Merge git://git.infradead.org/~dedekind/ubi-2.6
[linux-2.6] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46
47 #include "e1000.h"
48
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name[] = "e1000e";
51 const char e1000e_driver_version[] = DRV_VERSION;
52
53 static const struct e1000_info *e1000_info_tbl[] = {
54         [board_82571]           = &e1000_82571_info,
55         [board_82572]           = &e1000_82572_info,
56         [board_82573]           = &e1000_82573_info,
57         [board_80003es2lan]     = &e1000_es2_info,
58         [board_ich8lan]         = &e1000_ich8_info,
59         [board_ich9lan]         = &e1000_ich9_info,
60 };
61
62 #ifdef DEBUG
63 /**
64  * e1000_get_hw_dev_name - return device name string
65  * used by hardware layer to print debugging information
66  **/
67 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68 {
69         return hw->adapter->netdev->name;
70 }
71 #endif
72
73 /**
74  * e1000_desc_unused - calculate if we have unused descriptors
75  **/
76 static int e1000_desc_unused(struct e1000_ring *ring)
77 {
78         if (ring->next_to_clean > ring->next_to_use)
79                 return ring->next_to_clean - ring->next_to_use - 1;
80
81         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82 }
83
84 /**
85  * e1000_receive_skb - helper function to handle rx indications
86  * @adapter: board private structure
87  * @status: descriptor status field as written by hardware
88  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89  * @skb: pointer to sk_buff to be indicated to stack
90  **/
91 static void e1000_receive_skb(struct e1000_adapter *adapter,
92                               struct net_device *netdev,
93                               struct sk_buff *skb,
94                               u8 status, __le16 vlan)
95 {
96         skb->protocol = eth_type_trans(skb, netdev);
97
98         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100                                          le16_to_cpu(vlan) &
101                                          E1000_RXD_SPC_VLAN_MASK);
102         else
103                 netif_receive_skb(skb);
104
105         netdev->last_rx = jiffies;
106 }
107
108 /**
109  * e1000_rx_checksum - Receive Checksum Offload for 82543
110  * @adapter:     board private structure
111  * @status_err:  receive descriptor status and error fields
112  * @csum:       receive descriptor csum field
113  * @sk_buff:     socket buffer with received data
114  **/
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116                               u32 csum, struct sk_buff *skb)
117 {
118         u16 status = (u16)status_err;
119         u8 errors = (u8)(status_err >> 24);
120         skb->ip_summed = CHECKSUM_NONE;
121
122         /* Ignore Checksum bit is set */
123         if (status & E1000_RXD_STAT_IXSM)
124                 return;
125         /* TCP/UDP checksum error bit is set */
126         if (errors & E1000_RXD_ERR_TCPE) {
127                 /* let the stack verify checksum errors */
128                 adapter->hw_csum_err++;
129                 return;
130         }
131
132         /* TCP/UDP Checksum has not been calculated */
133         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134                 return;
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status & E1000_RXD_STAT_TCPCS) {
138                 /* TCP checksum is good */
139                 skb->ip_summed = CHECKSUM_UNNECESSARY;
140         } else {
141                 /* IP fragment with UDP payload */
142                 /* Hardware complements the payload checksum, so we undo it
143                  * and then put the value in host order for further stack use.
144                  */
145                 __sum16 sum = (__force __sum16)htons(csum);
146                 skb->csum = csum_unfold(~sum);
147                 skb->ip_summed = CHECKSUM_COMPLETE;
148         }
149         adapter->hw_csum_good++;
150 }
151
152 /**
153  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154  * @adapter: address of board private structure
155  **/
156 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157                                    int cleaned_count)
158 {
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         struct e1000_ring *rx_ring = adapter->rx_ring;
162         struct e1000_rx_desc *rx_desc;
163         struct e1000_buffer *buffer_info;
164         struct sk_buff *skb;
165         unsigned int i;
166         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168         i = rx_ring->next_to_use;
169         buffer_info = &rx_ring->buffer_info[i];
170
171         while (cleaned_count--) {
172                 skb = buffer_info->skb;
173                 if (skb) {
174                         skb_trim(skb, 0);
175                         goto map_skb;
176                 }
177
178                 skb = netdev_alloc_skb(netdev, bufsz);
179                 if (!skb) {
180                         /* Better luck next round */
181                         adapter->alloc_rx_buff_failed++;
182                         break;
183                 }
184
185                 /* Make buffer alignment 2 beyond a 16 byte boundary
186                  * this will result in a 16 byte aligned IP header after
187                  * the 14 byte MAC header is removed
188                  */
189                 skb_reserve(skb, NET_IP_ALIGN);
190
191                 buffer_info->skb = skb;
192 map_skb:
193                 buffer_info->dma = pci_map_single(pdev, skb->data,
194                                                   adapter->rx_buffer_len,
195                                                   PCI_DMA_FROMDEVICE);
196                 if (pci_dma_mapping_error(buffer_info->dma)) {
197                         dev_err(&pdev->dev, "RX DMA map failed\n");
198                         adapter->rx_dma_failed++;
199                         break;
200                 }
201
202                 rx_desc = E1000_RX_DESC(*rx_ring, i);
203                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205                 i++;
206                 if (i == rx_ring->count)
207                         i = 0;
208                 buffer_info = &rx_ring->buffer_info[i];
209         }
210
211         if (rx_ring->next_to_use != i) {
212                 rx_ring->next_to_use = i;
213                 if (i-- == 0)
214                         i = (rx_ring->count - 1);
215
216                 /* Force memory writes to complete before letting h/w
217                  * know there are new descriptors to fetch.  (Only
218                  * applicable for weak-ordered memory model archs,
219                  * such as IA-64). */
220                 wmb();
221                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222         }
223 }
224
225 /**
226  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227  * @adapter: address of board private structure
228  **/
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230                                       int cleaned_count)
231 {
232         struct net_device *netdev = adapter->netdev;
233         struct pci_dev *pdev = adapter->pdev;
234         union e1000_rx_desc_packet_split *rx_desc;
235         struct e1000_ring *rx_ring = adapter->rx_ring;
236         struct e1000_buffer *buffer_info;
237         struct e1000_ps_page *ps_page;
238         struct sk_buff *skb;
239         unsigned int i, j;
240
241         i = rx_ring->next_to_use;
242         buffer_info = &rx_ring->buffer_info[i];
243
244         while (cleaned_count--) {
245                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
248                         ps_page = &buffer_info->ps_pages[j];
249                         if (j >= adapter->rx_ps_pages) {
250                                 /* all unused desc entries get hw null ptr */
251                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
252                                 continue;
253                         }
254                         if (!ps_page->page) {
255                                 ps_page->page = alloc_page(GFP_ATOMIC);
256                                 if (!ps_page->page) {
257                                         adapter->alloc_rx_buff_failed++;
258                                         goto no_buffers;
259                                 }
260                                 ps_page->dma = pci_map_page(pdev,
261                                                    ps_page->page,
262                                                    0, PAGE_SIZE,
263                                                    PCI_DMA_FROMDEVICE);
264                                 if (pci_dma_mapping_error(ps_page->dma)) {
265                                         dev_err(&adapter->pdev->dev,
266                                           "RX DMA page map failed\n");
267                                         adapter->rx_dma_failed++;
268                                         goto no_buffers;
269                                 }
270                         }
271                         /*
272                          * Refresh the desc even if buffer_addrs
273                          * didn't change because each write-back
274                          * erases this info.
275                          */
276                         rx_desc->read.buffer_addr[j+1] =
277                              cpu_to_le64(ps_page->dma);
278                 }
279
280                 skb = netdev_alloc_skb(netdev,
281                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
282
283                 if (!skb) {
284                         adapter->alloc_rx_buff_failed++;
285                         break;
286                 }
287
288                 /* Make buffer alignment 2 beyond a 16 byte boundary
289                  * this will result in a 16 byte aligned IP header after
290                  * the 14 byte MAC header is removed
291                  */
292                 skb_reserve(skb, NET_IP_ALIGN);
293
294                 buffer_info->skb = skb;
295                 buffer_info->dma = pci_map_single(pdev, skb->data,
296                                                   adapter->rx_ps_bsize0,
297                                                   PCI_DMA_FROMDEVICE);
298                 if (pci_dma_mapping_error(buffer_info->dma)) {
299                         dev_err(&pdev->dev, "RX DMA map failed\n");
300                         adapter->rx_dma_failed++;
301                         /* cleanup skb */
302                         dev_kfree_skb_any(skb);
303                         buffer_info->skb = NULL;
304                         break;
305                 }
306
307                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
308
309                 i++;
310                 if (i == rx_ring->count)
311                         i = 0;
312                 buffer_info = &rx_ring->buffer_info[i];
313         }
314
315 no_buffers:
316         if (rx_ring->next_to_use != i) {
317                 rx_ring->next_to_use = i;
318
319                 if (!(i--))
320                         i = (rx_ring->count - 1);
321
322                 /* Force memory writes to complete before letting h/w
323                  * know there are new descriptors to fetch.  (Only
324                  * applicable for weak-ordered memory model archs,
325                  * such as IA-64). */
326                 wmb();
327                 /* Hardware increments by 16 bytes, but packet split
328                  * descriptors are 32 bytes...so we increment tail
329                  * twice as much.
330                  */
331                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
332         }
333 }
334
335 /**
336  * e1000_clean_rx_irq - Send received data up the network stack; legacy
337  * @adapter: board private structure
338  *
339  * the return value indicates whether actual cleaning was done, there
340  * is no guarantee that everything was cleaned
341  **/
342 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343                                int *work_done, int work_to_do)
344 {
345         struct net_device *netdev = adapter->netdev;
346         struct pci_dev *pdev = adapter->pdev;
347         struct e1000_ring *rx_ring = adapter->rx_ring;
348         struct e1000_rx_desc *rx_desc, *next_rxd;
349         struct e1000_buffer *buffer_info, *next_buffer;
350         u32 length;
351         unsigned int i;
352         int cleaned_count = 0;
353         bool cleaned = 0;
354         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
355
356         i = rx_ring->next_to_clean;
357         rx_desc = E1000_RX_DESC(*rx_ring, i);
358         buffer_info = &rx_ring->buffer_info[i];
359
360         while (rx_desc->status & E1000_RXD_STAT_DD) {
361                 struct sk_buff *skb;
362                 u8 status;
363
364                 if (*work_done >= work_to_do)
365                         break;
366                 (*work_done)++;
367
368                 status = rx_desc->status;
369                 skb = buffer_info->skb;
370                 buffer_info->skb = NULL;
371
372                 prefetch(skb->data - NET_IP_ALIGN);
373
374                 i++;
375                 if (i == rx_ring->count)
376                         i = 0;
377                 next_rxd = E1000_RX_DESC(*rx_ring, i);
378                 prefetch(next_rxd);
379
380                 next_buffer = &rx_ring->buffer_info[i];
381
382                 cleaned = 1;
383                 cleaned_count++;
384                 pci_unmap_single(pdev,
385                                  buffer_info->dma,
386                                  adapter->rx_buffer_len,
387                                  PCI_DMA_FROMDEVICE);
388                 buffer_info->dma = 0;
389
390                 length = le16_to_cpu(rx_desc->length);
391
392                 /* !EOP means multiple descriptors were used to store a single
393                  * packet, also make sure the frame isn't just CRC only */
394                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395                         /* All receives must fit into a single buffer */
396                         ndev_dbg(netdev, "%s: Receive packet consumed "
397                                  "multiple buffers\n", netdev->name);
398                         /* recycle */
399                         buffer_info->skb = skb;
400                         goto next_desc;
401                 }
402
403                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404                         /* recycle */
405                         buffer_info->skb = skb;
406                         goto next_desc;
407                 }
408
409                 total_rx_bytes += length;
410                 total_rx_packets++;
411
412                 /* code added for copybreak, this should improve
413                  * performance for small packets with large amounts
414                  * of reassembly being done in the stack */
415                 if (length < copybreak) {
416                         struct sk_buff *new_skb =
417                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418                         if (new_skb) {
419                                 skb_reserve(new_skb, NET_IP_ALIGN);
420                                 memcpy(new_skb->data - NET_IP_ALIGN,
421                                        skb->data - NET_IP_ALIGN,
422                                        length + NET_IP_ALIGN);
423                                 /* save the skb in buffer_info as good */
424                                 buffer_info->skb = skb;
425                                 skb = new_skb;
426                         }
427                         /* else just continue with the old one */
428                 }
429                 /* end copybreak code */
430                 skb_put(skb, length);
431
432                 /* Receive Checksum Offload */
433                 e1000_rx_checksum(adapter,
434                                   (u32)(status) |
435                                   ((u32)(rx_desc->errors) << 24),
436                                   le16_to_cpu(rx_desc->csum), skb);
437
438                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
439
440 next_desc:
441                 rx_desc->status = 0;
442
443                 /* return some buffers to hardware, one at a time is too slow */
444                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445                         adapter->alloc_rx_buf(adapter, cleaned_count);
446                         cleaned_count = 0;
447                 }
448
449                 /* use prefetched values */
450                 rx_desc = next_rxd;
451                 buffer_info = next_buffer;
452         }
453         rx_ring->next_to_clean = i;
454
455         cleaned_count = e1000_desc_unused(rx_ring);
456         if (cleaned_count)
457                 adapter->alloc_rx_buf(adapter, cleaned_count);
458
459         adapter->total_rx_packets += total_rx_packets;
460         adapter->total_rx_bytes += total_rx_bytes;
461         adapter->net_stats.rx_packets += total_rx_packets;
462         adapter->net_stats.rx_bytes += total_rx_bytes;
463         return cleaned;
464 }
465
466 static void e1000_put_txbuf(struct e1000_adapter *adapter,
467                              struct e1000_buffer *buffer_info)
468 {
469         if (buffer_info->dma) {
470                 pci_unmap_page(adapter->pdev, buffer_info->dma,
471                                buffer_info->length, PCI_DMA_TODEVICE);
472                 buffer_info->dma = 0;
473         }
474         if (buffer_info->skb) {
475                 dev_kfree_skb_any(buffer_info->skb);
476                 buffer_info->skb = NULL;
477         }
478 }
479
480 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
481 {
482         struct e1000_ring *tx_ring = adapter->tx_ring;
483         unsigned int i = tx_ring->next_to_clean;
484         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
485         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
486         struct net_device *netdev = adapter->netdev;
487
488         /* detected Tx unit hang */
489         ndev_err(netdev,
490                  "Detected Tx Unit Hang:\n"
491                  "  TDH                  <%x>\n"
492                  "  TDT                  <%x>\n"
493                  "  next_to_use          <%x>\n"
494                  "  next_to_clean        <%x>\n"
495                  "buffer_info[next_to_clean]:\n"
496                  "  time_stamp           <%lx>\n"
497                  "  next_to_watch        <%x>\n"
498                  "  jiffies              <%lx>\n"
499                  "  next_to_watch.status <%x>\n",
500                  readl(adapter->hw.hw_addr + tx_ring->head),
501                  readl(adapter->hw.hw_addr + tx_ring->tail),
502                  tx_ring->next_to_use,
503                  tx_ring->next_to_clean,
504                  tx_ring->buffer_info[eop].time_stamp,
505                  eop,
506                  jiffies,
507                  eop_desc->upper.fields.status);
508 }
509
510 /**
511  * e1000_clean_tx_irq - Reclaim resources after transmit completes
512  * @adapter: board private structure
513  *
514  * the return value indicates whether actual cleaning was done, there
515  * is no guarantee that everything was cleaned
516  **/
517 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
518 {
519         struct net_device *netdev = adapter->netdev;
520         struct e1000_hw *hw = &adapter->hw;
521         struct e1000_ring *tx_ring = adapter->tx_ring;
522         struct e1000_tx_desc *tx_desc, *eop_desc;
523         struct e1000_buffer *buffer_info;
524         unsigned int i, eop;
525         unsigned int count = 0;
526         bool cleaned = 0;
527         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
528
529         i = tx_ring->next_to_clean;
530         eop = tx_ring->buffer_info[i].next_to_watch;
531         eop_desc = E1000_TX_DESC(*tx_ring, eop);
532
533         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
534                 for (cleaned = 0; !cleaned; ) {
535                         tx_desc = E1000_TX_DESC(*tx_ring, i);
536                         buffer_info = &tx_ring->buffer_info[i];
537                         cleaned = (i == eop);
538
539                         if (cleaned) {
540                                 struct sk_buff *skb = buffer_info->skb;
541                                 unsigned int segs, bytecount;
542                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
543                                 /* multiply data chunks by size of headers */
544                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
545                                             skb->len;
546                                 total_tx_packets += segs;
547                                 total_tx_bytes += bytecount;
548                         }
549
550                         e1000_put_txbuf(adapter, buffer_info);
551                         tx_desc->upper.data = 0;
552
553                         i++;
554                         if (i == tx_ring->count)
555                                 i = 0;
556                 }
557
558                 eop = tx_ring->buffer_info[i].next_to_watch;
559                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
560 #define E1000_TX_WEIGHT 64
561                 /* weight of a sort for tx, to avoid endless transmit cleanup */
562                 if (count++ == E1000_TX_WEIGHT)
563                         break;
564         }
565
566         tx_ring->next_to_clean = i;
567
568 #define TX_WAKE_THRESHOLD 32
569         if (cleaned && netif_carrier_ok(netdev) &&
570                      e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
571                 /* Make sure that anybody stopping the queue after this
572                  * sees the new next_to_clean.
573                  */
574                 smp_mb();
575
576                 if (netif_queue_stopped(netdev) &&
577                     !(test_bit(__E1000_DOWN, &adapter->state))) {
578                         netif_wake_queue(netdev);
579                         ++adapter->restart_queue;
580                 }
581         }
582
583         if (adapter->detect_tx_hung) {
584                 /* Detect a transmit hang in hardware, this serializes the
585                  * check with the clearing of time_stamp and movement of i */
586                 adapter->detect_tx_hung = 0;
587                 if (tx_ring->buffer_info[eop].dma &&
588                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
589                                + (adapter->tx_timeout_factor * HZ))
590                     && !(er32(STATUS) &
591                          E1000_STATUS_TXOFF)) {
592                         e1000_print_tx_hang(adapter);
593                         netif_stop_queue(netdev);
594                 }
595         }
596         adapter->total_tx_bytes += total_tx_bytes;
597         adapter->total_tx_packets += total_tx_packets;
598         adapter->net_stats.tx_packets += total_tx_packets;
599         adapter->net_stats.tx_bytes += total_tx_bytes;
600         return cleaned;
601 }
602
603 /**
604  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
605  * @adapter: board private structure
606  *
607  * the return value indicates whether actual cleaning was done, there
608  * is no guarantee that everything was cleaned
609  **/
610 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
611                                   int *work_done, int work_to_do)
612 {
613         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
614         struct net_device *netdev = adapter->netdev;
615         struct pci_dev *pdev = adapter->pdev;
616         struct e1000_ring *rx_ring = adapter->rx_ring;
617         struct e1000_buffer *buffer_info, *next_buffer;
618         struct e1000_ps_page *ps_page;
619         struct sk_buff *skb;
620         unsigned int i, j;
621         u32 length, staterr;
622         int cleaned_count = 0;
623         bool cleaned = 0;
624         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
625
626         i = rx_ring->next_to_clean;
627         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
628         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
629         buffer_info = &rx_ring->buffer_info[i];
630
631         while (staterr & E1000_RXD_STAT_DD) {
632                 if (*work_done >= work_to_do)
633                         break;
634                 (*work_done)++;
635                 skb = buffer_info->skb;
636
637                 /* in the packet split case this is header only */
638                 prefetch(skb->data - NET_IP_ALIGN);
639
640                 i++;
641                 if (i == rx_ring->count)
642                         i = 0;
643                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
644                 prefetch(next_rxd);
645
646                 next_buffer = &rx_ring->buffer_info[i];
647
648                 cleaned = 1;
649                 cleaned_count++;
650                 pci_unmap_single(pdev, buffer_info->dma,
651                                  adapter->rx_ps_bsize0,
652                                  PCI_DMA_FROMDEVICE);
653                 buffer_info->dma = 0;
654
655                 if (!(staterr & E1000_RXD_STAT_EOP)) {
656                         ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
657                                  "up the full packet\n", netdev->name);
658                         dev_kfree_skb_irq(skb);
659                         goto next_desc;
660                 }
661
662                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
663                         dev_kfree_skb_irq(skb);
664                         goto next_desc;
665                 }
666
667                 length = le16_to_cpu(rx_desc->wb.middle.length0);
668
669                 if (!length) {
670                         ndev_dbg(netdev, "%s: Last part of the packet spanning"
671                                  " multiple descriptors\n", netdev->name);
672                         dev_kfree_skb_irq(skb);
673                         goto next_desc;
674                 }
675
676                 /* Good Receive */
677                 skb_put(skb, length);
678
679                 {
680                 /* this looks ugly, but it seems compiler issues make it
681                    more efficient than reusing j */
682                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
683
684                 /* page alloc/put takes too long and effects small packet
685                  * throughput, so unsplit small packets and save the alloc/put*/
686                 if (l1 && (l1 <= copybreak) &&
687                     ((length + l1) <= adapter->rx_ps_bsize0)) {
688                         u8 *vaddr;
689
690                         ps_page = &buffer_info->ps_pages[0];
691
692                         /* there is no documentation about how to call
693                          * kmap_atomic, so we can't hold the mapping
694                          * very long */
695                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
696                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
697                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
698                         memcpy(skb_tail_pointer(skb), vaddr, l1);
699                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
700                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
701                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
702
703                         skb_put(skb, l1);
704                         goto copydone;
705                 } /* if */
706                 }
707
708                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
709                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
710                         if (!length)
711                                 break;
712
713                         ps_page = &buffer_info->ps_pages[j];
714                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
715                                        PCI_DMA_FROMDEVICE);
716                         ps_page->dma = 0;
717                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
718                         ps_page->page = NULL;
719                         skb->len += length;
720                         skb->data_len += length;
721                         skb->truesize += length;
722                 }
723
724 copydone:
725                 total_rx_bytes += skb->len;
726                 total_rx_packets++;
727
728                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
729                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
730
731                 if (rx_desc->wb.upper.header_status &
732                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
733                         adapter->rx_hdr_split++;
734
735                 e1000_receive_skb(adapter, netdev, skb,
736                                   staterr, rx_desc->wb.middle.vlan);
737
738 next_desc:
739                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
740                 buffer_info->skb = NULL;
741
742                 /* return some buffers to hardware, one at a time is too slow */
743                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
744                         adapter->alloc_rx_buf(adapter, cleaned_count);
745                         cleaned_count = 0;
746                 }
747
748                 /* use prefetched values */
749                 rx_desc = next_rxd;
750                 buffer_info = next_buffer;
751
752                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
753         }
754         rx_ring->next_to_clean = i;
755
756         cleaned_count = e1000_desc_unused(rx_ring);
757         if (cleaned_count)
758                 adapter->alloc_rx_buf(adapter, cleaned_count);
759
760         adapter->total_rx_packets += total_rx_packets;
761         adapter->total_rx_bytes += total_rx_bytes;
762         adapter->net_stats.rx_packets += total_rx_packets;
763         adapter->net_stats.rx_bytes += total_rx_bytes;
764         return cleaned;
765 }
766
767 /**
768  * e1000_clean_rx_ring - Free Rx Buffers per Queue
769  * @adapter: board private structure
770  **/
771 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
772 {
773         struct e1000_ring *rx_ring = adapter->rx_ring;
774         struct e1000_buffer *buffer_info;
775         struct e1000_ps_page *ps_page;
776         struct pci_dev *pdev = adapter->pdev;
777         unsigned int i, j;
778
779         /* Free all the Rx ring sk_buffs */
780         for (i = 0; i < rx_ring->count; i++) {
781                 buffer_info = &rx_ring->buffer_info[i];
782                 if (buffer_info->dma) {
783                         if (adapter->clean_rx == e1000_clean_rx_irq)
784                                 pci_unmap_single(pdev, buffer_info->dma,
785                                                  adapter->rx_buffer_len,
786                                                  PCI_DMA_FROMDEVICE);
787                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
788                                 pci_unmap_single(pdev, buffer_info->dma,
789                                                  adapter->rx_ps_bsize0,
790                                                  PCI_DMA_FROMDEVICE);
791                         buffer_info->dma = 0;
792                 }
793
794                 if (buffer_info->skb) {
795                         dev_kfree_skb(buffer_info->skb);
796                         buffer_info->skb = NULL;
797                 }
798
799                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
800                         ps_page = &buffer_info->ps_pages[j];
801                         if (!ps_page->page)
802                                 break;
803                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
804                                        PCI_DMA_FROMDEVICE);
805                         ps_page->dma = 0;
806                         put_page(ps_page->page);
807                         ps_page->page = NULL;
808                 }
809         }
810
811         /* there also may be some cached data from a chained receive */
812         if (rx_ring->rx_skb_top) {
813                 dev_kfree_skb(rx_ring->rx_skb_top);
814                 rx_ring->rx_skb_top = NULL;
815         }
816
817         /* Zero out the descriptor ring */
818         memset(rx_ring->desc, 0, rx_ring->size);
819
820         rx_ring->next_to_clean = 0;
821         rx_ring->next_to_use = 0;
822
823         writel(0, adapter->hw.hw_addr + rx_ring->head);
824         writel(0, adapter->hw.hw_addr + rx_ring->tail);
825 }
826
827 /**
828  * e1000_intr_msi - Interrupt Handler
829  * @irq: interrupt number
830  * @data: pointer to a network interface device structure
831  **/
832 static irqreturn_t e1000_intr_msi(int irq, void *data)
833 {
834         struct net_device *netdev = data;
835         struct e1000_adapter *adapter = netdev_priv(netdev);
836         struct e1000_hw *hw = &adapter->hw;
837         u32 icr = er32(ICR);
838
839         /* read ICR disables interrupts using IAM, so keep up with our
840          * enable/disable accounting */
841         atomic_inc(&adapter->irq_sem);
842
843         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
844                 hw->mac.get_link_status = 1;
845                 /* ICH8 workaround-- Call gig speed drop workaround on cable
846                  * disconnect (LSC) before accessing any PHY registers */
847                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
848                     (!(er32(STATUS) & E1000_STATUS_LU)))
849                         e1000e_gig_downshift_workaround_ich8lan(hw);
850
851                 /* 80003ES2LAN workaround-- For packet buffer work-around on
852                  * link down event; disable receives here in the ISR and reset
853                  * adapter in watchdog */
854                 if (netif_carrier_ok(netdev) &&
855                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
856                         /* disable receives */
857                         u32 rctl = er32(RCTL);
858                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
859                 }
860                 /* guard against interrupt when we're going down */
861                 if (!test_bit(__E1000_DOWN, &adapter->state))
862                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
863         }
864
865         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
866                 adapter->total_tx_bytes = 0;
867                 adapter->total_tx_packets = 0;
868                 adapter->total_rx_bytes = 0;
869                 adapter->total_rx_packets = 0;
870                 __netif_rx_schedule(netdev, &adapter->napi);
871         } else {
872                 atomic_dec(&adapter->irq_sem);
873         }
874
875         return IRQ_HANDLED;
876 }
877
878 /**
879  * e1000_intr - Interrupt Handler
880  * @irq: interrupt number
881  * @data: pointer to a network interface device structure
882  **/
883 static irqreturn_t e1000_intr(int irq, void *data)
884 {
885         struct net_device *netdev = data;
886         struct e1000_adapter *adapter = netdev_priv(netdev);
887         struct e1000_hw *hw = &adapter->hw;
888
889         u32 rctl, icr = er32(ICR);
890         if (!icr)
891                 return IRQ_NONE;  /* Not our interrupt */
892
893         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
894          * not set, then the adapter didn't send an interrupt */
895         if (!(icr & E1000_ICR_INT_ASSERTED))
896                 return IRQ_NONE;
897
898         /* Interrupt Auto-Mask...upon reading ICR,
899          * interrupts are masked.  No need for the
900          * IMC write, but it does mean we should
901          * account for it ASAP. */
902         atomic_inc(&adapter->irq_sem);
903
904         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
905                 hw->mac.get_link_status = 1;
906                 /* ICH8 workaround-- Call gig speed drop workaround on cable
907                  * disconnect (LSC) before accessing any PHY registers */
908                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
909                     (!(er32(STATUS) & E1000_STATUS_LU)))
910                         e1000e_gig_downshift_workaround_ich8lan(hw);
911
912                 /* 80003ES2LAN workaround--
913                  * For packet buffer work-around on link down event;
914                  * disable receives here in the ISR and
915                  * reset adapter in watchdog
916                  */
917                 if (netif_carrier_ok(netdev) &&
918                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
919                         /* disable receives */
920                         rctl = er32(RCTL);
921                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
922                 }
923                 /* guard against interrupt when we're going down */
924                 if (!test_bit(__E1000_DOWN, &adapter->state))
925                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
926         }
927
928         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
929                 adapter->total_tx_bytes = 0;
930                 adapter->total_tx_packets = 0;
931                 adapter->total_rx_bytes = 0;
932                 adapter->total_rx_packets = 0;
933                 __netif_rx_schedule(netdev, &adapter->napi);
934         } else {
935                 atomic_dec(&adapter->irq_sem);
936         }
937
938         return IRQ_HANDLED;
939 }
940
941 static int e1000_request_irq(struct e1000_adapter *adapter)
942 {
943         struct net_device *netdev = adapter->netdev;
944         irq_handler_t handler = e1000_intr;
945         int irq_flags = IRQF_SHARED;
946         int err;
947
948         err = pci_enable_msi(adapter->pdev);
949         if (err) {
950                 ndev_warn(netdev,
951                  "Unable to allocate MSI interrupt Error: %d\n", err);
952         } else {
953                 adapter->flags |= FLAG_MSI_ENABLED;
954                 handler = e1000_intr_msi;
955                 irq_flags = 0;
956         }
957
958         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
959                           netdev);
960         if (err) {
961                 if (adapter->flags & FLAG_MSI_ENABLED)
962                         pci_disable_msi(adapter->pdev);
963                 ndev_err(netdev,
964                        "Unable to allocate interrupt Error: %d\n", err);
965         }
966
967         return err;
968 }
969
970 static void e1000_free_irq(struct e1000_adapter *adapter)
971 {
972         struct net_device *netdev = adapter->netdev;
973
974         free_irq(adapter->pdev->irq, netdev);
975         if (adapter->flags & FLAG_MSI_ENABLED) {
976                 pci_disable_msi(adapter->pdev);
977                 adapter->flags &= ~FLAG_MSI_ENABLED;
978         }
979 }
980
981 /**
982  * e1000_irq_disable - Mask off interrupt generation on the NIC
983  **/
984 static void e1000_irq_disable(struct e1000_adapter *adapter)
985 {
986         struct e1000_hw *hw = &adapter->hw;
987
988         atomic_inc(&adapter->irq_sem);
989         ew32(IMC, ~0);
990         e1e_flush();
991         synchronize_irq(adapter->pdev->irq);
992 }
993
994 /**
995  * e1000_irq_enable - Enable default interrupt generation settings
996  **/
997 static void e1000_irq_enable(struct e1000_adapter *adapter)
998 {
999         struct e1000_hw *hw = &adapter->hw;
1000
1001         if (atomic_dec_and_test(&adapter->irq_sem)) {
1002                 ew32(IMS, IMS_ENABLE_MASK);
1003                 e1e_flush();
1004         }
1005 }
1006
1007 /**
1008  * e1000_get_hw_control - get control of the h/w from f/w
1009  * @adapter: address of board private structure
1010  *
1011  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1012  * For ASF and Pass Through versions of f/w this means that
1013  * the driver is loaded. For AMT version (only with 82573)
1014  * of the f/w this means that the network i/f is open.
1015  **/
1016 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1017 {
1018         struct e1000_hw *hw = &adapter->hw;
1019         u32 ctrl_ext;
1020         u32 swsm;
1021
1022         /* Let firmware know the driver has taken over */
1023         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1024                 swsm = er32(SWSM);
1025                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1026         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1027                 ctrl_ext = er32(CTRL_EXT);
1028                 ew32(CTRL_EXT,
1029                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1030         }
1031 }
1032
1033 /**
1034  * e1000_release_hw_control - release control of the h/w to f/w
1035  * @adapter: address of board private structure
1036  *
1037  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1038  * For ASF and Pass Through versions of f/w this means that the
1039  * driver is no longer loaded. For AMT version (only with 82573) i
1040  * of the f/w this means that the network i/f is closed.
1041  *
1042  **/
1043 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1044 {
1045         struct e1000_hw *hw = &adapter->hw;
1046         u32 ctrl_ext;
1047         u32 swsm;
1048
1049         /* Let firmware taken over control of h/w */
1050         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1051                 swsm = er32(SWSM);
1052                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1053         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1054                 ctrl_ext = er32(CTRL_EXT);
1055                 ew32(CTRL_EXT,
1056                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1057         }
1058 }
1059
1060 static void e1000_release_manageability(struct e1000_adapter *adapter)
1061 {
1062         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
1063                 struct e1000_hw *hw = &adapter->hw;
1064
1065                 u32 manc = er32(MANC);
1066
1067                 /* re-enable hardware interception of ARP */
1068                 manc |= E1000_MANC_ARP_EN;
1069                 manc &= ~E1000_MANC_EN_MNG2HOST;
1070
1071                 /* don't explicitly have to mess with MANC2H since
1072                  * MANC has an enable disable that gates MANC2H */
1073                 ew32(MANC, manc);
1074         }
1075 }
1076
1077 /**
1078  * @e1000_alloc_ring - allocate memory for a ring structure
1079  **/
1080 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1081                                 struct e1000_ring *ring)
1082 {
1083         struct pci_dev *pdev = adapter->pdev;
1084
1085         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1086                                         GFP_KERNEL);
1087         if (!ring->desc)
1088                 return -ENOMEM;
1089
1090         return 0;
1091 }
1092
1093 /**
1094  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1095  * @adapter: board private structure
1096  *
1097  * Return 0 on success, negative on failure
1098  **/
1099 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1100 {
1101         struct e1000_ring *tx_ring = adapter->tx_ring;
1102         int err = -ENOMEM, size;
1103
1104         size = sizeof(struct e1000_buffer) * tx_ring->count;
1105         tx_ring->buffer_info = vmalloc(size);
1106         if (!tx_ring->buffer_info)
1107                 goto err;
1108         memset(tx_ring->buffer_info, 0, size);
1109
1110         /* round up to nearest 4K */
1111         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1112         tx_ring->size = ALIGN(tx_ring->size, 4096);
1113
1114         err = e1000_alloc_ring_dma(adapter, tx_ring);
1115         if (err)
1116                 goto err;
1117
1118         tx_ring->next_to_use = 0;
1119         tx_ring->next_to_clean = 0;
1120         spin_lock_init(&adapter->tx_queue_lock);
1121
1122         return 0;
1123 err:
1124         vfree(tx_ring->buffer_info);
1125         ndev_err(adapter->netdev,
1126         "Unable to allocate memory for the transmit descriptor ring\n");
1127         return err;
1128 }
1129
1130 /**
1131  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1132  * @adapter: board private structure
1133  *
1134  * Returns 0 on success, negative on failure
1135  **/
1136 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1137 {
1138         struct e1000_ring *rx_ring = adapter->rx_ring;
1139         struct e1000_buffer *buffer_info;
1140         int i, size, desc_len, err = -ENOMEM;
1141
1142         size = sizeof(struct e1000_buffer) * rx_ring->count;
1143         rx_ring->buffer_info = vmalloc(size);
1144         if (!rx_ring->buffer_info)
1145                 goto err;
1146         memset(rx_ring->buffer_info, 0, size);
1147
1148         for (i = 0; i < rx_ring->count; i++) {
1149                 buffer_info = &rx_ring->buffer_info[i];
1150                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1151                                                 sizeof(struct e1000_ps_page),
1152                                                 GFP_KERNEL);
1153                 if (!buffer_info->ps_pages)
1154                         goto err_pages;
1155         }
1156
1157         desc_len = sizeof(union e1000_rx_desc_packet_split);
1158
1159         /* Round up to nearest 4K */
1160         rx_ring->size = rx_ring->count * desc_len;
1161         rx_ring->size = ALIGN(rx_ring->size, 4096);
1162
1163         err = e1000_alloc_ring_dma(adapter, rx_ring);
1164         if (err)
1165                 goto err_pages;
1166
1167         rx_ring->next_to_clean = 0;
1168         rx_ring->next_to_use = 0;
1169         rx_ring->rx_skb_top = NULL;
1170
1171         return 0;
1172
1173 err_pages:
1174         for (i = 0; i < rx_ring->count; i++) {
1175                 buffer_info = &rx_ring->buffer_info[i];
1176                 kfree(buffer_info->ps_pages);
1177         }
1178 err:
1179         vfree(rx_ring->buffer_info);
1180         ndev_err(adapter->netdev,
1181         "Unable to allocate memory for the transmit descriptor ring\n");
1182         return err;
1183 }
1184
1185 /**
1186  * e1000_clean_tx_ring - Free Tx Buffers
1187  * @adapter: board private structure
1188  **/
1189 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1190 {
1191         struct e1000_ring *tx_ring = adapter->tx_ring;
1192         struct e1000_buffer *buffer_info;
1193         unsigned long size;
1194         unsigned int i;
1195
1196         for (i = 0; i < tx_ring->count; i++) {
1197                 buffer_info = &tx_ring->buffer_info[i];
1198                 e1000_put_txbuf(adapter, buffer_info);
1199         }
1200
1201         size = sizeof(struct e1000_buffer) * tx_ring->count;
1202         memset(tx_ring->buffer_info, 0, size);
1203
1204         memset(tx_ring->desc, 0, tx_ring->size);
1205
1206         tx_ring->next_to_use = 0;
1207         tx_ring->next_to_clean = 0;
1208
1209         writel(0, adapter->hw.hw_addr + tx_ring->head);
1210         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1211 }
1212
1213 /**
1214  * e1000e_free_tx_resources - Free Tx Resources per Queue
1215  * @adapter: board private structure
1216  *
1217  * Free all transmit software resources
1218  **/
1219 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1220 {
1221         struct pci_dev *pdev = adapter->pdev;
1222         struct e1000_ring *tx_ring = adapter->tx_ring;
1223
1224         e1000_clean_tx_ring(adapter);
1225
1226         vfree(tx_ring->buffer_info);
1227         tx_ring->buffer_info = NULL;
1228
1229         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1230                           tx_ring->dma);
1231         tx_ring->desc = NULL;
1232 }
1233
1234 /**
1235  * e1000e_free_rx_resources - Free Rx Resources
1236  * @adapter: board private structure
1237  *
1238  * Free all receive software resources
1239  **/
1240
1241 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1242 {
1243         struct pci_dev *pdev = adapter->pdev;
1244         struct e1000_ring *rx_ring = adapter->rx_ring;
1245         int i;
1246
1247         e1000_clean_rx_ring(adapter);
1248
1249         for (i = 0; i < rx_ring->count; i++) {
1250                 kfree(rx_ring->buffer_info[i].ps_pages);
1251         }
1252
1253         vfree(rx_ring->buffer_info);
1254         rx_ring->buffer_info = NULL;
1255
1256         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1257                           rx_ring->dma);
1258         rx_ring->desc = NULL;
1259 }
1260
1261 /**
1262  * e1000_update_itr - update the dynamic ITR value based on statistics
1263  *      Stores a new ITR value based on packets and byte
1264  *      counts during the last interrupt.  The advantage of per interrupt
1265  *      computation is faster updates and more accurate ITR for the current
1266  *      traffic pattern.  Constants in this function were computed
1267  *      based on theoretical maximum wire speed and thresholds were set based
1268  *      on testing data as well as attempting to minimize response time
1269  *      while increasing bulk throughput.
1270  *      this functionality is controlled by the InterruptThrottleRate module
1271  *      parameter (see e1000_param.c)
1272  * @adapter: pointer to adapter
1273  * @itr_setting: current adapter->itr
1274  * @packets: the number of packets during this measurement interval
1275  * @bytes: the number of bytes during this measurement interval
1276  **/
1277 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1278                                      u16 itr_setting, int packets,
1279                                      int bytes)
1280 {
1281         unsigned int retval = itr_setting;
1282
1283         if (packets == 0)
1284                 goto update_itr_done;
1285
1286         switch (itr_setting) {
1287         case lowest_latency:
1288                 /* handle TSO and jumbo frames */
1289                 if (bytes/packets > 8000)
1290                         retval = bulk_latency;
1291                 else if ((packets < 5) && (bytes > 512)) {
1292                         retval = low_latency;
1293                 }
1294                 break;
1295         case low_latency:  /* 50 usec aka 20000 ints/s */
1296                 if (bytes > 10000) {
1297                         /* this if handles the TSO accounting */
1298                         if (bytes/packets > 8000) {
1299                                 retval = bulk_latency;
1300                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1301                                 retval = bulk_latency;
1302                         } else if ((packets > 35)) {
1303                                 retval = lowest_latency;
1304                         }
1305                 } else if (bytes/packets > 2000) {
1306                         retval = bulk_latency;
1307                 } else if (packets <= 2 && bytes < 512) {
1308                         retval = lowest_latency;
1309                 }
1310                 break;
1311         case bulk_latency: /* 250 usec aka 4000 ints/s */
1312                 if (bytes > 25000) {
1313                         if (packets > 35) {
1314                                 retval = low_latency;
1315                         }
1316                 } else if (bytes < 6000) {
1317                         retval = low_latency;
1318                 }
1319                 break;
1320         }
1321
1322 update_itr_done:
1323         return retval;
1324 }
1325
1326 static void e1000_set_itr(struct e1000_adapter *adapter)
1327 {
1328         struct e1000_hw *hw = &adapter->hw;
1329         u16 current_itr;
1330         u32 new_itr = adapter->itr;
1331
1332         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1333         if (adapter->link_speed != SPEED_1000) {
1334                 current_itr = 0;
1335                 new_itr = 4000;
1336                 goto set_itr_now;
1337         }
1338
1339         adapter->tx_itr = e1000_update_itr(adapter,
1340                                     adapter->tx_itr,
1341                                     adapter->total_tx_packets,
1342                                     adapter->total_tx_bytes);
1343         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1344         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1345                 adapter->tx_itr = low_latency;
1346
1347         adapter->rx_itr = e1000_update_itr(adapter,
1348                                     adapter->rx_itr,
1349                                     adapter->total_rx_packets,
1350                                     adapter->total_rx_bytes);
1351         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1352         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1353                 adapter->rx_itr = low_latency;
1354
1355         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1356
1357         switch (current_itr) {
1358         /* counts and packets in update_itr are dependent on these numbers */
1359         case lowest_latency:
1360                 new_itr = 70000;
1361                 break;
1362         case low_latency:
1363                 new_itr = 20000; /* aka hwitr = ~200 */
1364                 break;
1365         case bulk_latency:
1366                 new_itr = 4000;
1367                 break;
1368         default:
1369                 break;
1370         }
1371
1372 set_itr_now:
1373         if (new_itr != adapter->itr) {
1374                 /* this attempts to bias the interrupt rate towards Bulk
1375                  * by adding intermediate steps when interrupt rate is
1376                  * increasing */
1377                 new_itr = new_itr > adapter->itr ?
1378                              min(adapter->itr + (new_itr >> 2), new_itr) :
1379                              new_itr;
1380                 adapter->itr = new_itr;
1381                 ew32(ITR, 1000000000 / (new_itr * 256));
1382         }
1383 }
1384
1385 /**
1386  * e1000_clean - NAPI Rx polling callback
1387  * @adapter: board private structure
1388  **/
1389 static int e1000_clean(struct napi_struct *napi, int budget)
1390 {
1391         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1392         struct net_device *poll_dev = adapter->netdev;
1393         int tx_cleaned = 0, work_done = 0;
1394
1395         /* Must NOT use netdev_priv macro here. */
1396         adapter = poll_dev->priv;
1397
1398         /* e1000_clean is called per-cpu.  This lock protects
1399          * tx_ring from being cleaned by multiple cpus
1400          * simultaneously.  A failure obtaining the lock means
1401          * tx_ring is currently being cleaned anyway. */
1402         if (spin_trylock(&adapter->tx_queue_lock)) {
1403                 tx_cleaned = e1000_clean_tx_irq(adapter);
1404                 spin_unlock(&adapter->tx_queue_lock);
1405         }
1406
1407         adapter->clean_rx(adapter, &work_done, budget);
1408
1409         if (tx_cleaned)
1410                 work_done = budget;
1411
1412         /* If budget not fully consumed, exit the polling mode */
1413         if (work_done < budget) {
1414                 if (adapter->itr_setting & 3)
1415                         e1000_set_itr(adapter);
1416                 netif_rx_complete(poll_dev, napi);
1417                 e1000_irq_enable(adapter);
1418         }
1419
1420         return work_done;
1421 }
1422
1423 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1424 {
1425         struct e1000_adapter *adapter = netdev_priv(netdev);
1426         struct e1000_hw *hw = &adapter->hw;
1427         u32 vfta, index;
1428
1429         /* don't update vlan cookie if already programmed */
1430         if ((adapter->hw.mng_cookie.status &
1431              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1432             (vid == adapter->mng_vlan_id))
1433                 return;
1434         /* add VID to filter table */
1435         index = (vid >> 5) & 0x7F;
1436         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1437         vfta |= (1 << (vid & 0x1F));
1438         e1000e_write_vfta(hw, index, vfta);
1439 }
1440
1441 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1442 {
1443         struct e1000_adapter *adapter = netdev_priv(netdev);
1444         struct e1000_hw *hw = &adapter->hw;
1445         u32 vfta, index;
1446
1447         e1000_irq_disable(adapter);
1448         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1449         e1000_irq_enable(adapter);
1450
1451         if ((adapter->hw.mng_cookie.status &
1452              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1453             (vid == adapter->mng_vlan_id)) {
1454                 /* release control to f/w */
1455                 e1000_release_hw_control(adapter);
1456                 return;
1457         }
1458
1459         /* remove VID from filter table */
1460         index = (vid >> 5) & 0x7F;
1461         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1462         vfta &= ~(1 << (vid & 0x1F));
1463         e1000e_write_vfta(hw, index, vfta);
1464 }
1465
1466 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1467 {
1468         struct net_device *netdev = adapter->netdev;
1469         u16 vid = adapter->hw.mng_cookie.vlan_id;
1470         u16 old_vid = adapter->mng_vlan_id;
1471
1472         if (!adapter->vlgrp)
1473                 return;
1474
1475         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1476                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1477                 if (adapter->hw.mng_cookie.status &
1478                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1479                         e1000_vlan_rx_add_vid(netdev, vid);
1480                         adapter->mng_vlan_id = vid;
1481                 }
1482
1483                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1484                                 (vid != old_vid) &&
1485                     !vlan_group_get_device(adapter->vlgrp, old_vid))
1486                         e1000_vlan_rx_kill_vid(netdev, old_vid);
1487         } else {
1488                 adapter->mng_vlan_id = vid;
1489         }
1490 }
1491
1492
1493 static void e1000_vlan_rx_register(struct net_device *netdev,
1494                                    struct vlan_group *grp)
1495 {
1496         struct e1000_adapter *adapter = netdev_priv(netdev);
1497         struct e1000_hw *hw = &adapter->hw;
1498         u32 ctrl, rctl;
1499
1500         e1000_irq_disable(adapter);
1501         adapter->vlgrp = grp;
1502
1503         if (grp) {
1504                 /* enable VLAN tag insert/strip */
1505                 ctrl = er32(CTRL);
1506                 ctrl |= E1000_CTRL_VME;
1507                 ew32(CTRL, ctrl);
1508
1509                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1510                         /* enable VLAN receive filtering */
1511                         rctl = er32(RCTL);
1512                         rctl |= E1000_RCTL_VFE;
1513                         rctl &= ~E1000_RCTL_CFIEN;
1514                         ew32(RCTL, rctl);
1515                         e1000_update_mng_vlan(adapter);
1516                 }
1517         } else {
1518                 /* disable VLAN tag insert/strip */
1519                 ctrl = er32(CTRL);
1520                 ctrl &= ~E1000_CTRL_VME;
1521                 ew32(CTRL, ctrl);
1522
1523                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1524                         /* disable VLAN filtering */
1525                         rctl = er32(RCTL);
1526                         rctl &= ~E1000_RCTL_VFE;
1527                         ew32(RCTL, rctl);
1528                         if (adapter->mng_vlan_id !=
1529                             (u16)E1000_MNG_VLAN_NONE) {
1530                                 e1000_vlan_rx_kill_vid(netdev,
1531                                                        adapter->mng_vlan_id);
1532                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1533                         }
1534                 }
1535         }
1536
1537         e1000_irq_enable(adapter);
1538 }
1539
1540 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1541 {
1542         u16 vid;
1543
1544         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1545
1546         if (!adapter->vlgrp)
1547                 return;
1548
1549         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1550                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1551                         continue;
1552                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1553         }
1554 }
1555
1556 static void e1000_init_manageability(struct e1000_adapter *adapter)
1557 {
1558         struct e1000_hw *hw = &adapter->hw;
1559         u32 manc, manc2h;
1560
1561         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1562                 return;
1563
1564         manc = er32(MANC);
1565
1566         /* disable hardware interception of ARP */
1567         manc &= ~(E1000_MANC_ARP_EN);
1568
1569         /* enable receiving management packets to the host. this will probably
1570          * generate destination unreachable messages from the host OS, but
1571          * the packets will be handled on SMBUS */
1572         manc |= E1000_MANC_EN_MNG2HOST;
1573         manc2h = er32(MANC2H);
1574 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1575 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1576         manc2h |= E1000_MNG2HOST_PORT_623;
1577         manc2h |= E1000_MNG2HOST_PORT_664;
1578         ew32(MANC2H, manc2h);
1579         ew32(MANC, manc);
1580 }
1581
1582 /**
1583  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1584  * @adapter: board private structure
1585  *
1586  * Configure the Tx unit of the MAC after a reset.
1587  **/
1588 static void e1000_configure_tx(struct e1000_adapter *adapter)
1589 {
1590         struct e1000_hw *hw = &adapter->hw;
1591         struct e1000_ring *tx_ring = adapter->tx_ring;
1592         u64 tdba;
1593         u32 tdlen, tctl, tipg, tarc;
1594         u32 ipgr1, ipgr2;
1595
1596         /* Setup the HW Tx Head and Tail descriptor pointers */
1597         tdba = tx_ring->dma;
1598         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1599         ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1600         ew32(TDBAH, (tdba >> 32));
1601         ew32(TDLEN, tdlen);
1602         ew32(TDH, 0);
1603         ew32(TDT, 0);
1604         tx_ring->head = E1000_TDH;
1605         tx_ring->tail = E1000_TDT;
1606
1607         /* Set the default values for the Tx Inter Packet Gap timer */
1608         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
1609         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
1610         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
1611
1612         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1613                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
1614
1615         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1616         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1617         ew32(TIPG, tipg);
1618
1619         /* Set the Tx Interrupt Delay register */
1620         ew32(TIDV, adapter->tx_int_delay);
1621         /* tx irq moderation */
1622         ew32(TADV, adapter->tx_abs_int_delay);
1623
1624         /* Program the Transmit Control Register */
1625         tctl = er32(TCTL);
1626         tctl &= ~E1000_TCTL_CT;
1627         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1628                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1629
1630         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1631                 tarc = er32(TARC0);
1632                 /* set the speed mode bit, we'll clear it if we're not at
1633                  * gigabit link later */
1634 #define SPEED_MODE_BIT (1 << 21)
1635                 tarc |= SPEED_MODE_BIT;
1636                 ew32(TARC0, tarc);
1637         }
1638
1639         /* errata: program both queues to unweighted RR */
1640         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1641                 tarc = er32(TARC0);
1642                 tarc |= 1;
1643                 ew32(TARC0, tarc);
1644                 tarc = er32(TARC1);
1645                 tarc |= 1;
1646                 ew32(TARC1, tarc);
1647         }
1648
1649         e1000e_config_collision_dist(hw);
1650
1651         /* Setup Transmit Descriptor Settings for eop descriptor */
1652         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1653
1654         /* only set IDE if we are delaying interrupts using the timers */
1655         if (adapter->tx_int_delay)
1656                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1657
1658         /* enable Report Status bit */
1659         adapter->txd_cmd |= E1000_TXD_CMD_RS;
1660
1661         ew32(TCTL, tctl);
1662
1663         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1664 }
1665
1666 /**
1667  * e1000_setup_rctl - configure the receive control registers
1668  * @adapter: Board private structure
1669  **/
1670 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1671                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1672 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1673 {
1674         struct e1000_hw *hw = &adapter->hw;
1675         u32 rctl, rfctl;
1676         u32 psrctl = 0;
1677         u32 pages = 0;
1678
1679         /* Program MC offset vector base */
1680         rctl = er32(RCTL);
1681         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1682         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1683                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1684                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1685
1686         /* Do not Store bad packets */
1687         rctl &= ~E1000_RCTL_SBP;
1688
1689         /* Enable Long Packet receive */
1690         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1691                 rctl &= ~E1000_RCTL_LPE;
1692         else
1693                 rctl |= E1000_RCTL_LPE;
1694
1695         /* Setup buffer sizes */
1696         rctl &= ~E1000_RCTL_SZ_4096;
1697         rctl |= E1000_RCTL_BSEX;
1698         switch (adapter->rx_buffer_len) {
1699         case 256:
1700                 rctl |= E1000_RCTL_SZ_256;
1701                 rctl &= ~E1000_RCTL_BSEX;
1702                 break;
1703         case 512:
1704                 rctl |= E1000_RCTL_SZ_512;
1705                 rctl &= ~E1000_RCTL_BSEX;
1706                 break;
1707         case 1024:
1708                 rctl |= E1000_RCTL_SZ_1024;
1709                 rctl &= ~E1000_RCTL_BSEX;
1710                 break;
1711         case 2048:
1712         default:
1713                 rctl |= E1000_RCTL_SZ_2048;
1714                 rctl &= ~E1000_RCTL_BSEX;
1715                 break;
1716         case 4096:
1717                 rctl |= E1000_RCTL_SZ_4096;
1718                 break;
1719         case 8192:
1720                 rctl |= E1000_RCTL_SZ_8192;
1721                 break;
1722         case 16384:
1723                 rctl |= E1000_RCTL_SZ_16384;
1724                 break;
1725         }
1726
1727         /*
1728          * 82571 and greater support packet-split where the protocol
1729          * header is placed in skb->data and the packet data is
1730          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1731          * In the case of a non-split, skb->data is linearly filled,
1732          * followed by the page buffers.  Therefore, skb->data is
1733          * sized to hold the largest protocol header.
1734          *
1735          * allocations using alloc_page take too long for regular MTU
1736          * so only enable packet split for jumbo frames
1737          *
1738          * Using pages when the page size is greater than 16k wastes
1739          * a lot of memory, since we allocate 3 pages at all times
1740          * per packet.
1741          */
1742         adapter->rx_ps_pages = 0;
1743         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1744         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1745                 adapter->rx_ps_pages = pages;
1746
1747         if (adapter->rx_ps_pages) {
1748                 /* Configure extra packet-split registers */
1749                 rfctl = er32(RFCTL);
1750                 rfctl |= E1000_RFCTL_EXTEN;
1751                 /* disable packet split support for IPv6 extension headers,
1752                  * because some malformed IPv6 headers can hang the RX */
1753                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1754                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1755
1756                 ew32(RFCTL, rfctl);
1757
1758                 /* Enable Packet split descriptors */
1759                 rctl |= E1000_RCTL_DTYP_PS;
1760                 
1761                 /* Enable hardware CRC frame stripping */
1762                 rctl |= E1000_RCTL_SECRC;
1763
1764                 psrctl |= adapter->rx_ps_bsize0 >>
1765                         E1000_PSRCTL_BSIZE0_SHIFT;
1766
1767                 switch (adapter->rx_ps_pages) {
1768                 case 3:
1769                         psrctl |= PAGE_SIZE <<
1770                                 E1000_PSRCTL_BSIZE3_SHIFT;
1771                 case 2:
1772                         psrctl |= PAGE_SIZE <<
1773                                 E1000_PSRCTL_BSIZE2_SHIFT;
1774                 case 1:
1775                         psrctl |= PAGE_SIZE >>
1776                                 E1000_PSRCTL_BSIZE1_SHIFT;
1777                         break;
1778                 }
1779
1780                 ew32(PSRCTL, psrctl);
1781         }
1782
1783         ew32(RCTL, rctl);
1784 }
1785
1786 /**
1787  * e1000_configure_rx - Configure Receive Unit after Reset
1788  * @adapter: board private structure
1789  *
1790  * Configure the Rx unit of the MAC after a reset.
1791  **/
1792 static void e1000_configure_rx(struct e1000_adapter *adapter)
1793 {
1794         struct e1000_hw *hw = &adapter->hw;
1795         struct e1000_ring *rx_ring = adapter->rx_ring;
1796         u64 rdba;
1797         u32 rdlen, rctl, rxcsum, ctrl_ext;
1798
1799         if (adapter->rx_ps_pages) {
1800                 /* this is a 32 byte descriptor */
1801                 rdlen = rx_ring->count *
1802                         sizeof(union e1000_rx_desc_packet_split);
1803                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1804                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1805         } else {
1806                 rdlen = rx_ring->count *
1807                         sizeof(struct e1000_rx_desc);
1808                 adapter->clean_rx = e1000_clean_rx_irq;
1809                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1810         }
1811
1812         /* disable receives while setting up the descriptors */
1813         rctl = er32(RCTL);
1814         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1815         e1e_flush();
1816         msleep(10);
1817
1818         /* set the Receive Delay Timer Register */
1819         ew32(RDTR, adapter->rx_int_delay);
1820
1821         /* irq moderation */
1822         ew32(RADV, adapter->rx_abs_int_delay);
1823         if (adapter->itr_setting != 0)
1824                 ew32(ITR,
1825                         1000000000 / (adapter->itr * 256));
1826
1827         ctrl_ext = er32(CTRL_EXT);
1828         /* Reset delay timers after every interrupt */
1829         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1830         /* Auto-Mask interrupts upon ICR access */
1831         ctrl_ext |= E1000_CTRL_EXT_IAME;
1832         ew32(IAM, 0xffffffff);
1833         ew32(CTRL_EXT, ctrl_ext);
1834         e1e_flush();
1835
1836         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1837          * the Base and Length of the Rx Descriptor Ring */
1838         rdba = rx_ring->dma;
1839         ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1840         ew32(RDBAH, (rdba >> 32));
1841         ew32(RDLEN, rdlen);
1842         ew32(RDH, 0);
1843         ew32(RDT, 0);
1844         rx_ring->head = E1000_RDH;
1845         rx_ring->tail = E1000_RDT;
1846
1847         /* Enable Receive Checksum Offload for TCP and UDP */
1848         rxcsum = er32(RXCSUM);
1849         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1850                 rxcsum |= E1000_RXCSUM_TUOFL;
1851
1852                 /* IPv4 payload checksum for UDP fragments must be
1853                  * used in conjunction with packet-split. */
1854                 if (adapter->rx_ps_pages)
1855                         rxcsum |= E1000_RXCSUM_IPPCSE;
1856         } else {
1857                 rxcsum &= ~E1000_RXCSUM_TUOFL;
1858                 /* no need to clear IPPCSE as it defaults to 0 */
1859         }
1860         ew32(RXCSUM, rxcsum);
1861
1862         /* Enable early receives on supported devices, only takes effect when
1863          * packet size is equal or larger than the specified value (in 8 byte
1864          * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1865         if ((adapter->flags & FLAG_HAS_ERT) &&
1866             (adapter->netdev->mtu > ETH_DATA_LEN))
1867                 ew32(ERT, E1000_ERT_2048);
1868
1869         /* Enable Receives */
1870         ew32(RCTL, rctl);
1871 }
1872
1873 /**
1874  *  e1000_mc_addr_list_update - Update Multicast addresses
1875  *  @hw: pointer to the HW structure
1876  *  @mc_addr_list: array of multicast addresses to program
1877  *  @mc_addr_count: number of multicast addresses to program
1878  *  @rar_used_count: the first RAR register free to program
1879  *  @rar_count: total number of supported Receive Address Registers
1880  *
1881  *  Updates the Receive Address Registers and Multicast Table Array.
1882  *  The caller must have a packed mc_addr_list of multicast addresses.
1883  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1884  *  unless there are workarounds that change this.  Currently no func pointer
1885  *  exists and all implementations are handled in the generic version of this
1886  *  function.
1887  **/
1888 static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1889                                u32 mc_addr_count, u32 rar_used_count,
1890                                u32 rar_count)
1891 {
1892         hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1893                                         rar_used_count, rar_count);
1894 }
1895
1896 /**
1897  * e1000_set_multi - Multicast and Promiscuous mode set
1898  * @netdev: network interface device structure
1899  *
1900  * The set_multi entry point is called whenever the multicast address
1901  * list or the network interface flags are updated.  This routine is
1902  * responsible for configuring the hardware for proper multicast,
1903  * promiscuous mode, and all-multi behavior.
1904  **/
1905 static void e1000_set_multi(struct net_device *netdev)
1906 {
1907         struct e1000_adapter *adapter = netdev_priv(netdev);
1908         struct e1000_hw *hw = &adapter->hw;
1909         struct e1000_mac_info *mac = &hw->mac;
1910         struct dev_mc_list *mc_ptr;
1911         u8  *mta_list;
1912         u32 rctl;
1913         int i;
1914
1915         /* Check for Promiscuous and All Multicast modes */
1916
1917         rctl = er32(RCTL);
1918
1919         if (netdev->flags & IFF_PROMISC) {
1920                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1921         } else if (netdev->flags & IFF_ALLMULTI) {
1922                 rctl |= E1000_RCTL_MPE;
1923                 rctl &= ~E1000_RCTL_UPE;
1924         } else {
1925                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1926         }
1927
1928         ew32(RCTL, rctl);
1929
1930         if (netdev->mc_count) {
1931                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1932                 if (!mta_list)
1933                         return;
1934
1935                 /* prepare a packed array of only addresses. */
1936                 mc_ptr = netdev->mc_list;
1937
1938                 for (i = 0; i < netdev->mc_count; i++) {
1939                         if (!mc_ptr)
1940                                 break;
1941                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1942                                ETH_ALEN);
1943                         mc_ptr = mc_ptr->next;
1944                 }
1945
1946                 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1947                                           mac->rar_entry_count);
1948                 kfree(mta_list);
1949         } else {
1950                 /*
1951                  * if we're called from probe, we might not have
1952                  * anything to do here, so clear out the list
1953                  */
1954                 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1955                                           mac->rar_entry_count);
1956         }
1957 }
1958
1959 /**
1960  * e1000_configure - configure the hardware for RX and TX
1961  * @adapter: private board structure
1962  **/
1963 static void e1000_configure(struct e1000_adapter *adapter)
1964 {
1965         e1000_set_multi(adapter->netdev);
1966
1967         e1000_restore_vlan(adapter);
1968         e1000_init_manageability(adapter);
1969
1970         e1000_configure_tx(adapter);
1971         e1000_setup_rctl(adapter);
1972         e1000_configure_rx(adapter);
1973         adapter->alloc_rx_buf(adapter,
1974                               e1000_desc_unused(adapter->rx_ring));
1975 }
1976
1977 /**
1978  * e1000e_power_up_phy - restore link in case the phy was powered down
1979  * @adapter: address of board private structure
1980  *
1981  * The phy may be powered down to save power and turn off link when the
1982  * driver is unloaded and wake on lan is not enabled (among others)
1983  * *** this routine MUST be followed by a call to e1000e_reset ***
1984  **/
1985 void e1000e_power_up_phy(struct e1000_adapter *adapter)
1986 {
1987         u16 mii_reg = 0;
1988
1989         /* Just clear the power down bit to wake the phy back up */
1990         if (adapter->hw.media_type == e1000_media_type_copper) {
1991                 /* according to the manual, the phy will retain its
1992                  * settings across a power-down/up cycle */
1993                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1994                 mii_reg &= ~MII_CR_POWER_DOWN;
1995                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1996         }
1997
1998         adapter->hw.mac.ops.setup_link(&adapter->hw);
1999 }
2000
2001 /**
2002  * e1000_power_down_phy - Power down the PHY
2003  *
2004  * Power down the PHY so no link is implied when interface is down
2005  * The PHY cannot be powered down is management or WoL is active
2006  */
2007 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2008 {
2009         struct e1000_hw *hw = &adapter->hw;
2010         u16 mii_reg;
2011
2012         /* WoL is enabled */
2013         if (!adapter->wol)
2014                 return;
2015
2016         /* non-copper PHY? */
2017         if (adapter->hw.media_type != e1000_media_type_copper)
2018                 return;
2019
2020         /* reset is blocked because of a SoL/IDER session */
2021         if (e1000e_check_mng_mode(hw) ||
2022             e1000_check_reset_block(hw))
2023                 return;
2024
2025         /* managebility (AMT) is enabled */
2026         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2027                 return;
2028
2029         /* power down the PHY */
2030         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2031         mii_reg |= MII_CR_POWER_DOWN;
2032         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2033         mdelay(1);
2034 }
2035
2036 /**
2037  * e1000e_reset - bring the hardware into a known good state
2038  *
2039  * This function boots the hardware and enables some settings that
2040  * require a configuration cycle of the hardware - those cannot be
2041  * set/changed during runtime. After reset the device needs to be
2042  * properly configured for rx, tx etc.
2043  */
2044 void e1000e_reset(struct e1000_adapter *adapter)
2045 {
2046         struct e1000_mac_info *mac = &adapter->hw.mac;
2047         struct e1000_hw *hw = &adapter->hw;
2048         u32 tx_space, min_tx_space, min_rx_space;
2049         u32 pba;
2050         u16 hwm;
2051
2052         ew32(PBA, adapter->pba);
2053
2054         if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2055                 /* To maintain wire speed transmits, the Tx FIFO should be
2056                  * large enough to accommodate two full transmit packets,
2057                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2058                  * the Rx FIFO should be large enough to accommodate at least
2059                  * one full receive packet and is similarly rounded up and
2060                  * expressed in KB. */
2061                 pba = er32(PBA);
2062                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2063                 tx_space = pba >> 16;
2064                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2065                 pba &= 0xffff;
2066                 /* the tx fifo also stores 16 bytes of information about the tx
2067                  * but don't include ethernet FCS because hardware appends it */
2068                 min_tx_space = (mac->max_frame_size +
2069                                 sizeof(struct e1000_tx_desc) -
2070                                 ETH_FCS_LEN) * 2;
2071                 min_tx_space = ALIGN(min_tx_space, 1024);
2072                 min_tx_space >>= 10;
2073                 /* software strips receive CRC, so leave room for it */
2074                 min_rx_space = mac->max_frame_size;
2075                 min_rx_space = ALIGN(min_rx_space, 1024);
2076                 min_rx_space >>= 10;
2077
2078                 /* If current Tx allocation is less than the min Tx FIFO size,
2079                  * and the min Tx FIFO size is less than the current Rx FIFO
2080                  * allocation, take space away from current Rx allocation */
2081                 if ((tx_space < min_tx_space) &&
2082                     ((min_tx_space - tx_space) < pba)) {
2083                         pba -= min_tx_space - tx_space;
2084
2085                         /* if short on rx space, rx wins and must trump tx
2086                          * adjustment or use Early Receive if available */
2087                         if ((pba < min_rx_space) &&
2088                             (!(adapter->flags & FLAG_HAS_ERT)))
2089                                 /* ERT enabled in e1000_configure_rx */
2090                                 pba = min_rx_space;
2091                 }
2092
2093                 ew32(PBA, pba);
2094         }
2095
2096
2097         /* flow control settings */
2098         /* The high water mark must be low enough to fit one full frame
2099          * (or the size used for early receive) above it in the Rx FIFO.
2100          * Set it to the lower of:
2101          * - 90% of the Rx FIFO size, and
2102          * - the full Rx FIFO size minus the early receive size (for parts
2103          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2104          * - the full Rx FIFO size minus one full frame */
2105         if (adapter->flags & FLAG_HAS_ERT)
2106                 hwm = min(((adapter->pba << 10) * 9 / 10),
2107                           ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2108         else
2109                 hwm = min(((adapter->pba << 10) * 9 / 10),
2110                           ((adapter->pba << 10) - mac->max_frame_size));
2111
2112         mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2113         mac->fc_low_water = mac->fc_high_water - 8;
2114
2115         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2116                 mac->fc_pause_time = 0xFFFF;
2117         else
2118                 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2119         mac->fc = mac->original_fc;
2120
2121         /* Allow time for pending master requests to run */
2122         mac->ops.reset_hw(hw);
2123         ew32(WUC, 0);
2124
2125         if (mac->ops.init_hw(hw))
2126                 ndev_err(adapter->netdev, "Hardware Error\n");
2127
2128         e1000_update_mng_vlan(adapter);
2129
2130         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2131         ew32(VET, ETH_P_8021Q);
2132
2133         e1000e_reset_adaptive(hw);
2134         e1000_get_phy_info(hw);
2135
2136         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2137                 u16 phy_data = 0;
2138                 /* speed up time to link by disabling smart power down, ignore
2139                  * the return value of this function because there is nothing
2140                  * different we would do if it failed */
2141                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2142                 phy_data &= ~IGP02E1000_PM_SPD;
2143                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2144         }
2145
2146         e1000_release_manageability(adapter);
2147 }
2148
2149 int e1000e_up(struct e1000_adapter *adapter)
2150 {
2151         struct e1000_hw *hw = &adapter->hw;
2152
2153         /* hardware has been reset, we need to reload some things */
2154         e1000_configure(adapter);
2155
2156         clear_bit(__E1000_DOWN, &adapter->state);
2157
2158         napi_enable(&adapter->napi);
2159         e1000_irq_enable(adapter);
2160
2161         /* fire a link change interrupt to start the watchdog */
2162         ew32(ICS, E1000_ICS_LSC);
2163         return 0;
2164 }
2165
2166 void e1000e_down(struct e1000_adapter *adapter)
2167 {
2168         struct net_device *netdev = adapter->netdev;
2169         struct e1000_hw *hw = &adapter->hw;
2170         u32 tctl, rctl;
2171
2172         /* signal that we're down so the interrupt handler does not
2173          * reschedule our watchdog timer */
2174         set_bit(__E1000_DOWN, &adapter->state);
2175
2176         /* disable receives in the hardware */
2177         rctl = er32(RCTL);
2178         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2179         /* flush and sleep below */
2180
2181         netif_stop_queue(netdev);
2182
2183         /* disable transmits in the hardware */
2184         tctl = er32(TCTL);
2185         tctl &= ~E1000_TCTL_EN;
2186         ew32(TCTL, tctl);
2187         /* flush both disables and wait for them to finish */
2188         e1e_flush();
2189         msleep(10);
2190
2191         napi_disable(&adapter->napi);
2192         atomic_set(&adapter->irq_sem, 0);
2193         e1000_irq_disable(adapter);
2194
2195         del_timer_sync(&adapter->watchdog_timer);
2196         del_timer_sync(&adapter->phy_info_timer);
2197
2198         netdev->tx_queue_len = adapter->tx_queue_len;
2199         netif_carrier_off(netdev);
2200         adapter->link_speed = 0;
2201         adapter->link_duplex = 0;
2202
2203         e1000e_reset(adapter);
2204         e1000_clean_tx_ring(adapter);
2205         e1000_clean_rx_ring(adapter);
2206
2207         /*
2208          * TODO: for power management, we could drop the link and
2209          * pci_disable_device here.
2210          */
2211 }
2212
2213 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2214 {
2215         might_sleep();
2216         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2217                 msleep(1);
2218         e1000e_down(adapter);
2219         e1000e_up(adapter);
2220         clear_bit(__E1000_RESETTING, &adapter->state);
2221 }
2222
2223 /**
2224  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2225  * @adapter: board private structure to initialize
2226  *
2227  * e1000_sw_init initializes the Adapter private data structure.
2228  * Fields are initialized based on PCI device information and
2229  * OS network device settings (MTU size).
2230  **/
2231 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2232 {
2233         struct e1000_hw *hw = &adapter->hw;
2234         struct net_device *netdev = adapter->netdev;
2235
2236         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2237         adapter->rx_ps_bsize0 = 128;
2238         hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2239         hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2240
2241         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2242         if (!adapter->tx_ring)
2243                 goto err;
2244
2245         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2246         if (!adapter->rx_ring)
2247                 goto err;
2248
2249         spin_lock_init(&adapter->tx_queue_lock);
2250
2251         /* Explicitly disable IRQ since the NIC can be in any state. */
2252         atomic_set(&adapter->irq_sem, 0);
2253         e1000_irq_disable(adapter);
2254
2255         spin_lock_init(&adapter->stats_lock);
2256
2257         set_bit(__E1000_DOWN, &adapter->state);
2258         return 0;
2259
2260 err:
2261         ndev_err(netdev, "Unable to allocate memory for queues\n");
2262         kfree(adapter->rx_ring);
2263         kfree(adapter->tx_ring);
2264         return -ENOMEM;
2265 }
2266
2267 /**
2268  * e1000_open - Called when a network interface is made active
2269  * @netdev: network interface device structure
2270  *
2271  * Returns 0 on success, negative value on failure
2272  *
2273  * The open entry point is called when a network interface is made
2274  * active by the system (IFF_UP).  At this point all resources needed
2275  * for transmit and receive operations are allocated, the interrupt
2276  * handler is registered with the OS, the watchdog timer is started,
2277  * and the stack is notified that the interface is ready.
2278  **/
2279 static int e1000_open(struct net_device *netdev)
2280 {
2281         struct e1000_adapter *adapter = netdev_priv(netdev);
2282         struct e1000_hw *hw = &adapter->hw;
2283         int err;
2284
2285         /* disallow open during test */
2286         if (test_bit(__E1000_TESTING, &adapter->state))
2287                 return -EBUSY;
2288
2289         /* allocate transmit descriptors */
2290         err = e1000e_setup_tx_resources(adapter);
2291         if (err)
2292                 goto err_setup_tx;
2293
2294         /* allocate receive descriptors */
2295         err = e1000e_setup_rx_resources(adapter);
2296         if (err)
2297                 goto err_setup_rx;
2298
2299         e1000e_power_up_phy(adapter);
2300
2301         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2302         if ((adapter->hw.mng_cookie.status &
2303              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2304                 e1000_update_mng_vlan(adapter);
2305
2306         /* If AMT is enabled, let the firmware know that the network
2307          * interface is now open */
2308         if ((adapter->flags & FLAG_HAS_AMT) &&
2309             e1000e_check_mng_mode(&adapter->hw))
2310                 e1000_get_hw_control(adapter);
2311
2312         /* before we allocate an interrupt, we must be ready to handle it.
2313          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2314          * as soon as we call pci_request_irq, so we have to setup our
2315          * clean_rx handler before we do so.  */
2316         e1000_configure(adapter);
2317
2318         err = e1000_request_irq(adapter);
2319         if (err)
2320                 goto err_req_irq;
2321
2322         /* From here on the code is the same as e1000e_up() */
2323         clear_bit(__E1000_DOWN, &adapter->state);
2324
2325         napi_enable(&adapter->napi);
2326
2327         e1000_irq_enable(adapter);
2328
2329         /* fire a link status change interrupt to start the watchdog */
2330         ew32(ICS, E1000_ICS_LSC);
2331
2332         return 0;
2333
2334 err_req_irq:
2335         e1000_release_hw_control(adapter);
2336         e1000_power_down_phy(adapter);
2337         e1000e_free_rx_resources(adapter);
2338 err_setup_rx:
2339         e1000e_free_tx_resources(adapter);
2340 err_setup_tx:
2341         e1000e_reset(adapter);
2342
2343         return err;
2344 }
2345
2346 /**
2347  * e1000_close - Disables a network interface
2348  * @netdev: network interface device structure
2349  *
2350  * Returns 0, this is not allowed to fail
2351  *
2352  * The close entry point is called when an interface is de-activated
2353  * by the OS.  The hardware is still under the drivers control, but
2354  * needs to be disabled.  A global MAC reset is issued to stop the
2355  * hardware, and all transmit and receive resources are freed.
2356  **/
2357 static int e1000_close(struct net_device *netdev)
2358 {
2359         struct e1000_adapter *adapter = netdev_priv(netdev);
2360
2361         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2362         e1000e_down(adapter);
2363         e1000_power_down_phy(adapter);
2364         e1000_free_irq(adapter);
2365
2366         e1000e_free_tx_resources(adapter);
2367         e1000e_free_rx_resources(adapter);
2368
2369         /* kill manageability vlan ID if supported, but not if a vlan with
2370          * the same ID is registered on the host OS (let 8021q kill it) */
2371         if ((adapter->hw.mng_cookie.status &
2372                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2373              !(adapter->vlgrp &&
2374                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2375                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2376
2377         /* If AMT is enabled, let the firmware know that the network
2378          * interface is now closed */
2379         if ((adapter->flags & FLAG_HAS_AMT) &&
2380             e1000e_check_mng_mode(&adapter->hw))
2381                 e1000_release_hw_control(adapter);
2382
2383         return 0;
2384 }
2385 /**
2386  * e1000_set_mac - Change the Ethernet Address of the NIC
2387  * @netdev: network interface device structure
2388  * @p: pointer to an address structure
2389  *
2390  * Returns 0 on success, negative on failure
2391  **/
2392 static int e1000_set_mac(struct net_device *netdev, void *p)
2393 {
2394         struct e1000_adapter *adapter = netdev_priv(netdev);
2395         struct sockaddr *addr = p;
2396
2397         if (!is_valid_ether_addr(addr->sa_data))
2398                 return -EADDRNOTAVAIL;
2399
2400         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2401         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2402
2403         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2404
2405         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2406                 /* activate the work around */
2407                 e1000e_set_laa_state_82571(&adapter->hw, 1);
2408
2409                 /* Hold a copy of the LAA in RAR[14] This is done so that
2410                  * between the time RAR[0] gets clobbered  and the time it
2411                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2412                  * of the RARs and no incoming packets directed to this port
2413                  * are dropped. Eventually the LAA will be in RAR[0] and
2414                  * RAR[14] */
2415                 e1000e_rar_set(&adapter->hw,
2416                               adapter->hw.mac.addr,
2417                               adapter->hw.mac.rar_entry_count - 1);
2418         }
2419
2420         return 0;
2421 }
2422
2423 /* Need to wait a few seconds after link up to get diagnostic information from
2424  * the phy */
2425 static void e1000_update_phy_info(unsigned long data)
2426 {
2427         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2428         e1000_get_phy_info(&adapter->hw);
2429 }
2430
2431 /**
2432  * e1000e_update_stats - Update the board statistics counters
2433  * @adapter: board private structure
2434  **/
2435 void e1000e_update_stats(struct e1000_adapter *adapter)
2436 {
2437         struct e1000_hw *hw = &adapter->hw;
2438         struct pci_dev *pdev = adapter->pdev;
2439         unsigned long irq_flags;
2440         u16 phy_tmp;
2441
2442 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2443
2444         /*
2445          * Prevent stats update while adapter is being reset, or if the pci
2446          * connection is down.
2447          */
2448         if (adapter->link_speed == 0)
2449                 return;
2450         if (pci_channel_offline(pdev))
2451                 return;
2452
2453         spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2454
2455         /* these counters are modified from e1000_adjust_tbi_stats,
2456          * called from the interrupt context, so they must only
2457          * be written while holding adapter->stats_lock
2458          */
2459
2460         adapter->stats.crcerrs += er32(CRCERRS);
2461         adapter->stats.gprc += er32(GPRC);
2462         adapter->stats.gorcl += er32(GORCL);
2463         adapter->stats.gorch += er32(GORCH);
2464         adapter->stats.bprc += er32(BPRC);
2465         adapter->stats.mprc += er32(MPRC);
2466         adapter->stats.roc += er32(ROC);
2467
2468         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2469                 adapter->stats.prc64 += er32(PRC64);
2470                 adapter->stats.prc127 += er32(PRC127);
2471                 adapter->stats.prc255 += er32(PRC255);
2472                 adapter->stats.prc511 += er32(PRC511);
2473                 adapter->stats.prc1023 += er32(PRC1023);
2474                 adapter->stats.prc1522 += er32(PRC1522);
2475                 adapter->stats.symerrs += er32(SYMERRS);
2476                 adapter->stats.sec += er32(SEC);
2477         }
2478
2479         adapter->stats.mpc += er32(MPC);
2480         adapter->stats.scc += er32(SCC);
2481         adapter->stats.ecol += er32(ECOL);
2482         adapter->stats.mcc += er32(MCC);
2483         adapter->stats.latecol += er32(LATECOL);
2484         adapter->stats.dc += er32(DC);
2485         adapter->stats.rlec += er32(RLEC);
2486         adapter->stats.xonrxc += er32(XONRXC);
2487         adapter->stats.xontxc += er32(XONTXC);
2488         adapter->stats.xoffrxc += er32(XOFFRXC);
2489         adapter->stats.xofftxc += er32(XOFFTXC);
2490         adapter->stats.fcruc += er32(FCRUC);
2491         adapter->stats.gptc += er32(GPTC);
2492         adapter->stats.gotcl += er32(GOTCL);
2493         adapter->stats.gotch += er32(GOTCH);
2494         adapter->stats.rnbc += er32(RNBC);
2495         adapter->stats.ruc += er32(RUC);
2496         adapter->stats.rfc += er32(RFC);
2497         adapter->stats.rjc += er32(RJC);
2498         adapter->stats.torl += er32(TORL);
2499         adapter->stats.torh += er32(TORH);
2500         adapter->stats.totl += er32(TOTL);
2501         adapter->stats.toth += er32(TOTH);
2502         adapter->stats.tpr += er32(TPR);
2503
2504         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2505                 adapter->stats.ptc64 += er32(PTC64);
2506                 adapter->stats.ptc127 += er32(PTC127);
2507                 adapter->stats.ptc255 += er32(PTC255);
2508                 adapter->stats.ptc511 += er32(PTC511);
2509                 adapter->stats.ptc1023 += er32(PTC1023);
2510                 adapter->stats.ptc1522 += er32(PTC1522);
2511         }
2512
2513         adapter->stats.mptc += er32(MPTC);
2514         adapter->stats.bptc += er32(BPTC);
2515
2516         /* used for adaptive IFS */
2517
2518         hw->mac.tx_packet_delta = er32(TPT);
2519         adapter->stats.tpt += hw->mac.tx_packet_delta;
2520         hw->mac.collision_delta = er32(COLC);
2521         adapter->stats.colc += hw->mac.collision_delta;
2522
2523         adapter->stats.algnerrc += er32(ALGNERRC);
2524         adapter->stats.rxerrc += er32(RXERRC);
2525         adapter->stats.tncrs += er32(TNCRS);
2526         adapter->stats.cexterr += er32(CEXTERR);
2527         adapter->stats.tsctc += er32(TSCTC);
2528         adapter->stats.tsctfc += er32(TSCTFC);
2529
2530         adapter->stats.iac += er32(IAC);
2531
2532         if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2533                 adapter->stats.icrxoc += er32(ICRXOC);
2534                 adapter->stats.icrxptc += er32(ICRXPTC);
2535                 adapter->stats.icrxatc += er32(ICRXATC);
2536                 adapter->stats.ictxptc += er32(ICTXPTC);
2537                 adapter->stats.ictxatc += er32(ICTXATC);
2538                 adapter->stats.ictxqec += er32(ICTXQEC);
2539                 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2540                 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2541         }
2542
2543         /* Fill out the OS statistics structure */
2544         adapter->net_stats.multicast = adapter->stats.mprc;
2545         adapter->net_stats.collisions = adapter->stats.colc;
2546
2547         /* Rx Errors */
2548
2549         /* RLEC on some newer hardware can be incorrect so build
2550         * our own version based on RUC and ROC */
2551         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2552                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2553                 adapter->stats.ruc + adapter->stats.roc +
2554                 adapter->stats.cexterr;
2555         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2556                                               adapter->stats.roc;
2557         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2558         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2559         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2560
2561         /* Tx Errors */
2562         adapter->net_stats.tx_errors = adapter->stats.ecol +
2563                                        adapter->stats.latecol;
2564         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2565         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2566         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2567
2568         /* Tx Dropped needs to be maintained elsewhere */
2569
2570         /* Phy Stats */
2571         if (hw->media_type == e1000_media_type_copper) {
2572                 if ((adapter->link_speed == SPEED_1000) &&
2573                    (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2574                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2575                         adapter->phy_stats.idle_errors += phy_tmp;
2576                 }
2577         }
2578
2579         /* Management Stats */
2580         adapter->stats.mgptc += er32(MGTPTC);
2581         adapter->stats.mgprc += er32(MGTPRC);
2582         adapter->stats.mgpdc += er32(MGTPDC);
2583
2584         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2585 }
2586
2587 static void e1000_print_link_info(struct e1000_adapter *adapter)
2588 {
2589         struct net_device *netdev = adapter->netdev;
2590         struct e1000_hw *hw = &adapter->hw;
2591         u32 ctrl = er32(CTRL);
2592
2593         ndev_info(netdev,
2594                 "Link is Up %d Mbps %s, Flow Control: %s\n",
2595                 adapter->link_speed,
2596                 (adapter->link_duplex == FULL_DUPLEX) ?
2597                                 "Full Duplex" : "Half Duplex",
2598                 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2599                                 "RX/TX" :
2600                 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2601                 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2602 }
2603
2604 /**
2605  * e1000_watchdog - Timer Call-back
2606  * @data: pointer to adapter cast into an unsigned long
2607  **/
2608 static void e1000_watchdog(unsigned long data)
2609 {
2610         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2611
2612         /* Do the rest outside of interrupt context */
2613         schedule_work(&adapter->watchdog_task);
2614
2615         /* TODO: make this use queue_delayed_work() */
2616 }
2617
2618 static void e1000_watchdog_task(struct work_struct *work)
2619 {
2620         struct e1000_adapter *adapter = container_of(work,
2621                                         struct e1000_adapter, watchdog_task);
2622
2623         struct net_device *netdev = adapter->netdev;
2624         struct e1000_mac_info *mac = &adapter->hw.mac;
2625         struct e1000_ring *tx_ring = adapter->tx_ring;
2626         struct e1000_hw *hw = &adapter->hw;
2627         u32 link, tctl;
2628         s32 ret_val;
2629         int tx_pending = 0;
2630
2631         if ((netif_carrier_ok(netdev)) &&
2632             (er32(STATUS) & E1000_STATUS_LU))
2633                 goto link_up;
2634
2635         ret_val = mac->ops.check_for_link(hw);
2636         if ((ret_val == E1000_ERR_PHY) &&
2637             (adapter->hw.phy.type == e1000_phy_igp_3) &&
2638             (er32(CTRL) &
2639              E1000_PHY_CTRL_GBE_DISABLE)) {
2640                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2641                 ndev_info(netdev,
2642                         "Gigabit has been disabled, downgrading speed\n");
2643         }
2644
2645         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2646             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2647                 e1000_update_mng_vlan(adapter);
2648
2649         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2650            !(er32(TXCW) & E1000_TXCW_ANE))
2651                 link = adapter->hw.mac.serdes_has_link;
2652         else
2653                 link = er32(STATUS) & E1000_STATUS_LU;
2654
2655         if (link) {
2656                 if (!netif_carrier_ok(netdev)) {
2657                         bool txb2b = 1;
2658                         mac->ops.get_link_up_info(&adapter->hw,
2659                                                    &adapter->link_speed,
2660                                                    &adapter->link_duplex);
2661                         e1000_print_link_info(adapter);
2662                         /* tweak tx_queue_len according to speed/duplex
2663                          * and adjust the timeout factor */
2664                         netdev->tx_queue_len = adapter->tx_queue_len;
2665                         adapter->tx_timeout_factor = 1;
2666                         switch (adapter->link_speed) {
2667                         case SPEED_10:
2668                                 txb2b = 0;
2669                                 netdev->tx_queue_len = 10;
2670                                 adapter->tx_timeout_factor = 14;
2671                                 break;
2672                         case SPEED_100:
2673                                 txb2b = 0;
2674                                 netdev->tx_queue_len = 100;
2675                                 /* maybe add some timeout factor ? */
2676                                 break;
2677                         }
2678
2679                         /* workaround: re-program speed mode bit after
2680                          * link-up event */
2681                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2682                             !txb2b) {
2683                                 u32 tarc0;
2684                                 tarc0 = er32(TARC0);
2685                                 tarc0 &= ~SPEED_MODE_BIT;
2686                                 ew32(TARC0, tarc0);
2687                         }
2688
2689                         /* disable TSO for pcie and 10/100 speeds, to avoid
2690                          * some hardware issues */
2691                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
2692                                 switch (adapter->link_speed) {
2693                                 case SPEED_10:
2694                                 case SPEED_100:
2695                                         ndev_info(netdev,
2696                                         "10/100 speed: disabling TSO\n");
2697                                         netdev->features &= ~NETIF_F_TSO;
2698                                         netdev->features &= ~NETIF_F_TSO6;
2699                                         break;
2700                                 case SPEED_1000:
2701                                         netdev->features |= NETIF_F_TSO;
2702                                         netdev->features |= NETIF_F_TSO6;
2703                                         break;
2704                                 default:
2705                                         /* oops */
2706                                         break;
2707                                 }
2708                         }
2709
2710                         /* enable transmits in the hardware, need to do this
2711                          * after setting TARC0 */
2712                         tctl = er32(TCTL);
2713                         tctl |= E1000_TCTL_EN;
2714                         ew32(TCTL, tctl);
2715
2716                         netif_carrier_on(netdev);
2717                         netif_wake_queue(netdev);
2718
2719                         if (!test_bit(__E1000_DOWN, &adapter->state))
2720                                 mod_timer(&adapter->phy_info_timer,
2721                                           round_jiffies(jiffies + 2 * HZ));
2722                 } else {
2723                         /* make sure the receive unit is started */
2724                         if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2725                                 u32 rctl = er32(RCTL);
2726                                 ew32(RCTL, rctl |
2727                                                 E1000_RCTL_EN);
2728                         }
2729                 }
2730         } else {
2731                 if (netif_carrier_ok(netdev)) {
2732                         adapter->link_speed = 0;
2733                         adapter->link_duplex = 0;
2734                         ndev_info(netdev, "Link is Down\n");
2735                         netif_carrier_off(netdev);
2736                         netif_stop_queue(netdev);
2737                         if (!test_bit(__E1000_DOWN, &adapter->state))
2738                                 mod_timer(&adapter->phy_info_timer,
2739                                           round_jiffies(jiffies + 2 * HZ));
2740
2741                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2742                                 schedule_work(&adapter->reset_task);
2743                 }
2744         }
2745
2746 link_up:
2747         e1000e_update_stats(adapter);
2748
2749         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2750         adapter->tpt_old = adapter->stats.tpt;
2751         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2752         adapter->colc_old = adapter->stats.colc;
2753
2754         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2755         adapter->gorcl_old = adapter->stats.gorcl;
2756         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2757         adapter->gotcl_old = adapter->stats.gotcl;
2758
2759         e1000e_update_adaptive(&adapter->hw);
2760
2761         if (!netif_carrier_ok(netdev)) {
2762                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2763                                tx_ring->count);
2764                 if (tx_pending) {
2765                         /* We've lost link, so the controller stops DMA,
2766                          * but we've got queued Tx work that's never going
2767                          * to get done, so reset controller to flush Tx.
2768                          * (Do the reset outside of interrupt context). */
2769                         adapter->tx_timeout_count++;
2770                         schedule_work(&adapter->reset_task);
2771                 }
2772         }
2773
2774         /* Cause software interrupt to ensure rx ring is cleaned */
2775         ew32(ICS, E1000_ICS_RXDMT0);
2776
2777         /* Force detection of hung controller every watchdog period */
2778         adapter->detect_tx_hung = 1;
2779
2780         /* With 82571 controllers, LAA may be overwritten due to controller
2781          * reset from the other port. Set the appropriate LAA in RAR[0] */
2782         if (e1000e_get_laa_state_82571(hw))
2783                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2784
2785         /* Reset the timer */
2786         if (!test_bit(__E1000_DOWN, &adapter->state))
2787                 mod_timer(&adapter->watchdog_timer,
2788                           round_jiffies(jiffies + 2 * HZ));
2789 }
2790
2791 #define E1000_TX_FLAGS_CSUM             0x00000001
2792 #define E1000_TX_FLAGS_VLAN             0x00000002
2793 #define E1000_TX_FLAGS_TSO              0x00000004
2794 #define E1000_TX_FLAGS_IPV4             0x00000008
2795 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2796 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2797
2798 static int e1000_tso(struct e1000_adapter *adapter,
2799                      struct sk_buff *skb)
2800 {
2801         struct e1000_ring *tx_ring = adapter->tx_ring;
2802         struct e1000_context_desc *context_desc;
2803         struct e1000_buffer *buffer_info;
2804         unsigned int i;
2805         u32 cmd_length = 0;
2806         u16 ipcse = 0, tucse, mss;
2807         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2808         int err;
2809
2810         if (skb_is_gso(skb)) {
2811                 if (skb_header_cloned(skb)) {
2812                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2813                         if (err)
2814                                 return err;
2815                 }
2816
2817                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2818                 mss = skb_shinfo(skb)->gso_size;
2819                 if (skb->protocol == htons(ETH_P_IP)) {
2820                         struct iphdr *iph = ip_hdr(skb);
2821                         iph->tot_len = 0;
2822                         iph->check = 0;
2823                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2824                                                                  iph->daddr, 0,
2825                                                                  IPPROTO_TCP,
2826                                                                  0);
2827                         cmd_length = E1000_TXD_CMD_IP;
2828                         ipcse = skb_transport_offset(skb) - 1;
2829                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2830                         ipv6_hdr(skb)->payload_len = 0;
2831                         tcp_hdr(skb)->check =
2832                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2833                                                  &ipv6_hdr(skb)->daddr,
2834                                                  0, IPPROTO_TCP, 0);
2835                         ipcse = 0;
2836                 }
2837                 ipcss = skb_network_offset(skb);
2838                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2839                 tucss = skb_transport_offset(skb);
2840                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2841                 tucse = 0;
2842
2843                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2844                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2845
2846                 i = tx_ring->next_to_use;
2847                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2848                 buffer_info = &tx_ring->buffer_info[i];
2849
2850                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2851                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2852                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2853                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2854                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2855                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2856                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2857                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2858                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2859
2860                 buffer_info->time_stamp = jiffies;
2861                 buffer_info->next_to_watch = i;
2862
2863                 i++;
2864                 if (i == tx_ring->count)
2865                         i = 0;
2866                 tx_ring->next_to_use = i;
2867
2868                 return 1;
2869         }
2870
2871         return 0;
2872 }
2873
2874 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2875 {
2876         struct e1000_ring *tx_ring = adapter->tx_ring;
2877         struct e1000_context_desc *context_desc;
2878         struct e1000_buffer *buffer_info;
2879         unsigned int i;
2880         u8 css;
2881
2882         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2883                 css = skb_transport_offset(skb);
2884
2885                 i = tx_ring->next_to_use;
2886                 buffer_info = &tx_ring->buffer_info[i];
2887                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2888
2889                 context_desc->lower_setup.ip_config = 0;
2890                 context_desc->upper_setup.tcp_fields.tucss = css;
2891                 context_desc->upper_setup.tcp_fields.tucso =
2892                                         css + skb->csum_offset;
2893                 context_desc->upper_setup.tcp_fields.tucse = 0;
2894                 context_desc->tcp_seg_setup.data = 0;
2895                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2896
2897                 buffer_info->time_stamp = jiffies;
2898                 buffer_info->next_to_watch = i;
2899
2900                 i++;
2901                 if (i == tx_ring->count)
2902                         i = 0;
2903                 tx_ring->next_to_use = i;
2904
2905                 return 1;
2906         }
2907
2908         return 0;
2909 }
2910
2911 #define E1000_MAX_PER_TXD       8192
2912 #define E1000_MAX_TXD_PWR       12
2913
2914 static int e1000_tx_map(struct e1000_adapter *adapter,
2915                         struct sk_buff *skb, unsigned int first,
2916                         unsigned int max_per_txd, unsigned int nr_frags,
2917                         unsigned int mss)
2918 {
2919         struct e1000_ring *tx_ring = adapter->tx_ring;
2920         struct e1000_buffer *buffer_info;
2921         unsigned int len = skb->len - skb->data_len;
2922         unsigned int offset = 0, size, count = 0, i;
2923         unsigned int f;
2924
2925         i = tx_ring->next_to_use;
2926
2927         while (len) {
2928                 buffer_info = &tx_ring->buffer_info[i];
2929                 size = min(len, max_per_txd);
2930
2931                 /* Workaround for premature desc write-backs
2932                  * in TSO mode.  Append 4-byte sentinel desc */
2933                 if (mss && !nr_frags && size == len && size > 8)
2934                         size -= 4;
2935
2936                 buffer_info->length = size;
2937                 /* set time_stamp *before* dma to help avoid a possible race */
2938                 buffer_info->time_stamp = jiffies;
2939                 buffer_info->dma =
2940                         pci_map_single(adapter->pdev,
2941                                 skb->data + offset,
2942                                 size,
2943                                 PCI_DMA_TODEVICE);
2944                 if (pci_dma_mapping_error(buffer_info->dma)) {
2945                         dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2946                         adapter->tx_dma_failed++;
2947                         return -1;
2948                 }
2949                 buffer_info->next_to_watch = i;
2950
2951                 len -= size;
2952                 offset += size;
2953                 count++;
2954                 i++;
2955                 if (i == tx_ring->count)
2956                         i = 0;
2957         }
2958
2959         for (f = 0; f < nr_frags; f++) {
2960                 struct skb_frag_struct *frag;
2961
2962                 frag = &skb_shinfo(skb)->frags[f];
2963                 len = frag->size;
2964                 offset = frag->page_offset;
2965
2966                 while (len) {
2967                         buffer_info = &tx_ring->buffer_info[i];
2968                         size = min(len, max_per_txd);
2969                         /* Workaround for premature desc write-backs
2970                          * in TSO mode.  Append 4-byte sentinel desc */
2971                         if (mss && f == (nr_frags-1) && size == len && size > 8)
2972                                 size -= 4;
2973
2974                         buffer_info->length = size;
2975                         buffer_info->time_stamp = jiffies;
2976                         buffer_info->dma =
2977                                 pci_map_page(adapter->pdev,
2978                                         frag->page,
2979                                         offset,
2980                                         size,
2981                                         PCI_DMA_TODEVICE);
2982                         if (pci_dma_mapping_error(buffer_info->dma)) {
2983                                 dev_err(&adapter->pdev->dev,
2984                                         "TX DMA page map failed\n");
2985                                 adapter->tx_dma_failed++;
2986                                 return -1;
2987                         }
2988
2989                         buffer_info->next_to_watch = i;
2990
2991                         len -= size;
2992                         offset += size;
2993                         count++;
2994
2995                         i++;
2996                         if (i == tx_ring->count)
2997                                 i = 0;
2998                 }
2999         }
3000
3001         if (i == 0)
3002                 i = tx_ring->count - 1;
3003         else
3004                 i--;
3005
3006         tx_ring->buffer_info[i].skb = skb;
3007         tx_ring->buffer_info[first].next_to_watch = i;
3008
3009         return count;
3010 }
3011
3012 static void e1000_tx_queue(struct e1000_adapter *adapter,
3013                            int tx_flags, int count)
3014 {
3015         struct e1000_ring *tx_ring = adapter->tx_ring;
3016         struct e1000_tx_desc *tx_desc = NULL;
3017         struct e1000_buffer *buffer_info;
3018         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3019         unsigned int i;
3020
3021         if (tx_flags & E1000_TX_FLAGS_TSO) {
3022                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3023                              E1000_TXD_CMD_TSE;
3024                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3025
3026                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3027                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3028         }
3029
3030         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3031                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3032                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3033         }
3034
3035         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3036                 txd_lower |= E1000_TXD_CMD_VLE;
3037                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3038         }
3039
3040         i = tx_ring->next_to_use;
3041
3042         while (count--) {
3043                 buffer_info = &tx_ring->buffer_info[i];
3044                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3045                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3046                 tx_desc->lower.data =
3047                         cpu_to_le32(txd_lower | buffer_info->length);
3048                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3049
3050                 i++;
3051                 if (i == tx_ring->count)
3052                         i = 0;
3053         }
3054
3055         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3056
3057         /* Force memory writes to complete before letting h/w
3058          * know there are new descriptors to fetch.  (Only
3059          * applicable for weak-ordered memory model archs,
3060          * such as IA-64). */
3061         wmb();
3062
3063         tx_ring->next_to_use = i;
3064         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3065         /* we need this if more than one processor can write to our tail
3066          * at a time, it synchronizes IO on IA64/Altix systems */
3067         mmiowb();
3068 }
3069
3070 #define MINIMUM_DHCP_PACKET_SIZE 282
3071 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3072                                     struct sk_buff *skb)
3073 {
3074         struct e1000_hw *hw =  &adapter->hw;
3075         u16 length, offset;
3076
3077         if (vlan_tx_tag_present(skb)) {
3078                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3079                     && (adapter->hw.mng_cookie.status &
3080                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3081                         return 0;
3082         }
3083
3084         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3085                 return 0;
3086
3087         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3088                 return 0;
3089
3090         {
3091                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3092                 struct udphdr *udp;
3093
3094                 if (ip->protocol != IPPROTO_UDP)
3095                         return 0;
3096
3097                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3098                 if (ntohs(udp->dest) != 67)
3099                         return 0;
3100
3101                 offset = (u8 *)udp + 8 - skb->data;
3102                 length = skb->len - offset;
3103                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3104         }
3105
3106         return 0;
3107 }
3108
3109 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3110 {
3111         struct e1000_adapter *adapter = netdev_priv(netdev);
3112
3113         netif_stop_queue(netdev);
3114         /* Herbert's original patch had:
3115          *  smp_mb__after_netif_stop_queue();
3116          * but since that doesn't exist yet, just open code it. */
3117         smp_mb();
3118
3119         /* We need to check again in a case another CPU has just
3120          * made room available. */
3121         if (e1000_desc_unused(adapter->tx_ring) < size)
3122                 return -EBUSY;
3123
3124         /* A reprieve! */
3125         netif_start_queue(netdev);
3126         ++adapter->restart_queue;
3127         return 0;
3128 }
3129
3130 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3131 {
3132         struct e1000_adapter *adapter = netdev_priv(netdev);
3133
3134         if (e1000_desc_unused(adapter->tx_ring) >= size)
3135                 return 0;
3136         return __e1000_maybe_stop_tx(netdev, size);
3137 }
3138
3139 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3140 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3141 {
3142         struct e1000_adapter *adapter = netdev_priv(netdev);
3143         struct e1000_ring *tx_ring = adapter->tx_ring;
3144         unsigned int first;
3145         unsigned int max_per_txd = E1000_MAX_PER_TXD;
3146         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3147         unsigned int tx_flags = 0;
3148         unsigned int len = skb->len - skb->data_len;
3149         unsigned long irq_flags;
3150         unsigned int nr_frags;
3151         unsigned int mss;
3152         int count = 0;
3153         int tso;
3154         unsigned int f;
3155
3156         if (test_bit(__E1000_DOWN, &adapter->state)) {
3157                 dev_kfree_skb_any(skb);
3158                 return NETDEV_TX_OK;
3159         }
3160
3161         if (skb->len <= 0) {
3162                 dev_kfree_skb_any(skb);
3163                 return NETDEV_TX_OK;
3164         }
3165
3166         mss = skb_shinfo(skb)->gso_size;
3167         /* The controller does a simple calculation to
3168          * make sure there is enough room in the FIFO before
3169          * initiating the DMA for each buffer.  The calc is:
3170          * 4 = ceil(buffer len/mss).  To make sure we don't
3171          * overrun the FIFO, adjust the max buffer len if mss
3172          * drops. */
3173         if (mss) {
3174                 u8 hdr_len;
3175                 max_per_txd = min(mss << 2, max_per_txd);
3176                 max_txd_pwr = fls(max_per_txd) - 1;
3177
3178                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3179                 * points to just header, pull a few bytes of payload from
3180                 * frags into skb->data */
3181                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3182                 if (skb->data_len && (hdr_len == len)) {
3183                         unsigned int pull_size;
3184
3185                         pull_size = min((unsigned int)4, skb->data_len);
3186                         if (!__pskb_pull_tail(skb, pull_size)) {
3187                                 ndev_err(netdev,
3188                                          "__pskb_pull_tail failed.\n");
3189                                 dev_kfree_skb_any(skb);
3190                                 return NETDEV_TX_OK;
3191                         }
3192                         len = skb->len - skb->data_len;
3193                 }
3194         }
3195
3196         /* reserve a descriptor for the offload context */
3197         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3198                 count++;
3199         count++;
3200
3201         count += TXD_USE_COUNT(len, max_txd_pwr);
3202
3203         nr_frags = skb_shinfo(skb)->nr_frags;
3204         for (f = 0; f < nr_frags; f++)
3205                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3206                                        max_txd_pwr);
3207
3208         if (adapter->hw.mac.tx_pkt_filtering)
3209                 e1000_transfer_dhcp_info(adapter, skb);
3210
3211         if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3212                 /* Collision - tell upper layer to requeue */
3213                 return NETDEV_TX_LOCKED;
3214
3215         /* need: count + 2 desc gap to keep tail from touching
3216          * head, otherwise try next time */
3217         if (e1000_maybe_stop_tx(netdev, count + 2)) {
3218                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3219                 return NETDEV_TX_BUSY;
3220         }
3221
3222         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3223                 tx_flags |= E1000_TX_FLAGS_VLAN;
3224                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3225         }
3226
3227         first = tx_ring->next_to_use;
3228
3229         tso = e1000_tso(adapter, skb);
3230         if (tso < 0) {
3231                 dev_kfree_skb_any(skb);
3232                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3233                 return NETDEV_TX_OK;
3234         }
3235
3236         if (tso)
3237                 tx_flags |= E1000_TX_FLAGS_TSO;
3238         else if (e1000_tx_csum(adapter, skb))
3239                 tx_flags |= E1000_TX_FLAGS_CSUM;
3240
3241         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3242          * 82571 hardware supports TSO capabilities for IPv6 as well...
3243          * no longer assume, we must. */
3244         if (skb->protocol == htons(ETH_P_IP))
3245                 tx_flags |= E1000_TX_FLAGS_IPV4;
3246
3247         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3248         if (count < 0) {
3249                 /* handle pci_map_single() error in e1000_tx_map */
3250                 dev_kfree_skb_any(skb);
3251                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3252                 return NETDEV_TX_OK;
3253         }
3254
3255         e1000_tx_queue(adapter, tx_flags, count);
3256
3257         netdev->trans_start = jiffies;
3258
3259         /* Make sure there is space in the ring for the next send. */
3260         e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3261
3262         spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3263         return NETDEV_TX_OK;
3264 }
3265
3266 /**
3267  * e1000_tx_timeout - Respond to a Tx Hang
3268  * @netdev: network interface device structure
3269  **/
3270 static void e1000_tx_timeout(struct net_device *netdev)
3271 {
3272         struct e1000_adapter *adapter = netdev_priv(netdev);
3273
3274         /* Do the reset outside of interrupt context */
3275         adapter->tx_timeout_count++;
3276         schedule_work(&adapter->reset_task);
3277 }
3278
3279 static void e1000_reset_task(struct work_struct *work)
3280 {
3281         struct e1000_adapter *adapter;
3282         adapter = container_of(work, struct e1000_adapter, reset_task);
3283
3284         e1000e_reinit_locked(adapter);
3285 }
3286
3287 /**
3288  * e1000_get_stats - Get System Network Statistics
3289  * @netdev: network interface device structure
3290  *
3291  * Returns the address of the device statistics structure.
3292  * The statistics are actually updated from the timer callback.
3293  **/
3294 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3295 {
3296         struct e1000_adapter *adapter = netdev_priv(netdev);
3297
3298         /* only return the current stats */
3299         return &adapter->net_stats;
3300 }
3301
3302 /**
3303  * e1000_change_mtu - Change the Maximum Transfer Unit
3304  * @netdev: network interface device structure
3305  * @new_mtu: new value for maximum frame size
3306  *
3307  * Returns 0 on success, negative on failure
3308  **/
3309 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3310 {
3311         struct e1000_adapter *adapter = netdev_priv(netdev);
3312         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3313
3314         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3315             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3316                 ndev_err(netdev, "Invalid MTU setting\n");
3317                 return -EINVAL;
3318         }
3319
3320         /* Jumbo frame size limits */
3321         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3322                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3323                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3324                         return -EINVAL;
3325                 }
3326                 if (adapter->hw.phy.type == e1000_phy_ife) {
3327                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3328                         return -EINVAL;
3329                 }
3330         }
3331
3332 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3333         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3334                 ndev_err(netdev, "MTU > 9216 not supported.\n");
3335                 return -EINVAL;
3336         }
3337
3338         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3339                 msleep(1);
3340         /* e1000e_down has a dependency on max_frame_size */
3341         adapter->hw.mac.max_frame_size = max_frame;
3342         if (netif_running(netdev))
3343                 e1000e_down(adapter);
3344
3345         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3346          * means we reserve 2 more, this pushes us to allocate from the next
3347          * larger slab size.
3348          * i.e. RXBUFFER_2048 --> size-4096 slab */
3349
3350         if (max_frame <= 256)
3351                 adapter->rx_buffer_len = 256;
3352         else if (max_frame <= 512)
3353                 adapter->rx_buffer_len = 512;
3354         else if (max_frame <= 1024)
3355                 adapter->rx_buffer_len = 1024;
3356         else if (max_frame <= 2048)
3357                 adapter->rx_buffer_len = 2048;
3358         else
3359                 adapter->rx_buffer_len = 4096;
3360
3361         /* adjust allocation if LPE protects us, and we aren't using SBP */
3362         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3363              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3364                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3365                                          + ETH_FCS_LEN ;
3366
3367         ndev_info(netdev, "changing MTU from %d to %d\n",
3368                 netdev->mtu, new_mtu);
3369         netdev->mtu = new_mtu;
3370
3371         if (netif_running(netdev))
3372                 e1000e_up(adapter);
3373         else
3374                 e1000e_reset(adapter);
3375
3376         clear_bit(__E1000_RESETTING, &adapter->state);
3377
3378         return 0;
3379 }
3380
3381 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3382                            int cmd)
3383 {
3384         struct e1000_adapter *adapter = netdev_priv(netdev);
3385         struct mii_ioctl_data *data = if_mii(ifr);
3386         unsigned long irq_flags;
3387
3388         if (adapter->hw.media_type != e1000_media_type_copper)
3389                 return -EOPNOTSUPP;
3390
3391         switch (cmd) {
3392         case SIOCGMIIPHY:
3393                 data->phy_id = adapter->hw.phy.addr;
3394                 break;
3395         case SIOCGMIIREG:
3396                 if (!capable(CAP_NET_ADMIN))
3397                         return -EPERM;
3398                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3399                 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3400                                    &data->val_out)) {
3401                         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3402                         return -EIO;
3403                 }
3404                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3405                 break;
3406         case SIOCSMIIREG:
3407         default:
3408                 return -EOPNOTSUPP;
3409         }
3410         return 0;
3411 }
3412
3413 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3414 {
3415         switch (cmd) {
3416         case SIOCGMIIPHY:
3417         case SIOCGMIIREG:
3418         case SIOCSMIIREG:
3419                 return e1000_mii_ioctl(netdev, ifr, cmd);
3420         default:
3421                 return -EOPNOTSUPP;
3422         }
3423 }
3424
3425 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3426 {
3427         struct net_device *netdev = pci_get_drvdata(pdev);
3428         struct e1000_adapter *adapter = netdev_priv(netdev);
3429         struct e1000_hw *hw = &adapter->hw;
3430         u32 ctrl, ctrl_ext, rctl, status;
3431         u32 wufc = adapter->wol;
3432         int retval = 0;
3433
3434         netif_device_detach(netdev);
3435
3436         if (netif_running(netdev)) {
3437                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3438                 e1000e_down(adapter);
3439                 e1000_free_irq(adapter);
3440         }
3441
3442         retval = pci_save_state(pdev);
3443         if (retval)
3444                 return retval;
3445
3446         status = er32(STATUS);
3447         if (status & E1000_STATUS_LU)
3448                 wufc &= ~E1000_WUFC_LNKC;
3449
3450         if (wufc) {
3451                 e1000_setup_rctl(adapter);
3452                 e1000_set_multi(netdev);
3453
3454                 /* turn on all-multi mode if wake on multicast is enabled */
3455                 if (wufc & E1000_WUFC_MC) {
3456                         rctl = er32(RCTL);
3457                         rctl |= E1000_RCTL_MPE;
3458                         ew32(RCTL, rctl);
3459                 }
3460
3461                 ctrl = er32(CTRL);
3462                 /* advertise wake from D3Cold */
3463                 #define E1000_CTRL_ADVD3WUC 0x00100000
3464                 /* phy power management enable */
3465                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3466                 ctrl |= E1000_CTRL_ADVD3WUC |
3467                         E1000_CTRL_EN_PHY_PWR_MGMT;
3468                 ew32(CTRL, ctrl);
3469
3470                 if (adapter->hw.media_type == e1000_media_type_fiber ||
3471                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
3472                         /* keep the laser running in D3 */
3473                         ctrl_ext = er32(CTRL_EXT);
3474                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3475                         ew32(CTRL_EXT, ctrl_ext);
3476                 }
3477
3478                 /* Allow time for pending master requests to run */
3479                 e1000e_disable_pcie_master(&adapter->hw);
3480
3481                 ew32(WUC, E1000_WUC_PME_EN);
3482                 ew32(WUFC, wufc);
3483                 pci_enable_wake(pdev, PCI_D3hot, 1);
3484                 pci_enable_wake(pdev, PCI_D3cold, 1);
3485         } else {
3486                 ew32(WUC, 0);
3487                 ew32(WUFC, 0);
3488                 pci_enable_wake(pdev, PCI_D3hot, 0);
3489                 pci_enable_wake(pdev, PCI_D3cold, 0);
3490         }
3491
3492         e1000_release_manageability(adapter);
3493
3494         /* make sure adapter isn't asleep if manageability is enabled */
3495         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3496                 pci_enable_wake(pdev, PCI_D3hot, 1);
3497                 pci_enable_wake(pdev, PCI_D3cold, 1);
3498         }
3499
3500         if (adapter->hw.phy.type == e1000_phy_igp_3)
3501                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3502
3503         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3504          * would have already happened in close and is redundant. */
3505         e1000_release_hw_control(adapter);
3506
3507         pci_disable_device(pdev);
3508
3509         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3510
3511         return 0;
3512 }
3513
3514 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3515 {
3516         int pos;
3517         u32 cap;
3518         u16 val;
3519
3520         /*
3521          * 82573 workaround - disable L1 ASPM on mobile chipsets
3522          *
3523          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3524          * resulting in lost data or garbage information on the pci-e link
3525          * level. This could result in (false) bad EEPROM checksum errors,
3526          * long ping times (up to 2s) or even a system freeze/hang.
3527          *
3528          * Unfortunately this feature saves about 1W power consumption when
3529          * active.
3530          */
3531         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3532         pci_read_config_dword(pdev, pos + PCI_EXP_LNKCAP, &cap);
3533         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3534         if (val & 0x2) {
3535                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3536                 val &= ~0x2;
3537                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3538         }
3539 }
3540
3541 #ifdef CONFIG_PM
3542 static int e1000_resume(struct pci_dev *pdev)
3543 {
3544         struct net_device *netdev = pci_get_drvdata(pdev);
3545         struct e1000_adapter *adapter = netdev_priv(netdev);
3546         struct e1000_hw *hw = &adapter->hw;
3547         u32 err;
3548
3549         pci_set_power_state(pdev, PCI_D0);
3550         pci_restore_state(pdev);
3551         e1000e_disable_l1aspm(pdev);
3552         err = pci_enable_device(pdev);
3553         if (err) {
3554                 dev_err(&pdev->dev,
3555                         "Cannot enable PCI device from suspend\n");
3556                 return err;
3557         }
3558
3559         pci_set_master(pdev);
3560
3561         pci_enable_wake(pdev, PCI_D3hot, 0);
3562         pci_enable_wake(pdev, PCI_D3cold, 0);
3563
3564         if (netif_running(netdev)) {
3565                 err = e1000_request_irq(adapter);
3566                 if (err)
3567                         return err;
3568         }
3569
3570         e1000e_power_up_phy(adapter);
3571         e1000e_reset(adapter);
3572         ew32(WUS, ~0);
3573
3574         e1000_init_manageability(adapter);
3575
3576         if (netif_running(netdev))
3577                 e1000e_up(adapter);
3578
3579         netif_device_attach(netdev);
3580
3581         /* If the controller has AMT, do not set DRV_LOAD until the interface
3582          * is up.  For all other cases, let the f/w know that the h/w is now
3583          * under the control of the driver. */
3584         if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3585                 e1000_get_hw_control(adapter);
3586
3587         return 0;
3588 }
3589 #endif
3590
3591 static void e1000_shutdown(struct pci_dev *pdev)
3592 {
3593         e1000_suspend(pdev, PMSG_SUSPEND);
3594 }
3595
3596 #ifdef CONFIG_NET_POLL_CONTROLLER
3597 /*
3598  * Polling 'interrupt' - used by things like netconsole to send skbs
3599  * without having to re-enable interrupts. It's not called while
3600  * the interrupt routine is executing.
3601  */
3602 static void e1000_netpoll(struct net_device *netdev)
3603 {
3604         struct e1000_adapter *adapter = netdev_priv(netdev);
3605
3606         disable_irq(adapter->pdev->irq);
3607         e1000_intr(adapter->pdev->irq, netdev);
3608
3609         e1000_clean_tx_irq(adapter);
3610
3611         enable_irq(adapter->pdev->irq);
3612 }
3613 #endif
3614
3615 /**
3616  * e1000_io_error_detected - called when PCI error is detected
3617  * @pdev: Pointer to PCI device
3618  * @state: The current pci connection state
3619  *
3620  * This function is called after a PCI bus error affecting
3621  * this device has been detected.
3622  */
3623 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3624                                                 pci_channel_state_t state)
3625 {
3626         struct net_device *netdev = pci_get_drvdata(pdev);
3627         struct e1000_adapter *adapter = netdev_priv(netdev);
3628
3629         netif_device_detach(netdev);
3630
3631         if (netif_running(netdev))
3632                 e1000e_down(adapter);
3633         pci_disable_device(pdev);
3634
3635         /* Request a slot slot reset. */
3636         return PCI_ERS_RESULT_NEED_RESET;
3637 }
3638
3639 /**
3640  * e1000_io_slot_reset - called after the pci bus has been reset.
3641  * @pdev: Pointer to PCI device
3642  *
3643  * Restart the card from scratch, as if from a cold-boot. Implementation
3644  * resembles the first-half of the e1000_resume routine.
3645  */
3646 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3647 {
3648         struct net_device *netdev = pci_get_drvdata(pdev);
3649         struct e1000_adapter *adapter = netdev_priv(netdev);
3650         struct e1000_hw *hw = &adapter->hw;
3651
3652         e1000e_disable_l1aspm(pdev);
3653         if (pci_enable_device(pdev)) {
3654                 dev_err(&pdev->dev,
3655                         "Cannot re-enable PCI device after reset.\n");
3656                 return PCI_ERS_RESULT_DISCONNECT;
3657         }
3658         pci_set_master(pdev);
3659
3660         pci_enable_wake(pdev, PCI_D3hot, 0);
3661         pci_enable_wake(pdev, PCI_D3cold, 0);
3662
3663         e1000e_reset(adapter);
3664         ew32(WUS, ~0);
3665
3666         return PCI_ERS_RESULT_RECOVERED;
3667 }
3668
3669 /**
3670  * e1000_io_resume - called when traffic can start flowing again.
3671  * @pdev: Pointer to PCI device
3672  *
3673  * This callback is called when the error recovery driver tells us that
3674  * its OK to resume normal operation. Implementation resembles the
3675  * second-half of the e1000_resume routine.
3676  */
3677 static void e1000_io_resume(struct pci_dev *pdev)
3678 {
3679         struct net_device *netdev = pci_get_drvdata(pdev);
3680         struct e1000_adapter *adapter = netdev_priv(netdev);
3681
3682         e1000_init_manageability(adapter);
3683
3684         if (netif_running(netdev)) {
3685                 if (e1000e_up(adapter)) {
3686                         dev_err(&pdev->dev,
3687                                 "can't bring device back up after reset\n");
3688                         return;
3689                 }
3690         }
3691
3692         netif_device_attach(netdev);
3693
3694         /* If the controller has AMT, do not set DRV_LOAD until the interface
3695          * is up.  For all other cases, let the f/w know that the h/w is now
3696          * under the control of the driver. */
3697         if (!(adapter->flags & FLAG_HAS_AMT) ||
3698             !e1000e_check_mng_mode(&adapter->hw))
3699                 e1000_get_hw_control(adapter);
3700
3701 }
3702
3703 static void e1000_print_device_info(struct e1000_adapter *adapter)
3704 {
3705         struct e1000_hw *hw = &adapter->hw;
3706         struct net_device *netdev = adapter->netdev;
3707         u32 part_num;
3708
3709         /* print bus type/speed/width info */
3710         ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3711                   "%02x:%02x:%02x:%02x:%02x:%02x\n",
3712                   /* bus width */
3713                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3714                   "Width x1"),
3715                   /* MAC address */
3716                   netdev->dev_addr[0], netdev->dev_addr[1],
3717                   netdev->dev_addr[2], netdev->dev_addr[3],
3718                   netdev->dev_addr[4], netdev->dev_addr[5]);
3719         ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3720                   (hw->phy.type == e1000_phy_ife)
3721                    ? "10/100" : "1000");
3722         e1000e_read_part_num(hw, &part_num);
3723         ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3724                   hw->mac.type, hw->phy.type,
3725                   (part_num >> 8), (part_num & 0xff));
3726 }
3727
3728 /**
3729  * e1000_probe - Device Initialization Routine
3730  * @pdev: PCI device information struct
3731  * @ent: entry in e1000_pci_tbl
3732  *
3733  * Returns 0 on success, negative on failure
3734  *
3735  * e1000_probe initializes an adapter identified by a pci_dev structure.
3736  * The OS initialization, configuring of the adapter private structure,
3737  * and a hardware reset occur.
3738  **/
3739 static int __devinit e1000_probe(struct pci_dev *pdev,
3740                                  const struct pci_device_id *ent)
3741 {
3742         struct net_device *netdev;
3743         struct e1000_adapter *adapter;
3744         struct e1000_hw *hw;
3745         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3746         unsigned long mmio_start, mmio_len;
3747         unsigned long flash_start, flash_len;
3748
3749         static int cards_found;
3750         int i, err, pci_using_dac;
3751         u16 eeprom_data = 0;
3752         u16 eeprom_apme_mask = E1000_EEPROM_APME;
3753
3754         e1000e_disable_l1aspm(pdev);
3755         err = pci_enable_device(pdev);
3756         if (err)
3757                 return err;
3758
3759         pci_using_dac = 0;
3760         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3761         if (!err) {
3762                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3763                 if (!err)
3764                         pci_using_dac = 1;
3765         } else {
3766                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3767                 if (err) {
3768                         err = pci_set_consistent_dma_mask(pdev,
3769                                                           DMA_32BIT_MASK);
3770                         if (err) {
3771                                 dev_err(&pdev->dev, "No usable DMA "
3772                                         "configuration, aborting\n");
3773                                 goto err_dma;
3774                         }
3775                 }
3776         }
3777
3778         err = pci_request_regions(pdev, e1000e_driver_name);
3779         if (err)
3780                 goto err_pci_reg;
3781
3782         pci_set_master(pdev);
3783
3784         err = -ENOMEM;
3785         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3786         if (!netdev)
3787                 goto err_alloc_etherdev;
3788
3789         SET_NETDEV_DEV(netdev, &pdev->dev);
3790
3791         pci_set_drvdata(pdev, netdev);
3792         adapter = netdev_priv(netdev);
3793         hw = &adapter->hw;
3794         adapter->netdev = netdev;
3795         adapter->pdev = pdev;
3796         adapter->ei = ei;
3797         adapter->pba = ei->pba;
3798         adapter->flags = ei->flags;
3799         adapter->hw.adapter = adapter;
3800         adapter->hw.mac.type = ei->mac;
3801         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3802
3803         mmio_start = pci_resource_start(pdev, 0);
3804         mmio_len = pci_resource_len(pdev, 0);
3805
3806         err = -EIO;
3807         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3808         if (!adapter->hw.hw_addr)
3809                 goto err_ioremap;
3810
3811         if ((adapter->flags & FLAG_HAS_FLASH) &&
3812             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3813                 flash_start = pci_resource_start(pdev, 1);
3814                 flash_len = pci_resource_len(pdev, 1);
3815                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3816                 if (!adapter->hw.flash_address)
3817                         goto err_flashmap;
3818         }
3819
3820         /* construct the net_device struct */
3821         netdev->open                    = &e1000_open;
3822         netdev->stop                    = &e1000_close;
3823         netdev->hard_start_xmit         = &e1000_xmit_frame;
3824         netdev->get_stats               = &e1000_get_stats;
3825         netdev->set_multicast_list      = &e1000_set_multi;
3826         netdev->set_mac_address         = &e1000_set_mac;
3827         netdev->change_mtu              = &e1000_change_mtu;
3828         netdev->do_ioctl                = &e1000_ioctl;
3829         e1000e_set_ethtool_ops(netdev);
3830         netdev->tx_timeout              = &e1000_tx_timeout;
3831         netdev->watchdog_timeo          = 5 * HZ;
3832         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3833         netdev->vlan_rx_register        = e1000_vlan_rx_register;
3834         netdev->vlan_rx_add_vid         = e1000_vlan_rx_add_vid;
3835         netdev->vlan_rx_kill_vid        = e1000_vlan_rx_kill_vid;
3836 #ifdef CONFIG_NET_POLL_CONTROLLER
3837         netdev->poll_controller         = e1000_netpoll;
3838 #endif
3839         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3840
3841         netdev->mem_start = mmio_start;
3842         netdev->mem_end = mmio_start + mmio_len;
3843
3844         adapter->bd_number = cards_found++;
3845
3846         /* setup adapter struct */
3847         err = e1000_sw_init(adapter);
3848         if (err)
3849                 goto err_sw_init;
3850
3851         err = -EIO;
3852
3853         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3854         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3855         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3856
3857         err = ei->get_invariants(adapter);
3858         if (err)
3859                 goto err_hw_init;
3860
3861         hw->mac.ops.get_bus_info(&adapter->hw);
3862
3863         adapter->hw.phy.wait_for_link = 0;
3864
3865         /* Copper options */
3866         if (adapter->hw.media_type == e1000_media_type_copper) {
3867                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3868                 adapter->hw.phy.disable_polarity_correction = 0;
3869                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3870         }
3871
3872         if (e1000_check_reset_block(&adapter->hw))
3873                 ndev_info(netdev,
3874                           "PHY reset is blocked due to SOL/IDER session.\n");
3875
3876         netdev->features = NETIF_F_SG |
3877                            NETIF_F_HW_CSUM |
3878                            NETIF_F_HW_VLAN_TX |
3879                            NETIF_F_HW_VLAN_RX;
3880
3881         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3882                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3883
3884         netdev->features |= NETIF_F_TSO;
3885         netdev->features |= NETIF_F_TSO6;
3886
3887         if (pci_using_dac)
3888                 netdev->features |= NETIF_F_HIGHDMA;
3889
3890         /* We should not be using LLTX anymore, but we are still TX faster with
3891          * it. */
3892         netdev->features |= NETIF_F_LLTX;
3893
3894         if (e1000e_enable_mng_pass_thru(&adapter->hw))
3895                 adapter->flags |= FLAG_MNG_PT_ENABLED;
3896
3897         /* before reading the NVM, reset the controller to
3898          * put the device in a known good starting state */
3899         adapter->hw.mac.ops.reset_hw(&adapter->hw);
3900
3901         /*
3902          * systems with ASPM and others may see the checksum fail on the first
3903          * attempt. Let's give it a few tries
3904          */
3905         for (i = 0;; i++) {
3906                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3907                         break;
3908                 if (i == 2) {
3909                         ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3910                         err = -EIO;
3911                         goto err_eeprom;
3912                 }
3913         }
3914
3915         /* copy the MAC address out of the NVM */
3916         if (e1000e_read_mac_addr(&adapter->hw))
3917                 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3918
3919         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3920         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3921
3922         if (!is_valid_ether_addr(netdev->perm_addr)) {
3923                 ndev_err(netdev, "Invalid MAC Address: "
3924                          "%02x:%02x:%02x:%02x:%02x:%02x\n",
3925                          netdev->perm_addr[0], netdev->perm_addr[1],
3926                          netdev->perm_addr[2], netdev->perm_addr[3],
3927                          netdev->perm_addr[4], netdev->perm_addr[5]);
3928                 err = -EIO;
3929                 goto err_eeprom;
3930         }
3931
3932         init_timer(&adapter->watchdog_timer);
3933         adapter->watchdog_timer.function = &e1000_watchdog;
3934         adapter->watchdog_timer.data = (unsigned long) adapter;
3935
3936         init_timer(&adapter->phy_info_timer);
3937         adapter->phy_info_timer.function = &e1000_update_phy_info;
3938         adapter->phy_info_timer.data = (unsigned long) adapter;
3939
3940         INIT_WORK(&adapter->reset_task, e1000_reset_task);
3941         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3942
3943         e1000e_check_options(adapter);
3944
3945         /* Initialize link parameters. User can change them with ethtool */
3946         adapter->hw.mac.autoneg = 1;
3947         adapter->fc_autoneg = 1;
3948         adapter->hw.mac.original_fc = e1000_fc_default;
3949         adapter->hw.mac.fc = e1000_fc_default;
3950         adapter->hw.phy.autoneg_advertised = 0x2f;
3951
3952         /* ring size defaults */
3953         adapter->rx_ring->count = 256;
3954         adapter->tx_ring->count = 256;
3955
3956         /*
3957          * Initial Wake on LAN setting - If APM wake is enabled in
3958          * the EEPROM, enable the ACPI Magic Packet filter
3959          */
3960         if (adapter->flags & FLAG_APME_IN_WUC) {
3961                 /* APME bit in EEPROM is mapped to WUC.APME */
3962                 eeprom_data = er32(WUC);
3963                 eeprom_apme_mask = E1000_WUC_APME;
3964         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3965                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3966                     (adapter->hw.bus.func == 1))
3967                         e1000_read_nvm(&adapter->hw,
3968                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3969                 else
3970                         e1000_read_nvm(&adapter->hw,
3971                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3972         }
3973
3974         /* fetch WoL from EEPROM */
3975         if (eeprom_data & eeprom_apme_mask)
3976                 adapter->eeprom_wol |= E1000_WUFC_MAG;
3977
3978         /*
3979          * now that we have the eeprom settings, apply the special cases
3980          * where the eeprom may be wrong or the board simply won't support
3981          * wake on lan on a particular port
3982          */
3983         if (!(adapter->flags & FLAG_HAS_WOL))
3984                 adapter->eeprom_wol = 0;
3985
3986         /* initialize the wol settings based on the eeprom settings */
3987         adapter->wol = adapter->eeprom_wol;
3988
3989         /* reset the hardware with the new settings */
3990         e1000e_reset(adapter);
3991
3992         /* If the controller has AMT, do not set DRV_LOAD until the interface
3993          * is up.  For all other cases, let the f/w know that the h/w is now
3994          * under the control of the driver. */
3995         if (!(adapter->flags & FLAG_HAS_AMT) ||
3996             !e1000e_check_mng_mode(&adapter->hw))
3997                 e1000_get_hw_control(adapter);
3998
3999         /* tell the stack to leave us alone until e1000_open() is called */
4000         netif_carrier_off(netdev);
4001         netif_stop_queue(netdev);
4002
4003         strcpy(netdev->name, "eth%d");
4004         err = register_netdev(netdev);
4005         if (err)
4006                 goto err_register;
4007
4008         e1000_print_device_info(adapter);
4009
4010         return 0;
4011
4012 err_register:
4013 err_hw_init:
4014         e1000_release_hw_control(adapter);
4015 err_eeprom:
4016         if (!e1000_check_reset_block(&adapter->hw))
4017                 e1000_phy_hw_reset(&adapter->hw);
4018
4019         if (adapter->hw.flash_address)
4020                 iounmap(adapter->hw.flash_address);
4021
4022 err_flashmap:
4023         kfree(adapter->tx_ring);
4024         kfree(adapter->rx_ring);
4025 err_sw_init:
4026         iounmap(adapter->hw.hw_addr);
4027 err_ioremap:
4028         free_netdev(netdev);
4029 err_alloc_etherdev:
4030         pci_release_regions(pdev);
4031 err_pci_reg:
4032 err_dma:
4033         pci_disable_device(pdev);
4034         return err;
4035 }
4036
4037 /**
4038  * e1000_remove - Device Removal Routine
4039  * @pdev: PCI device information struct
4040  *
4041  * e1000_remove is called by the PCI subsystem to alert the driver
4042  * that it should release a PCI device.  The could be caused by a
4043  * Hot-Plug event, or because the driver is going to be removed from
4044  * memory.
4045  **/
4046 static void __devexit e1000_remove(struct pci_dev *pdev)
4047 {
4048         struct net_device *netdev = pci_get_drvdata(pdev);
4049         struct e1000_adapter *adapter = netdev_priv(netdev);
4050
4051         /* flush_scheduled work may reschedule our watchdog task, so
4052          * explicitly disable watchdog tasks from being rescheduled  */
4053         set_bit(__E1000_DOWN, &adapter->state);
4054         del_timer_sync(&adapter->watchdog_timer);
4055         del_timer_sync(&adapter->phy_info_timer);
4056
4057         flush_scheduled_work();
4058
4059         e1000_release_manageability(adapter);
4060
4061         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4062          * would have already happened in close and is redundant. */
4063         e1000_release_hw_control(adapter);
4064
4065         unregister_netdev(netdev);
4066
4067         if (!e1000_check_reset_block(&adapter->hw))
4068                 e1000_phy_hw_reset(&adapter->hw);
4069
4070         kfree(adapter->tx_ring);
4071         kfree(adapter->rx_ring);
4072
4073         iounmap(adapter->hw.hw_addr);
4074         if (adapter->hw.flash_address)
4075                 iounmap(adapter->hw.flash_address);
4076         pci_release_regions(pdev);
4077
4078         free_netdev(netdev);
4079
4080         pci_disable_device(pdev);
4081 }
4082
4083 /* PCI Error Recovery (ERS) */
4084 static struct pci_error_handlers e1000_err_handler = {
4085         .error_detected = e1000_io_error_detected,
4086         .slot_reset = e1000_io_slot_reset,
4087         .resume = e1000_io_resume,
4088 };
4089
4090 static struct pci_device_id e1000_pci_tbl[] = {
4091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4093         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4094         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4095         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4098         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4099         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4108           board_80003es2lan },
4109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4110           board_80003es2lan },
4111         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4112           board_80003es2lan },
4113         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4114           board_80003es2lan },
4115         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4116         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4117         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4118         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4119         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4120         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4121         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4122         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4123         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4124         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4125         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4126         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4127
4128         { }     /* terminate list */
4129 };
4130 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4131
4132 /* PCI Device API Driver */
4133 static struct pci_driver e1000_driver = {
4134         .name     = e1000e_driver_name,
4135         .id_table = e1000_pci_tbl,
4136         .probe    = e1000_probe,
4137         .remove   = __devexit_p(e1000_remove),
4138 #ifdef CONFIG_PM
4139         /* Power Managment Hooks */
4140         .suspend  = e1000_suspend,
4141         .resume   = e1000_resume,
4142 #endif
4143         .shutdown = e1000_shutdown,
4144         .err_handler = &e1000_err_handler
4145 };
4146
4147 /**
4148  * e1000_init_module - Driver Registration Routine
4149  *
4150  * e1000_init_module is the first routine called when the driver is
4151  * loaded. All it does is register with the PCI subsystem.
4152  **/
4153 static int __init e1000_init_module(void)
4154 {
4155         int ret;
4156         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4157                e1000e_driver_name, e1000e_driver_version);
4158         printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4159                e1000e_driver_name);
4160         ret = pci_register_driver(&e1000_driver);
4161
4162         return ret;
4163 }
4164 module_init(e1000_init_module);
4165
4166 /**
4167  * e1000_exit_module - Driver Exit Cleanup Routine
4168  *
4169  * e1000_exit_module is called just before the driver is removed
4170  * from memory.
4171  **/
4172 static void __exit e1000_exit_module(void)
4173 {
4174         pci_unregister_driver(&e1000_driver);
4175 }
4176 module_exit(e1000_exit_module);
4177
4178
4179 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4180 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4181 MODULE_LICENSE("GPL");
4182 MODULE_VERSION(DRV_VERSION);
4183
4184 /* e1000_main.c */