Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE         32
35
36 struct scsi_host_sg_pool {
37         size_t          size;
38         char            *name; 
39         kmem_cache_t    *slab;
40         mempool_t       *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x } 
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49         SP(8),
50         SP(16),
51         SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53         SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55         SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57         SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };      
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
200
201         /*
202          * head injection *required* here otherwise quiesce won't work
203          */
204         blk_execute_rq(req->q, NULL, req, 1);
205
206         ret = req->errors;
207  out:
208         blk_put_request(req);
209
210         return ret;
211 }
212 EXPORT_SYMBOL(scsi_execute);
213
214
215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
216                      int data_direction, void *buffer, unsigned bufflen,
217                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
218 {
219         char *sense = NULL;
220         int result;
221         
222         if (sshdr) {
223                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
224                 if (!sense)
225                         return DRIVER_ERROR << 24;
226         }
227         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
228                               sense, timeout, retries, 0);
229         if (sshdr)
230                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
231
232         kfree(sense);
233         return result;
234 }
235 EXPORT_SYMBOL(scsi_execute_req);
236
237 struct scsi_io_context {
238         void *data;
239         void (*done)(void *data, char *sense, int result, int resid);
240         char sense[SCSI_SENSE_BUFFERSIZE];
241 };
242
243 static kmem_cache_t *scsi_io_context_cache;
244
245 static void scsi_end_async(struct request *req, int uptodate)
246 {
247         struct scsi_io_context *sioc = req->end_io_data;
248
249         if (sioc->done)
250                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
251
252         kmem_cache_free(scsi_io_context_cache, sioc);
253         __blk_put_request(req->q, req);
254 }
255
256 static int scsi_merge_bio(struct request *rq, struct bio *bio)
257 {
258         struct request_queue *q = rq->q;
259
260         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
261         if (rq_data_dir(rq) == WRITE)
262                 bio->bi_rw |= (1 << BIO_RW);
263         blk_queue_bounce(q, &bio);
264
265         if (!rq->bio)
266                 blk_rq_bio_prep(q, rq, bio);
267         else if (!q->back_merge_fn(q, rq, bio))
268                 return -EINVAL;
269         else {
270                 rq->biotail->bi_next = bio;
271                 rq->biotail = bio;
272                 rq->hard_nr_sectors += bio_sectors(bio);
273                 rq->nr_sectors = rq->hard_nr_sectors;
274         }
275
276         return 0;
277 }
278
279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
280 {
281         if (bio->bi_size)
282                 return 1;
283
284         bio_put(bio);
285         return 0;
286 }
287
288 /**
289  * scsi_req_map_sg - map a scatterlist into a request
290  * @rq:         request to fill
291  * @sg:         scatterlist
292  * @nsegs:      number of elements
293  * @bufflen:    len of buffer
294  * @gfp:        memory allocation flags
295  *
296  * scsi_req_map_sg maps a scatterlist into a request so that the
297  * request can be sent to the block layer. We do not trust the scatterlist
298  * sent to use, as some ULDs use that struct to only organize the pages.
299  */
300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
301                            int nsegs, unsigned bufflen, gfp_t gfp)
302 {
303         struct request_queue *q = rq->q;
304         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
305         unsigned int data_len = 0, len, bytes, off;
306         struct page *page;
307         struct bio *bio = NULL;
308         int i, err, nr_vecs = 0;
309
310         for (i = 0; i < nsegs; i++) {
311                 page = sgl[i].page;
312                 off = sgl[i].offset;
313                 len = sgl[i].length;
314                 data_len += len;
315
316                 while (len > 0) {
317                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
318
319                         if (!bio) {
320                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
321                                 nr_pages -= nr_vecs;
322
323                                 bio = bio_alloc(gfp, nr_vecs);
324                                 if (!bio) {
325                                         err = -ENOMEM;
326                                         goto free_bios;
327                                 }
328                                 bio->bi_end_io = scsi_bi_endio;
329                         }
330
331                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
332                             bytes) {
333                                 bio_put(bio);
334                                 err = -EINVAL;
335                                 goto free_bios;
336                         }
337
338                         if (bio->bi_vcnt >= nr_vecs) {
339                                 err = scsi_merge_bio(rq, bio);
340                                 if (err) {
341                                         bio_endio(bio, bio->bi_size, 0);
342                                         goto free_bios;
343                                 }
344                                 bio = NULL;
345                         }
346
347                         page++;
348                         len -= bytes;
349                         off = 0;
350                 }
351         }
352
353         rq->buffer = rq->data = NULL;
354         rq->data_len = data_len;
355         return 0;
356
357 free_bios:
358         while ((bio = rq->bio) != NULL) {
359                 rq->bio = bio->bi_next;
360                 /*
361                  * call endio instead of bio_put incase it was bounced
362                  */
363                 bio_endio(bio, bio->bi_size, 0);
364         }
365
366         return err;
367 }
368
369 /**
370  * scsi_execute_async - insert request
371  * @sdev:       scsi device
372  * @cmd:        scsi command
373  * @cmd_len:    length of scsi cdb
374  * @data_direction: data direction
375  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
376  * @bufflen:    len of buffer
377  * @use_sg:     if buffer is a scatterlist this is the number of elements
378  * @timeout:    request timeout in seconds
379  * @retries:    number of times to retry request
380  * @flags:      or into request flags
381  **/
382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
383                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
384                        int use_sg, int timeout, int retries, void *privdata,
385                        void (*done)(void *, char *, int, int), gfp_t gfp)
386 {
387         struct request *req;
388         struct scsi_io_context *sioc;
389         int err = 0;
390         int write = (data_direction == DMA_TO_DEVICE);
391
392         sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
393         if (!sioc)
394                 return DRIVER_ERROR << 24;
395         memset(sioc, 0, sizeof(*sioc));
396
397         req = blk_get_request(sdev->request_queue, write, gfp);
398         if (!req)
399                 goto free_sense;
400         req->flags |= REQ_BLOCK_PC | REQ_QUIET;
401
402         if (use_sg)
403                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404         else if (bufflen)
405                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406
407         if (err)
408                 goto free_req;
409
410         req->cmd_len = cmd_len;
411         memcpy(req->cmd, cmd, req->cmd_len);
412         req->sense = sioc->sense;
413         req->sense_len = 0;
414         req->timeout = timeout;
415         req->retries = retries;
416         req->end_io_data = sioc;
417
418         sioc->data = privdata;
419         sioc->done = done;
420
421         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422         return 0;
423
424 free_req:
425         blk_put_request(req);
426 free_sense:
427         kfree(sioc);
428         return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431
432 /*
433  * Function:    scsi_init_cmd_errh()
434  *
435  * Purpose:     Initialize cmd fields related to error handling.
436  *
437  * Arguments:   cmd     - command that is ready to be queued.
438  *
439  * Returns:     Nothing
440  *
441  * Notes:       This function has the job of initializing a number of
442  *              fields related to error handling.   Typically this will
443  *              be called once for each command, as required.
444  */
445 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
446 {
447         cmd->serial_number = 0;
448
449         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450
451         if (cmd->cmd_len == 0)
452                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
453
454         /*
455          * We need saved copies of a number of fields - this is because
456          * error handling may need to overwrite these with different values
457          * to run different commands, and once error handling is complete,
458          * we will need to restore these values prior to running the actual
459          * command.
460          */
461         cmd->old_use_sg = cmd->use_sg;
462         cmd->old_cmd_len = cmd->cmd_len;
463         cmd->sc_old_data_direction = cmd->sc_data_direction;
464         cmd->old_underflow = cmd->underflow;
465         memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
466         cmd->buffer = cmd->request_buffer;
467         cmd->bufflen = cmd->request_bufflen;
468
469         return 1;
470 }
471
472 /*
473  * Function:   scsi_setup_cmd_retry()
474  *
475  * Purpose:    Restore the command state for a retry
476  *
477  * Arguments:  cmd      - command to be restored
478  *
479  * Returns:    Nothing
480  *
481  * Notes:      Immediately prior to retrying a command, we need
482  *             to restore certain fields that we saved above.
483  */
484 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
485 {
486         memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
487         cmd->request_buffer = cmd->buffer;
488         cmd->request_bufflen = cmd->bufflen;
489         cmd->use_sg = cmd->old_use_sg;
490         cmd->cmd_len = cmd->old_cmd_len;
491         cmd->sc_data_direction = cmd->sc_old_data_direction;
492         cmd->underflow = cmd->old_underflow;
493 }
494
495 void scsi_device_unbusy(struct scsi_device *sdev)
496 {
497         struct Scsi_Host *shost = sdev->host;
498         unsigned long flags;
499
500         spin_lock_irqsave(shost->host_lock, flags);
501         shost->host_busy--;
502         if (unlikely(scsi_host_in_recovery(shost) &&
503                      (shost->host_failed || shost->host_eh_scheduled)))
504                 scsi_eh_wakeup(shost);
505         spin_unlock(shost->host_lock);
506         spin_lock(sdev->request_queue->queue_lock);
507         sdev->device_busy--;
508         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
509 }
510
511 /*
512  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
513  * and call blk_run_queue for all the scsi_devices on the target -
514  * including current_sdev first.
515  *
516  * Called with *no* scsi locks held.
517  */
518 static void scsi_single_lun_run(struct scsi_device *current_sdev)
519 {
520         struct Scsi_Host *shost = current_sdev->host;
521         struct scsi_device *sdev, *tmp;
522         struct scsi_target *starget = scsi_target(current_sdev);
523         unsigned long flags;
524
525         spin_lock_irqsave(shost->host_lock, flags);
526         starget->starget_sdev_user = NULL;
527         spin_unlock_irqrestore(shost->host_lock, flags);
528
529         /*
530          * Call blk_run_queue for all LUNs on the target, starting with
531          * current_sdev. We race with others (to set starget_sdev_user),
532          * but in most cases, we will be first. Ideally, each LU on the
533          * target would get some limited time or requests on the target.
534          */
535         blk_run_queue(current_sdev->request_queue);
536
537         spin_lock_irqsave(shost->host_lock, flags);
538         if (starget->starget_sdev_user)
539                 goto out;
540         list_for_each_entry_safe(sdev, tmp, &starget->devices,
541                         same_target_siblings) {
542                 if (sdev == current_sdev)
543                         continue;
544                 if (scsi_device_get(sdev))
545                         continue;
546
547                 spin_unlock_irqrestore(shost->host_lock, flags);
548                 blk_run_queue(sdev->request_queue);
549                 spin_lock_irqsave(shost->host_lock, flags);
550         
551                 scsi_device_put(sdev);
552         }
553  out:
554         spin_unlock_irqrestore(shost->host_lock, flags);
555 }
556
557 /*
558  * Function:    scsi_run_queue()
559  *
560  * Purpose:     Select a proper request queue to serve next
561  *
562  * Arguments:   q       - last request's queue
563  *
564  * Returns:     Nothing
565  *
566  * Notes:       The previous command was completely finished, start
567  *              a new one if possible.
568  */
569 static void scsi_run_queue(struct request_queue *q)
570 {
571         struct scsi_device *sdev = q->queuedata;
572         struct Scsi_Host *shost = sdev->host;
573         unsigned long flags;
574
575         if (sdev->single_lun)
576                 scsi_single_lun_run(sdev);
577
578         spin_lock_irqsave(shost->host_lock, flags);
579         while (!list_empty(&shost->starved_list) &&
580                !shost->host_blocked && !shost->host_self_blocked &&
581                 !((shost->can_queue > 0) &&
582                   (shost->host_busy >= shost->can_queue))) {
583                 /*
584                  * As long as shost is accepting commands and we have
585                  * starved queues, call blk_run_queue. scsi_request_fn
586                  * drops the queue_lock and can add us back to the
587                  * starved_list.
588                  *
589                  * host_lock protects the starved_list and starved_entry.
590                  * scsi_request_fn must get the host_lock before checking
591                  * or modifying starved_list or starved_entry.
592                  */
593                 sdev = list_entry(shost->starved_list.next,
594                                           struct scsi_device, starved_entry);
595                 list_del_init(&sdev->starved_entry);
596                 spin_unlock_irqrestore(shost->host_lock, flags);
597
598                 blk_run_queue(sdev->request_queue);
599
600                 spin_lock_irqsave(shost->host_lock, flags);
601                 if (unlikely(!list_empty(&sdev->starved_entry)))
602                         /*
603                          * sdev lost a race, and was put back on the
604                          * starved list. This is unlikely but without this
605                          * in theory we could loop forever.
606                          */
607                         break;
608         }
609         spin_unlock_irqrestore(shost->host_lock, flags);
610
611         blk_run_queue(q);
612 }
613
614 /*
615  * Function:    scsi_requeue_command()
616  *
617  * Purpose:     Handle post-processing of completed commands.
618  *
619  * Arguments:   q       - queue to operate on
620  *              cmd     - command that may need to be requeued.
621  *
622  * Returns:     Nothing
623  *
624  * Notes:       After command completion, there may be blocks left
625  *              over which weren't finished by the previous command
626  *              this can be for a number of reasons - the main one is
627  *              I/O errors in the middle of the request, in which case
628  *              we need to request the blocks that come after the bad
629  *              sector.
630  * Notes:       Upon return, cmd is a stale pointer.
631  */
632 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
633 {
634         struct request *req = cmd->request;
635         unsigned long flags;
636
637         scsi_unprep_request(req);
638         spin_lock_irqsave(q->queue_lock, flags);
639         blk_requeue_request(q, req);
640         spin_unlock_irqrestore(q->queue_lock, flags);
641
642         scsi_run_queue(q);
643 }
644
645 void scsi_next_command(struct scsi_cmnd *cmd)
646 {
647         struct scsi_device *sdev = cmd->device;
648         struct request_queue *q = sdev->request_queue;
649
650         /* need to hold a reference on the device before we let go of the cmd */
651         get_device(&sdev->sdev_gendev);
652
653         scsi_put_command(cmd);
654         scsi_run_queue(q);
655
656         /* ok to remove device now */
657         put_device(&sdev->sdev_gendev);
658 }
659
660 void scsi_run_host_queues(struct Scsi_Host *shost)
661 {
662         struct scsi_device *sdev;
663
664         shost_for_each_device(sdev, shost)
665                 scsi_run_queue(sdev->request_queue);
666 }
667
668 /*
669  * Function:    scsi_end_request()
670  *
671  * Purpose:     Post-processing of completed commands (usually invoked at end
672  *              of upper level post-processing and scsi_io_completion).
673  *
674  * Arguments:   cmd      - command that is complete.
675  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
676  *              bytes    - number of bytes of completed I/O
677  *              requeue  - indicates whether we should requeue leftovers.
678  *
679  * Lock status: Assumed that lock is not held upon entry.
680  *
681  * Returns:     cmd if requeue required, NULL otherwise.
682  *
683  * Notes:       This is called for block device requests in order to
684  *              mark some number of sectors as complete.
685  * 
686  *              We are guaranteeing that the request queue will be goosed
687  *              at some point during this call.
688  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
689  */
690 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
691                                           int bytes, int requeue)
692 {
693         request_queue_t *q = cmd->device->request_queue;
694         struct request *req = cmd->request;
695         unsigned long flags;
696
697         /*
698          * If there are blocks left over at the end, set up the command
699          * to queue the remainder of them.
700          */
701         if (end_that_request_chunk(req, uptodate, bytes)) {
702                 int leftover = (req->hard_nr_sectors << 9);
703
704                 if (blk_pc_request(req))
705                         leftover = req->data_len;
706
707                 /* kill remainder if no retrys */
708                 if (!uptodate && blk_noretry_request(req))
709                         end_that_request_chunk(req, 0, leftover);
710                 else {
711                         if (requeue) {
712                                 /*
713                                  * Bleah.  Leftovers again.  Stick the
714                                  * leftovers in the front of the
715                                  * queue, and goose the queue again.
716                                  */
717                                 scsi_requeue_command(q, cmd);
718                                 cmd = NULL;
719                         }
720                         return cmd;
721                 }
722         }
723
724         add_disk_randomness(req->rq_disk);
725
726         spin_lock_irqsave(q->queue_lock, flags);
727         if (blk_rq_tagged(req))
728                 blk_queue_end_tag(q, req);
729         end_that_request_last(req, uptodate);
730         spin_unlock_irqrestore(q->queue_lock, flags);
731
732         /*
733          * This will goose the queue request function at the end, so we don't
734          * need to worry about launching another command.
735          */
736         scsi_next_command(cmd);
737         return NULL;
738 }
739
740 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741 {
742         struct scsi_host_sg_pool *sgp;
743         struct scatterlist *sgl;
744
745         BUG_ON(!cmd->use_sg);
746
747         switch (cmd->use_sg) {
748         case 1 ... 8:
749                 cmd->sglist_len = 0;
750                 break;
751         case 9 ... 16:
752                 cmd->sglist_len = 1;
753                 break;
754         case 17 ... 32:
755                 cmd->sglist_len = 2;
756                 break;
757 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
758         case 33 ... 64:
759                 cmd->sglist_len = 3;
760                 break;
761 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
762         case 65 ... 128:
763                 cmd->sglist_len = 4;
764                 break;
765 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
766         case 129 ... 256:
767                 cmd->sglist_len = 5;
768                 break;
769 #endif
770 #endif
771 #endif
772         default:
773                 return NULL;
774         }
775
776         sgp = scsi_sg_pools + cmd->sglist_len;
777         sgl = mempool_alloc(sgp->pool, gfp_mask);
778         return sgl;
779 }
780
781 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
782 {
783         struct scsi_host_sg_pool *sgp;
784
785         BUG_ON(index >= SG_MEMPOOL_NR);
786
787         sgp = scsi_sg_pools + index;
788         mempool_free(sgl, sgp->pool);
789 }
790
791 /*
792  * Function:    scsi_release_buffers()
793  *
794  * Purpose:     Completion processing for block device I/O requests.
795  *
796  * Arguments:   cmd     - command that we are bailing.
797  *
798  * Lock status: Assumed that no lock is held upon entry.
799  *
800  * Returns:     Nothing
801  *
802  * Notes:       In the event that an upper level driver rejects a
803  *              command, we must release resources allocated during
804  *              the __init_io() function.  Primarily this would involve
805  *              the scatter-gather table, and potentially any bounce
806  *              buffers.
807  */
808 static void scsi_release_buffers(struct scsi_cmnd *cmd)
809 {
810         struct request *req = cmd->request;
811
812         /*
813          * Free up any indirection buffers we allocated for DMA purposes. 
814          */
815         if (cmd->use_sg)
816                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
817         else if (cmd->request_buffer != req->buffer)
818                 kfree(cmd->request_buffer);
819
820         /*
821          * Zero these out.  They now point to freed memory, and it is
822          * dangerous to hang onto the pointers.
823          */
824         cmd->buffer  = NULL;
825         cmd->bufflen = 0;
826         cmd->request_buffer = NULL;
827         cmd->request_bufflen = 0;
828 }
829
830 /*
831  * Function:    scsi_io_completion()
832  *
833  * Purpose:     Completion processing for block device I/O requests.
834  *
835  * Arguments:   cmd   - command that is finished.
836  *
837  * Lock status: Assumed that no lock is held upon entry.
838  *
839  * Returns:     Nothing
840  *
841  * Notes:       This function is matched in terms of capabilities to
842  *              the function that created the scatter-gather list.
843  *              In other words, if there are no bounce buffers
844  *              (the normal case for most drivers), we don't need
845  *              the logic to deal with cleaning up afterwards.
846  *
847  *              We must do one of several things here:
848  *
849  *              a) Call scsi_end_request.  This will finish off the
850  *                 specified number of sectors.  If we are done, the
851  *                 command block will be released, and the queue
852  *                 function will be goosed.  If we are not done, then
853  *                 scsi_end_request will directly goose the queue.
854  *
855  *              b) We can just use scsi_requeue_command() here.  This would
856  *                 be used if we just wanted to retry, for example.
857  */
858 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
859                         unsigned int block_bytes)
860 {
861         int result = cmd->result;
862         int this_count = cmd->bufflen;
863         request_queue_t *q = cmd->device->request_queue;
864         struct request *req = cmd->request;
865         int clear_errors = 1;
866         struct scsi_sense_hdr sshdr;
867         int sense_valid = 0;
868         int sense_deferred = 0;
869
870         /*
871          * Free up any indirection buffers we allocated for DMA purposes. 
872          * For the case of a READ, we need to copy the data out of the
873          * bounce buffer and into the real buffer.
874          */
875         if (cmd->use_sg)
876                 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
877         else if (cmd->buffer != req->buffer) {
878                 if (rq_data_dir(req) == READ) {
879                         unsigned long flags;
880                         char *to = bio_kmap_irq(req->bio, &flags);
881                         memcpy(to, cmd->buffer, cmd->bufflen);
882                         bio_kunmap_irq(to, &flags);
883                 }
884                 kfree(cmd->buffer);
885         }
886
887         if (result) {
888                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
889                 if (sense_valid)
890                         sense_deferred = scsi_sense_is_deferred(&sshdr);
891         }
892         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
893                 req->errors = result;
894                 if (result) {
895                         clear_errors = 0;
896                         if (sense_valid && req->sense) {
897                                 /*
898                                  * SG_IO wants current and deferred errors
899                                  */
900                                 int len = 8 + cmd->sense_buffer[7];
901
902                                 if (len > SCSI_SENSE_BUFFERSIZE)
903                                         len = SCSI_SENSE_BUFFERSIZE;
904                                 memcpy(req->sense, cmd->sense_buffer,  len);
905                                 req->sense_len = len;
906                         }
907                 } else
908                         req->data_len = cmd->resid;
909         }
910
911         /*
912          * Zero these out.  They now point to freed memory, and it is
913          * dangerous to hang onto the pointers.
914          */
915         cmd->buffer  = NULL;
916         cmd->bufflen = 0;
917         cmd->request_buffer = NULL;
918         cmd->request_bufflen = 0;
919
920         /*
921          * Next deal with any sectors which we were able to correctly
922          * handle.
923          */
924         if (good_bytes >= 0) {
925                 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
926                                               req->nr_sectors, good_bytes));
927                 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
928
929                 if (clear_errors)
930                         req->errors = 0;
931                 /*
932                  * If multiple sectors are requested in one buffer, then
933                  * they will have been finished off by the first command.
934                  * If not, then we have a multi-buffer command.
935                  *
936                  * If block_bytes != 0, it means we had a medium error
937                  * of some sort, and that we want to mark some number of
938                  * sectors as not uptodate.  Thus we want to inhibit
939                  * requeueing right here - we will requeue down below
940                  * when we handle the bad sectors.
941                  */
942
943                 /*
944                  * If the command completed without error, then either
945                  * finish off the rest of the command, or start a new one.
946                  */
947                 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
948                         return;
949         }
950         /*
951          * Now, if we were good little boys and girls, Santa left us a request
952          * sense buffer.  We can extract information from this, so we
953          * can choose a block to remap, etc.
954          */
955         if (sense_valid && !sense_deferred) {
956                 switch (sshdr.sense_key) {
957                 case UNIT_ATTENTION:
958                         if (cmd->device->removable) {
959                                 /* detected disc change.  set a bit 
960                                  * and quietly refuse further access.
961                                  */
962                                 cmd->device->changed = 1;
963                                 scsi_end_request(cmd, 0,
964                                                 this_count, 1);
965                                 return;
966                         } else {
967                                 /*
968                                 * Must have been a power glitch, or a
969                                 * bus reset.  Could not have been a
970                                 * media change, so we just retry the
971                                 * request and see what happens.  
972                                 */
973                                 scsi_requeue_command(q, cmd);
974                                 return;
975                         }
976                         break;
977                 case ILLEGAL_REQUEST:
978                         /*
979                         * If we had an ILLEGAL REQUEST returned, then we may
980                         * have performed an unsupported command.  The only
981                         * thing this should be would be a ten byte read where
982                         * only a six byte read was supported.  Also, on a
983                         * system where READ CAPACITY failed, we may have read
984                         * past the end of the disk.
985                         */
986                         if ((cmd->device->use_10_for_rw &&
987                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
988                             (cmd->cmnd[0] == READ_10 ||
989                              cmd->cmnd[0] == WRITE_10)) {
990                                 cmd->device->use_10_for_rw = 0;
991                                 /*
992                                  * This will cause a retry with a 6-byte
993                                  * command.
994                                  */
995                                 scsi_requeue_command(q, cmd);
996                                 result = 0;
997                         } else {
998                                 scsi_end_request(cmd, 0, this_count, 1);
999                                 return;
1000                         }
1001                         break;
1002                 case NOT_READY:
1003                         /*
1004                          * If the device is in the process of becoming
1005                          * ready, or has a temporary blockage, retry.
1006                          */
1007                         if (sshdr.asc == 0x04) {
1008                                 switch (sshdr.ascq) {
1009                                 case 0x01: /* becoming ready */
1010                                 case 0x04: /* format in progress */
1011                                 case 0x05: /* rebuild in progress */
1012                                 case 0x06: /* recalculation in progress */
1013                                 case 0x07: /* operation in progress */
1014                                 case 0x08: /* Long write in progress */
1015                                 case 0x09: /* self test in progress */
1016                                         scsi_requeue_command(q, cmd);
1017                                         return;
1018                                 default:
1019                                         break;
1020                                 }
1021                         }
1022                         if (!(req->flags & REQ_QUIET)) {
1023                                 scmd_printk(KERN_INFO, cmd,
1024                                            "Device not ready: ");
1025                                 scsi_print_sense_hdr("", &sshdr);
1026                         }
1027                         scsi_end_request(cmd, 0, this_count, 1);
1028                         return;
1029                 case VOLUME_OVERFLOW:
1030                         if (!(req->flags & REQ_QUIET)) {
1031                                 scmd_printk(KERN_INFO, cmd,
1032                                            "Volume overflow, CDB: ");
1033                                 __scsi_print_command(cmd->data_cmnd);
1034                                 scsi_print_sense("", cmd);
1035                         }
1036                         scsi_end_request(cmd, 0, block_bytes, 1);
1037                         return;
1038                 default:
1039                         break;
1040                 }
1041         }                       /* driver byte != 0 */
1042         if (host_byte(result) == DID_RESET) {
1043                 /*
1044                  * Third party bus reset or reset for error
1045                  * recovery reasons.  Just retry the request
1046                  * and see what happens.  
1047                  */
1048                 scsi_requeue_command(q, cmd);
1049                 return;
1050         }
1051         if (result) {
1052                 if (!(req->flags & REQ_QUIET)) {
1053                         scmd_printk(KERN_INFO, cmd,
1054                                    "SCSI error: return code = 0x%x\n", result);
1055
1056                         if (driver_byte(result) & DRIVER_SENSE)
1057                                 scsi_print_sense("", cmd);
1058                 }
1059                 /*
1060                  * Mark a single buffer as not uptodate.  Queue the remainder.
1061                  * We sometimes get this cruft in the event that a medium error
1062                  * isn't properly reported.
1063                  */
1064                 block_bytes = req->hard_cur_sectors << 9;
1065                 if (!block_bytes)
1066                         block_bytes = req->data_len;
1067                 scsi_end_request(cmd, 0, block_bytes, 1);
1068         }
1069 }
1070 EXPORT_SYMBOL(scsi_io_completion);
1071
1072 /*
1073  * Function:    scsi_init_io()
1074  *
1075  * Purpose:     SCSI I/O initialize function.
1076  *
1077  * Arguments:   cmd   - Command descriptor we wish to initialize
1078  *
1079  * Returns:     0 on success
1080  *              BLKPREP_DEFER if the failure is retryable
1081  *              BLKPREP_KILL if the failure is fatal
1082  */
1083 static int scsi_init_io(struct scsi_cmnd *cmd)
1084 {
1085         struct request     *req = cmd->request;
1086         struct scatterlist *sgpnt;
1087         int                count;
1088
1089         /*
1090          * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1091          */
1092         if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1093                 cmd->request_bufflen = req->data_len;
1094                 cmd->request_buffer = req->data;
1095                 req->buffer = req->data;
1096                 cmd->use_sg = 0;
1097                 return 0;
1098         }
1099
1100         /*
1101          * we used to not use scatter-gather for single segment request,
1102          * but now we do (it makes highmem I/O easier to support without
1103          * kmapping pages)
1104          */
1105         cmd->use_sg = req->nr_phys_segments;
1106
1107         /*
1108          * if sg table allocation fails, requeue request later.
1109          */
1110         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1111         if (unlikely(!sgpnt)) {
1112                 scsi_unprep_request(req);
1113                 return BLKPREP_DEFER;
1114         }
1115
1116         cmd->request_buffer = (char *) sgpnt;
1117         cmd->request_bufflen = req->nr_sectors << 9;
1118         if (blk_pc_request(req))
1119                 cmd->request_bufflen = req->data_len;
1120         req->buffer = NULL;
1121
1122         /* 
1123          * Next, walk the list, and fill in the addresses and sizes of
1124          * each segment.
1125          */
1126         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1127
1128         /*
1129          * mapped well, send it off
1130          */
1131         if (likely(count <= cmd->use_sg)) {
1132                 cmd->use_sg = count;
1133                 return 0;
1134         }
1135
1136         printk(KERN_ERR "Incorrect number of segments after building list\n");
1137         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1138         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1139                         req->current_nr_sectors);
1140
1141         /* release the command and kill it */
1142         scsi_release_buffers(cmd);
1143         scsi_put_command(cmd);
1144         return BLKPREP_KILL;
1145 }
1146
1147 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1148                                sector_t *error_sector)
1149 {
1150         struct scsi_device *sdev = q->queuedata;
1151         struct scsi_driver *drv;
1152
1153         if (sdev->sdev_state != SDEV_RUNNING)
1154                 return -ENXIO;
1155
1156         drv = *(struct scsi_driver **) disk->private_data;
1157         if (drv->issue_flush)
1158                 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1159
1160         return -EOPNOTSUPP;
1161 }
1162
1163 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1164 {
1165         BUG_ON(!blk_pc_request(cmd->request));
1166         /*
1167          * This will complete the whole command with uptodate=1 so
1168          * as far as the block layer is concerned the command completed
1169          * successfully. Since this is a REQ_BLOCK_PC command the
1170          * caller should check the request's errors value
1171          */
1172         scsi_io_completion(cmd, cmd->bufflen, 0);
1173 }
1174
1175 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1176 {
1177         struct request *req = cmd->request;
1178
1179         BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1180         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1181         cmd->cmd_len = req->cmd_len;
1182         if (!req->data_len)
1183                 cmd->sc_data_direction = DMA_NONE;
1184         else if (rq_data_dir(req) == WRITE)
1185                 cmd->sc_data_direction = DMA_TO_DEVICE;
1186         else
1187                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1188         
1189         cmd->transfersize = req->data_len;
1190         cmd->allowed = req->retries;
1191         cmd->timeout_per_command = req->timeout;
1192         cmd->done = scsi_blk_pc_done;
1193 }
1194
1195 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1196 {
1197         struct scsi_device *sdev = q->queuedata;
1198         struct scsi_cmnd *cmd;
1199         int specials_only = 0;
1200
1201         /*
1202          * Just check to see if the device is online.  If it isn't, we
1203          * refuse to process any commands.  The device must be brought
1204          * online before trying any recovery commands
1205          */
1206         if (unlikely(!scsi_device_online(sdev))) {
1207                 sdev_printk(KERN_ERR, sdev,
1208                             "rejecting I/O to offline device\n");
1209                 goto kill;
1210         }
1211         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1212                 /* OK, we're not in a running state don't prep
1213                  * user commands */
1214                 if (sdev->sdev_state == SDEV_DEL) {
1215                         /* Device is fully deleted, no commands
1216                          * at all allowed down */
1217                         sdev_printk(KERN_ERR, sdev,
1218                                     "rejecting I/O to dead device\n");
1219                         goto kill;
1220                 }
1221                 /* OK, we only allow special commands (i.e. not
1222                  * user initiated ones */
1223                 specials_only = sdev->sdev_state;
1224         }
1225
1226         /*
1227          * Find the actual device driver associated with this command.
1228          * The SPECIAL requests are things like character device or
1229          * ioctls, which did not originate from ll_rw_blk.  Note that
1230          * the special field is also used to indicate the cmd for
1231          * the remainder of a partially fulfilled request that can 
1232          * come up when there is a medium error.  We have to treat
1233          * these two cases differently.  We differentiate by looking
1234          * at request->cmd, as this tells us the real story.
1235          */
1236         if (req->flags & REQ_SPECIAL && req->special) {
1237                 cmd = req->special;
1238         } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1239
1240                 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1241                         if(specials_only == SDEV_QUIESCE ||
1242                                         specials_only == SDEV_BLOCK)
1243                                 goto defer;
1244                         
1245                         sdev_printk(KERN_ERR, sdev,
1246                                     "rejecting I/O to device being removed\n");
1247                         goto kill;
1248                 }
1249                         
1250                         
1251                 /*
1252                  * Now try and find a command block that we can use.
1253                  */
1254                 if (!req->special) {
1255                         cmd = scsi_get_command(sdev, GFP_ATOMIC);
1256                         if (unlikely(!cmd))
1257                                 goto defer;
1258                 } else
1259                         cmd = req->special;
1260                 
1261                 /* pull a tag out of the request if we have one */
1262                 cmd->tag = req->tag;
1263         } else {
1264                 blk_dump_rq_flags(req, "SCSI bad req");
1265                 goto kill;
1266         }
1267         
1268         /* note the overloading of req->special.  When the tag
1269          * is active it always means cmd.  If the tag goes
1270          * back for re-queueing, it may be reset */
1271         req->special = cmd;
1272         cmd->request = req;
1273         
1274         /*
1275          * FIXME: drop the lock here because the functions below
1276          * expect to be called without the queue lock held.  Also,
1277          * previously, we dequeued the request before dropping the
1278          * lock.  We hope REQ_STARTED prevents anything untoward from
1279          * happening now.
1280          */
1281         if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1282                 int ret;
1283
1284                 /*
1285                  * This will do a couple of things:
1286                  *  1) Fill in the actual SCSI command.
1287                  *  2) Fill in any other upper-level specific fields
1288                  * (timeout).
1289                  *
1290                  * If this returns 0, it means that the request failed
1291                  * (reading past end of disk, reading offline device,
1292                  * etc).   This won't actually talk to the device, but
1293                  * some kinds of consistency checking may cause the     
1294                  * request to be rejected immediately.
1295                  */
1296
1297                 /* 
1298                  * This sets up the scatter-gather table (allocating if
1299                  * required).
1300                  */
1301                 ret = scsi_init_io(cmd);
1302                 switch(ret) {
1303                         /* For BLKPREP_KILL/DEFER the cmd was released */
1304                 case BLKPREP_KILL:
1305                         goto kill;
1306                 case BLKPREP_DEFER:
1307                         goto defer;
1308                 }
1309                 
1310                 /*
1311                  * Initialize the actual SCSI command for this request.
1312                  */
1313                 if (req->flags & REQ_BLOCK_PC) {
1314                         scsi_setup_blk_pc_cmnd(cmd);
1315                 } else if (req->rq_disk) {
1316                         struct scsi_driver *drv;
1317
1318                         drv = *(struct scsi_driver **)req->rq_disk->private_data;
1319                         if (unlikely(!drv->init_command(cmd))) {
1320                                 scsi_release_buffers(cmd);
1321                                 scsi_put_command(cmd);
1322                                 goto kill;
1323                         }
1324                 }
1325         }
1326
1327         /*
1328          * The request is now prepped, no need to come back here
1329          */
1330         req->flags |= REQ_DONTPREP;
1331         return BLKPREP_OK;
1332
1333  defer:
1334         /* If we defer, the elv_next_request() returns NULL, but the
1335          * queue must be restarted, so we plug here if no returning
1336          * command will automatically do that. */
1337         if (sdev->device_busy == 0)
1338                 blk_plug_device(q);
1339         return BLKPREP_DEFER;
1340  kill:
1341         req->errors = DID_NO_CONNECT << 16;
1342         return BLKPREP_KILL;
1343 }
1344
1345 /*
1346  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1347  * return 0.
1348  *
1349  * Called with the queue_lock held.
1350  */
1351 static inline int scsi_dev_queue_ready(struct request_queue *q,
1352                                   struct scsi_device *sdev)
1353 {
1354         if (sdev->device_busy >= sdev->queue_depth)
1355                 return 0;
1356         if (sdev->device_busy == 0 && sdev->device_blocked) {
1357                 /*
1358                  * unblock after device_blocked iterates to zero
1359                  */
1360                 if (--sdev->device_blocked == 0) {
1361                         SCSI_LOG_MLQUEUE(3,
1362                                    sdev_printk(KERN_INFO, sdev,
1363                                    "unblocking device at zero depth\n"));
1364                 } else {
1365                         blk_plug_device(q);
1366                         return 0;
1367                 }
1368         }
1369         if (sdev->device_blocked)
1370                 return 0;
1371
1372         return 1;
1373 }
1374
1375 /*
1376  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1377  * return 0. We must end up running the queue again whenever 0 is
1378  * returned, else IO can hang.
1379  *
1380  * Called with host_lock held.
1381  */
1382 static inline int scsi_host_queue_ready(struct request_queue *q,
1383                                    struct Scsi_Host *shost,
1384                                    struct scsi_device *sdev)
1385 {
1386         if (scsi_host_in_recovery(shost))
1387                 return 0;
1388         if (shost->host_busy == 0 && shost->host_blocked) {
1389                 /*
1390                  * unblock after host_blocked iterates to zero
1391                  */
1392                 if (--shost->host_blocked == 0) {
1393                         SCSI_LOG_MLQUEUE(3,
1394                                 printk("scsi%d unblocking host at zero depth\n",
1395                                         shost->host_no));
1396                 } else {
1397                         blk_plug_device(q);
1398                         return 0;
1399                 }
1400         }
1401         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1402             shost->host_blocked || shost->host_self_blocked) {
1403                 if (list_empty(&sdev->starved_entry))
1404                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1405                 return 0;
1406         }
1407
1408         /* We're OK to process the command, so we can't be starved */
1409         if (!list_empty(&sdev->starved_entry))
1410                 list_del_init(&sdev->starved_entry);
1411
1412         return 1;
1413 }
1414
1415 /*
1416  * Kill a request for a dead device
1417  */
1418 static void scsi_kill_request(struct request *req, request_queue_t *q)
1419 {
1420         struct scsi_cmnd *cmd = req->special;
1421         struct scsi_device *sdev = cmd->device;
1422         struct Scsi_Host *shost = sdev->host;
1423
1424         blkdev_dequeue_request(req);
1425
1426         if (unlikely(cmd == NULL)) {
1427                 printk(KERN_CRIT "impossible request in %s.\n",
1428                                  __FUNCTION__);
1429                 BUG();
1430         }
1431
1432         scsi_init_cmd_errh(cmd);
1433         cmd->result = DID_NO_CONNECT << 16;
1434         atomic_inc(&cmd->device->iorequest_cnt);
1435
1436         /*
1437          * SCSI request completion path will do scsi_device_unbusy(),
1438          * bump busy counts.  To bump the counters, we need to dance
1439          * with the locks as normal issue path does.
1440          */
1441         sdev->device_busy++;
1442         spin_unlock(sdev->request_queue->queue_lock);
1443         spin_lock(shost->host_lock);
1444         shost->host_busy++;
1445         spin_unlock(shost->host_lock);
1446         spin_lock(sdev->request_queue->queue_lock);
1447
1448         __scsi_done(cmd);
1449 }
1450
1451 static void scsi_softirq_done(struct request *rq)
1452 {
1453         struct scsi_cmnd *cmd = rq->completion_data;
1454         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1455         int disposition;
1456
1457         INIT_LIST_HEAD(&cmd->eh_entry);
1458
1459         disposition = scsi_decide_disposition(cmd);
1460         if (disposition != SUCCESS &&
1461             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1462                 sdev_printk(KERN_ERR, cmd->device,
1463                             "timing out command, waited %lus\n",
1464                             wait_for/HZ);
1465                 disposition = SUCCESS;
1466         }
1467                         
1468         scsi_log_completion(cmd, disposition);
1469
1470         switch (disposition) {
1471                 case SUCCESS:
1472                         scsi_finish_command(cmd);
1473                         break;
1474                 case NEEDS_RETRY:
1475                         scsi_retry_command(cmd);
1476                         break;
1477                 case ADD_TO_MLQUEUE:
1478                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1479                         break;
1480                 default:
1481                         if (!scsi_eh_scmd_add(cmd, 0))
1482                                 scsi_finish_command(cmd);
1483         }
1484 }
1485
1486 /*
1487  * Function:    scsi_request_fn()
1488  *
1489  * Purpose:     Main strategy routine for SCSI.
1490  *
1491  * Arguments:   q       - Pointer to actual queue.
1492  *
1493  * Returns:     Nothing
1494  *
1495  * Lock status: IO request lock assumed to be held when called.
1496  */
1497 static void scsi_request_fn(struct request_queue *q)
1498 {
1499         struct scsi_device *sdev = q->queuedata;
1500         struct Scsi_Host *shost;
1501         struct scsi_cmnd *cmd;
1502         struct request *req;
1503
1504         if (!sdev) {
1505                 printk("scsi: killing requests for dead queue\n");
1506                 while ((req = elv_next_request(q)) != NULL)
1507                         scsi_kill_request(req, q);
1508                 return;
1509         }
1510
1511         if(!get_device(&sdev->sdev_gendev))
1512                 /* We must be tearing the block queue down already */
1513                 return;
1514
1515         /*
1516          * To start with, we keep looping until the queue is empty, or until
1517          * the host is no longer able to accept any more requests.
1518          */
1519         shost = sdev->host;
1520         while (!blk_queue_plugged(q)) {
1521                 int rtn;
1522                 /*
1523                  * get next queueable request.  We do this early to make sure
1524                  * that the request is fully prepared even if we cannot 
1525                  * accept it.
1526                  */
1527                 req = elv_next_request(q);
1528                 if (!req || !scsi_dev_queue_ready(q, sdev))
1529                         break;
1530
1531                 if (unlikely(!scsi_device_online(sdev))) {
1532                         sdev_printk(KERN_ERR, sdev,
1533                                     "rejecting I/O to offline device\n");
1534                         scsi_kill_request(req, q);
1535                         continue;
1536                 }
1537
1538
1539                 /*
1540                  * Remove the request from the request list.
1541                  */
1542                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1543                         blkdev_dequeue_request(req);
1544                 sdev->device_busy++;
1545
1546                 spin_unlock(q->queue_lock);
1547                 cmd = req->special;
1548                 if (unlikely(cmd == NULL)) {
1549                         printk(KERN_CRIT "impossible request in %s.\n"
1550                                          "please mail a stack trace to "
1551                                          "linux-scsi@vger.kernel.org",
1552                                          __FUNCTION__);
1553                         BUG();
1554                 }
1555                 spin_lock(shost->host_lock);
1556
1557                 if (!scsi_host_queue_ready(q, shost, sdev))
1558                         goto not_ready;
1559                 if (sdev->single_lun) {
1560                         if (scsi_target(sdev)->starget_sdev_user &&
1561                             scsi_target(sdev)->starget_sdev_user != sdev)
1562                                 goto not_ready;
1563                         scsi_target(sdev)->starget_sdev_user = sdev;
1564                 }
1565                 shost->host_busy++;
1566
1567                 /*
1568                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1569                  *              take the lock again.
1570                  */
1571                 spin_unlock_irq(shost->host_lock);
1572
1573                 /*
1574                  * Finally, initialize any error handling parameters, and set up
1575                  * the timers for timeouts.
1576                  */
1577                 scsi_init_cmd_errh(cmd);
1578
1579                 /*
1580                  * Dispatch the command to the low-level driver.
1581                  */
1582                 rtn = scsi_dispatch_cmd(cmd);
1583                 spin_lock_irq(q->queue_lock);
1584                 if(rtn) {
1585                         /* we're refusing the command; because of
1586                          * the way locks get dropped, we need to 
1587                          * check here if plugging is required */
1588                         if(sdev->device_busy == 0)
1589                                 blk_plug_device(q);
1590
1591                         break;
1592                 }
1593         }
1594
1595         goto out;
1596
1597  not_ready:
1598         spin_unlock_irq(shost->host_lock);
1599
1600         /*
1601          * lock q, handle tag, requeue req, and decrement device_busy. We
1602          * must return with queue_lock held.
1603          *
1604          * Decrementing device_busy without checking it is OK, as all such
1605          * cases (host limits or settings) should run the queue at some
1606          * later time.
1607          */
1608         spin_lock_irq(q->queue_lock);
1609         blk_requeue_request(q, req);
1610         sdev->device_busy--;
1611         if(sdev->device_busy == 0)
1612                 blk_plug_device(q);
1613  out:
1614         /* must be careful here...if we trigger the ->remove() function
1615          * we cannot be holding the q lock */
1616         spin_unlock_irq(q->queue_lock);
1617         put_device(&sdev->sdev_gendev);
1618         spin_lock_irq(q->queue_lock);
1619 }
1620
1621 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1622 {
1623         struct device *host_dev;
1624         u64 bounce_limit = 0xffffffff;
1625
1626         if (shost->unchecked_isa_dma)
1627                 return BLK_BOUNCE_ISA;
1628         /*
1629          * Platforms with virtual-DMA translation
1630          * hardware have no practical limit.
1631          */
1632         if (!PCI_DMA_BUS_IS_PHYS)
1633                 return BLK_BOUNCE_ANY;
1634
1635         host_dev = scsi_get_device(shost);
1636         if (host_dev && host_dev->dma_mask)
1637                 bounce_limit = *host_dev->dma_mask;
1638
1639         return bounce_limit;
1640 }
1641 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1642
1643 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1644 {
1645         struct Scsi_Host *shost = sdev->host;
1646         struct request_queue *q;
1647
1648         q = blk_init_queue(scsi_request_fn, NULL);
1649         if (!q)
1650                 return NULL;
1651
1652         blk_queue_prep_rq(q, scsi_prep_fn);
1653
1654         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1655         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1656         blk_queue_max_sectors(q, shost->max_sectors);
1657         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1658         blk_queue_segment_boundary(q, shost->dma_boundary);
1659         blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1660         blk_queue_softirq_done(q, scsi_softirq_done);
1661
1662         if (!shost->use_clustering)
1663                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1664         return q;
1665 }
1666
1667 void scsi_free_queue(struct request_queue *q)
1668 {
1669         blk_cleanup_queue(q);
1670 }
1671
1672 /*
1673  * Function:    scsi_block_requests()
1674  *
1675  * Purpose:     Utility function used by low-level drivers to prevent further
1676  *              commands from being queued to the device.
1677  *
1678  * Arguments:   shost       - Host in question
1679  *
1680  * Returns:     Nothing
1681  *
1682  * Lock status: No locks are assumed held.
1683  *
1684  * Notes:       There is no timer nor any other means by which the requests
1685  *              get unblocked other than the low-level driver calling
1686  *              scsi_unblock_requests().
1687  */
1688 void scsi_block_requests(struct Scsi_Host *shost)
1689 {
1690         shost->host_self_blocked = 1;
1691 }
1692 EXPORT_SYMBOL(scsi_block_requests);
1693
1694 /*
1695  * Function:    scsi_unblock_requests()
1696  *
1697  * Purpose:     Utility function used by low-level drivers to allow further
1698  *              commands from being queued to the device.
1699  *
1700  * Arguments:   shost       - Host in question
1701  *
1702  * Returns:     Nothing
1703  *
1704  * Lock status: No locks are assumed held.
1705  *
1706  * Notes:       There is no timer nor any other means by which the requests
1707  *              get unblocked other than the low-level driver calling
1708  *              scsi_unblock_requests().
1709  *
1710  *              This is done as an API function so that changes to the
1711  *              internals of the scsi mid-layer won't require wholesale
1712  *              changes to drivers that use this feature.
1713  */
1714 void scsi_unblock_requests(struct Scsi_Host *shost)
1715 {
1716         shost->host_self_blocked = 0;
1717         scsi_run_host_queues(shost);
1718 }
1719 EXPORT_SYMBOL(scsi_unblock_requests);
1720
1721 int __init scsi_init_queue(void)
1722 {
1723         int i;
1724
1725         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1726                                         sizeof(struct scsi_io_context),
1727                                         0, 0, NULL, NULL);
1728         if (!scsi_io_context_cache) {
1729                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1730                 return -ENOMEM;
1731         }
1732
1733         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1734                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1735                 int size = sgp->size * sizeof(struct scatterlist);
1736
1737                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1738                                 SLAB_HWCACHE_ALIGN, NULL, NULL);
1739                 if (!sgp->slab) {
1740                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1741                                         sgp->name);
1742                 }
1743
1744                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1745                                                      sgp->slab);
1746                 if (!sgp->pool) {
1747                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1748                                         sgp->name);
1749                 }
1750         }
1751
1752         return 0;
1753 }
1754
1755 void scsi_exit_queue(void)
1756 {
1757         int i;
1758
1759         kmem_cache_destroy(scsi_io_context_cache);
1760
1761         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1762                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1763                 mempool_destroy(sgp->pool);
1764                 kmem_cache_destroy(sgp->slab);
1765         }
1766 }
1767
1768 /**
1769  *      scsi_mode_select - issue a mode select
1770  *      @sdev:  SCSI device to be queried
1771  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1772  *      @sp:    Save page bit (0 == don't save, 1 == save)
1773  *      @modepage: mode page being requested
1774  *      @buffer: request buffer (may not be smaller than eight bytes)
1775  *      @len:   length of request buffer.
1776  *      @timeout: command timeout
1777  *      @retries: number of retries before failing
1778  *      @data: returns a structure abstracting the mode header data
1779  *      @sense: place to put sense data (or NULL if no sense to be collected).
1780  *              must be SCSI_SENSE_BUFFERSIZE big.
1781  *
1782  *      Returns zero if successful; negative error number or scsi
1783  *      status on error
1784  *
1785  */
1786 int
1787 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1788                  unsigned char *buffer, int len, int timeout, int retries,
1789                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1790 {
1791         unsigned char cmd[10];
1792         unsigned char *real_buffer;
1793         int ret;
1794
1795         memset(cmd, 0, sizeof(cmd));
1796         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1797
1798         if (sdev->use_10_for_ms) {
1799                 if (len > 65535)
1800                         return -EINVAL;
1801                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1802                 if (!real_buffer)
1803                         return -ENOMEM;
1804                 memcpy(real_buffer + 8, buffer, len);
1805                 len += 8;
1806                 real_buffer[0] = 0;
1807                 real_buffer[1] = 0;
1808                 real_buffer[2] = data->medium_type;
1809                 real_buffer[3] = data->device_specific;
1810                 real_buffer[4] = data->longlba ? 0x01 : 0;
1811                 real_buffer[5] = 0;
1812                 real_buffer[6] = data->block_descriptor_length >> 8;
1813                 real_buffer[7] = data->block_descriptor_length;
1814
1815                 cmd[0] = MODE_SELECT_10;
1816                 cmd[7] = len >> 8;
1817                 cmd[8] = len;
1818         } else {
1819                 if (len > 255 || data->block_descriptor_length > 255 ||
1820                     data->longlba)
1821                         return -EINVAL;
1822
1823                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1824                 if (!real_buffer)
1825                         return -ENOMEM;
1826                 memcpy(real_buffer + 4, buffer, len);
1827                 len += 4;
1828                 real_buffer[0] = 0;
1829                 real_buffer[1] = data->medium_type;
1830                 real_buffer[2] = data->device_specific;
1831                 real_buffer[3] = data->block_descriptor_length;
1832                 
1833
1834                 cmd[0] = MODE_SELECT;
1835                 cmd[4] = len;
1836         }
1837
1838         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1839                                sshdr, timeout, retries);
1840         kfree(real_buffer);
1841         return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(scsi_mode_select);
1844
1845 /**
1846  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1847  *              six bytes if necessary.
1848  *      @sdev:  SCSI device to be queried
1849  *      @dbd:   set if mode sense will allow block descriptors to be returned
1850  *      @modepage: mode page being requested
1851  *      @buffer: request buffer (may not be smaller than eight bytes)
1852  *      @len:   length of request buffer.
1853  *      @timeout: command timeout
1854  *      @retries: number of retries before failing
1855  *      @data: returns a structure abstracting the mode header data
1856  *      @sense: place to put sense data (or NULL if no sense to be collected).
1857  *              must be SCSI_SENSE_BUFFERSIZE big.
1858  *
1859  *      Returns zero if unsuccessful, or the header offset (either 4
1860  *      or 8 depending on whether a six or ten byte command was
1861  *      issued) if successful.
1862  **/
1863 int
1864 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1865                   unsigned char *buffer, int len, int timeout, int retries,
1866                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1867 {
1868         unsigned char cmd[12];
1869         int use_10_for_ms;
1870         int header_length;
1871         int result;
1872         struct scsi_sense_hdr my_sshdr;
1873
1874         memset(data, 0, sizeof(*data));
1875         memset(&cmd[0], 0, 12);
1876         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1877         cmd[2] = modepage;
1878
1879         /* caller might not be interested in sense, but we need it */
1880         if (!sshdr)
1881                 sshdr = &my_sshdr;
1882
1883  retry:
1884         use_10_for_ms = sdev->use_10_for_ms;
1885
1886         if (use_10_for_ms) {
1887                 if (len < 8)
1888                         len = 8;
1889
1890                 cmd[0] = MODE_SENSE_10;
1891                 cmd[8] = len;
1892                 header_length = 8;
1893         } else {
1894                 if (len < 4)
1895                         len = 4;
1896
1897                 cmd[0] = MODE_SENSE;
1898                 cmd[4] = len;
1899                 header_length = 4;
1900         }
1901
1902         memset(buffer, 0, len);
1903
1904         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1905                                   sshdr, timeout, retries);
1906
1907         /* This code looks awful: what it's doing is making sure an
1908          * ILLEGAL REQUEST sense return identifies the actual command
1909          * byte as the problem.  MODE_SENSE commands can return
1910          * ILLEGAL REQUEST if the code page isn't supported */
1911
1912         if (use_10_for_ms && !scsi_status_is_good(result) &&
1913             (driver_byte(result) & DRIVER_SENSE)) {
1914                 if (scsi_sense_valid(sshdr)) {
1915                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1916                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1917                                 /* 
1918                                  * Invalid command operation code
1919                                  */
1920                                 sdev->use_10_for_ms = 0;
1921                                 goto retry;
1922                         }
1923                 }
1924         }
1925
1926         if(scsi_status_is_good(result)) {
1927                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1928                              (modepage == 6 || modepage == 8))) {
1929                         /* Initio breakage? */
1930                         header_length = 0;
1931                         data->length = 13;
1932                         data->medium_type = 0;
1933                         data->device_specific = 0;
1934                         data->longlba = 0;
1935                         data->block_descriptor_length = 0;
1936                 } else if(use_10_for_ms) {
1937                         data->length = buffer[0]*256 + buffer[1] + 2;
1938                         data->medium_type = buffer[2];
1939                         data->device_specific = buffer[3];
1940                         data->longlba = buffer[4] & 0x01;
1941                         data->block_descriptor_length = buffer[6]*256
1942                                 + buffer[7];
1943                 } else {
1944                         data->length = buffer[0] + 1;
1945                         data->medium_type = buffer[1];
1946                         data->device_specific = buffer[2];
1947                         data->block_descriptor_length = buffer[3];
1948                 }
1949                 data->header_length = header_length;
1950         }
1951
1952         return result;
1953 }
1954 EXPORT_SYMBOL(scsi_mode_sense);
1955
1956 int
1957 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1958 {
1959         char cmd[] = {
1960                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1961         };
1962         struct scsi_sense_hdr sshdr;
1963         int result;
1964         
1965         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1966                                   timeout, retries);
1967
1968         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1969
1970                 if ((scsi_sense_valid(&sshdr)) &&
1971                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1972                      (sshdr.sense_key == NOT_READY))) {
1973                         sdev->changed = 1;
1974                         result = 0;
1975                 }
1976         }
1977         return result;
1978 }
1979 EXPORT_SYMBOL(scsi_test_unit_ready);
1980
1981 /**
1982  *      scsi_device_set_state - Take the given device through the device
1983  *              state model.
1984  *      @sdev:  scsi device to change the state of.
1985  *      @state: state to change to.
1986  *
1987  *      Returns zero if unsuccessful or an error if the requested 
1988  *      transition is illegal.
1989  **/
1990 int
1991 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1992 {
1993         enum scsi_device_state oldstate = sdev->sdev_state;
1994
1995         if (state == oldstate)
1996                 return 0;
1997
1998         switch (state) {
1999         case SDEV_CREATED:
2000                 /* There are no legal states that come back to
2001                  * created.  This is the manually initialised start
2002                  * state */
2003                 goto illegal;
2004                         
2005         case SDEV_RUNNING:
2006                 switch (oldstate) {
2007                 case SDEV_CREATED:
2008                 case SDEV_OFFLINE:
2009                 case SDEV_QUIESCE:
2010                 case SDEV_BLOCK:
2011                         break;
2012                 default:
2013                         goto illegal;
2014                 }
2015                 break;
2016
2017         case SDEV_QUIESCE:
2018                 switch (oldstate) {
2019                 case SDEV_RUNNING:
2020                 case SDEV_OFFLINE:
2021                         break;
2022                 default:
2023                         goto illegal;
2024                 }
2025                 break;
2026
2027         case SDEV_OFFLINE:
2028                 switch (oldstate) {
2029                 case SDEV_CREATED:
2030                 case SDEV_RUNNING:
2031                 case SDEV_QUIESCE:
2032                 case SDEV_BLOCK:
2033                         break;
2034                 default:
2035                         goto illegal;
2036                 }
2037                 break;
2038
2039         case SDEV_BLOCK:
2040                 switch (oldstate) {
2041                 case SDEV_CREATED:
2042                 case SDEV_RUNNING:
2043                         break;
2044                 default:
2045                         goto illegal;
2046                 }
2047                 break;
2048
2049         case SDEV_CANCEL:
2050                 switch (oldstate) {
2051                 case SDEV_CREATED:
2052                 case SDEV_RUNNING:
2053                 case SDEV_OFFLINE:
2054                 case SDEV_BLOCK:
2055                         break;
2056                 default:
2057                         goto illegal;
2058                 }
2059                 break;
2060
2061         case SDEV_DEL:
2062                 switch (oldstate) {
2063                 case SDEV_CANCEL:
2064                         break;
2065                 default:
2066                         goto illegal;
2067                 }
2068                 break;
2069
2070         }
2071         sdev->sdev_state = state;
2072         return 0;
2073
2074  illegal:
2075         SCSI_LOG_ERROR_RECOVERY(1, 
2076                                 sdev_printk(KERN_ERR, sdev,
2077                                             "Illegal state transition %s->%s\n",
2078                                             scsi_device_state_name(oldstate),
2079                                             scsi_device_state_name(state))
2080                                 );
2081         return -EINVAL;
2082 }
2083 EXPORT_SYMBOL(scsi_device_set_state);
2084
2085 /**
2086  *      scsi_device_quiesce - Block user issued commands.
2087  *      @sdev:  scsi device to quiesce.
2088  *
2089  *      This works by trying to transition to the SDEV_QUIESCE state
2090  *      (which must be a legal transition).  When the device is in this
2091  *      state, only special requests will be accepted, all others will
2092  *      be deferred.  Since special requests may also be requeued requests,
2093  *      a successful return doesn't guarantee the device will be 
2094  *      totally quiescent.
2095  *
2096  *      Must be called with user context, may sleep.
2097  *
2098  *      Returns zero if unsuccessful or an error if not.
2099  **/
2100 int
2101 scsi_device_quiesce(struct scsi_device *sdev)
2102 {
2103         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2104         if (err)
2105                 return err;
2106
2107         scsi_run_queue(sdev->request_queue);
2108         while (sdev->device_busy) {
2109                 msleep_interruptible(200);
2110                 scsi_run_queue(sdev->request_queue);
2111         }
2112         return 0;
2113 }
2114 EXPORT_SYMBOL(scsi_device_quiesce);
2115
2116 /**
2117  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2118  *      @sdev:  scsi device to resume.
2119  *
2120  *      Moves the device from quiesced back to running and restarts the
2121  *      queues.
2122  *
2123  *      Must be called with user context, may sleep.
2124  **/
2125 void
2126 scsi_device_resume(struct scsi_device *sdev)
2127 {
2128         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2129                 return;
2130         scsi_run_queue(sdev->request_queue);
2131 }
2132 EXPORT_SYMBOL(scsi_device_resume);
2133
2134 static void
2135 device_quiesce_fn(struct scsi_device *sdev, void *data)
2136 {
2137         scsi_device_quiesce(sdev);
2138 }
2139
2140 void
2141 scsi_target_quiesce(struct scsi_target *starget)
2142 {
2143         starget_for_each_device(starget, NULL, device_quiesce_fn);
2144 }
2145 EXPORT_SYMBOL(scsi_target_quiesce);
2146
2147 static void
2148 device_resume_fn(struct scsi_device *sdev, void *data)
2149 {
2150         scsi_device_resume(sdev);
2151 }
2152
2153 void
2154 scsi_target_resume(struct scsi_target *starget)
2155 {
2156         starget_for_each_device(starget, NULL, device_resume_fn);
2157 }
2158 EXPORT_SYMBOL(scsi_target_resume);
2159
2160 /**
2161  * scsi_internal_device_block - internal function to put a device
2162  *                              temporarily into the SDEV_BLOCK state
2163  * @sdev:       device to block
2164  *
2165  * Block request made by scsi lld's to temporarily stop all
2166  * scsi commands on the specified device.  Called from interrupt
2167  * or normal process context.
2168  *
2169  * Returns zero if successful or error if not
2170  *
2171  * Notes:       
2172  *      This routine transitions the device to the SDEV_BLOCK state
2173  *      (which must be a legal transition).  When the device is in this
2174  *      state, all commands are deferred until the scsi lld reenables
2175  *      the device with scsi_device_unblock or device_block_tmo fires.
2176  *      This routine assumes the host_lock is held on entry.
2177  **/
2178 int
2179 scsi_internal_device_block(struct scsi_device *sdev)
2180 {
2181         request_queue_t *q = sdev->request_queue;
2182         unsigned long flags;
2183         int err = 0;
2184
2185         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2186         if (err)
2187                 return err;
2188
2189         /* 
2190          * The device has transitioned to SDEV_BLOCK.  Stop the
2191          * block layer from calling the midlayer with this device's
2192          * request queue. 
2193          */
2194         spin_lock_irqsave(q->queue_lock, flags);
2195         blk_stop_queue(q);
2196         spin_unlock_irqrestore(q->queue_lock, flags);
2197
2198         return 0;
2199 }
2200 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2201  
2202 /**
2203  * scsi_internal_device_unblock - resume a device after a block request
2204  * @sdev:       device to resume
2205  *
2206  * Called by scsi lld's or the midlayer to restart the device queue
2207  * for the previously suspended scsi device.  Called from interrupt or
2208  * normal process context.
2209  *
2210  * Returns zero if successful or error if not.
2211  *
2212  * Notes:       
2213  *      This routine transitions the device to the SDEV_RUNNING state
2214  *      (which must be a legal transition) allowing the midlayer to
2215  *      goose the queue for this device.  This routine assumes the 
2216  *      host_lock is held upon entry.
2217  **/
2218 int
2219 scsi_internal_device_unblock(struct scsi_device *sdev)
2220 {
2221         request_queue_t *q = sdev->request_queue; 
2222         int err;
2223         unsigned long flags;
2224         
2225         /* 
2226          * Try to transition the scsi device to SDEV_RUNNING
2227          * and goose the device queue if successful.  
2228          */
2229         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2230         if (err)
2231                 return err;
2232
2233         spin_lock_irqsave(q->queue_lock, flags);
2234         blk_start_queue(q);
2235         spin_unlock_irqrestore(q->queue_lock, flags);
2236
2237         return 0;
2238 }
2239 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2240
2241 static void
2242 device_block(struct scsi_device *sdev, void *data)
2243 {
2244         scsi_internal_device_block(sdev);
2245 }
2246
2247 static int
2248 target_block(struct device *dev, void *data)
2249 {
2250         if (scsi_is_target_device(dev))
2251                 starget_for_each_device(to_scsi_target(dev), NULL,
2252                                         device_block);
2253         return 0;
2254 }
2255
2256 void
2257 scsi_target_block(struct device *dev)
2258 {
2259         if (scsi_is_target_device(dev))
2260                 starget_for_each_device(to_scsi_target(dev), NULL,
2261                                         device_block);
2262         else
2263                 device_for_each_child(dev, NULL, target_block);
2264 }
2265 EXPORT_SYMBOL_GPL(scsi_target_block);
2266
2267 static void
2268 device_unblock(struct scsi_device *sdev, void *data)
2269 {
2270         scsi_internal_device_unblock(sdev);
2271 }
2272
2273 static int
2274 target_unblock(struct device *dev, void *data)
2275 {
2276         if (scsi_is_target_device(dev))
2277                 starget_for_each_device(to_scsi_target(dev), NULL,
2278                                         device_unblock);
2279         return 0;
2280 }
2281
2282 void
2283 scsi_target_unblock(struct device *dev)
2284 {
2285         if (scsi_is_target_device(dev))
2286                 starget_for_each_device(to_scsi_target(dev), NULL,
2287                                         device_unblock);
2288         else
2289                 device_for_each_child(dev, NULL, target_unblock);
2290 }
2291 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2292
2293 /**
2294  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2295  * @sg:         scatter-gather list
2296  * @sg_count:   number of segments in sg
2297  * @offset:     offset in bytes into sg, on return offset into the mapped area
2298  * @len:        bytes to map, on return number of bytes mapped
2299  *
2300  * Returns virtual address of the start of the mapped page
2301  */
2302 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2303                           size_t *offset, size_t *len)
2304 {
2305         int i;
2306         size_t sg_len = 0, len_complete = 0;
2307         struct page *page;
2308
2309         for (i = 0; i < sg_count; i++) {
2310                 len_complete = sg_len; /* Complete sg-entries */
2311                 sg_len += sg[i].length;
2312                 if (sg_len > *offset)
2313                         break;
2314         }
2315
2316         if (unlikely(i == sg_count)) {
2317                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2318                         "elements %d\n",
2319                        __FUNCTION__, sg_len, *offset, sg_count);
2320                 WARN_ON(1);
2321                 return NULL;
2322         }
2323
2324         /* Offset starting from the beginning of first page in this sg-entry */
2325         *offset = *offset - len_complete + sg[i].offset;
2326
2327         /* Assumption: contiguous pages can be accessed as "page + i" */
2328         page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2329         *offset &= ~PAGE_MASK;
2330
2331         /* Bytes in this sg-entry from *offset to the end of the page */
2332         sg_len = PAGE_SIZE - *offset;
2333         if (*len > sg_len)
2334                 *len = sg_len;
2335
2336         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2337 }
2338 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2339
2340 /**
2341  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2342  *                         mapped with scsi_kmap_atomic_sg
2343  * @virt:       virtual address to be unmapped
2344  */
2345 void scsi_kunmap_atomic_sg(void *virt)
2346 {
2347         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2348 }
2349 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);