2 * Copyright (c) 2006-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x100000;
62 static inline int offload_activated(struct t3cdev *tdev)
64 const struct adapter *adapter = tdev2adap(tdev);
66 return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
70 * cxgb3_register_client - register an offload client
73 * Add the client to the client list,
74 * and call backs the client for each activated offload device
76 void cxgb3_register_client(struct cxgb3_client *client)
80 mutex_lock(&cxgb3_db_lock);
81 list_add_tail(&client->client_list, &client_list);
84 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85 if (offload_activated(tdev))
89 mutex_unlock(&cxgb3_db_lock);
92 EXPORT_SYMBOL(cxgb3_register_client);
95 * cxgb3_unregister_client - unregister an offload client
98 * Remove the client to the client list,
99 * and call backs the client for each activated offload device.
101 void cxgb3_unregister_client(struct cxgb3_client *client)
105 mutex_lock(&cxgb3_db_lock);
106 list_del(&client->client_list);
108 if (client->remove) {
109 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110 if (offload_activated(tdev))
111 client->remove(tdev);
114 mutex_unlock(&cxgb3_db_lock);
117 EXPORT_SYMBOL(cxgb3_unregister_client);
120 * cxgb3_add_clients - activate registered clients for an offload device
121 * @tdev: the offload device
123 * Call backs all registered clients once a offload device is activated
125 void cxgb3_add_clients(struct t3cdev *tdev)
127 struct cxgb3_client *client;
129 mutex_lock(&cxgb3_db_lock);
130 list_for_each_entry(client, &client_list, client_list) {
134 mutex_unlock(&cxgb3_db_lock);
138 * cxgb3_remove_clients - deactivates registered clients
139 * for an offload device
140 * @tdev: the offload device
142 * Call backs all registered clients once a offload device is deactivated
144 void cxgb3_remove_clients(struct t3cdev *tdev)
146 struct cxgb3_client *client;
148 mutex_lock(&cxgb3_db_lock);
149 list_for_each_entry(client, &client_list, client_list) {
151 client->remove(tdev);
153 mutex_unlock(&cxgb3_db_lock);
156 static struct net_device *get_iff_from_mac(struct adapter *adapter,
157 const unsigned char *mac,
162 for_each_port(adapter, i) {
163 struct vlan_group *grp;
164 struct net_device *dev = adapter->port[i];
165 const struct port_info *p = netdev_priv(dev);
167 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
168 if (vlan && vlan != VLAN_VID_MASK) {
172 dev = vlan_group_get_device(grp, vlan);
182 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
186 struct ulp_iscsi_info *uiip = data;
189 case ULP_ISCSI_GET_PARAMS:
190 uiip->pdev = adapter->pdev;
191 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
192 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
193 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
195 * On tx, the iscsi pdu has to be <= tx page size and has to
196 * fit into the Tx PM FIFO.
198 uiip->max_txsz = min(adapter->params.tp.tx_pg_size,
199 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
200 /* on rx, the iscsi pdu has to be < rx page size and the
201 whole pdu + cpl headers has to fit into one sge buffer */
202 uiip->max_rxsz = min_t(unsigned int,
203 adapter->params.tp.rx_pg_size,
204 (adapter->sge.qs[0].fl[1].buf_size -
205 sizeof(struct cpl_rx_data) * 2 -
206 sizeof(struct cpl_rx_data_ddp)));
208 case ULP_ISCSI_SET_PARAMS:
209 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
217 /* Response queue used for RDMA events. */
218 #define ASYNC_NOTIF_RSPQ 0
220 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
225 case RDMA_GET_PARAMS:{
226 struct rdma_info *req = data;
227 struct pci_dev *pdev = adapter->pdev;
229 req->udbell_physbase = pci_resource_start(pdev, 2);
230 req->udbell_len = pci_resource_len(pdev, 2);
232 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
233 req->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
235 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
236 req->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
237 req->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
238 req->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
239 req->kdb_addr = adapter->regs + A_SG_KDOORBELL;
245 struct rdma_cq_op *req = data;
247 /* may be called in any context */
248 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
249 ret = t3_sge_cqcntxt_op(adapter, req->id, req->op,
251 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
255 struct ch_mem_range *t = data;
258 if ((t->addr & 7) || (t->len & 7))
260 if (t->mem_id == MEM_CM)
262 else if (t->mem_id == MEM_PMRX)
263 mem = &adapter->pmrx;
264 else if (t->mem_id == MEM_PMTX)
265 mem = &adapter->pmtx;
270 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
277 struct rdma_cq_setup *req = data;
279 spin_lock_irq(&adapter->sge.reg_lock);
281 t3_sge_init_cqcntxt(adapter, req->id,
282 req->base_addr, req->size,
284 req->ovfl_mode, req->credits,
286 spin_unlock_irq(&adapter->sge.reg_lock);
289 case RDMA_CQ_DISABLE:
290 spin_lock_irq(&adapter->sge.reg_lock);
291 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
292 spin_unlock_irq(&adapter->sge.reg_lock);
294 case RDMA_CTRL_QP_SETUP:{
295 struct rdma_ctrlqp_setup *req = data;
297 spin_lock_irq(&adapter->sge.reg_lock);
298 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
301 req->base_addr, req->size,
302 FW_RI_TID_START, 1, 0);
303 spin_unlock_irq(&adapter->sge.reg_lock);
312 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
314 struct adapter *adapter = tdev2adap(tdev);
315 struct tid_range *tid;
317 struct iff_mac *iffmacp;
318 struct ddp_params *ddpp;
319 struct adap_ports *ports;
323 case GET_MAX_OUTSTANDING_WR:
324 *(unsigned int *)data = FW_WR_NUM;
327 *(unsigned int *)data = WR_FLITS;
329 case GET_TX_MAX_CHUNK:
330 *(unsigned int *)data = 1 << 20; /* 1MB */
334 tid->num = t3_mc5_size(&adapter->mc5) -
335 adapter->params.mc5.nroutes -
336 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
341 tid->num = adapter->params.mc5.nservers;
342 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
343 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
345 case GET_L2T_CAPACITY:
346 *(unsigned int *)data = 2048;
351 mtup->mtus = adapter->params.mtus;
353 case GET_IFF_FROM_MAC:
355 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
361 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
362 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
363 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
367 ports->nports = adapter->params.nports;
368 for_each_port(adapter, i)
369 ports->lldevs[i] = adapter->port[i];
371 case ULP_ISCSI_GET_PARAMS:
372 case ULP_ISCSI_SET_PARAMS:
373 if (!offload_running(adapter))
375 return cxgb_ulp_iscsi_ctl(adapter, req, data);
376 case RDMA_GET_PARAMS:
379 case RDMA_CQ_DISABLE:
380 case RDMA_CTRL_QP_SETUP:
382 if (!offload_running(adapter))
384 return cxgb_rdma_ctl(adapter, req, data);
392 * Dummy handler for Rx offload packets in case we get an offload packet before
393 * proper processing is setup. This complains and drops the packet as it isn't
394 * normal to get offload packets at this stage.
396 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
399 CH_ERR(tdev2adap(dev), "%d unexpected offload packets, first data %u\n",
400 n, ntohl(*(__be32 *)skbs[0]->data));
402 dev_kfree_skb_any(skbs[n]);
406 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
410 void cxgb3_set_dummy_ops(struct t3cdev *dev)
412 dev->recv = rx_offload_blackhole;
413 dev->neigh_update = dummy_neigh_update;
417 * Free an active-open TID.
419 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
421 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
422 union active_open_entry *p = atid2entry(t, atid);
423 void *ctx = p->t3c_tid.ctx;
425 spin_lock_bh(&t->atid_lock);
429 spin_unlock_bh(&t->atid_lock);
434 EXPORT_SYMBOL(cxgb3_free_atid);
437 * Free a server TID and return it to the free pool.
439 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
441 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
442 union listen_entry *p = stid2entry(t, stid);
444 spin_lock_bh(&t->stid_lock);
448 spin_unlock_bh(&t->stid_lock);
451 EXPORT_SYMBOL(cxgb3_free_stid);
453 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
454 void *ctx, unsigned int tid)
456 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
458 t->tid_tab[tid].client = client;
459 t->tid_tab[tid].ctx = ctx;
460 atomic_inc(&t->tids_in_use);
463 EXPORT_SYMBOL(cxgb3_insert_tid);
466 * Populate a TID_RELEASE WR. The skb must be already propely sized.
468 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
470 struct cpl_tid_release *req;
472 skb->priority = CPL_PRIORITY_SETUP;
473 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
474 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
475 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
478 static void t3_process_tid_release_list(struct work_struct *work)
480 struct t3c_data *td = container_of(work, struct t3c_data,
483 struct t3cdev *tdev = td->dev;
486 spin_lock_bh(&td->tid_release_lock);
487 while (td->tid_release_list) {
488 struct t3c_tid_entry *p = td->tid_release_list;
490 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
491 spin_unlock_bh(&td->tid_release_lock);
493 skb = alloc_skb(sizeof(struct cpl_tid_release),
494 GFP_KERNEL | __GFP_NOFAIL);
495 mk_tid_release(skb, p - td->tid_maps.tid_tab);
496 cxgb3_ofld_send(tdev, skb);
498 spin_lock_bh(&td->tid_release_lock);
500 spin_unlock_bh(&td->tid_release_lock);
503 /* use ctx as a next pointer in the tid release list */
504 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
506 struct t3c_data *td = T3C_DATA(tdev);
507 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
509 spin_lock_bh(&td->tid_release_lock);
510 p->ctx = (void *)td->tid_release_list;
512 td->tid_release_list = p;
514 schedule_work(&td->tid_release_task);
515 spin_unlock_bh(&td->tid_release_lock);
518 EXPORT_SYMBOL(cxgb3_queue_tid_release);
521 * Remove a tid from the TID table. A client may defer processing its last
522 * CPL message if it is locked at the time it arrives, and while the message
523 * sits in the client's backlog the TID may be reused for another connection.
524 * To handle this we atomically switch the TID association if it still points
525 * to the original client context.
527 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
529 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
531 BUG_ON(tid >= t->ntids);
532 if (tdev->type == T3A)
533 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
537 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
539 mk_tid_release(skb, tid);
540 cxgb3_ofld_send(tdev, skb);
541 t->tid_tab[tid].ctx = NULL;
543 cxgb3_queue_tid_release(tdev, tid);
545 atomic_dec(&t->tids_in_use);
548 EXPORT_SYMBOL(cxgb3_remove_tid);
550 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
554 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
556 spin_lock_bh(&t->atid_lock);
558 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
560 union active_open_entry *p = t->afree;
562 atid = (p - t->atid_tab) + t->atid_base;
564 p->t3c_tid.ctx = ctx;
565 p->t3c_tid.client = client;
568 spin_unlock_bh(&t->atid_lock);
572 EXPORT_SYMBOL(cxgb3_alloc_atid);
574 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
578 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
580 spin_lock_bh(&t->stid_lock);
582 union listen_entry *p = t->sfree;
584 stid = (p - t->stid_tab) + t->stid_base;
586 p->t3c_tid.ctx = ctx;
587 p->t3c_tid.client = client;
590 spin_unlock_bh(&t->stid_lock);
594 EXPORT_SYMBOL(cxgb3_alloc_stid);
596 /* Get the t3cdev associated with a net_device */
597 struct t3cdev *dev2t3cdev(struct net_device *dev)
599 const struct port_info *pi = netdev_priv(dev);
601 return (struct t3cdev *)pi->adapter;
604 EXPORT_SYMBOL(dev2t3cdev);
606 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
608 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
610 if (rpl->status != CPL_ERR_NONE)
612 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
613 rpl->status, GET_TID(rpl));
615 return CPL_RET_BUF_DONE;
618 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
620 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
622 if (rpl->status != CPL_ERR_NONE)
624 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
625 rpl->status, GET_TID(rpl));
627 return CPL_RET_BUF_DONE;
630 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
632 struct cpl_act_open_rpl *rpl = cplhdr(skb);
633 unsigned int atid = G_TID(ntohl(rpl->atid));
634 struct t3c_tid_entry *t3c_tid;
636 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
637 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
638 t3c_tid->client->handlers &&
639 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
640 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
644 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
645 dev->name, CPL_ACT_OPEN_RPL);
646 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
650 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
652 union opcode_tid *p = cplhdr(skb);
653 unsigned int stid = G_TID(ntohl(p->opcode_tid));
654 struct t3c_tid_entry *t3c_tid;
656 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
657 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
658 t3c_tid->client->handlers[p->opcode]) {
659 return t3c_tid->client->handlers[p->opcode] (dev, skb,
662 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
663 dev->name, p->opcode);
664 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
668 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
670 union opcode_tid *p = cplhdr(skb);
671 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
672 struct t3c_tid_entry *t3c_tid;
674 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
675 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
676 t3c_tid->client->handlers[p->opcode]) {
677 return t3c_tid->client->handlers[p->opcode]
678 (dev, skb, t3c_tid->ctx);
680 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
681 dev->name, p->opcode);
682 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
686 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
688 struct cpl_pass_accept_req *req = cplhdr(skb);
689 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
690 struct t3c_tid_entry *t3c_tid;
692 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
693 if (t3c_tid->ctx && t3c_tid->client->handlers &&
694 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
695 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
696 (dev, skb, t3c_tid->ctx);
698 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
699 dev->name, CPL_PASS_ACCEPT_REQ);
700 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
705 * Returns an sk_buff for a reply CPL message of size len. If the input
706 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
707 * is allocated. The input skb must be of size at least len. Note that this
708 * operation does not destroy the original skb data even if it decides to reuse
711 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
714 if (likely(!skb_cloned(skb))) {
715 BUG_ON(skb->len < len);
716 __skb_trim(skb, len);
719 skb = alloc_skb(len, gfp);
726 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
728 union opcode_tid *p = cplhdr(skb);
729 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
730 struct t3c_tid_entry *t3c_tid;
732 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
733 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
734 t3c_tid->client->handlers[p->opcode]) {
735 return t3c_tid->client->handlers[p->opcode]
736 (dev, skb, t3c_tid->ctx);
738 struct cpl_abort_req_rss *req = cplhdr(skb);
739 struct cpl_abort_rpl *rpl;
740 struct sk_buff *reply_skb;
741 unsigned int tid = GET_TID(req);
742 u8 cmd = req->status;
744 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
745 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
748 reply_skb = cxgb3_get_cpl_reply_skb(skb,
754 printk("do_abort_req_rss: couldn't get skb!\n");
757 reply_skb->priority = CPL_PRIORITY_DATA;
758 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
759 rpl = cplhdr(reply_skb);
761 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
762 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
763 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
765 cxgb3_ofld_send(dev, reply_skb);
767 return CPL_RET_BUF_DONE;
771 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
773 struct cpl_act_establish *req = cplhdr(skb);
774 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
775 struct t3c_tid_entry *t3c_tid;
777 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
778 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
779 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
780 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
781 (dev, skb, t3c_tid->ctx);
783 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
784 dev->name, CPL_PASS_ACCEPT_REQ);
785 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
789 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
791 struct cpl_trace_pkt *p = cplhdr(skb);
793 skb->protocol = htons(0xffff);
794 skb->dev = dev->lldev;
795 skb_pull(skb, sizeof(*p));
796 skb_reset_mac_header(skb);
797 netif_receive_skb(skb);
801 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
803 unsigned int hwtid = ntohl(skb->priority) >> 8 & 0xfffff;
804 unsigned int opcode = G_OPCODE(ntohl(skb->csum));
805 struct t3c_tid_entry *t3c_tid;
807 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
808 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
809 t3c_tid->client->handlers[opcode]) {
810 return t3c_tid->client->handlers[opcode] (dev, skb,
813 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
815 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
819 static int nb_callback(struct notifier_block *self, unsigned long event,
823 case (NETEVENT_NEIGH_UPDATE):{
824 cxgb_neigh_update((struct neighbour *)ctx);
827 case (NETEVENT_PMTU_UPDATE):
829 case (NETEVENT_REDIRECT):{
830 struct netevent_redirect *nr = ctx;
831 cxgb_redirect(nr->old, nr->new);
832 cxgb_neigh_update(nr->new->neighbour);
841 static struct notifier_block nb = {
842 .notifier_call = nb_callback
846 * Process a received packet with an unknown/unexpected CPL opcode.
848 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
850 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
852 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
856 * Handlers for each CPL opcode
858 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
861 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
862 * to unregister an existing handler.
864 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
866 if (opcode < NUM_CPL_CMDS)
867 cpl_handlers[opcode] = h ? h : do_bad_cpl;
869 printk(KERN_ERR "T3C: handler registration for "
870 "opcode %x failed\n", opcode);
873 EXPORT_SYMBOL(t3_register_cpl_handler);
876 * T3CDEV's receive method.
878 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
881 struct sk_buff *skb = *skbs++;
882 unsigned int opcode = G_OPCODE(ntohl(skb->csum));
883 int ret = cpl_handlers[opcode] (dev, skb);
886 if (ret & CPL_RET_UNKNOWN_TID) {
887 union opcode_tid *p = cplhdr(skb);
889 printk(KERN_ERR "%s: CPL message (opcode %u) had "
890 "unknown TID %u\n", dev->name, opcode,
891 G_TID(ntohl(p->opcode_tid)));
894 if (ret & CPL_RET_BUF_DONE)
901 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
903 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
908 r = dev->send(dev, skb);
913 EXPORT_SYMBOL(cxgb3_ofld_send);
915 static int is_offloading(struct net_device *dev)
917 struct adapter *adapter;
920 read_lock_bh(&adapter_list_lock);
921 list_for_each_entry(adapter, &adapter_list, adapter_list) {
922 for_each_port(adapter, i) {
923 if (dev == adapter->port[i]) {
924 read_unlock_bh(&adapter_list_lock);
929 read_unlock_bh(&adapter_list_lock);
933 void cxgb_neigh_update(struct neighbour *neigh)
935 struct net_device *dev = neigh->dev;
937 if (dev && (is_offloading(dev))) {
938 struct t3cdev *tdev = dev2t3cdev(dev);
941 t3_l2t_update(tdev, neigh);
945 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
948 struct cpl_set_tcb_field *req;
950 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
952 printk(KERN_ERR "%s: cannot allocate skb!\n", __FUNCTION__);
955 skb->priority = CPL_PRIORITY_CONTROL;
956 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
957 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
958 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
961 req->word = htons(W_TCB_L2T_IX);
962 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
963 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
964 tdev->send(tdev, skb);
967 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
969 struct net_device *olddev, *newdev;
975 struct t3c_tid_entry *te;
977 olddev = old->neighbour->dev;
978 newdev = new->neighbour->dev;
979 if (!is_offloading(olddev))
981 if (!is_offloading(newdev)) {
982 printk(KERN_WARNING "%s: Redirect to non-offload"
983 "device ignored.\n", __FUNCTION__);
986 tdev = dev2t3cdev(olddev);
988 if (tdev != dev2t3cdev(newdev)) {
989 printk(KERN_WARNING "%s: Redirect to different "
990 "offload device ignored.\n", __FUNCTION__);
994 /* Add new L2T entry */
995 e = t3_l2t_get(tdev, new->neighbour, newdev);
997 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1002 /* Walk tid table and notify clients of dst change. */
1003 ti = &(T3C_DATA(tdev))->tid_maps;
1004 for (tid = 0; tid < ti->ntids; tid++) {
1005 te = lookup_tid(ti, tid);
1007 if (te && te->ctx && te->client && te->client->redirect) {
1008 update_tcb = te->client->redirect(te->ctx, old, new, e);
1010 l2t_hold(L2DATA(tdev), e);
1011 set_l2t_ix(tdev, tid, e);
1015 l2t_release(L2DATA(tdev), e);
1019 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1020 * The allocated memory is cleared.
1022 void *cxgb_alloc_mem(unsigned long size)
1024 void *p = kmalloc(size, GFP_KERNEL);
1034 * Free memory allocated through t3_alloc_mem().
1036 void cxgb_free_mem(void *addr)
1038 unsigned long p = (unsigned long)addr;
1040 if (p >= VMALLOC_START && p < VMALLOC_END)
1047 * Allocate and initialize the TID tables. Returns 0 on success.
1049 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1050 unsigned int natids, unsigned int nstids,
1051 unsigned int atid_base, unsigned int stid_base)
1053 unsigned long size = ntids * sizeof(*t->tid_tab) +
1054 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1056 t->tid_tab = cxgb_alloc_mem(size);
1060 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1061 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1064 t->stid_base = stid_base;
1067 t->atid_base = atid_base;
1069 t->stids_in_use = t->atids_in_use = 0;
1070 atomic_set(&t->tids_in_use, 0);
1071 spin_lock_init(&t->stid_lock);
1072 spin_lock_init(&t->atid_lock);
1075 * Setup the free lists for stid_tab and atid_tab.
1079 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1080 t->sfree = t->stid_tab;
1084 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1085 t->afree = t->atid_tab;
1090 static void free_tid_maps(struct tid_info *t)
1092 cxgb_free_mem(t->tid_tab);
1095 static inline void add_adapter(struct adapter *adap)
1097 write_lock_bh(&adapter_list_lock);
1098 list_add_tail(&adap->adapter_list, &adapter_list);
1099 write_unlock_bh(&adapter_list_lock);
1102 static inline void remove_adapter(struct adapter *adap)
1104 write_lock_bh(&adapter_list_lock);
1105 list_del(&adap->adapter_list);
1106 write_unlock_bh(&adapter_list_lock);
1109 int cxgb3_offload_activate(struct adapter *adapter)
1111 struct t3cdev *dev = &adapter->tdev;
1114 struct tid_range stid_range, tid_range;
1115 struct mtutab mtutab;
1116 unsigned int l2t_capacity;
1118 t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1123 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1124 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1125 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1126 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1127 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1128 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1132 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1136 natids = min(tid_range.num / 2, MAX_ATIDS);
1137 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1138 stid_range.num, ATID_BASE, stid_range.base);
1142 t->mtus = mtutab.mtus;
1143 t->nmtus = mtutab.size;
1145 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1146 spin_lock_init(&t->tid_release_lock);
1147 INIT_LIST_HEAD(&t->list_node);
1151 dev->recv = process_rx;
1152 dev->neigh_update = t3_l2t_update;
1154 /* Register netevent handler once */
1155 if (list_empty(&adapter_list))
1156 register_netevent_notifier(&nb);
1158 add_adapter(adapter);
1162 t3_free_l2t(L2DATA(dev));
1169 void cxgb3_offload_deactivate(struct adapter *adapter)
1171 struct t3cdev *tdev = &adapter->tdev;
1172 struct t3c_data *t = T3C_DATA(tdev);
1174 remove_adapter(adapter);
1175 if (list_empty(&adapter_list))
1176 unregister_netevent_notifier(&nb);
1178 free_tid_maps(&t->tid_maps);
1179 T3C_DATA(tdev) = NULL;
1180 t3_free_l2t(L2DATA(tdev));
1181 L2DATA(tdev) = NULL;
1185 static inline void register_tdev(struct t3cdev *tdev)
1189 mutex_lock(&cxgb3_db_lock);
1190 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1191 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1192 mutex_unlock(&cxgb3_db_lock);
1195 static inline void unregister_tdev(struct t3cdev *tdev)
1197 mutex_lock(&cxgb3_db_lock);
1198 list_del(&tdev->ofld_dev_list);
1199 mutex_unlock(&cxgb3_db_lock);
1202 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1204 struct t3cdev *tdev = &adapter->tdev;
1206 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1208 cxgb3_set_dummy_ops(tdev);
1209 tdev->send = t3_offload_tx;
1210 tdev->ctl = cxgb_offload_ctl;
1211 tdev->type = adapter->params.rev == 0 ? T3A : T3B;
1213 register_tdev(tdev);
1216 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1218 struct t3cdev *tdev = &adapter->tdev;
1221 tdev->neigh_update = NULL;
1223 unregister_tdev(tdev);
1226 void __init cxgb3_offload_init(void)
1230 for (i = 0; i < NUM_CPL_CMDS; ++i)
1231 cpl_handlers[i] = do_bad_cpl;
1233 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1234 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1235 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1236 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1237 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1238 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1239 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1240 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1241 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1242 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1243 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1244 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1245 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1246 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1247 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1248 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1249 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1250 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1251 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1252 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1253 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1254 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1255 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1256 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1257 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);