Merge head 'upstream-20050628-1' of rsync://rsync.kernel.org/pub/scm/linux/kernel...
[linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  * linux/drivers/ide/ide-iops.c Version 0.37    Mar 05, 2003
3  *
4  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
5  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
6  *
7  */
8
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/string.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/major.h>
18 #include <linux/errno.h>
19 #include <linux/genhd.h>
20 #include <linux/blkpg.h>
21 #include <linux/slab.h>
22 #include <linux/pci.h>
23 #include <linux/delay.h>
24 #include <linux/hdreg.h>
25 #include <linux/ide.h>
26 #include <linux/bitops.h>
27
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
32
33 /*
34  *      Conventional PIO operations for ATA devices
35  */
36
37 static u8 ide_inb (unsigned long port)
38 {
39         return (u8) inb(port);
40 }
41
42 static u16 ide_inw (unsigned long port)
43 {
44         return (u16) inw(port);
45 }
46
47 static void ide_insw (unsigned long port, void *addr, u32 count)
48 {
49         insw(port, addr, count);
50 }
51
52 static u32 ide_inl (unsigned long port)
53 {
54         return (u32) inl(port);
55 }
56
57 static void ide_insl (unsigned long port, void *addr, u32 count)
58 {
59         insl(port, addr, count);
60 }
61
62 static void ide_outb (u8 val, unsigned long port)
63 {
64         outb(val, port);
65 }
66
67 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
68 {
69         outb(addr, port);
70 }
71
72 static void ide_outw (u16 val, unsigned long port)
73 {
74         outw(val, port);
75 }
76
77 static void ide_outsw (unsigned long port, void *addr, u32 count)
78 {
79         outsw(port, addr, count);
80 }
81
82 static void ide_outl (u32 val, unsigned long port)
83 {
84         outl(val, port);
85 }
86
87 static void ide_outsl (unsigned long port, void *addr, u32 count)
88 {
89         outsl(port, addr, count);
90 }
91
92 void default_hwif_iops (ide_hwif_t *hwif)
93 {
94         hwif->OUTB      = ide_outb;
95         hwif->OUTBSYNC  = ide_outbsync;
96         hwif->OUTW      = ide_outw;
97         hwif->OUTL      = ide_outl;
98         hwif->OUTSW     = ide_outsw;
99         hwif->OUTSL     = ide_outsl;
100         hwif->INB       = ide_inb;
101         hwif->INW       = ide_inw;
102         hwif->INL       = ide_inl;
103         hwif->INSW      = ide_insw;
104         hwif->INSL      = ide_insl;
105 }
106
107 EXPORT_SYMBOL(default_hwif_iops);
108
109 /*
110  *      MMIO operations, typically used for SATA controllers
111  */
112
113 static u8 ide_mm_inb (unsigned long port)
114 {
115         return (u8) readb((void __iomem *) port);
116 }
117
118 static u16 ide_mm_inw (unsigned long port)
119 {
120         return (u16) readw((void __iomem *) port);
121 }
122
123 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
124 {
125         __ide_mm_insw((void __iomem *) port, addr, count);
126 }
127
128 static u32 ide_mm_inl (unsigned long port)
129 {
130         return (u32) readl((void __iomem *) port);
131 }
132
133 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
134 {
135         __ide_mm_insl((void __iomem *) port, addr, count);
136 }
137
138 static void ide_mm_outb (u8 value, unsigned long port)
139 {
140         writeb(value, (void __iomem *) port);
141 }
142
143 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
144 {
145         writeb(value, (void __iomem *) port);
146 }
147
148 static void ide_mm_outw (u16 value, unsigned long port)
149 {
150         writew(value, (void __iomem *) port);
151 }
152
153 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
154 {
155         __ide_mm_outsw((void __iomem *) port, addr, count);
156 }
157
158 static void ide_mm_outl (u32 value, unsigned long port)
159 {
160         writel(value, (void __iomem *) port);
161 }
162
163 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
164 {
165         __ide_mm_outsl((void __iomem *) port, addr, count);
166 }
167
168 void default_hwif_mmiops (ide_hwif_t *hwif)
169 {
170         hwif->OUTB      = ide_mm_outb;
171         /* Most systems will need to override OUTBSYNC, alas however
172            this one is controller specific! */
173         hwif->OUTBSYNC  = ide_mm_outbsync;
174         hwif->OUTW      = ide_mm_outw;
175         hwif->OUTL      = ide_mm_outl;
176         hwif->OUTSW     = ide_mm_outsw;
177         hwif->OUTSL     = ide_mm_outsl;
178         hwif->INB       = ide_mm_inb;
179         hwif->INW       = ide_mm_inw;
180         hwif->INL       = ide_mm_inl;
181         hwif->INSW      = ide_mm_insw;
182         hwif->INSL      = ide_mm_insl;
183 }
184
185 EXPORT_SYMBOL(default_hwif_mmiops);
186
187 u32 ide_read_24 (ide_drive_t *drive)
188 {
189         u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
190         u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
191         u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
192         return (hcyl<<16)|(lcyl<<8)|sect;
193 }
194
195 void SELECT_DRIVE (ide_drive_t *drive)
196 {
197         if (HWIF(drive)->selectproc)
198                 HWIF(drive)->selectproc(drive);
199         HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
200 }
201
202 EXPORT_SYMBOL(SELECT_DRIVE);
203
204 void SELECT_INTERRUPT (ide_drive_t *drive)
205 {
206         if (HWIF(drive)->intrproc)
207                 HWIF(drive)->intrproc(drive);
208         else
209                 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
210 }
211
212 void SELECT_MASK (ide_drive_t *drive, int mask)
213 {
214         if (HWIF(drive)->maskproc)
215                 HWIF(drive)->maskproc(drive, mask);
216 }
217
218 void QUIRK_LIST (ide_drive_t *drive)
219 {
220         if (HWIF(drive)->quirkproc)
221                 drive->quirk_list = HWIF(drive)->quirkproc(drive);
222 }
223
224 /*
225  * Some localbus EIDE interfaces require a special access sequence
226  * when using 32-bit I/O instructions to transfer data.  We call this
227  * the "vlb_sync" sequence, which consists of three successive reads
228  * of the sector count register location, with interrupts disabled
229  * to ensure that the reads all happen together.
230  */
231 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
232 {
233         (void) HWIF(drive)->INB(port);
234         (void) HWIF(drive)->INB(port);
235         (void) HWIF(drive)->INB(port);
236 }
237
238 /*
239  * This is used for most PIO data transfers *from* the IDE interface
240  */
241 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
242 {
243         ide_hwif_t *hwif        = HWIF(drive);
244         u8 io_32bit             = drive->io_32bit;
245
246         if (io_32bit) {
247                 if (io_32bit & 2) {
248                         unsigned long flags;
249                         local_irq_save(flags);
250                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
251                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
252                         local_irq_restore(flags);
253                 } else
254                         hwif->INSL(IDE_DATA_REG, buffer, wcount);
255         } else {
256                 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
257         }
258 }
259
260 /*
261  * This is used for most PIO data transfers *to* the IDE interface
262  */
263 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
264 {
265         ide_hwif_t *hwif        = HWIF(drive);
266         u8 io_32bit             = drive->io_32bit;
267
268         if (io_32bit) {
269                 if (io_32bit & 2) {
270                         unsigned long flags;
271                         local_irq_save(flags);
272                         ata_vlb_sync(drive, IDE_NSECTOR_REG);
273                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
274                         local_irq_restore(flags);
275                 } else
276                         hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
277         } else {
278                 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
279         }
280 }
281
282 /*
283  * The following routines are mainly used by the ATAPI drivers.
284  *
285  * These routines will round up any request for an odd number of bytes,
286  * so if an odd bytecount is specified, be sure that there's at least one
287  * extra byte allocated for the buffer.
288  */
289
290 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
291 {
292         ide_hwif_t *hwif = HWIF(drive);
293
294         ++bytecount;
295 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
296         if (MACH_IS_ATARI || MACH_IS_Q40) {
297                 /* Atari has a byte-swapped IDE interface */
298                 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
299                 return;
300         }
301 #endif /* CONFIG_ATARI || CONFIG_Q40 */
302         hwif->ata_input_data(drive, buffer, bytecount / 4);
303         if ((bytecount & 0x03) >= 2)
304                 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
305 }
306
307 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
308 {
309         ide_hwif_t *hwif = HWIF(drive);
310
311         ++bytecount;
312 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
313         if (MACH_IS_ATARI || MACH_IS_Q40) {
314                 /* Atari has a byte-swapped IDE interface */
315                 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
316                 return;
317         }
318 #endif /* CONFIG_ATARI || CONFIG_Q40 */
319         hwif->ata_output_data(drive, buffer, bytecount / 4);
320         if ((bytecount & 0x03) >= 2)
321                 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
322 }
323
324 void default_hwif_transport(ide_hwif_t *hwif)
325 {
326         hwif->ata_input_data            = ata_input_data;
327         hwif->ata_output_data           = ata_output_data;
328         hwif->atapi_input_bytes         = atapi_input_bytes;
329         hwif->atapi_output_bytes        = atapi_output_bytes;
330 }
331
332 EXPORT_SYMBOL(default_hwif_transport);
333
334 /*
335  * Beginning of Taskfile OPCODE Library and feature sets.
336  */
337 void ide_fix_driveid (struct hd_driveid *id)
338 {
339 #ifndef __LITTLE_ENDIAN
340 # ifdef __BIG_ENDIAN
341         int i;
342         u16 *stringcast;
343
344         id->config         = __le16_to_cpu(id->config);
345         id->cyls           = __le16_to_cpu(id->cyls);
346         id->reserved2      = __le16_to_cpu(id->reserved2);
347         id->heads          = __le16_to_cpu(id->heads);
348         id->track_bytes    = __le16_to_cpu(id->track_bytes);
349         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
350         id->sectors        = __le16_to_cpu(id->sectors);
351         id->vendor0        = __le16_to_cpu(id->vendor0);
352         id->vendor1        = __le16_to_cpu(id->vendor1);
353         id->vendor2        = __le16_to_cpu(id->vendor2);
354         stringcast = (u16 *)&id->serial_no[0];
355         for (i = 0; i < (20/2); i++)
356                 stringcast[i] = __le16_to_cpu(stringcast[i]);
357         id->buf_type       = __le16_to_cpu(id->buf_type);
358         id->buf_size       = __le16_to_cpu(id->buf_size);
359         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
360         stringcast = (u16 *)&id->fw_rev[0];
361         for (i = 0; i < (8/2); i++)
362                 stringcast[i] = __le16_to_cpu(stringcast[i]);
363         stringcast = (u16 *)&id->model[0];
364         for (i = 0; i < (40/2); i++)
365                 stringcast[i] = __le16_to_cpu(stringcast[i]);
366         id->dword_io       = __le16_to_cpu(id->dword_io);
367         id->reserved50     = __le16_to_cpu(id->reserved50);
368         id->field_valid    = __le16_to_cpu(id->field_valid);
369         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
370         id->cur_heads      = __le16_to_cpu(id->cur_heads);
371         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
372         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
373         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
374         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
375         id->dma_1word      = __le16_to_cpu(id->dma_1word);
376         id->dma_mword      = __le16_to_cpu(id->dma_mword);
377         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
378         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
379         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
380         id->eide_pio       = __le16_to_cpu(id->eide_pio);
381         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
382         for (i = 0; i < 2; ++i)
383                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
384         for (i = 0; i < 4; ++i)
385                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
386         id->queue_depth    = __le16_to_cpu(id->queue_depth);
387         for (i = 0; i < 4; ++i)
388                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
389         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
390         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
391         id->command_set_1  = __le16_to_cpu(id->command_set_1);
392         id->command_set_2  = __le16_to_cpu(id->command_set_2);
393         id->cfsse          = __le16_to_cpu(id->cfsse);
394         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
395         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
396         id->csf_default    = __le16_to_cpu(id->csf_default);
397         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
398         id->trseuc         = __le16_to_cpu(id->trseuc);
399         id->trsEuc         = __le16_to_cpu(id->trsEuc);
400         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
401         id->mprc           = __le16_to_cpu(id->mprc);
402         id->hw_config      = __le16_to_cpu(id->hw_config);
403         id->acoustic       = __le16_to_cpu(id->acoustic);
404         id->msrqs          = __le16_to_cpu(id->msrqs);
405         id->sxfert         = __le16_to_cpu(id->sxfert);
406         id->sal            = __le16_to_cpu(id->sal);
407         id->spg            = __le32_to_cpu(id->spg);
408         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
409         for (i = 0; i < 22; i++)
410                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
411         id->last_lun       = __le16_to_cpu(id->last_lun);
412         id->word127        = __le16_to_cpu(id->word127);
413         id->dlf            = __le16_to_cpu(id->dlf);
414         id->csfo           = __le16_to_cpu(id->csfo);
415         for (i = 0; i < 26; i++)
416                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
417         id->word156        = __le16_to_cpu(id->word156);
418         for (i = 0; i < 3; i++)
419                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
420         id->cfa_power      = __le16_to_cpu(id->cfa_power);
421         for (i = 0; i < 14; i++)
422                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
423         for (i = 0; i < 31; i++)
424                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
425         for (i = 0; i < 48; i++)
426                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
427         id->integrity_word  = __le16_to_cpu(id->integrity_word);
428 # else
429 #  error "Please fix <asm/byteorder.h>"
430 # endif
431 #endif
432 }
433
434 /* FIXME: exported for use by the USB storage (isd200.c) code only */
435 EXPORT_SYMBOL(ide_fix_driveid);
436
437 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
438 {
439         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
440
441         if (byteswap) {
442                 /* convert from big-endian to host byte order */
443                 for (p = end ; p != s;) {
444                         unsigned short *pp = (unsigned short *) (p -= 2);
445                         *pp = ntohs(*pp);
446                 }
447         }
448         /* strip leading blanks */
449         while (s != end && *s == ' ')
450                 ++s;
451         /* compress internal blanks and strip trailing blanks */
452         while (s != end && *s) {
453                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
454                         *p++ = *(s-1);
455         }
456         /* wipe out trailing garbage */
457         while (p != end)
458                 *p++ = '\0';
459 }
460
461 EXPORT_SYMBOL(ide_fixstring);
462
463 /*
464  * Needed for PCI irq sharing
465  */
466 int drive_is_ready (ide_drive_t *drive)
467 {
468         ide_hwif_t *hwif        = HWIF(drive);
469         u8 stat                 = 0;
470
471         if (drive->waiting_for_dma)
472                 return hwif->ide_dma_test_irq(drive);
473
474 #if 0
475         /* need to guarantee 400ns since last command was issued */
476         udelay(1);
477 #endif
478
479 #ifdef CONFIG_IDEPCI_SHARE_IRQ
480         /*
481          * We do a passive status test under shared PCI interrupts on
482          * cards that truly share the ATA side interrupt, but may also share
483          * an interrupt with another pci card/device.  We make no assumptions
484          * about possible isa-pnp and pci-pnp issues yet.
485          */
486         if (IDE_CONTROL_REG)
487                 stat = hwif->INB(IDE_ALTSTATUS_REG);
488         else
489 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
490                 /* Note: this may clear a pending IRQ!! */
491                 stat = hwif->INB(IDE_STATUS_REG);
492
493         if (stat & BUSY_STAT)
494                 /* drive busy:  definitely not interrupting */
495                 return 0;
496
497         /* drive ready: *might* be interrupting */
498         return 1;
499 }
500
501 EXPORT_SYMBOL(drive_is_ready);
502
503 /*
504  * Global for All, and taken from ide-pmac.c. Can be called
505  * with spinlock held & IRQs disabled, so don't schedule !
506  */
507 int wait_for_ready (ide_drive_t *drive, int timeout)
508 {
509         ide_hwif_t *hwif        = HWIF(drive);
510         u8 stat                 = 0;
511
512         while(--timeout) {
513                 stat = hwif->INB(IDE_STATUS_REG);
514                 if (!(stat & BUSY_STAT)) {
515                         if (drive->ready_stat == 0)
516                                 break;
517                         else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
518                                 break;
519                 }
520                 mdelay(1);
521         }
522         if ((stat & ERR_STAT) || timeout <= 0) {
523                 if (stat & ERR_STAT) {
524                         printk(KERN_ERR "%s: wait_for_ready, "
525                                 "error status: %x\n", drive->name, stat);
526                 }
527                 return 1;
528         }
529         return 0;
530 }
531
532 EXPORT_SYMBOL(wait_for_ready);
533
534 /*
535  * This routine busy-waits for the drive status to be not "busy".
536  * It then checks the status for all of the "good" bits and none
537  * of the "bad" bits, and if all is okay it returns 0.  All other
538  * cases return 1 after invoking ide_error() -- caller should just return.
539  *
540  * This routine should get fixed to not hog the cpu during extra long waits..
541  * That could be done by busy-waiting for the first jiffy or two, and then
542  * setting a timer to wake up at half second intervals thereafter,
543  * until timeout is achieved, before timing out.
544  */
545 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
546 {
547         ide_hwif_t *hwif = HWIF(drive);
548         u8 stat;
549         int i;
550         unsigned long flags;
551  
552         /* bail early if we've exceeded max_failures */
553         if (drive->max_failures && (drive->failures > drive->max_failures)) {
554                 *startstop = ide_stopped;
555                 return 1;
556         }
557
558         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
559         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
560                 local_irq_set(flags);
561                 timeout += jiffies;
562                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
563                         if (time_after(jiffies, timeout)) {
564                                 /*
565                                  * One last read after the timeout in case
566                                  * heavy interrupt load made us not make any
567                                  * progress during the timeout..
568                                  */
569                                 stat = hwif->INB(IDE_STATUS_REG);
570                                 if (!(stat & BUSY_STAT))
571                                         break;
572
573                                 local_irq_restore(flags);
574                                 *startstop = ide_error(drive, "status timeout", stat);
575                                 return 1;
576                         }
577                 }
578                 local_irq_restore(flags);
579         }
580         /*
581          * Allow status to settle, then read it again.
582          * A few rare drives vastly violate the 400ns spec here,
583          * so we'll wait up to 10usec for a "good" status
584          * rather than expensively fail things immediately.
585          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
586          */
587         for (i = 0; i < 10; i++) {
588                 udelay(1);
589                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
590                         return 0;
591         }
592         *startstop = ide_error(drive, "status error", stat);
593         return 1;
594 }
595
596 EXPORT_SYMBOL(ide_wait_stat);
597
598 /*
599  *  All hosts that use the 80c ribbon must use!
600  *  The name is derived from upper byte of word 93 and the 80c ribbon.
601  */
602 u8 eighty_ninty_three (ide_drive_t *drive)
603 {
604 #if 0
605         if (!HWIF(drive)->udma_four)
606                 return 0;
607
608         if (drive->id->major_rev_num) {
609                 int hssbd = 0;
610                 int i;
611                 /*
612                  * Determine highest Supported SPEC
613                  */
614                 for (i=1; i<=15; i++)
615                         if (drive->id->major_rev_num & (1<<i))
616                                 hssbd++;
617
618                 switch (hssbd) {
619                         case 7:
620                         case 6:
621                         case 5:
622                 /* ATA-4 and older do not support above Ultra 33 */
623                         default:
624                                 return 0;
625                 }
626         }
627
628         return ((u8) (
629 #ifndef CONFIG_IDEDMA_IVB
630                 (drive->id->hw_config & 0x4000) &&
631 #endif /* CONFIG_IDEDMA_IVB */
632                  (drive->id->hw_config & 0x6000)) ? 1 : 0);
633
634 #else
635
636         return ((u8) ((HWIF(drive)->udma_four) &&
637 #ifndef CONFIG_IDEDMA_IVB
638                         (drive->id->hw_config & 0x4000) &&
639 #endif /* CONFIG_IDEDMA_IVB */
640                         (drive->id->hw_config & 0x6000)) ? 1 : 0);
641 #endif
642 }
643
644 EXPORT_SYMBOL(eighty_ninty_three);
645
646 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
647 {
648         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
649             (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
650             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
651 #ifndef CONFIG_IDEDMA_IVB
652                 if ((drive->id->hw_config & 0x6000) == 0) {
653 #else /* !CONFIG_IDEDMA_IVB */
654                 if (((drive->id->hw_config & 0x2000) == 0) ||
655                     ((drive->id->hw_config & 0x4000) == 0)) {
656 #endif /* CONFIG_IDEDMA_IVB */
657                         printk("%s: Speed warnings UDMA 3/4/5 is not "
658                                 "functional.\n", drive->name);
659                         return 1;
660                 }
661                 if (!HWIF(drive)->udma_four) {
662                         printk("%s: Speed warnings UDMA 3/4/5 is not "
663                                 "functional.\n",
664                                 HWIF(drive)->name);
665                         return 1;
666                 }
667         }
668         return 0;
669 }
670
671 /*
672  * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
673  * 1 : Safe to update drive->id DMA registers.
674  * 0 : OOPs not allowed.
675  */
676 int set_transfer (ide_drive_t *drive, ide_task_t *args)
677 {
678         if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
679             (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
680             (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
681             (drive->id->dma_ultra ||
682              drive->id->dma_mword ||
683              drive->id->dma_1word))
684                 return 1;
685
686         return 0;
687 }
688
689 #ifdef CONFIG_BLK_DEV_IDEDMA
690 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
691 {
692         if (!drive->crc_count)
693                 return drive->current_speed;
694         drive->crc_count = 0;
695
696         switch(drive->current_speed) {
697                 case XFER_UDMA_7:       return XFER_UDMA_6;
698                 case XFER_UDMA_6:       return XFER_UDMA_5;
699                 case XFER_UDMA_5:       return XFER_UDMA_4;
700                 case XFER_UDMA_4:       return XFER_UDMA_3;
701                 case XFER_UDMA_3:       return XFER_UDMA_2;
702                 case XFER_UDMA_2:       return XFER_UDMA_1;
703                 case XFER_UDMA_1:       return XFER_UDMA_0;
704                         /*
705                          * OOPS we do not goto non Ultra DMA modes
706                          * without iCRC's available we force
707                          * the system to PIO and make the user
708                          * invoke the ATA-1 ATA-2 DMA modes.
709                          */
710                 case XFER_UDMA_0:
711                 default:                return XFER_PIO_4;
712         }
713 }
714 #endif /* CONFIG_BLK_DEV_IDEDMA */
715
716 /*
717  * Update the 
718  */
719 int ide_driveid_update (ide_drive_t *drive)
720 {
721         ide_hwif_t *hwif        = HWIF(drive);
722         struct hd_driveid *id;
723 #if 0
724         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
725         if (!id)
726                 return 0;
727
728         taskfile_lib_get_identify(drive, (char *)&id);
729
730         ide_fix_driveid(id);
731         if (id) {
732                 drive->id->dma_ultra = id->dma_ultra;
733                 drive->id->dma_mword = id->dma_mword;
734                 drive->id->dma_1word = id->dma_1word;
735                 /* anything more ? */
736                 kfree(id);
737         }
738         return 1;
739 #else
740         /*
741          * Re-read drive->id for possible DMA mode
742          * change (copied from ide-probe.c)
743          */
744         unsigned long timeout, flags;
745
746         SELECT_MASK(drive, 1);
747         if (IDE_CONTROL_REG)
748                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
749         msleep(50);
750         hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
751         timeout = jiffies + WAIT_WORSTCASE;
752         do {
753                 if (time_after(jiffies, timeout)) {
754                         SELECT_MASK(drive, 0);
755                         return 0;       /* drive timed-out */
756                 }
757                 msleep(50);     /* give drive a breather */
758         } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
759         msleep(50);     /* wait for IRQ and DRQ_STAT */
760         if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
761                 SELECT_MASK(drive, 0);
762                 printk("%s: CHECK for good STATUS\n", drive->name);
763                 return 0;
764         }
765         local_irq_save(flags);
766         SELECT_MASK(drive, 0);
767         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
768         if (!id) {
769                 local_irq_restore(flags);
770                 return 0;
771         }
772         ata_input_data(drive, id, SECTOR_WORDS);
773         (void) hwif->INB(IDE_STATUS_REG);       /* clear drive IRQ */
774         local_irq_enable();
775         local_irq_restore(flags);
776         ide_fix_driveid(id);
777         if (id) {
778                 drive->id->dma_ultra = id->dma_ultra;
779                 drive->id->dma_mword = id->dma_mword;
780                 drive->id->dma_1word = id->dma_1word;
781                 /* anything more ? */
782                 kfree(id);
783         }
784
785         return 1;
786 #endif
787 }
788
789 /*
790  * Similar to ide_wait_stat(), except it never calls ide_error internally.
791  * This is a kludge to handle the new ide_config_drive_speed() function,
792  * and should not otherwise be used anywhere.  Eventually, the tuneproc's
793  * should be updated to return ide_startstop_t, in which case we can get
794  * rid of this abomination again.  :)   -ml
795  *
796  * It is gone..........
797  *
798  * const char *msg == consider adding for verbose errors.
799  */
800 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
801 {
802         ide_hwif_t *hwif        = HWIF(drive);
803         int     i, error        = 1;
804         u8 stat;
805
806 //      while (HWGROUP(drive)->busy)
807 //              msleep(50);
808
809 #ifdef CONFIG_BLK_DEV_IDEDMA
810         if (hwif->ide_dma_check)         /* check if host supports DMA */
811                 hwif->ide_dma_host_off(drive);
812 #endif
813
814         /*
815          * Don't use ide_wait_cmd here - it will
816          * attempt to set_geometry and recalibrate,
817          * but for some reason these don't work at
818          * this point (lost interrupt).
819          */
820         /*
821          * Select the drive, and issue the SETFEATURES command
822          */
823         disable_irq_nosync(hwif->irq);
824         
825         /*
826          *      FIXME: we race against the running IRQ here if
827          *      this is called from non IRQ context. If we use
828          *      disable_irq() we hang on the error path. Work
829          *      is needed.
830          */
831          
832         udelay(1);
833         SELECT_DRIVE(drive);
834         SELECT_MASK(drive, 0);
835         udelay(1);
836         if (IDE_CONTROL_REG)
837                 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
838         hwif->OUTB(speed, IDE_NSECTOR_REG);
839         hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
840         hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
841         if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
842                 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
843         udelay(1);
844         /*
845          * Wait for drive to become non-BUSY
846          */
847         if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
848                 unsigned long flags, timeout;
849                 local_irq_set(flags);
850                 timeout = jiffies + WAIT_CMD;
851                 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
852                         if (time_after(jiffies, timeout))
853                                 break;
854                 }
855                 local_irq_restore(flags);
856         }
857
858         /*
859          * Allow status to settle, then read it again.
860          * A few rare drives vastly violate the 400ns spec here,
861          * so we'll wait up to 10usec for a "good" status
862          * rather than expensively fail things immediately.
863          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
864          */
865         for (i = 0; i < 10; i++) {
866                 udelay(1);
867                 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
868                         error = 0;
869                         break;
870                 }
871         }
872
873         SELECT_MASK(drive, 0);
874
875         enable_irq(hwif->irq);
876
877         if (error) {
878                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
879                 return error;
880         }
881
882         drive->id->dma_ultra &= ~0xFF00;
883         drive->id->dma_mword &= ~0x0F00;
884         drive->id->dma_1word &= ~0x0F00;
885
886 #ifdef CONFIG_BLK_DEV_IDEDMA
887         if (speed >= XFER_SW_DMA_0)
888                 hwif->ide_dma_host_on(drive);
889         else if (hwif->ide_dma_check)   /* check if host supports DMA */
890                 hwif->ide_dma_off_quietly(drive);
891 #endif
892
893         switch(speed) {
894                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
895                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
896                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
897                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
898                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
899                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
900                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
901                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
902                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
903                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
904                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
905                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
906                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
907                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
908                 default: break;
909         }
910         if (!drive->init_speed)
911                 drive->init_speed = speed;
912         drive->current_speed = speed;
913         return error;
914 }
915
916 EXPORT_SYMBOL(ide_config_drive_speed);
917
918
919 /*
920  * This should get invoked any time we exit the driver to
921  * wait for an interrupt response from a drive.  handler() points
922  * at the appropriate code to handle the next interrupt, and a
923  * timer is started to prevent us from waiting forever in case
924  * something goes wrong (see the ide_timer_expiry() handler later on).
925  *
926  * See also ide_execute_command
927  */
928 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
929                       unsigned int timeout, ide_expiry_t *expiry)
930 {
931         ide_hwgroup_t *hwgroup = HWGROUP(drive);
932
933         if (hwgroup->handler != NULL) {
934                 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
935                         "old=%p, new=%p\n",
936                         drive->name, hwgroup->handler, handler);
937         }
938         hwgroup->handler        = handler;
939         hwgroup->expiry         = expiry;
940         hwgroup->timer.expires  = jiffies + timeout;
941         add_timer(&hwgroup->timer);
942 }
943
944 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
945                       unsigned int timeout, ide_expiry_t *expiry)
946 {
947         unsigned long flags;
948         spin_lock_irqsave(&ide_lock, flags);
949         __ide_set_handler(drive, handler, timeout, expiry);
950         spin_unlock_irqrestore(&ide_lock, flags);
951 }
952
953 EXPORT_SYMBOL(ide_set_handler);
954  
955 /**
956  *      ide_execute_command     -       execute an IDE command
957  *      @drive: IDE drive to issue the command against
958  *      @command: command byte to write
959  *      @handler: handler for next phase
960  *      @timeout: timeout for command
961  *      @expiry:  handler to run on timeout
962  *
963  *      Helper function to issue an IDE command. This handles the
964  *      atomicity requirements, command timing and ensures that the 
965  *      handler and IRQ setup do not race. All IDE command kick off
966  *      should go via this function or do equivalent locking.
967  */
968  
969 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
970 {
971         unsigned long flags;
972         ide_hwgroup_t *hwgroup = HWGROUP(drive);
973         ide_hwif_t *hwif = HWIF(drive);
974         
975         spin_lock_irqsave(&ide_lock, flags);
976         
977         if(hwgroup->handler)
978                 BUG();
979         hwgroup->handler        = handler;
980         hwgroup->expiry         = expiry;
981         hwgroup->timer.expires  = jiffies + timeout;
982         add_timer(&hwgroup->timer);
983         hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
984         /* Drive takes 400nS to respond, we must avoid the IRQ being
985            serviced before that. 
986            
987            FIXME: we could skip this delay with care on non shared
988            devices 
989         */
990         ndelay(400);
991         spin_unlock_irqrestore(&ide_lock, flags);
992 }
993
994 EXPORT_SYMBOL(ide_execute_command);
995
996
997 /* needed below */
998 static ide_startstop_t do_reset1 (ide_drive_t *, int);
999
1000 /*
1001  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1002  * during an atapi drive reset operation. If the drive has not yet responded,
1003  * and we have not yet hit our maximum waiting time, then the timer is restarted
1004  * for another 50ms.
1005  */
1006 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
1007 {
1008         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1009         ide_hwif_t *hwif        = HWIF(drive);
1010         u8 stat;
1011
1012         SELECT_DRIVE(drive);
1013         udelay (10);
1014
1015         if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1016                 printk("%s: ATAPI reset complete\n", drive->name);
1017         } else {
1018                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1019                         if (HWGROUP(drive)->handler != NULL)
1020                                 BUG();
1021                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1022                         /* continue polling */
1023                         return ide_started;
1024                 }
1025                 /* end of polling */
1026                 hwgroup->polling = 0;
1027                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1028                                 drive->name, stat);
1029                 /* do it the old fashioned way */
1030                 return do_reset1(drive, 1);
1031         }
1032         /* done polling */
1033         hwgroup->polling = 0;
1034         return ide_stopped;
1035 }
1036
1037 /*
1038  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1039  * during an ide reset operation. If the drives have not yet responded,
1040  * and we have not yet hit our maximum waiting time, then the timer is restarted
1041  * for another 50ms.
1042  */
1043 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1044 {
1045         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1046         ide_hwif_t *hwif        = HWIF(drive);
1047         u8 tmp;
1048
1049         if (hwif->reset_poll != NULL) {
1050                 if (hwif->reset_poll(drive)) {
1051                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1052                                 hwif->name, drive->name);
1053                         return ide_stopped;
1054                 }
1055         }
1056
1057         if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1058                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1059                         if (HWGROUP(drive)->handler != NULL)
1060                                 BUG();
1061                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1062                         /* continue polling */
1063                         return ide_started;
1064                 }
1065                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1066                 drive->failures++;
1067         } else  {
1068                 printk("%s: reset: ", hwif->name);
1069                 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1070                         printk("success\n");
1071                         drive->failures = 0;
1072                 } else {
1073                         drive->failures++;
1074                         printk("master: ");
1075                         switch (tmp & 0x7f) {
1076                                 case 1: printk("passed");
1077                                         break;
1078                                 case 2: printk("formatter device error");
1079                                         break;
1080                                 case 3: printk("sector buffer error");
1081                                         break;
1082                                 case 4: printk("ECC circuitry error");
1083                                         break;
1084                                 case 5: printk("controlling MPU error");
1085                                         break;
1086                                 default:printk("error (0x%02x?)", tmp);
1087                         }
1088                         if (tmp & 0x80)
1089                                 printk("; slave: failed");
1090                         printk("\n");
1091                 }
1092         }
1093         hwgroup->polling = 0;   /* done polling */
1094         return ide_stopped;
1095 }
1096
1097 static void check_dma_crc(ide_drive_t *drive)
1098 {
1099 #ifdef CONFIG_BLK_DEV_IDEDMA
1100         if (drive->crc_count) {
1101                 (void) HWIF(drive)->ide_dma_off_quietly(drive);
1102                 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1103                 if (drive->current_speed >= XFER_SW_DMA_0)
1104                         (void) HWIF(drive)->ide_dma_on(drive);
1105         } else
1106                 (void)__ide_dma_off(drive);
1107 #endif
1108 }
1109
1110 static void ide_disk_pre_reset(ide_drive_t *drive)
1111 {
1112         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1113
1114         drive->special.all = 0;
1115         drive->special.b.set_geometry = legacy;
1116         drive->special.b.recalibrate  = legacy;
1117         if (OK_TO_RESET_CONTROLLER)
1118                 drive->mult_count = 0;
1119         if (!drive->keep_settings && !drive->using_dma)
1120                 drive->mult_req = 0;
1121         if (drive->mult_req != drive->mult_count)
1122                 drive->special.b.set_multmode = 1;
1123 }
1124
1125 static void pre_reset(ide_drive_t *drive)
1126 {
1127         if (drive->media == ide_disk)
1128                 ide_disk_pre_reset(drive);
1129         else
1130                 drive->post_reset = 1;
1131
1132         if (!drive->keep_settings) {
1133                 if (drive->using_dma) {
1134                         check_dma_crc(drive);
1135                 } else {
1136                         drive->unmask = 0;
1137                         drive->io_32bit = 0;
1138                 }
1139                 return;
1140         }
1141         if (drive->using_dma)
1142                 check_dma_crc(drive);
1143
1144         if (HWIF(drive)->pre_reset != NULL)
1145                 HWIF(drive)->pre_reset(drive);
1146
1147 }
1148
1149 /*
1150  * do_reset1() attempts to recover a confused drive by resetting it.
1151  * Unfortunately, resetting a disk drive actually resets all devices on
1152  * the same interface, so it can really be thought of as resetting the
1153  * interface rather than resetting the drive.
1154  *
1155  * ATAPI devices have their own reset mechanism which allows them to be
1156  * individually reset without clobbering other devices on the same interface.
1157  *
1158  * Unfortunately, the IDE interface does not generate an interrupt to let
1159  * us know when the reset operation has finished, so we must poll for this.
1160  * Equally poor, though, is the fact that this may a very long time to complete,
1161  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1162  * we set a timer to poll at 50ms intervals.
1163  */
1164 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1165 {
1166         unsigned int unit;
1167         unsigned long flags;
1168         ide_hwif_t *hwif;
1169         ide_hwgroup_t *hwgroup;
1170         
1171         spin_lock_irqsave(&ide_lock, flags);
1172         hwif = HWIF(drive);
1173         hwgroup = HWGROUP(drive);
1174
1175         /* We must not reset with running handlers */
1176         if(hwgroup->handler != NULL)
1177                 BUG();
1178
1179         /* For an ATAPI device, first try an ATAPI SRST. */
1180         if (drive->media != ide_disk && !do_not_try_atapi) {
1181                 pre_reset(drive);
1182                 SELECT_DRIVE(drive);
1183                 udelay (20);
1184                 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1185                 ndelay(400);
1186                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1187                 hwgroup->polling = 1;
1188                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1189                 spin_unlock_irqrestore(&ide_lock, flags);
1190                 return ide_started;
1191         }
1192
1193         /*
1194          * First, reset any device state data we were maintaining
1195          * for any of the drives on this interface.
1196          */
1197         for (unit = 0; unit < MAX_DRIVES; ++unit)
1198                 pre_reset(&hwif->drives[unit]);
1199
1200 #if OK_TO_RESET_CONTROLLER
1201         if (!IDE_CONTROL_REG) {
1202                 spin_unlock_irqrestore(&ide_lock, flags);
1203                 return ide_stopped;
1204         }
1205
1206         /*
1207          * Note that we also set nIEN while resetting the device,
1208          * to mask unwanted interrupts from the interface during the reset.
1209          * However, due to the design of PC hardware, this will cause an
1210          * immediate interrupt due to the edge transition it produces.
1211          * This single interrupt gives us a "fast poll" for drives that
1212          * recover from reset very quickly, saving us the first 50ms wait time.
1213          */
1214         /* set SRST and nIEN */
1215         hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1216         /* more than enough time */
1217         udelay(10);
1218         if (drive->quirk_list == 2) {
1219                 /* clear SRST and nIEN */
1220                 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1221         } else {
1222                 /* clear SRST, leave nIEN */
1223                 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1224         }
1225         /* more than enough time */
1226         udelay(10);
1227         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1228         hwgroup->polling = 1;
1229         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1230
1231         /*
1232          * Some weird controller like resetting themselves to a strange
1233          * state when the disks are reset this way. At least, the Winbond
1234          * 553 documentation says that
1235          */
1236         if (hwif->resetproc != NULL) {
1237                 hwif->resetproc(drive);
1238         }
1239         
1240 #endif  /* OK_TO_RESET_CONTROLLER */
1241
1242         spin_unlock_irqrestore(&ide_lock, flags);
1243         return ide_started;
1244 }
1245
1246 /*
1247  * ide_do_reset() is the entry point to the drive/interface reset code.
1248  */
1249
1250 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1251 {
1252         return do_reset1(drive, 0);
1253 }
1254
1255 EXPORT_SYMBOL(ide_do_reset);
1256
1257 /*
1258  * ide_wait_not_busy() waits for the currently selected device on the hwif
1259  * to report a non-busy status, see comments in probe_hwif().
1260  */
1261 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1262 {
1263         u8 stat = 0;
1264
1265         while(timeout--) {
1266                 /*
1267                  * Turn this into a schedule() sleep once I'm sure
1268                  * about locking issues (2.5 work ?).
1269                  */
1270                 mdelay(1);
1271                 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1272                 if ((stat & BUSY_STAT) == 0)
1273                         return 0;
1274                 /*
1275                  * Assume a value of 0xff means nothing is connected to
1276                  * the interface and it doesn't implement the pull-down
1277                  * resistor on D7.
1278                  */
1279                 if (stat == 0xff)
1280                         return -ENODEV;
1281         }
1282         return -EBUSY;
1283 }
1284
1285 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1286