE = (1 << 7),
241 /* Port private flags (pp_flags) */
242 MV_PP_FLAG_EDMA_EN = (1 << 0),
243 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
246 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
247 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
248 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
249 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
250 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
253 /* Our DMA boundary is determined by an ePRD being unable to handle
254 * anything larger than 64KB
256 MV_DMA_BOUNDARY = 0xffffU,
258 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
260 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
273 /* Command ReQuest Block: 32B */
289 /* Command ResPonse Block: 8B */
296 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
304 struct mv_port_priv {
305 struct mv_crqb *crqb;
307 struct mv_crpb *crpb;
309 struct mv_sg *sg_tbl;
310 dma_addr_t sg_tbl_dma;
312 unsigned req_producer; /* cp of req_in_ptr */
313 unsigned rsp_consumer; /* cp of rsp_out_ptr */
317 struct mv_port_signal {
324 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
326 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
327 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
329 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
331 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
332 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
335 struct mv_host_priv {
337 struct mv_port_signal signal[8];
338 const struct mv_hw_ops *ops;
341 static void mv_irq_clear(struct ata_port *ap);
342 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
343 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
344 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
345 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
346 static void mv_phy_reset(struct ata_port *ap);
347 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
348 static void mv_host_stop(struct ata_host_set *host_set);
349 static int mv_port_start(struct ata_port *ap);
350 static void mv_port_stop(struct ata_port *ap);
351 static void mv_qc_prep(struct ata_queued_cmd *qc);
352 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
353 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
354 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
355 struct pt_regs *regs);
356 static void mv_eng_timeout(struct ata_port *ap);
357 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
359 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
361 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
362 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
364 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
366 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
367 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
369 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
371 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
372 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
374 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
376 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
377 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
378 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
379 unsigned int port_no);
380 static void mv_stop_and_reset(struct ata_port *ap);
382 static struct scsi_host_template mv_sht = {
383 .module = THIS_MODULE,
385 .ioctl = ata_scsi_ioctl,
386 .queuecommand = ata_scsi_queuecmd,
387 .can_queue = MV_USE_Q_DEPTH,
388 .this_id = ATA_SHT_THIS_ID,
389 .sg_tablesize = MV_MAX_SG_CT / 2,
390 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
391 .emulated = ATA_SHT_EMULATED,
392 .use_clustering = ATA_SHT_USE_CLUSTERING,
393 .proc_name = DRV_NAME,
394 .dma_boundary = MV_DMA_BOUNDARY,
395 .slave_configure = ata_scsi_slave_config,
396 .bios_param = ata_std_bios_param,
399 static const struct ata_port_operations mv5_ops = {
400 .port_disable = ata_port_disable,
402 .tf_load = ata_tf_load,
403 .tf_read = ata_tf_read,
404 .check_status = ata_check_status,
405 .exec_command = ata_exec_command,
406 .dev_select = ata_std_dev_select,
408 .phy_reset = mv_phy_reset,
410 .qc_prep = mv_qc_prep,
411 .qc_issue = mv_qc_issue,
413 .eng_timeout = mv_eng_timeout,
415 .irq_handler = mv_interrupt,
416 .irq_clear = mv_irq_clear,
418 .scr_read = mv5_scr_read,
419 .scr_write = mv5_scr_write,
421 .port_start = mv_port_start,
422 .port_stop = mv_port_stop,
423 .host_stop = mv_host_stop,
426 static const struct ata_port_operations mv6_ops = {
427 .port_disable = ata_port_disable,
429 .tf_load = ata_tf_load,
430 .tf_read = ata_tf_read,
431 .check_status = ata_check_status,
432 .exec_command = ata_exec_command,
433 .dev_select = ata_std_dev_select,
435 .phy_reset = mv_phy_reset,
437 .qc_prep = mv_qc_prep,
438 .qc_issue = mv_qc_issue,
440 .eng_timeout = mv_eng_timeout,
442 .irq_handler = mv_interrupt,
443 .irq_clear = mv_irq_clear,
445 .scr_read = mv_scr_read,
446 .scr_write = mv_scr_write,
448 .port_start = mv_port_start,
449 .port_stop = mv_port_stop,
450 .host_stop = mv_host_stop,
453 static const struct ata_port_operations mv_iie_ops = {
454 .port_disable = ata_port_disable,
456 .tf_load = ata_tf_load,
457 .tf_read = ata_tf_read,
458 .check_status = ata_check_status,
459 .exec_command = ata_exec_command,
460 .dev_select = ata_std_dev_select,
462 .phy_reset = mv_phy_reset,
464 .qc_prep = mv_qc_prep_iie,
465 .qc_issue = mv_qc_issue,
467 .eng_timeout = mv_eng_timeout,
469 .irq_handler = mv_interrupt,
470 .irq_clear = mv_irq_clear,
472 .scr_read = mv_scr_read,
473 .scr_write = mv_scr_write,
475 .port_start = mv_port_start,
476 .port_stop = mv_port_stop,
477 .host_stop = mv_host_stop,
480 static const struct ata_port_info mv_port_info[] = {
483 .host_flags = MV_COMMON_FLAGS,
484 .pio_mask = 0x1f, /* pio0-4 */
485 .udma_mask = 0x7f, /* udma0-6 */
486 .port_ops = &mv5_ops,
490 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
491 .pio_mask = 0x1f, /* pio0-4 */
492 .udma_mask = 0x7f, /* udma0-6 */
493 .port_ops = &mv5_ops,
497 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
498 .pio_mask = 0x1f, /* pio0-4 */
499 .udma_mask = 0x7f, /* udma0-6 */
500 .port_ops = &mv5_ops,
504 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
505 .pio_mask = 0x1f, /* pio0-4 */
506 .udma_mask = 0x7f, /* udma0-6 */
507 .port_ops = &mv6_ops,
511 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
513 .pio_mask = 0x1f, /* pio0-4 */
514 .udma_mask = 0x7f, /* udma0-6 */
515 .port_ops = &mv6_ops,
519 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
520 .pio_mask = 0x1f, /* pio0-4 */
521 .udma_mask = 0x7f, /* udma0-6 */
522 .port_ops = &mv_iie_ops,
526 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
528 .pio_mask = 0x1f, /* pio0-4 */
529 .udma_mask = 0x7f, /* udma0-6 */
530 .port_ops = &mv_iie_ops,
534 static const struct pci_device_id mv_pci_tbl[] = {
535 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
536 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
537 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
538 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
540 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
541 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
542 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6042), 0, 0, chip_6042},
543 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
544 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
546 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
547 {} /* terminate list */
550 static struct pci_driver mv_pci_driver = {
552 .id_table = mv_pci_tbl,
553 .probe = mv_init_one,
554 .remove = ata_pci_remove_one,
557 static const struct mv_hw_ops mv5xxx_ops = {
558 .phy_errata = mv5_phy_errata,
559 .enable_leds = mv5_enable_leds,
560 .read_preamp = mv5_read_preamp,
561 .reset_hc = mv5_reset_hc,
562 .reset_flash = mv5_reset_flash,
563 .reset_bus = mv5_reset_bus,
566 static const struct mv_hw_ops mv6xxx_ops = {
567 .phy_errata = mv6_phy_errata,
568 .enable_leds = mv6_enable_leds,
569 .read_preamp = mv6_read_preamp,
570 .reset_hc = mv6_reset_hc,
571 .reset_flash = mv6_reset_flash,
572 .reset_bus = mv_reset_pci_bus,
578 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
585 static inline void writelfl(unsigned long data, void __iomem *addr)
588 (void) readl(addr); /* flush to avoid PCI posted write */
591 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
593 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
596 static inline unsigned int mv_hc_from_port(unsigned int port)
598 return port >> MV_PORT_HC_SHIFT;
601 static inline unsigned int mv_hardport_from_port(unsigned int port)
603 return port & MV_PORT_MASK;
606 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
609 return mv_hc_base(base, mv_hc_from_port(port));
612 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
614 return mv_hc_base_from_port(base, port) +
615 MV_SATAHC_ARBTR_REG_SZ +
616 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
619 static inline void __iomem *mv_ap_base(struct ata_port *ap)
621 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
624 static inline int mv_get_hc_count(unsigned long host_flags)
626 return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
629 static void mv_irq_clear(struct ata_port *ap)
634 * mv_start_dma - Enable eDMA engine
635 * @base: port base address
636 * @pp: port private data
638 * Verify the local cache of the eDMA state is accurate with a
642 * Inherited from caller.
644 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
646 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
647 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
648 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
650 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
654 * mv_stop_dma - Disable eDMA engine
655 * @ap: ATA channel to manipulate
657 * Verify the local cache of the eDMA state is accurate with a
661 * Inherited from caller.
663 static void mv_stop_dma(struct ata_port *ap)
665 void __iomem *port_mmio = mv_ap_base(ap);
666 struct mv_port_priv *pp = ap->private_data;
670 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
671 /* Disable EDMA if active. The disable bit auto clears.
673 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
674 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
676 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
679 /* now properly wait for the eDMA to stop */
680 for (i = 1000; i > 0; i--) {
681 reg = readl(port_mmio + EDMA_CMD_OFS);
682 if (!(EDMA_EN & reg)) {
689 printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
690 /* FIXME: Consider doing a reset here to recover */
695 static void mv_dump_mem(void __iomem *start, unsigned bytes)
698 for (b = 0; b < bytes; ) {
699 DPRINTK("%p: ", start + b);
700 for (w = 0; b < bytes && w < 4; w++) {
701 printk("%08x ",readl(start + b));
709 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
714 for (b = 0; b < bytes; ) {
715 DPRINTK("%02x: ", b);
716 for (w = 0; b < bytes && w < 4; w++) {
717 (void) pci_read_config_dword(pdev,b,&dw);
725 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
726 struct pci_dev *pdev)
729 void __iomem *hc_base = mv_hc_base(mmio_base,
730 port >> MV_PORT_HC_SHIFT);
731 void __iomem *port_base;
732 int start_port, num_ports, p, start_hc, num_hcs, hc;
735 start_hc = start_port = 0;
736 num_ports = 8; /* shld be benign for 4 port devs */
739 start_hc = port >> MV_PORT_HC_SHIFT;
741 num_ports = num_hcs = 1;
743 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
744 num_ports > 1 ? num_ports - 1 : start_port);
747 DPRINTK("PCI config space regs:\n");
748 mv_dump_pci_cfg(pdev, 0x68);
750 DPRINTK("PCI regs:\n");
751 mv_dump_mem(mmio_base+0xc00, 0x3c);
752 mv_dump_mem(mmio_base+0xd00, 0x34);
753 mv_dump_mem(mmio_base+0xf00, 0x4);
754 mv_dump_mem(mmio_base+0x1d00, 0x6c);
755 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
756 hc_base = mv_hc_base(mmio_base, hc);
757 DPRINTK("HC regs (HC %i):\n", hc);
758 mv_dump_mem(hc_base, 0x1c);
760 for (p = start_port; p < start_port + num_ports; p++) {
761 port_base = mv_port_base(mmio_base, p);
762 DPRINTK("EDMA regs (port %i):\n",p);
763 mv_dump_mem(port_base, 0x54);
764 DPRINTK("SATA regs (port %i):\n",p);
765 mv_dump_mem(port_base+0x300, 0x60);
770 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
778 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
781 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
790 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
792 unsigned int ofs = mv_scr_offset(sc_reg_in);
794 if (0xffffffffU != ofs) {
795 return readl(mv_ap_base(ap) + ofs);
801 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
803 unsigned int ofs = mv_scr_offset(sc_reg_in);
805 if (0xffffffffU != ofs) {
806 writelfl(val, mv_ap_base(ap) + ofs);
811 * mv_host_stop - Host specific cleanup/stop routine.
812 * @host_set: host data structure
814 * Disable ints, cleanup host memory, call general purpose
818 * Inherited from caller.
820 static void mv_host_stop(struct ata_host_set *host_set)
822 struct mv_host_priv *hpriv = host_set->private_data;
823 struct pci_dev *pdev = to_pci_dev(host_set->dev);
825 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
826 pci_disable_msi(pdev);
831 ata_host_stop(host_set);
834 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
836 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
839 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
841 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
843 /* set up non-NCQ EDMA configuration */
844 cfg &= ~0x1f; /* clear queue depth */
845 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
846 cfg &= ~(1 << 9); /* disable equeue */
849 cfg |= (1 << 8); /* enab config burst size mask */
851 else if (IS_GEN_II(hpriv))
852 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
854 else if (IS_GEN_IIE(hpriv)) {
855 cfg |= (1 << 23); /* dis RX PM port mask */
856 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
857 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
858 cfg |= (1 << 18); /* enab early completion */
859 cfg |= (1 << 17); /* enab host q cache */
860 cfg |= (1 << 22); /* enab cutthrough */
863 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
867 * mv_port_start - Port specific init/start routine.
868 * @ap: ATA channel to manipulate
870 * Allocate and point to DMA memory, init port private memory,
874 * Inherited from caller.
876 static int mv_port_start(struct ata_port *ap)
878 struct device *dev = ap->host_set->dev;
879 struct mv_host_priv *hpriv = ap->host_set->private_data;
880 struct mv_port_priv *pp;
881 void __iomem *port_mmio = mv_ap_base(ap);
886 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
889 memset(pp, 0, sizeof(*pp));
891 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
895 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
897 rc = ata_pad_alloc(ap, dev);
901 /* First item in chunk of DMA memory:
902 * 32-slot command request table (CRQB), 32 bytes each in size
905 pp->crqb_dma = mem_dma;
907 mem_dma += MV_CRQB_Q_SZ;
910 * 32-slot command response table (CRPB), 8 bytes each in size
913 pp->crpb_dma = mem_dma;
915 mem_dma += MV_CRPB_Q_SZ;
918 * Table of scatter-gather descriptors (ePRD), 16 bytes each
921 pp->sg_tbl_dma = mem_dma;
923 mv_edma_cfg(hpriv, port_mmio);
925 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
926 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
927 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
929 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
930 writelfl(pp->crqb_dma & 0xffffffff,
931 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
933 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
935 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
937 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
938 writelfl(pp->crpb_dma & 0xffffffff,
939 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
941 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
943 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
944 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
946 pp->req_producer = pp->rsp_consumer = 0;
948 /* Don't turn on EDMA here...do it before DMA commands only. Else
949 * we'll be unable to send non-data, PIO, etc due to restricted access
952 ap->private_data = pp;
956 mv_priv_free(pp, dev);
964 * mv_port_stop - Port specific cleanup/stop routine.
965 * @ap: ATA channel to manipulate
967 * Stop DMA, cleanup port memory.
970 * This routine uses the host_set lock to protect the DMA stop.
972 static void mv_port_stop(struct ata_port *ap)
974 struct device *dev = ap->host_set->dev;
975 struct mv_port_priv *pp = ap->private_data;
978 spin_lock_irqsave(&ap->host_set->lock, flags);
980 spin_unlock_irqrestore(&ap->host_set->lock, flags);
982 ap->private_data = NULL;
983 ata_pad_free(ap, dev);
984 mv_priv_free(pp, dev);
989 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
990 * @qc: queued command whose SG list to source from
992 * Populate the SG list and mark the last entry.
995 * Inherited from caller.
997 static void mv_fill_sg(struct ata_queued_cmd *qc)
999 struct mv_port_priv *pp = qc->ap->private_data;
1001 struct scatterlist *sg;
1003 ata_for_each_sg(sg, qc) {
1005 u32 sg_len, len, offset;
1007 addr = sg_dma_address(sg);
1008 sg_len = sg_dma_len(sg);
1011 offset = addr & MV_DMA_BOUNDARY;
1013 if ((offset + sg_len) > 0x10000)
1014 len = 0x10000 - offset;
1016 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
1017 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
1018 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
1023 if (!sg_len && ata_sg_is_last(sg, qc))
1024 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1031 static inline unsigned mv_inc_q_index(unsigned *index)
1033 *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
1037 static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
1039 *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1040 (last ? CRQB_CMD_LAST : 0);
1044 * mv_qc_prep - Host specific command preparation.
1045 * @qc: queued command to prepare
1047 * This routine simply redirects to the general purpose routine
1048 * if command is not DMA. Else, it handles prep of the CRQB
1049 * (command request block), does some sanity checking, and calls
1050 * the SG load routine.
1053 * Inherited from caller.
1055 static void mv_qc_prep(struct ata_queued_cmd *qc)
1057 struct ata_port *ap = qc->ap;
1058 struct mv_port_priv *pp = ap->private_data;
1060 struct ata_taskfile *tf;
1063 if (ATA_PROT_DMA != qc->tf.protocol)
1066 /* the req producer index should be the same as we remember it */
1067 WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
1068 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1071 /* Fill in command request block
1073 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1074 flags |= CRQB_FLAG_READ;
1075 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1076 flags |= qc->tag << CRQB_TAG_SHIFT;
1078 pp->crqb[pp->req_producer].sg_addr =
1079 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1080 pp->crqb[pp->req_producer].sg_addr_hi =
1081 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1082 pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
1084 cw = &pp->crqb[pp->req_producer].ata_cmd[0];
1087 /* Sadly, the CRQB cannot accomodate all registers--there are
1088 * only 11 bytes...so we must pick and choose required
1089 * registers based on the command. So, we drop feature and
1090 * hob_feature for [RW] DMA commands, but they are needed for
1091 * NCQ. NCQ will drop hob_nsect.
1093 switch (tf->command) {
1095 case ATA_CMD_READ_EXT:
1097 case ATA_CMD_WRITE_EXT:
1098 case ATA_CMD_WRITE_FUA_EXT:
1099 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1101 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1102 case ATA_CMD_FPDMA_READ:
1103 case ATA_CMD_FPDMA_WRITE:
1104 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1105 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1107 #endif /* FIXME: remove this line when NCQ added */
1109 /* The only other commands EDMA supports in non-queued and
1110 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1111 * of which are defined/used by Linux. If we get here, this
1112 * driver needs work.
1114 * FIXME: modify libata to give qc_prep a return value and
1115 * return error here.
1117 BUG_ON(tf->command);
1120 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1121 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1122 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1123 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1124 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1125 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1126 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1127 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1128 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1130 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1136 * mv_qc_prep_iie - Host specific command preparation.
1137 * @qc: queued command to prepare
1139 * This routine simply redirects to the general purpose routine
1140 * if command is not DMA. Else, it handles prep of the CRQB
1141 * (command request block), does some sanity checking, and calls
1142 * the SG load routine.
1145 * Inherited from caller.
1147 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1149 struct ata_port *ap = qc->ap;
1150 struct mv_port_priv *pp = ap->private_data;
1151 struct mv_crqb_iie *crqb;
1152 struct ata_taskfile *tf;
1155 if (ATA_PROT_DMA != qc->tf.protocol)
1158 /* the req producer index should be the same as we remember it */
1159 WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
1160 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1163 /* Fill in Gen IIE command request block
1165 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1166 flags |= CRQB_FLAG_READ;
1168 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1169 flags |= qc->tag << CRQB_TAG_SHIFT;
1171 crqb = (struct mv_crqb_iie *) &pp->crqb[pp->req_producer];
1172 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1173 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1174 crqb->flags = cpu_to_le32(flags);
1177 crqb->ata_cmd[0] = cpu_to_le32(
1178 (tf->command << 16) |
1181 crqb->ata_cmd[1] = cpu_to_le32(
1187 crqb->ata_cmd[2] = cpu_to_le32(
1188 (tf->hob_lbal << 0) |
1189 (tf->hob_lbam << 8) |
1190 (tf->hob_lbah << 16) |
1191 (tf->hob_feature << 24)
1193 crqb->ata_cmd[3] = cpu_to_le32(
1195 (tf->hob_nsect << 8)
1198 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1204 * mv_qc_issue - Initiate a command to the host
1205 * @qc: queued command to start
1207 * This routine simply redirects to the general purpose routine
1208 * if command is not DMA. Else, it sanity checks our local
1209 * caches of the request producer/consumer indices then enables
1210 * DMA and bumps the request producer index.
1213 * Inherited from caller.
1215 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1217 void __iomem *port_mmio = mv_ap_base(qc->ap);
1218 struct mv_port_priv *pp = qc->ap->private_data;
1221 if (ATA_PROT_DMA != qc->tf.protocol) {
1222 /* We're about to send a non-EDMA capable command to the
1223 * port. Turn off EDMA so there won't be problems accessing
1224 * shadow block, etc registers.
1226 mv_stop_dma(qc->ap);
1227 return ata_qc_issue_prot(qc);
1230 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1232 /* the req producer index should be the same as we remember it */
1233 WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1235 /* until we do queuing, the queue should be empty at this point */
1236 WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1237 ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
1238 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1240 mv_inc_q_index(&pp->req_producer); /* now incr producer index */
1242 mv_start_dma(port_mmio, pp);
1244 /* and write the request in pointer to kick the EDMA to life */
1245 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1246 in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
1247 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1253 * mv_get_crpb_status - get status from most recently completed cmd
1254 * @ap: ATA channel to manipulate
1256 * This routine is for use when the port is in DMA mode, when it
1257 * will be using the CRPB (command response block) method of
1258 * returning command completion information. We check indices
1259 * are good, grab status, and bump the response consumer index to
1260 * prove that we're up to date.
1263 * Inherited from caller.
1265 static u8 mv_get_crpb_status(struct ata_port *ap)
1267 void __iomem *port_mmio = mv_ap_base(ap);
1268 struct mv_port_priv *pp = ap->private_data;
1272 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1274 /* the response consumer index should be the same as we remember it */
1275 WARN_ON(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1278 ata_status = pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT;
1280 /* increment our consumer index... */
1281 pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1283 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1284 WARN_ON(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
1285 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1288 /* write out our inc'd consumer index so EDMA knows we're caught up */
1289 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1290 out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
1291 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1293 /* Return ATA status register for completed CRPB */
1298 * mv_err_intr - Handle error interrupts on the port
1299 * @ap: ATA channel to manipulate
1300 * @reset_allowed: bool: 0 == don't trigger from reset here
1302 * In most cases, just clear the interrupt and move on. However,
1303 * some cases require an eDMA reset, which is done right before
1304 * the COMRESET in mv_phy_reset(). The SERR case requires a
1305 * clear of pending errors in the SATA SERROR register. Finally,
1306 * if the port disabled DMA, update our cached copy to match.
1309 * Inherited from caller.
1311 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1313 void __iomem *port_mmio = mv_ap_base(ap);
1314 u32 edma_err_cause, serr = 0;
1316 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1318 if (EDMA_ERR_SERR & edma_err_cause) {
1319 serr = scr_read(ap, SCR_ERROR);
1320 scr_write_flush(ap, SCR_ERROR, serr);
1322 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1323 struct mv_port_priv *pp = ap->private_data;
1324 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1326 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1327 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1329 /* Clear EDMA now that SERR cleanup done */
1330 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1332 /* check for fatal here and recover if needed */
1333 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1334 mv_stop_and_reset(ap);
1338 * mv_host_intr - Handle all interrupts on the given host controller
1339 * @host_set: host specific structure
1340 * @relevant: port error bits relevant to this host controller
1341 * @hc: which host controller we're to look at
1343 * Read then write clear the HC interrupt status then walk each
1344 * port connected to the HC and see if it needs servicing. Port
1345 * success ints are reported in the HC interrupt status reg, the
1346 * port error ints are reported in the higher level main
1347 * interrupt status register and thus are passed in via the
1348 * 'relevant' argument.
1351 * Inherited from caller.
1353 static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
1356 void __iomem *mmio = host_set->mmio_base;
1357 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1358 struct ata_queued_cmd *qc;
1360 int shift, port, port0, hard_port, handled;
1361 unsigned int err_mask;
1366 port0 = MV_PORTS_PER_HC;
1369 /* we'll need the HC success int register in most cases */
1370 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1372 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1375 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1376 hc,relevant,hc_irq_cause);
1378 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1380 struct ata_port *ap = host_set->ports[port];
1381 struct mv_port_priv *pp = ap->private_data;
1383 hard_port = port & MV_PORT_MASK; /* range 0-3 */
1384 handled = 0; /* ensure ata_status is set if handled++ */
1386 /* Note that DEV_IRQ might happen spuriously during EDMA,
1387 * and should be ignored in such cases. We could mask it,
1388 * but it's pretty rare and may not be worth the overhead.
1390 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1391 /* EDMA: check for response queue interrupt */
1392 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1393 ata_status = mv_get_crpb_status(ap);
1397 /* PIO: check for device (drive) interrupt */
1398 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1399 ata_status = readb((void __iomem *)
1400 ap->ioaddr.status_addr);
1405 if (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))
1408 err_mask = ac_err_mask(ata_status);
1410 shift = port << 1; /* (port * 2) */
1411 if (port >= MV_PORTS_PER_HC) {
1412 shift++; /* skip bit 8 in the HC Main IRQ reg */
1414 if ((PORT0_ERR << shift) & relevant) {
1416 err_mask |= AC_ERR_OTHER;
1421 qc = ata_qc_from_tag(ap, ap->active_tag);
1422 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1423 VPRINTK("port %u IRQ found for qc, "
1424 "ata_status 0x%x\n", port,ata_status);
1425 /* mark qc status appropriately */
1426 if (!(qc->tf.ctl & ATA_NIEN)) {
1427 qc->err_mask |= err_mask;
1428 ata_qc_complete(qc);
1439 * @dev_instance: private data; in this case the host structure
1442 * Read the read only register to determine if any host
1443 * controllers have pending interrupts. If so, call lower level
1444 * routine to handle. Also check for PCI errors which are only
1448 * This routine holds the host_set lock while processing pending
1451 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
1452 struct pt_regs *regs)
1454 struct ata_host_set *host_set = dev_instance;
1455 unsigned int hc, handled = 0, n_hcs;
1456 void __iomem *mmio = host_set->mmio_base;
1457 struct mv_host_priv *hpriv;
1460 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1462 /* check the cases where we either have nothing pending or have read
1463 * a bogus register value which can indicate HW removal or PCI fault
1465 if (!irq_stat || (0xffffffffU == irq_stat)) {
1469 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1470 spin_lock(&host_set->lock);
1472 for (hc = 0; hc < n_hcs; hc++) {
1473 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1475 mv_host_intr(host_set, relevant, hc);
1480 hpriv = host_set->private_data;
1481 if (IS_60XX(hpriv)) {
1482 /* deal with the interrupt coalescing bits */
1483 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1484 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1485 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1486 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1490 if (PCI_ERR & irq_stat) {
1491 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1492 readl(mmio + PCI_IRQ_CAUSE_OFS));
1494 DPRINTK("All regs @ PCI error\n");
1495 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1497 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1500 spin_unlock(&host_set->lock);
1502 return IRQ_RETVAL(handled);
1505 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1507 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1508 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1510 return hc_mmio + ofs;
1513 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1517 switch (sc_reg_in) {
1521 ofs = sc_reg_in * sizeof(u32);
1530 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1532 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1533 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1535 if (ofs != 0xffffffffU)
1536 return readl(mmio + ofs);
1541 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1543 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1544 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1546 if (ofs != 0xffffffffU)
1547 writelfl(val, mmio + ofs);
1550 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1555 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1557 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1560 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1562 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1565 mv_reset_pci_bus(pdev, mmio);
1568 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1570 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1573 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1576 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1579 tmp = readl(phy_mmio + MV5_PHY_MODE);
1581 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1582 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1585 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1589 writel(0, mmio + MV_GPIO_PORT_CTL);
1591 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1593 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1595 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1598 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1601 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1602 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1604 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1607 tmp = readl(phy_mmio + MV5_LT_MODE);
1609 writel(tmp, phy_mmio + MV5_LT_MODE);
1611 tmp = readl(phy_mmio + MV5_PHY_CTL);
1614 writel(tmp, phy_mmio + MV5_PHY_CTL);
1617 tmp = readl(phy_mmio + MV5_PHY_MODE);
1619 tmp |= hpriv->signal[port].pre;
1620 tmp |= hpriv->signal[port].amps;
1621 writel(tmp, phy_mmio + MV5_PHY_MODE);
1626 #define ZERO(reg) writel(0, port_mmio + (reg))
1627 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1630 void __iomem *port_mmio = mv_port_base(mmio, port);
1632 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1634 mv_channel_reset(hpriv, mmio, port);
1636 ZERO(0x028); /* command */
1637 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1638 ZERO(0x004); /* timer */
1639 ZERO(0x008); /* irq err cause */
1640 ZERO(0x00c); /* irq err mask */
1641 ZERO(0x010); /* rq bah */
1642 ZERO(0x014); /* rq inp */
1643 ZERO(0x018); /* rq outp */
1644 ZERO(0x01c); /* respq bah */
1645 ZERO(0x024); /* respq outp */
1646 ZERO(0x020); /* respq inp */
1647 ZERO(0x02c); /* test control */
1648 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1652 #define ZERO(reg) writel(0, hc_mmio + (reg))
1653 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1656 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1664 tmp = readl(hc_mmio + 0x20);
1667 writel(tmp, hc_mmio + 0x20);
1671 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1674 unsigned int hc, port;
1676 for (hc = 0; hc < n_hc; hc++) {
1677 for (port = 0; port < MV_PORTS_PER_HC; port++)
1678 mv5_reset_hc_port(hpriv, mmio,
1679 (hc * MV_PORTS_PER_HC) + port);
1681 mv5_reset_one_hc(hpriv, mmio, hc);
1688 #define ZERO(reg) writel(0, mmio + (reg))
1689 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1693 tmp = readl(mmio + MV_PCI_MODE);
1695 writel(tmp, mmio + MV_PCI_MODE);
1697 ZERO(MV_PCI_DISC_TIMER);
1698 ZERO(MV_PCI_MSI_TRIGGER);
1699 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1700 ZERO(HC_MAIN_IRQ_MASK_OFS);
1701 ZERO(MV_PCI_SERR_MASK);
1702 ZERO(PCI_IRQ_CAUSE_OFS);
1703 ZERO(PCI_IRQ_MASK_OFS);
1704 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1705 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1706 ZERO(MV_PCI_ERR_ATTRIBUTE);
1707 ZERO(MV_PCI_ERR_COMMAND);
1711 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1715 mv5_reset_flash(hpriv, mmio);
1717 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1719 tmp |= (1 << 5) | (1 << 6);
1720 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1724 * mv6_reset_hc - Perform the 6xxx global soft reset
1725 * @mmio: base address of the HBA
1727 * This routine only applies to 6xxx parts.
1730 * Inherited from caller.
1732 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1735 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1739 /* Following procedure defined in PCI "main command and status
1743 writel(t | STOP_PCI_MASTER, reg);
1745 for (i = 0; i < 1000; i++) {
1748 if (PCI_MASTER_EMPTY & t) {
1752 if (!(PCI_MASTER_EMPTY & t)) {
1753 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1761 writel(t | GLOB_SFT_RST, reg);
1764 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1766 if (!(GLOB_SFT_RST & t)) {
1767 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1772 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1775 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1778 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1780 if (GLOB_SFT_RST & t) {
1781 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1788 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1791 void __iomem *port_mmio;
1794 tmp = readl(mmio + MV_RESET_CFG);
1795 if ((tmp & (1 << 0)) == 0) {
1796 hpriv->signal[idx].amps = 0x7 << 8;
1797 hpriv->signal[idx].pre = 0x1 << 5;
1801 port_mmio = mv_port_base(mmio, idx);
1802 tmp = readl(port_mmio + PHY_MODE2);
1804 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1805 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1808 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1810 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1813 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1816 void __iomem *port_mmio = mv_port_base(mmio, port);
1818 u32 hp_flags = hpriv->hp_flags;
1820 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1822 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1825 if (fix_phy_mode2) {
1826 m2 = readl(port_mmio + PHY_MODE2);
1829 writel(m2, port_mmio + PHY_MODE2);
1833 m2 = readl(port_mmio + PHY_MODE2);
1834 m2 &= ~((1 << 16) | (1 << 31));
1835 writel(m2, port_mmio + PHY_MODE2);
1840 /* who knows what this magic does */
1841 tmp = readl(port_mmio + PHY_MODE3);
1844 writel(tmp, port_mmio + PHY_MODE3);
1846 if (fix_phy_mode4) {
1849 m4 = readl(port_mmio + PHY_MODE4);
1851 if (hp_flags & MV_HP_ERRATA_60X1B2)
1852 tmp = readl(port_mmio + 0x310);
1854 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1856 writel(m4, port_mmio + PHY_MODE4);
1858 if (hp_flags & MV_HP_ERRATA_60X1B2)
1859 writel(tmp, port_mmio + 0x310);
1862 /* Revert values of pre-emphasis and signal amps to the saved ones */
1863 m2 = readl(port_mmio + PHY_MODE2);
1865 m2 &= ~MV_M2_PREAMP_MASK;
1866 m2 |= hpriv->signal[port].amps;
1867 m2 |= hpriv->signal[port].pre;
1870 /* according to mvSata 3.6.1, some IIE values are fixed */
1871 if (IS_GEN_IIE(hpriv)) {
1876 writel(m2, port_mmio + PHY_MODE2);
1879 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1880 unsigned int port_no)
1882 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1884 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1886 if (IS_60XX(hpriv)) {
1887 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1888 ifctl |= (1 << 12) | (1 << 7);
1889 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1892 udelay(25); /* allow reset propagation */
1894 /* Spec never mentions clearing the bit. Marvell's driver does
1895 * clear the bit, however.
1897 writelfl(0, port_mmio + EDMA_CMD_OFS);
1899 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1905 static void mv_stop_and_reset(struct ata_port *ap)
1907 struct mv_host_priv *hpriv = ap->host_set->private_data;
1908 void __iomem *mmio = ap->host_set->mmio_base;
1912 mv_channel_reset(hpriv, mmio, ap->port_no);
1914 __mv_phy_reset(ap, 0);
1917 static inline void __msleep(unsigned int msec, int can_sleep)
1926 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1927 * @ap: ATA channel to manipulate
1929 * Part of this is taken from __sata_phy_reset and modified to
1930 * not sleep since this routine gets called from interrupt level.
1933 * Inherited from caller. This is coded to safe to call at
1934 * interrupt level, i.e. it does not sleep.
1936 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1938 struct mv_port_priv *pp = ap->private_data;
1939 struct mv_host_priv *hpriv = ap->host_set->private_data;
1940 void __iomem *port_mmio = mv_ap_base(ap);
1941 struct ata_taskfile tf;
1942 struct ata_device *dev = &ap->device[0];
1943 unsigned long timeout;
1947 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1949 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1950 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1951 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1953 /* Issue COMRESET via SControl */
1955 scr_write_flush(ap, SCR_CONTROL, 0x301);
1956 __msleep(1, can_sleep);
1958 scr_write_flush(ap, SCR_CONTROL, 0x300);
1959 __msleep(20, can_sleep);
1961 timeout = jiffies + msecs_to_jiffies(200);
1963 sstatus = scr_read(ap, SCR_STATUS) & 0x3;
1964 if ((sstatus == 3) || (sstatus == 0))
1967 __msleep(1, can_sleep);
1968 } while (time_before(jiffies, timeout));
1970 /* work around errata */
1971 if (IS_60XX(hpriv) &&
1972 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1974 goto comreset_retry;
1976 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1977 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1978 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1980 if (sata_dev_present(ap)) {
1983 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1984 ap->id, scr_read(ap, SCR_STATUS));
1985 ata_port_disable(ap);
1988 ap->cbl = ATA_CBL_SATA;
1990 /* even after SStatus reflects that device is ready,
1991 * it seems to take a while for link to be fully
1992 * established (and thus Status no longer 0x80/0x7F),
1993 * so we poll a bit for that, here.
1997 u8 drv_stat = ata_check_status(ap);
1998 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
2000 __msleep(500, can_sleep);
2005 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
2006 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
2007 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
2008 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
2010 dev->class = ata_dev_classify(&tf);
2011 if (!ata_dev_present(dev)) {
2012 VPRINTK("Port disabled post-sig: No device present.\n");
2013 ata_port_disable(ap);
2016 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2018 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2023 static void mv_phy_reset(struct ata_port *ap)
2025 __mv_phy_reset(ap, 1);
2029 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
2030 * @ap: ATA channel to manipulate
2032 * Intent is to clear all pending error conditions, reset the
2033 * chip/bus, fail the command, and move on.
2036 * This routine holds the host_set lock while failing the command.
2038 static void mv_eng_timeout(struct ata_port *ap)
2040 struct ata_queued_cmd *qc;
2042 printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
2043 DPRINTK("All regs @ start of eng_timeout\n");
2044 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
2045 to_pci_dev(ap->host_set->dev));
2047 qc = ata_qc_from_tag(ap, ap->active_tag);
2048 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2049 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
2050 &qc->scsicmd->cmnd);
2053 mv_stop_and_reset(ap);
2055 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2056 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2057 qc->err_mask |= AC_ERR_TIMEOUT;
2058 ata_eh_qc_complete(qc);
2063 * mv_port_init - Perform some early initialization on a single port.
2064 * @port: libata data structure storing shadow register addresses
2065 * @port_mmio: base address of the port
2067 * Initialize shadow register mmio addresses, clear outstanding
2068 * interrupts on the port, and unmask interrupts for the future
2069 * start of the port.
2072 * Inherited from caller.
2074 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2076 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2079 /* PIO related setup
2081 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2083 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2084 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2085 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2086 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2087 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2088 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2090 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2091 /* special case: control/altstatus doesn't have ATA_REG_ address */
2092 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2095 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2097 /* Clear any currently outstanding port interrupt conditions */
2098 serr_ofs = mv_scr_offset(SCR_ERROR);
2099 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2100 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2102 /* unmask all EDMA error interrupts */
2103 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2105 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2106 readl(port_mmio + EDMA_CFG_OFS),
2107 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2108 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2111 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2112 unsigned int board_idx)
2115 u32 hp_flags = hpriv->hp_flags;
2117 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2121 hpriv->ops = &mv5xxx_ops;
2122 hp_flags |= MV_HP_50XX;
2126 hp_flags |= MV_HP_ERRATA_50XXB0;
2129 hp_flags |= MV_HP_ERRATA_50XXB2;
2132 dev_printk(KERN_WARNING, &pdev->dev,
2133 "Applying 50XXB2 workarounds to unknown rev\n");
2134 hp_flags |= MV_HP_ERRATA_50XXB2;
2141 hpriv->ops = &mv5xxx_ops;
2142 hp_flags |= MV_HP_50XX;
2146 hp_flags |= MV_HP_ERRATA_50XXB0;
2149 hp_flags |= MV_HP_ERRATA_50XXB2;
2152 dev_printk(KERN_WARNING, &pdev->dev,
2153 "Applying B2 workarounds to unknown rev\n");
2154 hp_flags |= MV_HP_ERRATA_50XXB2;
2161 hpriv->ops = &mv6xxx_ops;
2165 hp_flags |= MV_HP_ERRATA_60X1B2;
2168 hp_flags |= MV_HP_ERRATA_60X1C0;
2171 dev_printk(KERN_WARNING, &pdev->dev,
2172 "Applying B2 workarounds to unknown rev\n");
2173 hp_flags |= MV_HP_ERRATA_60X1B2;
2180 hpriv->ops = &mv6xxx_ops;
2182 hp_flags |= MV_HP_GEN_IIE;
2186 hp_flags |= MV_HP_ERRATA_XX42A0;
2189 hp_flags |= MV_HP_ERRATA_60X1C0;
2192 dev_printk(KERN_WARNING, &pdev->dev,
2193 "Applying 60X1C0 workarounds to unknown rev\n");
2194 hp_flags |= MV_HP_ERRATA_60X1C0;
2200 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2204 hpriv->hp_flags = hp_flags;
2210 * mv_init_host - Perform some early initialization of the host.
2211 * @pdev: host PCI device
2212 * @probe_ent: early data struct representing the host
2214 * If possible, do an early global reset of the host. Then do
2215 * our port init and clear/unmask all/relevant host interrupts.
2218 * Inherited from caller.
2220 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2221 unsigned int board_idx)
2223 int rc = 0, n_hc, port, hc;
2224 void __iomem *mmio = probe_ent->mmio_base;
2225 struct mv_host_priv *hpriv = probe_ent->private_data;
2227 /* global interrupt mask */
2228 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2230 rc = mv_chip_id(pdev, hpriv, board_idx);
2234 n_hc = mv_get_hc_count(probe_ent->host_flags);
2235 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2237 for (port = 0; port < probe_ent->n_ports; port++)
2238 hpriv->ops->read_preamp(hpriv, port, mmio);
2240 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2244 hpriv->ops->reset_flash(hpriv, mmio);
2245 hpriv->ops->reset_bus(pdev, mmio);
2246 hpriv->ops->enable_leds(hpriv, mmio);
2248 for (port = 0; port < probe_ent->n_ports; port++) {
2249 if (IS_60XX(hpriv)) {
2250 void __iomem *port_mmio = mv_port_base(mmio, port);
2252 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2254 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2257 hpriv->ops->phy_errata(hpriv, mmio, port);
2260 for (port = 0; port < probe_ent->n_ports; port++) {
2261 void __iomem *port_mmio = mv_port_base(mmio, port);
2262 mv_port_init(&probe_ent->port[port], port_mmio);
2265 for (hc = 0; hc < n_hc; hc++) {
2266 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2268 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2269 "(before clear)=0x%08x\n", hc,
2270 readl(hc_mmio + HC_CFG_OFS),
2271 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2273 /* Clear any currently outstanding hc interrupt conditions */
2274 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2277 /* Clear any currently outstanding host interrupt conditions */
2278 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2280 /* and unmask interrupt generation for host regs */
2281 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2282 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2284 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2285 "PCI int cause/mask=0x%08x/0x%08x\n",
2286 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2287 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2288 readl(mmio + PCI_IRQ_CAUSE_OFS),
2289 readl(mmio + PCI_IRQ_MASK_OFS));
2296 * mv_print_info - Dump key info to kernel log for perusal.
2297 * @probe_ent: early data struct representing the host
2299 * FIXME: complete this.
2302 * Inherited from caller.
2304 static void mv_print_info(struct ata_probe_ent *probe_ent)
2306 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2307 struct mv_host_priv *hpriv = probe_ent->private_data;
2311 /* Use this to determine the HW stepping of the chip so we know
2312 * what errata to workaround
2314 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2316 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2319 else if (scc == 0x01)
2324 dev_printk(KERN_INFO, &pdev->dev,
2325 "%u slots %u ports %s mode IRQ via %s\n",
2326 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2327 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2331 * mv_init_one - handle a positive probe of a Marvell host
2332 * @pdev: PCI device found
2333 * @ent: PCI device ID entry for the matched host
2336 * Inherited from caller.
2338 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2340 static int printed_version = 0;
2341 struct ata_probe_ent *probe_ent = NULL;
2342 struct mv_host_priv *hpriv;
2343 unsigned int board_idx = (unsigned int)ent->driver_data;
2344 void __iomem *mmio_base;
2345 int pci_dev_busy = 0, rc;
2347 if (!printed_version++)
2348 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2350 rc = pci_enable_device(pdev);
2355 rc = pci_request_regions(pdev, DRV_NAME);
2361 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2362 if (probe_ent == NULL) {
2364 goto err_out_regions;
2367 memset(probe_ent, 0, sizeof(*probe_ent));
2368 probe_ent->dev = pci_dev_to_dev(pdev);
2369 INIT_LIST_HEAD(&probe_ent->node);
2371 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2372 if (mmio_base == NULL) {
2374 goto err_out_free_ent;
2377 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2380 goto err_out_iounmap;
2382 memset(hpriv, 0, sizeof(*hpriv));
2384 probe_ent->sht = mv_port_info[board_idx].sht;
2385 probe_ent->host_flags = mv_port_info[board_idx].host_flags;
2386 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2387 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2388 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2390 probe_ent->irq = pdev->irq;
2391 probe_ent->irq_flags = SA_SHIRQ;
2392 probe_ent->mmio_base = mmio_base;
2393 probe_ent->private_data = hpriv;
2395 /* initialize adapter */
2396 rc = mv_init_host(pdev, probe_ent, board_idx);
2401 /* Enable interrupts */
2402 if (msi && pci_enable_msi(pdev) == 0) {
2403 hpriv->hp_flags |= MV_HP_FLAG_MSI;
2408 mv_dump_pci_cfg(pdev, 0x68);
2409 mv_print_info(probe_ent);
2411 if (ata_device_add(probe_ent) == 0) {
2412 rc = -ENODEV; /* No devices discovered */
2413 goto err_out_dev_add;
2420 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2421 pci_disable_msi(pdev);
2428 pci_iounmap(pdev, mmio_base);
2432 pci_release_regions(pdev);
2434 if (!pci_dev_busy) {
2435 pci_disable_device(pdev);
2441 static int __init mv_init(void)
2443 return pci_module_init(&mv_pci_driver);
2446 static void __exit mv_exit(void)
2448 pci_unregister_driver(&mv_pci_driver);
2451 MODULE_AUTHOR("Brett Russ");
2452 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2453 MODULE_LICENSE("GPL");
2454 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2455 MODULE_VERSION(DRV_VERSION);
2457 module_param(msi, int, 0444);
2458 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2460 module_init(mv_init);
2461 module_exit(mv_exit);