1 /* linux/net/ipv4/arp.c
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
5 * Copyright (C) 1994 by Florian La Roche
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 * Alan Cox : Removed the Ethernet assumptions in
20 * Alan Cox : Fixed some small errors in the ARP
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
42 * Craig Schlenter : Don't modify permanent entry
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
46 * eg intelligent arp probing and
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
53 * Jonathan Layes : Added arpd support through kerneld
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/capability.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
87 #include <linux/inet.h>
88 #include <linux/inetdevice.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/fddidevice.h>
92 #include <linux/if_arp.h>
93 #include <linux/trdevice.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/jhash.h>
103 #include <linux/sysctl.h>
106 #include <net/net_namespace.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
112 #include <net/sock.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
124 #include <linux/netfilter_arp.h>
127 * Interface to generic neighbour cache.
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
135 static struct neigh_ops arp_generic_ops = {
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
145 static struct neigh_ops arp_hh_ops = {
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
155 static struct neigh_ops arp_direct_ops = {
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
163 struct neigh_ops arp_broken_ops = {
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
173 struct neigh_table arp_tbl = {
175 .entry_size = sizeof(struct neighbour) + 4,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
196 .gc_interval = 30 * HZ,
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
208 ip_eth_mc_map(addr, haddr);
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
218 memcpy(haddr, dev->broadcast, dev->addr_len);
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
231 static int arp_constructor(struct neighbour *neigh)
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
238 neigh->type = inet_addr_type(addr);
241 in_dev = __in_dev_get_rcu(dev);
242 if (in_dev == NULL) {
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
257 /* Good devices (checked by reading texts, but only Ethernet is
260 ARPHRD_ETHER: (ethernet, apfddi)
263 ARPHRD_METRICOM: (strip)
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
313 neigh->ops = &arp_generic_ops;
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
318 neigh->output = neigh->ops->output;
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325 dst_link_failure(skb);
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev = in_dev_get(dev);
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
343 case 0: /* By default announce any local IP */
344 if (skb && inet_addr_type(ip_hdr(skb)->saddr) == RTN_LOCAL)
345 saddr = ip_hdr(skb)->saddr;
347 case 1: /* Restrict announcements of saddr in same subnet */
350 saddr = ip_hdr(skb)->saddr;
351 if (inet_addr_type(saddr) == RTN_LOCAL) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev, target, saddr))
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
365 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367 if ((probes -= neigh->parms->ucast_probes) < 0) {
368 if (!(neigh->nud_state&NUD_VALID))
369 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
371 read_lock_bh(&neigh->lock);
372 } else if ((probes -= neigh->parms->app_probes) < 0) {
379 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 dst_ha, dev->dev_addr, NULL);
382 read_unlock_bh(&neigh->lock);
385 static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
386 __be32 sip, __be32 tip)
390 switch (IN_DEV_ARP_IGNORE(in_dev)) {
391 case 0: /* Reply, the tip is already validated */
393 case 1: /* Reply only if tip is configured on the incoming interface */
395 scope = RT_SCOPE_HOST;
398 * Reply only if tip is configured on the incoming interface
399 * and is in same subnet as sip
401 scope = RT_SCOPE_HOST;
403 case 3: /* Do not reply for scope host addresses */
405 scope = RT_SCOPE_LINK;
408 case 4: /* Reserved */
413 case 8: /* Do not reply */
418 return !inet_confirm_addr(dev, sip, tip, scope);
421 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
423 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
427 /*unsigned long now; */
429 if (ip_route_output_key(&rt, &fl) < 0)
431 if (rt->u.dst.dev != dev) {
432 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
439 /* OBSOLETE FUNCTIONS */
442 * Find an arp mapping in the cache. If not found, post a request.
444 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
445 * even if it exists. It is supposed that skb->dev was mangled
446 * by a virtual device (eql, shaper). Nobody but broken devices
447 * is allowed to use this function, it is scheduled to be removed. --ANK
450 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
454 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
455 memcpy(haddr, dev->dev_addr, dev->addr_len);
458 arp_mc_map(paddr, haddr, dev, 1);
461 memcpy(haddr, dev->broadcast, dev->addr_len);
468 int arp_find(unsigned char *haddr, struct sk_buff *skb)
470 struct net_device *dev = skb->dev;
475 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
480 paddr = ((struct rtable*)skb->dst)->rt_gateway;
482 if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
485 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
489 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
490 read_lock_bh(&n->lock);
491 memcpy(haddr, n->ha, dev->addr_len);
492 read_unlock_bh(&n->lock);
502 /* END OF OBSOLETE FUNCTIONS */
504 int arp_bind_neighbour(struct dst_entry *dst)
506 struct net_device *dev = dst->dev;
507 struct neighbour *n = dst->neighbour;
512 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
513 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
515 n = __neigh_lookup_errno(
516 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
517 dev->type == ARPHRD_ATM ? clip_tbl_hook :
519 &arp_tbl, &nexthop, dev);
528 * Check if we can use proxy ARP for this path
531 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
533 struct in_device *out_dev;
536 if (!IN_DEV_PROXY_ARP(in_dev))
539 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
544 /* place to check for proxy_arp for routes */
546 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
547 omi = IN_DEV_MEDIUM_ID(out_dev);
550 return (omi != imi && omi != -1);
554 * Interface to link layer: send routine and receive handler.
558 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
561 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
562 struct net_device *dev, __be32 src_ip,
563 unsigned char *dest_hw, unsigned char *src_hw,
564 unsigned char *target_hw)
568 unsigned char *arp_ptr;
574 skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
575 + LL_RESERVED_SPACE(dev), GFP_ATOMIC);
579 skb_reserve(skb, LL_RESERVED_SPACE(dev));
580 skb_reset_network_header(skb);
581 arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
583 skb->protocol = htons(ETH_P_ARP);
585 src_hw = dev->dev_addr;
587 dest_hw = dev->broadcast;
590 * Fill the device header for the ARP frame
592 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
596 * Fill out the arp protocol part.
598 * The arp hardware type should match the device type, except for FDDI,
599 * which (according to RFC 1390) should always equal 1 (Ethernet).
602 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
603 * DIX code for the protocol. Make these device structure fields.
607 arp->ar_hrd = htons(dev->type);
608 arp->ar_pro = htons(ETH_P_IP);
611 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
613 arp->ar_hrd = htons(ARPHRD_AX25);
614 arp->ar_pro = htons(AX25_P_IP);
617 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
619 arp->ar_hrd = htons(ARPHRD_NETROM);
620 arp->ar_pro = htons(AX25_P_IP);
627 arp->ar_hrd = htons(ARPHRD_ETHER);
628 arp->ar_pro = htons(ETH_P_IP);
632 case ARPHRD_IEEE802_TR:
633 arp->ar_hrd = htons(ARPHRD_IEEE802);
634 arp->ar_pro = htons(ETH_P_IP);
639 arp->ar_hln = dev->addr_len;
641 arp->ar_op = htons(type);
643 arp_ptr=(unsigned char *)(arp+1);
645 memcpy(arp_ptr, src_hw, dev->addr_len);
646 arp_ptr+=dev->addr_len;
647 memcpy(arp_ptr, &src_ip,4);
649 if (target_hw != NULL)
650 memcpy(arp_ptr, target_hw, dev->addr_len);
652 memset(arp_ptr, 0, dev->addr_len);
653 arp_ptr+=dev->addr_len;
654 memcpy(arp_ptr, &dest_ip, 4);
664 * Send an arp packet.
666 void arp_xmit(struct sk_buff *skb)
668 /* Send it off, maybe filter it using firewalling first. */
669 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
673 * Create and send an arp packet.
675 void arp_send(int type, int ptype, __be32 dest_ip,
676 struct net_device *dev, __be32 src_ip,
677 unsigned char *dest_hw, unsigned char *src_hw,
678 unsigned char *target_hw)
683 * No arp on this interface.
686 if (dev->flags&IFF_NOARP)
689 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
690 dest_hw, src_hw, target_hw);
699 * Process an arp request.
702 static int arp_process(struct sk_buff *skb)
704 struct net_device *dev = skb->dev;
705 struct in_device *in_dev = in_dev_get(dev);
707 unsigned char *arp_ptr;
711 u16 dev_type = dev->type;
715 /* arp_rcv below verifies the ARP header and verifies the device
726 if (arp->ar_pro != htons(ETH_P_IP) ||
727 htons(dev_type) != arp->ar_hrd)
731 case ARPHRD_IEEE802_TR:
735 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
736 * devices, according to RFC 2625) devices will accept ARP
737 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
738 * This is the case also of FDDI, where the RFC 1390 says that
739 * FDDI devices should accept ARP hardware of (1) Ethernet,
740 * however, to be more robust, we'll accept both 1 (Ethernet)
743 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
744 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
745 arp->ar_pro != htons(ETH_P_IP))
749 if (arp->ar_pro != htons(AX25_P_IP) ||
750 arp->ar_hrd != htons(ARPHRD_AX25))
754 if (arp->ar_pro != htons(AX25_P_IP) ||
755 arp->ar_hrd != htons(ARPHRD_NETROM))
760 /* Understand only these message types */
762 if (arp->ar_op != htons(ARPOP_REPLY) &&
763 arp->ar_op != htons(ARPOP_REQUEST))
769 arp_ptr= (unsigned char *)(arp+1);
771 arp_ptr += dev->addr_len;
772 memcpy(&sip, arp_ptr, 4);
774 arp_ptr += dev->addr_len;
775 memcpy(&tip, arp_ptr, 4);
777 * Check for bad requests for 127.x.x.x and requests for multicast
778 * addresses. If this is one such, delete it.
780 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
784 * Special case: We must set Frame Relay source Q.922 address
786 if (dev_type == ARPHRD_DLCI)
787 sha = dev->broadcast;
790 * Process entry. The idea here is we want to send a reply if it is a
791 * request for us or if it is a request for someone else that we hold
792 * a proxy for. We want to add an entry to our cache if it is a reply
793 * to us or if it is a request for our address.
794 * (The assumption for this last is that if someone is requesting our
795 * address, they are probably intending to talk to us, so it saves time
796 * if we cache their address. Their address is also probably not in
797 * our cache, since ours is not in their cache.)
799 * Putting this another way, we only care about replies if they are to
800 * us, in which case we add them to the cache. For requests, we care
801 * about those for us and those for our proxies. We reply to both,
802 * and in the case of requests for us we add the requester to the arp
806 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
808 if (arp->ar_op == htons(ARPOP_REQUEST) &&
809 inet_addr_type(tip) == RTN_LOCAL &&
810 !arp_ignore(in_dev,dev,sip,tip))
811 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
816 if (arp->ar_op == htons(ARPOP_REQUEST) &&
817 ip_route_input(skb, tip, sip, 0, dev) == 0) {
819 rt = (struct rtable*)skb->dst;
820 addr_type = rt->rt_type;
822 if (addr_type == RTN_LOCAL) {
823 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
828 dont_send |= arp_ignore(in_dev,dev,sip,tip);
829 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
830 dont_send |= arp_filter(sip,tip,dev);
832 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
837 } else if (IN_DEV_FORWARD(in_dev)) {
838 if (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
839 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &init_net, &tip, dev, 0))) {
840 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
844 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
845 skb->pkt_type == PACKET_HOST ||
846 in_dev->arp_parms->proxy_delay == 0) {
847 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
849 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
858 /* Update our ARP tables */
860 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
862 if (IPV4_DEVCONF_ALL(dev->nd_net, ARP_ACCEPT)) {
863 /* Unsolicited ARP is not accepted by default.
864 It is possible, that this option should be enabled for some
865 devices (strip is candidate)
868 arp->ar_op == htons(ARPOP_REPLY) &&
869 inet_addr_type(sip) == RTN_UNICAST)
870 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
874 int state = NUD_REACHABLE;
877 /* If several different ARP replies follows back-to-back,
878 use the FIRST one. It is possible, if several proxy
879 agents are active. Taking the first reply prevents
880 arp trashing and chooses the fastest router.
882 override = time_after(jiffies, n->updated + n->parms->locktime);
884 /* Broadcast replies and request packets
885 do not assert neighbour reachability.
887 if (arp->ar_op != htons(ARPOP_REPLY) ||
888 skb->pkt_type != PACKET_HOST)
890 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
901 static void parp_redo(struct sk_buff *skb)
908 * Receive an arp request from the device layer.
911 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
912 struct packet_type *pt, struct net_device *orig_dev)
916 if (dev->nd_net != &init_net)
919 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
920 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
921 (2 * dev->addr_len) +
926 if (arp->ar_hln != dev->addr_len ||
927 dev->flags & IFF_NOARP ||
928 skb->pkt_type == PACKET_OTHERHOST ||
929 skb->pkt_type == PACKET_LOOPBACK ||
933 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
936 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
938 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
947 * User level interface (ioctl)
951 * Set (create) an ARP cache entry.
954 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
957 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
960 if (__in_dev_get_rtnl(dev)) {
961 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
967 static int arp_req_set_public(struct net *net, struct arpreq *r,
968 struct net_device *dev)
970 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
971 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
973 if (mask && mask != htonl(0xFFFFFFFF))
975 if (!dev && (r->arp_flags & ATF_COM)) {
976 dev = dev_getbyhwaddr(&init_net, r->arp_ha.sa_family,
982 if (pneigh_lookup(&arp_tbl, &init_net, &ip, dev, 1) == NULL)
987 return arp_req_set_proxy(net, dev, 1);
990 static int arp_req_set(struct net *net, struct arpreq *r,
991 struct net_device * dev)
994 struct neighbour *neigh;
997 if (r->arp_flags & ATF_PUBL)
998 return arp_req_set_public(net, r, dev);
1000 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1001 if (r->arp_flags & ATF_PERM)
1002 r->arp_flags |= ATF_COM;
1004 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1005 .tos = RTO_ONLINK } } };
1007 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1009 dev = rt->u.dst.dev;
1014 switch (dev->type) {
1018 * According to RFC 1390, FDDI devices should accept ARP
1019 * hardware types of 1 (Ethernet). However, to be more
1020 * robust, we'll accept hardware types of either 1 (Ethernet)
1021 * or 6 (IEEE 802.2).
1023 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1024 r->arp_ha.sa_family != ARPHRD_ETHER &&
1025 r->arp_ha.sa_family != ARPHRD_IEEE802)
1030 if (r->arp_ha.sa_family != dev->type)
1035 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1036 err = PTR_ERR(neigh);
1037 if (!IS_ERR(neigh)) {
1038 unsigned state = NUD_STALE;
1039 if (r->arp_flags & ATF_PERM)
1040 state = NUD_PERMANENT;
1041 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1042 r->arp_ha.sa_data : NULL, state,
1043 NEIGH_UPDATE_F_OVERRIDE|
1044 NEIGH_UPDATE_F_ADMIN);
1045 neigh_release(neigh);
1050 static unsigned arp_state_to_flags(struct neighbour *neigh)
1053 if (neigh->nud_state&NUD_PERMANENT)
1054 flags = ATF_PERM|ATF_COM;
1055 else if (neigh->nud_state&NUD_VALID)
1061 * Get an ARP cache entry.
1064 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1066 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1067 struct neighbour *neigh;
1070 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1072 read_lock_bh(&neigh->lock);
1073 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1074 r->arp_flags = arp_state_to_flags(neigh);
1075 read_unlock_bh(&neigh->lock);
1076 r->arp_ha.sa_family = dev->type;
1077 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1078 neigh_release(neigh);
1084 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1085 struct net_device *dev)
1087 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1088 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1090 if (mask == htonl(0xFFFFFFFF))
1091 return pneigh_delete(&arp_tbl, &init_net, &ip, dev);
1096 return arp_req_set_proxy(net, dev, 0);
1099 static int arp_req_delete(struct net *net, struct arpreq *r,
1100 struct net_device * dev)
1104 struct neighbour *neigh;
1106 if (r->arp_flags & ATF_PUBL)
1107 return arp_req_delete_public(net, r, dev);
1109 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1111 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1112 .tos = RTO_ONLINK } } };
1114 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1116 dev = rt->u.dst.dev;
1122 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1124 if (neigh->nud_state&~NUD_NOARP)
1125 err = neigh_update(neigh, NULL, NUD_FAILED,
1126 NEIGH_UPDATE_F_OVERRIDE|
1127 NEIGH_UPDATE_F_ADMIN);
1128 neigh_release(neigh);
1134 * Handle an ARP layer I/O control request.
1137 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1141 struct net_device *dev = NULL;
1146 if (!capable(CAP_NET_ADMIN))
1149 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1157 if (r.arp_pa.sa_family != AF_INET)
1158 return -EPFNOSUPPORT;
1160 if (!(r.arp_flags & ATF_PUBL) &&
1161 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1163 if (!(r.arp_flags & ATF_NETMASK))
1164 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1165 htonl(0xFFFFFFFFUL);
1169 if ((dev = __dev_get_by_name(&init_net, r.arp_dev)) == NULL)
1172 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1173 if (!r.arp_ha.sa_family)
1174 r.arp_ha.sa_family = dev->type;
1176 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1178 } else if (cmd == SIOCGARP) {
1185 err = arp_req_delete(net, &r, dev);
1188 err = arp_req_set(net, &r, dev);
1191 err = arp_req_get(&r, dev);
1192 if (!err && copy_to_user(arg, &r, sizeof(r)))
1201 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1203 struct net_device *dev = ptr;
1205 if (dev->nd_net != &init_net)
1209 case NETDEV_CHANGEADDR:
1210 neigh_changeaddr(&arp_tbl, dev);
1220 static struct notifier_block arp_netdev_notifier = {
1221 .notifier_call = arp_netdev_event,
1224 /* Note, that it is not on notifier chain.
1225 It is necessary, that this routine was called after route cache will be
1228 void arp_ifdown(struct net_device *dev)
1230 neigh_ifdown(&arp_tbl, dev);
1235 * Called once on startup.
1238 static struct packet_type arp_packet_type = {
1239 .type = __constant_htons(ETH_P_ARP),
1243 static int arp_proc_init(void);
1245 void __init arp_init(void)
1247 neigh_table_init(&arp_tbl);
1249 dev_add_pack(&arp_packet_type);
1251 #ifdef CONFIG_SYSCTL
1252 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1253 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1255 register_netdevice_notifier(&arp_netdev_notifier);
1258 #ifdef CONFIG_PROC_FS
1259 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1261 /* ------------------------------------------------------------------------ */
1263 * ax25 -> ASCII conversion
1265 static char *ax2asc2(ax25_address *a, char *buf)
1270 for (n = 0, s = buf; n < 6; n++) {
1271 c = (a->ax25_call[n] >> 1) & 0x7F;
1273 if (c != ' ') *s++ = c;
1278 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1286 if (*buf == '\0' || *buf == '-')
1292 #endif /* CONFIG_AX25 */
1294 #define HBUFFERLEN 30
1296 static void arp_format_neigh_entry(struct seq_file *seq,
1297 struct neighbour *n)
1299 char hbuffer[HBUFFERLEN];
1300 const char hexbuf[] = "0123456789ABCDEF";
1303 struct net_device *dev = n->dev;
1304 int hatype = dev->type;
1306 read_lock(&n->lock);
1307 /* Convert hardware address to XX:XX:XX:XX ... form. */
1308 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1309 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1310 ax2asc2((ax25_address *)n->ha, hbuffer);
1313 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1314 hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1315 hbuffer[k++] = hexbuf[n->ha[j] & 15];
1319 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1322 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1323 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1324 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1325 read_unlock(&n->lock);
1328 static void arp_format_pneigh_entry(struct seq_file *seq,
1329 struct pneigh_entry *n)
1331 struct net_device *dev = n->dev;
1332 int hatype = dev ? dev->type : 0;
1335 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1336 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1337 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1338 dev ? dev->name : "*");
1341 static int arp_seq_show(struct seq_file *seq, void *v)
1343 if (v == SEQ_START_TOKEN) {
1344 seq_puts(seq, "IP address HW type Flags "
1345 "HW address Mask Device\n");
1347 struct neigh_seq_state *state = seq->private;
1349 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1350 arp_format_pneigh_entry(seq, v);
1352 arp_format_neigh_entry(seq, v);
1358 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1360 /* Don't want to confuse "arp -a" w/ magic entries,
1361 * so we tell the generic iterator to skip NUD_NOARP.
1363 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1366 /* ------------------------------------------------------------------------ */
1368 static const struct seq_operations arp_seq_ops = {
1369 .start = arp_seq_start,
1370 .next = neigh_seq_next,
1371 .stop = neigh_seq_stop,
1372 .show = arp_seq_show,
1375 static int arp_seq_open(struct inode *inode, struct file *file)
1377 return seq_open_net(inode, file, &arp_seq_ops,
1378 sizeof(struct neigh_seq_state));
1381 static const struct file_operations arp_seq_fops = {
1382 .owner = THIS_MODULE,
1383 .open = arp_seq_open,
1385 .llseek = seq_lseek,
1386 .release = seq_release_net,
1389 static int __init arp_proc_init(void)
1391 if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1396 #else /* CONFIG_PROC_FS */
1398 static int __init arp_proc_init(void)
1403 #endif /* CONFIG_PROC_FS */
1405 EXPORT_SYMBOL(arp_broken_ops);
1406 EXPORT_SYMBOL(arp_find);
1407 EXPORT_SYMBOL(arp_create);
1408 EXPORT_SYMBOL(arp_xmit);
1409 EXPORT_SYMBOL(arp_send);
1410 EXPORT_SYMBOL(arp_tbl);
1412 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1413 EXPORT_SYMBOL(clip_tbl_hook);