2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 32
36 struct scsi_host_sg_pool {
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->flags &= ~REQ_DONTPREP;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
165 * scsi_execute - insert request and wait for the result
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the the scsi_cmnd result
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
197 req->retries = retries;
198 req->timeout = timeout;
199 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
202 * head injection *required* here otherwise quiesce won't work
204 blk_execute_rq(req->q, NULL, req, 1);
208 blk_put_request(req);
212 EXPORT_SYMBOL(scsi_execute);
215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
216 int data_direction, void *buffer, unsigned bufflen,
217 struct scsi_sense_hdr *sshdr, int timeout, int retries)
223 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 return DRIVER_ERROR << 24;
227 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
228 sense, timeout, retries, 0);
230 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235 EXPORT_SYMBOL(scsi_execute_req);
237 struct scsi_io_context {
239 void (*done)(void *data, char *sense, int result, int resid);
240 char sense[SCSI_SENSE_BUFFERSIZE];
243 static kmem_cache_t *scsi_io_context_cache;
245 static void scsi_end_async(struct request *req, int uptodate)
247 struct scsi_io_context *sioc = req->end_io_data;
250 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252 kmem_cache_free(scsi_io_context_cache, sioc);
253 __blk_put_request(req->q, req);
256 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 struct request_queue *q = rq->q;
260 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
261 if (rq_data_dir(rq) == WRITE)
262 bio->bi_rw |= (1 << BIO_RW);
263 blk_queue_bounce(q, &bio);
266 blk_rq_bio_prep(q, rq, bio);
267 else if (!q->back_merge_fn(q, rq, bio))
270 rq->biotail->bi_next = bio;
272 rq->hard_nr_sectors += bio_sectors(bio);
273 rq->nr_sectors = rq->hard_nr_sectors;
279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
289 * scsi_req_map_sg - map a scatterlist into a request
290 * @rq: request to fill
292 * @nsegs: number of elements
293 * @bufflen: len of buffer
294 * @gfp: memory allocation flags
296 * scsi_req_map_sg maps a scatterlist into a request so that the
297 * request can be sent to the block layer. We do not trust the scatterlist
298 * sent to use, as some ULDs use that struct to only organize the pages.
300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
301 int nsegs, unsigned bufflen, gfp_t gfp)
303 struct request_queue *q = rq->q;
304 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
305 unsigned int data_len = 0, len, bytes, off;
307 struct bio *bio = NULL;
308 int i, err, nr_vecs = 0;
310 for (i = 0; i < nsegs; i++) {
317 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
320 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
323 bio = bio_alloc(gfp, nr_vecs);
328 bio->bi_end_io = scsi_bi_endio;
331 if (bio_add_pc_page(q, bio, page, bytes, off) !=
338 if (bio->bi_vcnt >= nr_vecs) {
339 err = scsi_merge_bio(rq, bio);
341 bio_endio(bio, bio->bi_size, 0);
353 rq->buffer = rq->data = NULL;
354 rq->data_len = data_len;
358 while ((bio = rq->bio) != NULL) {
359 rq->bio = bio->bi_next;
361 * call endio instead of bio_put incase it was bounced
363 bio_endio(bio, bio->bi_size, 0);
370 * scsi_execute_async - insert request
373 * @cmd_len: length of scsi cdb
374 * @data_direction: data direction
375 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
376 * @bufflen: len of buffer
377 * @use_sg: if buffer is a scatterlist this is the number of elements
378 * @timeout: request timeout in seconds
379 * @retries: number of times to retry request
380 * @flags: or into request flags
382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
383 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
384 int use_sg, int timeout, int retries, void *privdata,
385 void (*done)(void *, char *, int, int), gfp_t gfp)
388 struct scsi_io_context *sioc;
390 int write = (data_direction == DMA_TO_DEVICE);
392 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
394 return DRIVER_ERROR << 24;
395 memset(sioc, 0, sizeof(*sioc));
397 req = blk_get_request(sdev->request_queue, write, gfp);
400 req->flags |= REQ_BLOCK_PC | REQ_QUIET;
403 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
405 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
410 req->cmd_len = cmd_len;
411 memcpy(req->cmd, cmd, req->cmd_len);
412 req->sense = sioc->sense;
414 req->timeout = timeout;
415 req->retries = retries;
416 req->end_io_data = sioc;
418 sioc->data = privdata;
421 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
425 blk_put_request(req);
428 return DRIVER_ERROR << 24;
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
433 * Function: scsi_init_cmd_errh()
435 * Purpose: Initialize cmd fields related to error handling.
437 * Arguments: cmd - command that is ready to be queued.
441 * Notes: This function has the job of initializing a number of
442 * fields related to error handling. Typically this will
443 * be called once for each command, as required.
445 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
447 cmd->serial_number = 0;
449 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
451 if (cmd->cmd_len == 0)
452 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
455 * We need saved copies of a number of fields - this is because
456 * error handling may need to overwrite these with different values
457 * to run different commands, and once error handling is complete,
458 * we will need to restore these values prior to running the actual
461 cmd->old_use_sg = cmd->use_sg;
462 cmd->old_cmd_len = cmd->cmd_len;
463 cmd->sc_old_data_direction = cmd->sc_data_direction;
464 cmd->old_underflow = cmd->underflow;
465 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
466 cmd->buffer = cmd->request_buffer;
467 cmd->bufflen = cmd->request_bufflen;
473 * Function: scsi_setup_cmd_retry()
475 * Purpose: Restore the command state for a retry
477 * Arguments: cmd - command to be restored
481 * Notes: Immediately prior to retrying a command, we need
482 * to restore certain fields that we saved above.
484 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
486 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
487 cmd->request_buffer = cmd->buffer;
488 cmd->request_bufflen = cmd->bufflen;
489 cmd->use_sg = cmd->old_use_sg;
490 cmd->cmd_len = cmd->old_cmd_len;
491 cmd->sc_data_direction = cmd->sc_old_data_direction;
492 cmd->underflow = cmd->old_underflow;
495 void scsi_device_unbusy(struct scsi_device *sdev)
497 struct Scsi_Host *shost = sdev->host;
500 spin_lock_irqsave(shost->host_lock, flags);
502 if (unlikely(scsi_host_in_recovery(shost) &&
503 (shost->host_failed || shost->host_eh_scheduled)))
504 scsi_eh_wakeup(shost);
505 spin_unlock(shost->host_lock);
506 spin_lock(sdev->request_queue->queue_lock);
508 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
512 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
513 * and call blk_run_queue for all the scsi_devices on the target -
514 * including current_sdev first.
516 * Called with *no* scsi locks held.
518 static void scsi_single_lun_run(struct scsi_device *current_sdev)
520 struct Scsi_Host *shost = current_sdev->host;
521 struct scsi_device *sdev, *tmp;
522 struct scsi_target *starget = scsi_target(current_sdev);
525 spin_lock_irqsave(shost->host_lock, flags);
526 starget->starget_sdev_user = NULL;
527 spin_unlock_irqrestore(shost->host_lock, flags);
530 * Call blk_run_queue for all LUNs on the target, starting with
531 * current_sdev. We race with others (to set starget_sdev_user),
532 * but in most cases, we will be first. Ideally, each LU on the
533 * target would get some limited time or requests on the target.
535 blk_run_queue(current_sdev->request_queue);
537 spin_lock_irqsave(shost->host_lock, flags);
538 if (starget->starget_sdev_user)
540 list_for_each_entry_safe(sdev, tmp, &starget->devices,
541 same_target_siblings) {
542 if (sdev == current_sdev)
544 if (scsi_device_get(sdev))
547 spin_unlock_irqrestore(shost->host_lock, flags);
548 blk_run_queue(sdev->request_queue);
549 spin_lock_irqsave(shost->host_lock, flags);
551 scsi_device_put(sdev);
554 spin_unlock_irqrestore(shost->host_lock, flags);
558 * Function: scsi_run_queue()
560 * Purpose: Select a proper request queue to serve next
562 * Arguments: q - last request's queue
566 * Notes: The previous command was completely finished, start
567 * a new one if possible.
569 static void scsi_run_queue(struct request_queue *q)
571 struct scsi_device *sdev = q->queuedata;
572 struct Scsi_Host *shost = sdev->host;
575 if (sdev->single_lun)
576 scsi_single_lun_run(sdev);
578 spin_lock_irqsave(shost->host_lock, flags);
579 while (!list_empty(&shost->starved_list) &&
580 !shost->host_blocked && !shost->host_self_blocked &&
581 !((shost->can_queue > 0) &&
582 (shost->host_busy >= shost->can_queue))) {
584 * As long as shost is accepting commands and we have
585 * starved queues, call blk_run_queue. scsi_request_fn
586 * drops the queue_lock and can add us back to the
589 * host_lock protects the starved_list and starved_entry.
590 * scsi_request_fn must get the host_lock before checking
591 * or modifying starved_list or starved_entry.
593 sdev = list_entry(shost->starved_list.next,
594 struct scsi_device, starved_entry);
595 list_del_init(&sdev->starved_entry);
596 spin_unlock_irqrestore(shost->host_lock, flags);
598 blk_run_queue(sdev->request_queue);
600 spin_lock_irqsave(shost->host_lock, flags);
601 if (unlikely(!list_empty(&sdev->starved_entry)))
603 * sdev lost a race, and was put back on the
604 * starved list. This is unlikely but without this
605 * in theory we could loop forever.
609 spin_unlock_irqrestore(shost->host_lock, flags);
615 * Function: scsi_requeue_command()
617 * Purpose: Handle post-processing of completed commands.
619 * Arguments: q - queue to operate on
620 * cmd - command that may need to be requeued.
624 * Notes: After command completion, there may be blocks left
625 * over which weren't finished by the previous command
626 * this can be for a number of reasons - the main one is
627 * I/O errors in the middle of the request, in which case
628 * we need to request the blocks that come after the bad
630 * Notes: Upon return, cmd is a stale pointer.
632 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
634 struct request *req = cmd->request;
637 scsi_unprep_request(req);
638 spin_lock_irqsave(q->queue_lock, flags);
639 blk_requeue_request(q, req);
640 spin_unlock_irqrestore(q->queue_lock, flags);
645 void scsi_next_command(struct scsi_cmnd *cmd)
647 struct scsi_device *sdev = cmd->device;
648 struct request_queue *q = sdev->request_queue;
650 /* need to hold a reference on the device before we let go of the cmd */
651 get_device(&sdev->sdev_gendev);
653 scsi_put_command(cmd);
656 /* ok to remove device now */
657 put_device(&sdev->sdev_gendev);
660 void scsi_run_host_queues(struct Scsi_Host *shost)
662 struct scsi_device *sdev;
664 shost_for_each_device(sdev, shost)
665 scsi_run_queue(sdev->request_queue);
669 * Function: scsi_end_request()
671 * Purpose: Post-processing of completed commands (usually invoked at end
672 * of upper level post-processing and scsi_io_completion).
674 * Arguments: cmd - command that is complete.
675 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
676 * bytes - number of bytes of completed I/O
677 * requeue - indicates whether we should requeue leftovers.
679 * Lock status: Assumed that lock is not held upon entry.
681 * Returns: cmd if requeue required, NULL otherwise.
683 * Notes: This is called for block device requests in order to
684 * mark some number of sectors as complete.
686 * We are guaranteeing that the request queue will be goosed
687 * at some point during this call.
688 * Notes: If cmd was requeued, upon return it will be a stale pointer.
690 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
691 int bytes, int requeue)
693 request_queue_t *q = cmd->device->request_queue;
694 struct request *req = cmd->request;
698 * If there are blocks left over at the end, set up the command
699 * to queue the remainder of them.
701 if (end_that_request_chunk(req, uptodate, bytes)) {
702 int leftover = (req->hard_nr_sectors << 9);
704 if (blk_pc_request(req))
705 leftover = req->data_len;
707 /* kill remainder if no retrys */
708 if (!uptodate && blk_noretry_request(req))
709 end_that_request_chunk(req, 0, leftover);
713 * Bleah. Leftovers again. Stick the
714 * leftovers in the front of the
715 * queue, and goose the queue again.
717 scsi_requeue_command(q, cmd);
724 add_disk_randomness(req->rq_disk);
726 spin_lock_irqsave(q->queue_lock, flags);
727 if (blk_rq_tagged(req))
728 blk_queue_end_tag(q, req);
729 end_that_request_last(req, uptodate);
730 spin_unlock_irqrestore(q->queue_lock, flags);
733 * This will goose the queue request function at the end, so we don't
734 * need to worry about launching another command.
736 scsi_next_command(cmd);
740 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
742 struct scsi_host_sg_pool *sgp;
743 struct scatterlist *sgl;
745 BUG_ON(!cmd->use_sg);
747 switch (cmd->use_sg) {
757 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
761 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
765 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
776 sgp = scsi_sg_pools + cmd->sglist_len;
777 sgl = mempool_alloc(sgp->pool, gfp_mask);
781 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
783 struct scsi_host_sg_pool *sgp;
785 BUG_ON(index >= SG_MEMPOOL_NR);
787 sgp = scsi_sg_pools + index;
788 mempool_free(sgl, sgp->pool);
792 * Function: scsi_release_buffers()
794 * Purpose: Completion processing for block device I/O requests.
796 * Arguments: cmd - command that we are bailing.
798 * Lock status: Assumed that no lock is held upon entry.
802 * Notes: In the event that an upper level driver rejects a
803 * command, we must release resources allocated during
804 * the __init_io() function. Primarily this would involve
805 * the scatter-gather table, and potentially any bounce
808 static void scsi_release_buffers(struct scsi_cmnd *cmd)
810 struct request *req = cmd->request;
813 * Free up any indirection buffers we allocated for DMA purposes.
816 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
817 else if (cmd->request_buffer != req->buffer)
818 kfree(cmd->request_buffer);
821 * Zero these out. They now point to freed memory, and it is
822 * dangerous to hang onto the pointers.
826 cmd->request_buffer = NULL;
827 cmd->request_bufflen = 0;
831 * Function: scsi_io_completion()
833 * Purpose: Completion processing for block device I/O requests.
835 * Arguments: cmd - command that is finished.
837 * Lock status: Assumed that no lock is held upon entry.
841 * Notes: This function is matched in terms of capabilities to
842 * the function that created the scatter-gather list.
843 * In other words, if there are no bounce buffers
844 * (the normal case for most drivers), we don't need
845 * the logic to deal with cleaning up afterwards.
847 * We must do one of several things here:
849 * a) Call scsi_end_request. This will finish off the
850 * specified number of sectors. If we are done, the
851 * command block will be released, and the queue
852 * function will be goosed. If we are not done, then
853 * scsi_end_request will directly goose the queue.
855 * b) We can just use scsi_requeue_command() here. This would
856 * be used if we just wanted to retry, for example.
858 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
859 unsigned int block_bytes)
861 int result = cmd->result;
862 int this_count = cmd->bufflen;
863 request_queue_t *q = cmd->device->request_queue;
864 struct request *req = cmd->request;
865 int clear_errors = 1;
866 struct scsi_sense_hdr sshdr;
868 int sense_deferred = 0;
871 * Free up any indirection buffers we allocated for DMA purposes.
872 * For the case of a READ, we need to copy the data out of the
873 * bounce buffer and into the real buffer.
876 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
877 else if (cmd->buffer != req->buffer) {
878 if (rq_data_dir(req) == READ) {
880 char *to = bio_kmap_irq(req->bio, &flags);
881 memcpy(to, cmd->buffer, cmd->bufflen);
882 bio_kunmap_irq(to, &flags);
888 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
890 sense_deferred = scsi_sense_is_deferred(&sshdr);
892 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
893 req->errors = result;
896 if (sense_valid && req->sense) {
898 * SG_IO wants current and deferred errors
900 int len = 8 + cmd->sense_buffer[7];
902 if (len > SCSI_SENSE_BUFFERSIZE)
903 len = SCSI_SENSE_BUFFERSIZE;
904 memcpy(req->sense, cmd->sense_buffer, len);
905 req->sense_len = len;
908 req->data_len = cmd->resid;
912 * Zero these out. They now point to freed memory, and it is
913 * dangerous to hang onto the pointers.
917 cmd->request_buffer = NULL;
918 cmd->request_bufflen = 0;
921 * Next deal with any sectors which we were able to correctly
924 if (good_bytes >= 0) {
925 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
926 req->nr_sectors, good_bytes));
927 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
932 * If multiple sectors are requested in one buffer, then
933 * they will have been finished off by the first command.
934 * If not, then we have a multi-buffer command.
936 * If block_bytes != 0, it means we had a medium error
937 * of some sort, and that we want to mark some number of
938 * sectors as not uptodate. Thus we want to inhibit
939 * requeueing right here - we will requeue down below
940 * when we handle the bad sectors.
944 * If the command completed without error, then either
945 * finish off the rest of the command, or start a new one.
947 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
951 * Now, if we were good little boys and girls, Santa left us a request
952 * sense buffer. We can extract information from this, so we
953 * can choose a block to remap, etc.
955 if (sense_valid && !sense_deferred) {
956 switch (sshdr.sense_key) {
958 if (cmd->device->removable) {
959 /* detected disc change. set a bit
960 * and quietly refuse further access.
962 cmd->device->changed = 1;
963 scsi_end_request(cmd, 0,
968 * Must have been a power glitch, or a
969 * bus reset. Could not have been a
970 * media change, so we just retry the
971 * request and see what happens.
973 scsi_requeue_command(q, cmd);
977 case ILLEGAL_REQUEST:
979 * If we had an ILLEGAL REQUEST returned, then we may
980 * have performed an unsupported command. The only
981 * thing this should be would be a ten byte read where
982 * only a six byte read was supported. Also, on a
983 * system where READ CAPACITY failed, we may have read
984 * past the end of the disk.
986 if ((cmd->device->use_10_for_rw &&
987 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
988 (cmd->cmnd[0] == READ_10 ||
989 cmd->cmnd[0] == WRITE_10)) {
990 cmd->device->use_10_for_rw = 0;
992 * This will cause a retry with a 6-byte
995 scsi_requeue_command(q, cmd);
998 scsi_end_request(cmd, 0, this_count, 1);
1004 * If the device is in the process of becoming
1005 * ready, or has a temporary blockage, retry.
1007 if (sshdr.asc == 0x04) {
1008 switch (sshdr.ascq) {
1009 case 0x01: /* becoming ready */
1010 case 0x04: /* format in progress */
1011 case 0x05: /* rebuild in progress */
1012 case 0x06: /* recalculation in progress */
1013 case 0x07: /* operation in progress */
1014 case 0x08: /* Long write in progress */
1015 case 0x09: /* self test in progress */
1016 scsi_requeue_command(q, cmd);
1022 if (!(req->flags & REQ_QUIET)) {
1023 scmd_printk(KERN_INFO, cmd,
1024 "Device not ready: ");
1025 scsi_print_sense_hdr("", &sshdr);
1027 scsi_end_request(cmd, 0, this_count, 1);
1029 case VOLUME_OVERFLOW:
1030 if (!(req->flags & REQ_QUIET)) {
1031 scmd_printk(KERN_INFO, cmd,
1032 "Volume overflow, CDB: ");
1033 __scsi_print_command(cmd->data_cmnd);
1034 scsi_print_sense("", cmd);
1036 scsi_end_request(cmd, 0, block_bytes, 1);
1041 } /* driver byte != 0 */
1042 if (host_byte(result) == DID_RESET) {
1044 * Third party bus reset or reset for error
1045 * recovery reasons. Just retry the request
1046 * and see what happens.
1048 scsi_requeue_command(q, cmd);
1052 if (!(req->flags & REQ_QUIET)) {
1053 scmd_printk(KERN_INFO, cmd,
1054 "SCSI error: return code = 0x%x\n", result);
1056 if (driver_byte(result) & DRIVER_SENSE)
1057 scsi_print_sense("", cmd);
1060 * Mark a single buffer as not uptodate. Queue the remainder.
1061 * We sometimes get this cruft in the event that a medium error
1062 * isn't properly reported.
1064 block_bytes = req->hard_cur_sectors << 9;
1066 block_bytes = req->data_len;
1067 scsi_end_request(cmd, 0, block_bytes, 1);
1070 EXPORT_SYMBOL(scsi_io_completion);
1073 * Function: scsi_init_io()
1075 * Purpose: SCSI I/O initialize function.
1077 * Arguments: cmd - Command descriptor we wish to initialize
1079 * Returns: 0 on success
1080 * BLKPREP_DEFER if the failure is retryable
1081 * BLKPREP_KILL if the failure is fatal
1083 static int scsi_init_io(struct scsi_cmnd *cmd)
1085 struct request *req = cmd->request;
1086 struct scatterlist *sgpnt;
1090 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1092 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1093 cmd->request_bufflen = req->data_len;
1094 cmd->request_buffer = req->data;
1095 req->buffer = req->data;
1101 * we used to not use scatter-gather for single segment request,
1102 * but now we do (it makes highmem I/O easier to support without
1105 cmd->use_sg = req->nr_phys_segments;
1108 * if sg table allocation fails, requeue request later.
1110 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1111 if (unlikely(!sgpnt)) {
1112 scsi_unprep_request(req);
1113 return BLKPREP_DEFER;
1116 cmd->request_buffer = (char *) sgpnt;
1117 cmd->request_bufflen = req->nr_sectors << 9;
1118 if (blk_pc_request(req))
1119 cmd->request_bufflen = req->data_len;
1123 * Next, walk the list, and fill in the addresses and sizes of
1126 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1129 * mapped well, send it off
1131 if (likely(count <= cmd->use_sg)) {
1132 cmd->use_sg = count;
1136 printk(KERN_ERR "Incorrect number of segments after building list\n");
1137 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1138 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1139 req->current_nr_sectors);
1141 /* release the command and kill it */
1142 scsi_release_buffers(cmd);
1143 scsi_put_command(cmd);
1144 return BLKPREP_KILL;
1147 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1148 sector_t *error_sector)
1150 struct scsi_device *sdev = q->queuedata;
1151 struct scsi_driver *drv;
1153 if (sdev->sdev_state != SDEV_RUNNING)
1156 drv = *(struct scsi_driver **) disk->private_data;
1157 if (drv->issue_flush)
1158 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1163 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1165 BUG_ON(!blk_pc_request(cmd->request));
1167 * This will complete the whole command with uptodate=1 so
1168 * as far as the block layer is concerned the command completed
1169 * successfully. Since this is a REQ_BLOCK_PC command the
1170 * caller should check the request's errors value
1172 scsi_io_completion(cmd, cmd->bufflen, 0);
1175 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1177 struct request *req = cmd->request;
1179 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1180 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1181 cmd->cmd_len = req->cmd_len;
1183 cmd->sc_data_direction = DMA_NONE;
1184 else if (rq_data_dir(req) == WRITE)
1185 cmd->sc_data_direction = DMA_TO_DEVICE;
1187 cmd->sc_data_direction = DMA_FROM_DEVICE;
1189 cmd->transfersize = req->data_len;
1190 cmd->allowed = req->retries;
1191 cmd->timeout_per_command = req->timeout;
1192 cmd->done = scsi_blk_pc_done;
1195 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1197 struct scsi_device *sdev = q->queuedata;
1198 struct scsi_cmnd *cmd;
1199 int specials_only = 0;
1202 * Just check to see if the device is online. If it isn't, we
1203 * refuse to process any commands. The device must be brought
1204 * online before trying any recovery commands
1206 if (unlikely(!scsi_device_online(sdev))) {
1207 sdev_printk(KERN_ERR, sdev,
1208 "rejecting I/O to offline device\n");
1211 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1212 /* OK, we're not in a running state don't prep
1214 if (sdev->sdev_state == SDEV_DEL) {
1215 /* Device is fully deleted, no commands
1216 * at all allowed down */
1217 sdev_printk(KERN_ERR, sdev,
1218 "rejecting I/O to dead device\n");
1221 /* OK, we only allow special commands (i.e. not
1222 * user initiated ones */
1223 specials_only = sdev->sdev_state;
1227 * Find the actual device driver associated with this command.
1228 * The SPECIAL requests are things like character device or
1229 * ioctls, which did not originate from ll_rw_blk. Note that
1230 * the special field is also used to indicate the cmd for
1231 * the remainder of a partially fulfilled request that can
1232 * come up when there is a medium error. We have to treat
1233 * these two cases differently. We differentiate by looking
1234 * at request->cmd, as this tells us the real story.
1236 if (req->flags & REQ_SPECIAL && req->special) {
1238 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1240 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1241 if(specials_only == SDEV_QUIESCE ||
1242 specials_only == SDEV_BLOCK)
1245 sdev_printk(KERN_ERR, sdev,
1246 "rejecting I/O to device being removed\n");
1252 * Now try and find a command block that we can use.
1254 if (!req->special) {
1255 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1261 /* pull a tag out of the request if we have one */
1262 cmd->tag = req->tag;
1264 blk_dump_rq_flags(req, "SCSI bad req");
1268 /* note the overloading of req->special. When the tag
1269 * is active it always means cmd. If the tag goes
1270 * back for re-queueing, it may be reset */
1275 * FIXME: drop the lock here because the functions below
1276 * expect to be called without the queue lock held. Also,
1277 * previously, we dequeued the request before dropping the
1278 * lock. We hope REQ_STARTED prevents anything untoward from
1281 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1285 * This will do a couple of things:
1286 * 1) Fill in the actual SCSI command.
1287 * 2) Fill in any other upper-level specific fields
1290 * If this returns 0, it means that the request failed
1291 * (reading past end of disk, reading offline device,
1292 * etc). This won't actually talk to the device, but
1293 * some kinds of consistency checking may cause the
1294 * request to be rejected immediately.
1298 * This sets up the scatter-gather table (allocating if
1301 ret = scsi_init_io(cmd);
1303 /* For BLKPREP_KILL/DEFER the cmd was released */
1311 * Initialize the actual SCSI command for this request.
1313 if (req->flags & REQ_BLOCK_PC) {
1314 scsi_setup_blk_pc_cmnd(cmd);
1315 } else if (req->rq_disk) {
1316 struct scsi_driver *drv;
1318 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1319 if (unlikely(!drv->init_command(cmd))) {
1320 scsi_release_buffers(cmd);
1321 scsi_put_command(cmd);
1328 * The request is now prepped, no need to come back here
1330 req->flags |= REQ_DONTPREP;
1334 /* If we defer, the elv_next_request() returns NULL, but the
1335 * queue must be restarted, so we plug here if no returning
1336 * command will automatically do that. */
1337 if (sdev->device_busy == 0)
1339 return BLKPREP_DEFER;
1341 req->errors = DID_NO_CONNECT << 16;
1342 return BLKPREP_KILL;
1346 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1349 * Called with the queue_lock held.
1351 static inline int scsi_dev_queue_ready(struct request_queue *q,
1352 struct scsi_device *sdev)
1354 if (sdev->device_busy >= sdev->queue_depth)
1356 if (sdev->device_busy == 0 && sdev->device_blocked) {
1358 * unblock after device_blocked iterates to zero
1360 if (--sdev->device_blocked == 0) {
1362 sdev_printk(KERN_INFO, sdev,
1363 "unblocking device at zero depth\n"));
1369 if (sdev->device_blocked)
1376 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1377 * return 0. We must end up running the queue again whenever 0 is
1378 * returned, else IO can hang.
1380 * Called with host_lock held.
1382 static inline int scsi_host_queue_ready(struct request_queue *q,
1383 struct Scsi_Host *shost,
1384 struct scsi_device *sdev)
1386 if (scsi_host_in_recovery(shost))
1388 if (shost->host_busy == 0 && shost->host_blocked) {
1390 * unblock after host_blocked iterates to zero
1392 if (--shost->host_blocked == 0) {
1394 printk("scsi%d unblocking host at zero depth\n",
1401 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1402 shost->host_blocked || shost->host_self_blocked) {
1403 if (list_empty(&sdev->starved_entry))
1404 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1408 /* We're OK to process the command, so we can't be starved */
1409 if (!list_empty(&sdev->starved_entry))
1410 list_del_init(&sdev->starved_entry);
1416 * Kill a request for a dead device
1418 static void scsi_kill_request(struct request *req, request_queue_t *q)
1420 struct scsi_cmnd *cmd = req->special;
1421 struct scsi_device *sdev = cmd->device;
1422 struct Scsi_Host *shost = sdev->host;
1424 blkdev_dequeue_request(req);
1426 if (unlikely(cmd == NULL)) {
1427 printk(KERN_CRIT "impossible request in %s.\n",
1432 scsi_init_cmd_errh(cmd);
1433 cmd->result = DID_NO_CONNECT << 16;
1434 atomic_inc(&cmd->device->iorequest_cnt);
1437 * SCSI request completion path will do scsi_device_unbusy(),
1438 * bump busy counts. To bump the counters, we need to dance
1439 * with the locks as normal issue path does.
1441 sdev->device_busy++;
1442 spin_unlock(sdev->request_queue->queue_lock);
1443 spin_lock(shost->host_lock);
1445 spin_unlock(shost->host_lock);
1446 spin_lock(sdev->request_queue->queue_lock);
1451 static void scsi_softirq_done(struct request *rq)
1453 struct scsi_cmnd *cmd = rq->completion_data;
1454 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1457 INIT_LIST_HEAD(&cmd->eh_entry);
1459 disposition = scsi_decide_disposition(cmd);
1460 if (disposition != SUCCESS &&
1461 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1462 sdev_printk(KERN_ERR, cmd->device,
1463 "timing out command, waited %lus\n",
1465 disposition = SUCCESS;
1468 scsi_log_completion(cmd, disposition);
1470 switch (disposition) {
1472 scsi_finish_command(cmd);
1475 scsi_retry_command(cmd);
1477 case ADD_TO_MLQUEUE:
1478 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1481 if (!scsi_eh_scmd_add(cmd, 0))
1482 scsi_finish_command(cmd);
1487 * Function: scsi_request_fn()
1489 * Purpose: Main strategy routine for SCSI.
1491 * Arguments: q - Pointer to actual queue.
1495 * Lock status: IO request lock assumed to be held when called.
1497 static void scsi_request_fn(struct request_queue *q)
1499 struct scsi_device *sdev = q->queuedata;
1500 struct Scsi_Host *shost;
1501 struct scsi_cmnd *cmd;
1502 struct request *req;
1505 printk("scsi: killing requests for dead queue\n");
1506 while ((req = elv_next_request(q)) != NULL)
1507 scsi_kill_request(req, q);
1511 if(!get_device(&sdev->sdev_gendev))
1512 /* We must be tearing the block queue down already */
1516 * To start with, we keep looping until the queue is empty, or until
1517 * the host is no longer able to accept any more requests.
1520 while (!blk_queue_plugged(q)) {
1523 * get next queueable request. We do this early to make sure
1524 * that the request is fully prepared even if we cannot
1527 req = elv_next_request(q);
1528 if (!req || !scsi_dev_queue_ready(q, sdev))
1531 if (unlikely(!scsi_device_online(sdev))) {
1532 sdev_printk(KERN_ERR, sdev,
1533 "rejecting I/O to offline device\n");
1534 scsi_kill_request(req, q);
1540 * Remove the request from the request list.
1542 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1543 blkdev_dequeue_request(req);
1544 sdev->device_busy++;
1546 spin_unlock(q->queue_lock);
1548 if (unlikely(cmd == NULL)) {
1549 printk(KERN_CRIT "impossible request in %s.\n"
1550 "please mail a stack trace to "
1551 "linux-scsi@vger.kernel.org",
1555 spin_lock(shost->host_lock);
1557 if (!scsi_host_queue_ready(q, shost, sdev))
1559 if (sdev->single_lun) {
1560 if (scsi_target(sdev)->starget_sdev_user &&
1561 scsi_target(sdev)->starget_sdev_user != sdev)
1563 scsi_target(sdev)->starget_sdev_user = sdev;
1568 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1569 * take the lock again.
1571 spin_unlock_irq(shost->host_lock);
1574 * Finally, initialize any error handling parameters, and set up
1575 * the timers for timeouts.
1577 scsi_init_cmd_errh(cmd);
1580 * Dispatch the command to the low-level driver.
1582 rtn = scsi_dispatch_cmd(cmd);
1583 spin_lock_irq(q->queue_lock);
1585 /* we're refusing the command; because of
1586 * the way locks get dropped, we need to
1587 * check here if plugging is required */
1588 if(sdev->device_busy == 0)
1598 spin_unlock_irq(shost->host_lock);
1601 * lock q, handle tag, requeue req, and decrement device_busy. We
1602 * must return with queue_lock held.
1604 * Decrementing device_busy without checking it is OK, as all such
1605 * cases (host limits or settings) should run the queue at some
1608 spin_lock_irq(q->queue_lock);
1609 blk_requeue_request(q, req);
1610 sdev->device_busy--;
1611 if(sdev->device_busy == 0)
1614 /* must be careful here...if we trigger the ->remove() function
1615 * we cannot be holding the q lock */
1616 spin_unlock_irq(q->queue_lock);
1617 put_device(&sdev->sdev_gendev);
1618 spin_lock_irq(q->queue_lock);
1621 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1623 struct device *host_dev;
1624 u64 bounce_limit = 0xffffffff;
1626 if (shost->unchecked_isa_dma)
1627 return BLK_BOUNCE_ISA;
1629 * Platforms with virtual-DMA translation
1630 * hardware have no practical limit.
1632 if (!PCI_DMA_BUS_IS_PHYS)
1633 return BLK_BOUNCE_ANY;
1635 host_dev = scsi_get_device(shost);
1636 if (host_dev && host_dev->dma_mask)
1637 bounce_limit = *host_dev->dma_mask;
1639 return bounce_limit;
1641 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1643 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1645 struct Scsi_Host *shost = sdev->host;
1646 struct request_queue *q;
1648 q = blk_init_queue(scsi_request_fn, NULL);
1652 blk_queue_prep_rq(q, scsi_prep_fn);
1654 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1655 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1656 blk_queue_max_sectors(q, shost->max_sectors);
1657 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1658 blk_queue_segment_boundary(q, shost->dma_boundary);
1659 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1660 blk_queue_softirq_done(q, scsi_softirq_done);
1662 if (!shost->use_clustering)
1663 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1667 void scsi_free_queue(struct request_queue *q)
1669 blk_cleanup_queue(q);
1673 * Function: scsi_block_requests()
1675 * Purpose: Utility function used by low-level drivers to prevent further
1676 * commands from being queued to the device.
1678 * Arguments: shost - Host in question
1682 * Lock status: No locks are assumed held.
1684 * Notes: There is no timer nor any other means by which the requests
1685 * get unblocked other than the low-level driver calling
1686 * scsi_unblock_requests().
1688 void scsi_block_requests(struct Scsi_Host *shost)
1690 shost->host_self_blocked = 1;
1692 EXPORT_SYMBOL(scsi_block_requests);
1695 * Function: scsi_unblock_requests()
1697 * Purpose: Utility function used by low-level drivers to allow further
1698 * commands from being queued to the device.
1700 * Arguments: shost - Host in question
1704 * Lock status: No locks are assumed held.
1706 * Notes: There is no timer nor any other means by which the requests
1707 * get unblocked other than the low-level driver calling
1708 * scsi_unblock_requests().
1710 * This is done as an API function so that changes to the
1711 * internals of the scsi mid-layer won't require wholesale
1712 * changes to drivers that use this feature.
1714 void scsi_unblock_requests(struct Scsi_Host *shost)
1716 shost->host_self_blocked = 0;
1717 scsi_run_host_queues(shost);
1719 EXPORT_SYMBOL(scsi_unblock_requests);
1721 int __init scsi_init_queue(void)
1725 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1726 sizeof(struct scsi_io_context),
1728 if (!scsi_io_context_cache) {
1729 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1733 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1734 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1735 int size = sgp->size * sizeof(struct scatterlist);
1737 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1738 SLAB_HWCACHE_ALIGN, NULL, NULL);
1740 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1744 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1747 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1755 void scsi_exit_queue(void)
1759 kmem_cache_destroy(scsi_io_context_cache);
1761 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1762 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1763 mempool_destroy(sgp->pool);
1764 kmem_cache_destroy(sgp->slab);
1769 * scsi_mode_select - issue a mode select
1770 * @sdev: SCSI device to be queried
1771 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1772 * @sp: Save page bit (0 == don't save, 1 == save)
1773 * @modepage: mode page being requested
1774 * @buffer: request buffer (may not be smaller than eight bytes)
1775 * @len: length of request buffer.
1776 * @timeout: command timeout
1777 * @retries: number of retries before failing
1778 * @data: returns a structure abstracting the mode header data
1779 * @sense: place to put sense data (or NULL if no sense to be collected).
1780 * must be SCSI_SENSE_BUFFERSIZE big.
1782 * Returns zero if successful; negative error number or scsi
1787 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1788 unsigned char *buffer, int len, int timeout, int retries,
1789 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1791 unsigned char cmd[10];
1792 unsigned char *real_buffer;
1795 memset(cmd, 0, sizeof(cmd));
1796 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1798 if (sdev->use_10_for_ms) {
1801 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1804 memcpy(real_buffer + 8, buffer, len);
1808 real_buffer[2] = data->medium_type;
1809 real_buffer[3] = data->device_specific;
1810 real_buffer[4] = data->longlba ? 0x01 : 0;
1812 real_buffer[6] = data->block_descriptor_length >> 8;
1813 real_buffer[7] = data->block_descriptor_length;
1815 cmd[0] = MODE_SELECT_10;
1819 if (len > 255 || data->block_descriptor_length > 255 ||
1823 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1826 memcpy(real_buffer + 4, buffer, len);
1829 real_buffer[1] = data->medium_type;
1830 real_buffer[2] = data->device_specific;
1831 real_buffer[3] = data->block_descriptor_length;
1834 cmd[0] = MODE_SELECT;
1838 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1839 sshdr, timeout, retries);
1843 EXPORT_SYMBOL_GPL(scsi_mode_select);
1846 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1847 * six bytes if necessary.
1848 * @sdev: SCSI device to be queried
1849 * @dbd: set if mode sense will allow block descriptors to be returned
1850 * @modepage: mode page being requested
1851 * @buffer: request buffer (may not be smaller than eight bytes)
1852 * @len: length of request buffer.
1853 * @timeout: command timeout
1854 * @retries: number of retries before failing
1855 * @data: returns a structure abstracting the mode header data
1856 * @sense: place to put sense data (or NULL if no sense to be collected).
1857 * must be SCSI_SENSE_BUFFERSIZE big.
1859 * Returns zero if unsuccessful, or the header offset (either 4
1860 * or 8 depending on whether a six or ten byte command was
1861 * issued) if successful.
1864 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1865 unsigned char *buffer, int len, int timeout, int retries,
1866 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1868 unsigned char cmd[12];
1872 struct scsi_sense_hdr my_sshdr;
1874 memset(data, 0, sizeof(*data));
1875 memset(&cmd[0], 0, 12);
1876 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1879 /* caller might not be interested in sense, but we need it */
1884 use_10_for_ms = sdev->use_10_for_ms;
1886 if (use_10_for_ms) {
1890 cmd[0] = MODE_SENSE_10;
1897 cmd[0] = MODE_SENSE;
1902 memset(buffer, 0, len);
1904 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1905 sshdr, timeout, retries);
1907 /* This code looks awful: what it's doing is making sure an
1908 * ILLEGAL REQUEST sense return identifies the actual command
1909 * byte as the problem. MODE_SENSE commands can return
1910 * ILLEGAL REQUEST if the code page isn't supported */
1912 if (use_10_for_ms && !scsi_status_is_good(result) &&
1913 (driver_byte(result) & DRIVER_SENSE)) {
1914 if (scsi_sense_valid(sshdr)) {
1915 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1916 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1918 * Invalid command operation code
1920 sdev->use_10_for_ms = 0;
1926 if(scsi_status_is_good(result)) {
1927 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1928 (modepage == 6 || modepage == 8))) {
1929 /* Initio breakage? */
1932 data->medium_type = 0;
1933 data->device_specific = 0;
1935 data->block_descriptor_length = 0;
1936 } else if(use_10_for_ms) {
1937 data->length = buffer[0]*256 + buffer[1] + 2;
1938 data->medium_type = buffer[2];
1939 data->device_specific = buffer[3];
1940 data->longlba = buffer[4] & 0x01;
1941 data->block_descriptor_length = buffer[6]*256
1944 data->length = buffer[0] + 1;
1945 data->medium_type = buffer[1];
1946 data->device_specific = buffer[2];
1947 data->block_descriptor_length = buffer[3];
1949 data->header_length = header_length;
1954 EXPORT_SYMBOL(scsi_mode_sense);
1957 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1960 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1962 struct scsi_sense_hdr sshdr;
1965 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1968 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1970 if ((scsi_sense_valid(&sshdr)) &&
1971 ((sshdr.sense_key == UNIT_ATTENTION) ||
1972 (sshdr.sense_key == NOT_READY))) {
1979 EXPORT_SYMBOL(scsi_test_unit_ready);
1982 * scsi_device_set_state - Take the given device through the device
1984 * @sdev: scsi device to change the state of.
1985 * @state: state to change to.
1987 * Returns zero if unsuccessful or an error if the requested
1988 * transition is illegal.
1991 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1993 enum scsi_device_state oldstate = sdev->sdev_state;
1995 if (state == oldstate)
2000 /* There are no legal states that come back to
2001 * created. This is the manually initialised start
2071 sdev->sdev_state = state;
2075 SCSI_LOG_ERROR_RECOVERY(1,
2076 sdev_printk(KERN_ERR, sdev,
2077 "Illegal state transition %s->%s\n",
2078 scsi_device_state_name(oldstate),
2079 scsi_device_state_name(state))
2083 EXPORT_SYMBOL(scsi_device_set_state);
2086 * scsi_device_quiesce - Block user issued commands.
2087 * @sdev: scsi device to quiesce.
2089 * This works by trying to transition to the SDEV_QUIESCE state
2090 * (which must be a legal transition). When the device is in this
2091 * state, only special requests will be accepted, all others will
2092 * be deferred. Since special requests may also be requeued requests,
2093 * a successful return doesn't guarantee the device will be
2094 * totally quiescent.
2096 * Must be called with user context, may sleep.
2098 * Returns zero if unsuccessful or an error if not.
2101 scsi_device_quiesce(struct scsi_device *sdev)
2103 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2107 scsi_run_queue(sdev->request_queue);
2108 while (sdev->device_busy) {
2109 msleep_interruptible(200);
2110 scsi_run_queue(sdev->request_queue);
2114 EXPORT_SYMBOL(scsi_device_quiesce);
2117 * scsi_device_resume - Restart user issued commands to a quiesced device.
2118 * @sdev: scsi device to resume.
2120 * Moves the device from quiesced back to running and restarts the
2123 * Must be called with user context, may sleep.
2126 scsi_device_resume(struct scsi_device *sdev)
2128 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2130 scsi_run_queue(sdev->request_queue);
2132 EXPORT_SYMBOL(scsi_device_resume);
2135 device_quiesce_fn(struct scsi_device *sdev, void *data)
2137 scsi_device_quiesce(sdev);
2141 scsi_target_quiesce(struct scsi_target *starget)
2143 starget_for_each_device(starget, NULL, device_quiesce_fn);
2145 EXPORT_SYMBOL(scsi_target_quiesce);
2148 device_resume_fn(struct scsi_device *sdev, void *data)
2150 scsi_device_resume(sdev);
2154 scsi_target_resume(struct scsi_target *starget)
2156 starget_for_each_device(starget, NULL, device_resume_fn);
2158 EXPORT_SYMBOL(scsi_target_resume);
2161 * scsi_internal_device_block - internal function to put a device
2162 * temporarily into the SDEV_BLOCK state
2163 * @sdev: device to block
2165 * Block request made by scsi lld's to temporarily stop all
2166 * scsi commands on the specified device. Called from interrupt
2167 * or normal process context.
2169 * Returns zero if successful or error if not
2172 * This routine transitions the device to the SDEV_BLOCK state
2173 * (which must be a legal transition). When the device is in this
2174 * state, all commands are deferred until the scsi lld reenables
2175 * the device with scsi_device_unblock or device_block_tmo fires.
2176 * This routine assumes the host_lock is held on entry.
2179 scsi_internal_device_block(struct scsi_device *sdev)
2181 request_queue_t *q = sdev->request_queue;
2182 unsigned long flags;
2185 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2190 * The device has transitioned to SDEV_BLOCK. Stop the
2191 * block layer from calling the midlayer with this device's
2194 spin_lock_irqsave(q->queue_lock, flags);
2196 spin_unlock_irqrestore(q->queue_lock, flags);
2200 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2203 * scsi_internal_device_unblock - resume a device after a block request
2204 * @sdev: device to resume
2206 * Called by scsi lld's or the midlayer to restart the device queue
2207 * for the previously suspended scsi device. Called from interrupt or
2208 * normal process context.
2210 * Returns zero if successful or error if not.
2213 * This routine transitions the device to the SDEV_RUNNING state
2214 * (which must be a legal transition) allowing the midlayer to
2215 * goose the queue for this device. This routine assumes the
2216 * host_lock is held upon entry.
2219 scsi_internal_device_unblock(struct scsi_device *sdev)
2221 request_queue_t *q = sdev->request_queue;
2223 unsigned long flags;
2226 * Try to transition the scsi device to SDEV_RUNNING
2227 * and goose the device queue if successful.
2229 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2233 spin_lock_irqsave(q->queue_lock, flags);
2235 spin_unlock_irqrestore(q->queue_lock, flags);
2239 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2242 device_block(struct scsi_device *sdev, void *data)
2244 scsi_internal_device_block(sdev);
2248 target_block(struct device *dev, void *data)
2250 if (scsi_is_target_device(dev))
2251 starget_for_each_device(to_scsi_target(dev), NULL,
2257 scsi_target_block(struct device *dev)
2259 if (scsi_is_target_device(dev))
2260 starget_for_each_device(to_scsi_target(dev), NULL,
2263 device_for_each_child(dev, NULL, target_block);
2265 EXPORT_SYMBOL_GPL(scsi_target_block);
2268 device_unblock(struct scsi_device *sdev, void *data)
2270 scsi_internal_device_unblock(sdev);
2274 target_unblock(struct device *dev, void *data)
2276 if (scsi_is_target_device(dev))
2277 starget_for_each_device(to_scsi_target(dev), NULL,
2283 scsi_target_unblock(struct device *dev)
2285 if (scsi_is_target_device(dev))
2286 starget_for_each_device(to_scsi_target(dev), NULL,
2289 device_for_each_child(dev, NULL, target_unblock);
2291 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2294 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2295 * @sg: scatter-gather list
2296 * @sg_count: number of segments in sg
2297 * @offset: offset in bytes into sg, on return offset into the mapped area
2298 * @len: bytes to map, on return number of bytes mapped
2300 * Returns virtual address of the start of the mapped page
2302 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2303 size_t *offset, size_t *len)
2306 size_t sg_len = 0, len_complete = 0;
2309 for (i = 0; i < sg_count; i++) {
2310 len_complete = sg_len; /* Complete sg-entries */
2311 sg_len += sg[i].length;
2312 if (sg_len > *offset)
2316 if (unlikely(i == sg_count)) {
2317 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2319 __FUNCTION__, sg_len, *offset, sg_count);
2324 /* Offset starting from the beginning of first page in this sg-entry */
2325 *offset = *offset - len_complete + sg[i].offset;
2327 /* Assumption: contiguous pages can be accessed as "page + i" */
2328 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2329 *offset &= ~PAGE_MASK;
2331 /* Bytes in this sg-entry from *offset to the end of the page */
2332 sg_len = PAGE_SIZE - *offset;
2336 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2338 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2341 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2342 * mapped with scsi_kmap_atomic_sg
2343 * @virt: virtual address to be unmapped
2345 void scsi_kunmap_atomic_sg(void *virt)
2347 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2349 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);