1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
28 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
29 * costly to service. That is between allocation orders which should
30 * coelesce naturally under reasonable reclaim pressure and those which
33 #define PAGE_ALLOC_COSTLY_ORDER 3
36 struct list_head free_list;
37 unsigned long nr_free;
43 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
44 * So add a wild amount of padding here to ensure that they fall into separate
45 * cachelines. There are very few zone structures in the machine, so space
46 * consumption is not a concern here.
48 #if defined(CONFIG_SMP)
51 } ____cacheline_internodealigned_in_smp;
52 #define ZONE_PADDING(name) struct zone_padding name;
54 #define ZONE_PADDING(name)
58 /* First 128 byte cacheline (assuming 64 bit words) */
62 NR_ANON_PAGES, /* Mapped anonymous pages */
63 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
64 only modified from process context */
68 /* Second 128 byte cacheline */
70 NR_SLAB_UNRECLAIMABLE,
71 NR_PAGETABLE, /* used for pagetables */
72 NR_UNSTABLE_NFS, /* NFS unstable pages */
76 NUMA_HIT, /* allocated in intended node */
77 NUMA_MISS, /* allocated in non intended node */
78 NUMA_FOREIGN, /* was intended here, hit elsewhere */
79 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
80 NUMA_LOCAL, /* allocation from local node */
81 NUMA_OTHER, /* allocation from other node */
83 NR_VM_ZONE_STAT_ITEMS };
85 struct per_cpu_pages {
86 int count; /* number of pages in the list */
87 int high; /* high watermark, emptying needed */
88 int batch; /* chunk size for buddy add/remove */
89 struct list_head list; /* the list of pages */
92 struct per_cpu_pageset {
93 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
99 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
101 } ____cacheline_aligned_in_smp;
104 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
106 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
110 #ifdef CONFIG_ZONE_DMA
112 * ZONE_DMA is used when there are devices that are not able
113 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
114 * carve out the portion of memory that is needed for these devices.
115 * The range is arch specific.
120 * ---------------------------
121 * parisc, ia64, sparc <4G
125 * alpha Unlimited or 0-16MB.
127 * i386, x86_64 and multiple other arches
132 #ifdef CONFIG_ZONE_DMA32
134 * x86_64 needs two ZONE_DMAs because it supports devices that are
135 * only able to do DMA to the lower 16M but also 32 bit devices that
136 * can only do DMA areas below 4G.
141 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
142 * performed on pages in ZONE_NORMAL if the DMA devices support
143 * transfers to all addressable memory.
146 #ifdef CONFIG_HIGHMEM
148 * A memory area that is only addressable by the kernel through
149 * mapping portions into its own address space. This is for example
150 * used by i386 to allow the kernel to address the memory beyond
151 * 900MB. The kernel will set up special mappings (page
152 * table entries on i386) for each page that the kernel needs to
162 * When a memory allocation must conform to specific limitations (such
163 * as being suitable for DMA) the caller will pass in hints to the
164 * allocator in the gfp_mask, in the zone modifier bits. These bits
165 * are used to select a priority ordered list of memory zones which
166 * match the requested limits. See gfp_zone() in include/linux/gfp.h
170 * Count the active zones. Note that the use of defined(X) outside
171 * #if and family is not necessarily defined so ensure we cannot use
172 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
174 #define __ZONE_COUNT ( \
175 defined(CONFIG_ZONE_DMA) \
176 + defined(CONFIG_ZONE_DMA32) \
178 + defined(CONFIG_HIGHMEM) \
182 #define ZONES_SHIFT 0
183 #elif __ZONE_COUNT <= 2
184 #define ZONES_SHIFT 1
185 #elif __ZONE_COUNT <= 4
186 #define ZONES_SHIFT 2
188 #error ZONES_SHIFT -- too many zones configured adjust calculation
193 /* Fields commonly accessed by the page allocator */
194 unsigned long pages_min, pages_low, pages_high;
196 * We don't know if the memory that we're going to allocate will be freeable
197 * or/and it will be released eventually, so to avoid totally wasting several
198 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
199 * to run OOM on the lower zones despite there's tons of freeable ram
200 * on the higher zones). This array is recalculated at runtime if the
201 * sysctl_lowmem_reserve_ratio sysctl changes.
203 unsigned long lowmem_reserve[MAX_NR_ZONES];
208 * zone reclaim becomes active if more unmapped pages exist.
210 unsigned long min_unmapped_pages;
211 unsigned long min_slab_pages;
212 struct per_cpu_pageset *pageset[NR_CPUS];
214 struct per_cpu_pageset pageset[NR_CPUS];
217 * free areas of different sizes
220 #ifdef CONFIG_MEMORY_HOTPLUG
221 /* see spanned/present_pages for more description */
222 seqlock_t span_seqlock;
224 struct free_area free_area[MAX_ORDER];
229 /* Fields commonly accessed by the page reclaim scanner */
231 struct list_head active_list;
232 struct list_head inactive_list;
233 unsigned long nr_scan_active;
234 unsigned long nr_scan_inactive;
235 unsigned long pages_scanned; /* since last reclaim */
236 int all_unreclaimable; /* All pages pinned */
238 /* A count of how many reclaimers are scanning this zone */
239 atomic_t reclaim_in_progress;
241 /* Zone statistics */
242 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
245 * prev_priority holds the scanning priority for this zone. It is
246 * defined as the scanning priority at which we achieved our reclaim
247 * target at the previous try_to_free_pages() or balance_pgdat()
250 * We use prev_priority as a measure of how much stress page reclaim is
251 * under - it drives the swappiness decision: whether to unmap mapped
254 * Access to both this field is quite racy even on uniprocessor. But
255 * it is expected to average out OK.
261 /* Rarely used or read-mostly fields */
264 * wait_table -- the array holding the hash table
265 * wait_table_hash_nr_entries -- the size of the hash table array
266 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
268 * The purpose of all these is to keep track of the people
269 * waiting for a page to become available and make them
270 * runnable again when possible. The trouble is that this
271 * consumes a lot of space, especially when so few things
272 * wait on pages at a given time. So instead of using
273 * per-page waitqueues, we use a waitqueue hash table.
275 * The bucket discipline is to sleep on the same queue when
276 * colliding and wake all in that wait queue when removing.
277 * When something wakes, it must check to be sure its page is
278 * truly available, a la thundering herd. The cost of a
279 * collision is great, but given the expected load of the
280 * table, they should be so rare as to be outweighed by the
281 * benefits from the saved space.
283 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
284 * primary users of these fields, and in mm/page_alloc.c
285 * free_area_init_core() performs the initialization of them.
287 wait_queue_head_t * wait_table;
288 unsigned long wait_table_hash_nr_entries;
289 unsigned long wait_table_bits;
292 * Discontig memory support fields.
294 struct pglist_data *zone_pgdat;
295 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
296 unsigned long zone_start_pfn;
299 * zone_start_pfn, spanned_pages and present_pages are all
300 * protected by span_seqlock. It is a seqlock because it has
301 * to be read outside of zone->lock, and it is done in the main
302 * allocator path. But, it is written quite infrequently.
304 * The lock is declared along with zone->lock because it is
305 * frequently read in proximity to zone->lock. It's good to
306 * give them a chance of being in the same cacheline.
308 unsigned long spanned_pages; /* total size, including holes */
309 unsigned long present_pages; /* amount of memory (excluding holes) */
312 * rarely used fields:
315 } ____cacheline_internodealigned_in_smp;
318 * The "priority" of VM scanning is how much of the queues we will scan in one
319 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
320 * queues ("queue_length >> 12") during an aging round.
322 #define DEF_PRIORITY 12
324 /* Maximum number of zones on a zonelist */
325 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
329 * We cache key information from each zonelist for smaller cache
330 * footprint when scanning for free pages in get_page_from_freelist().
332 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
333 * up short of free memory since the last time (last_fullzone_zap)
334 * we zero'd fullzones.
335 * 2) The array z_to_n[] maps each zone in the zonelist to its node
336 * id, so that we can efficiently evaluate whether that node is
337 * set in the current tasks mems_allowed.
339 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
340 * indexed by a zones offset in the zonelist zones[] array.
342 * The get_page_from_freelist() routine does two scans. During the
343 * first scan, we skip zones whose corresponding bit in 'fullzones'
344 * is set or whose corresponding node in current->mems_allowed (which
345 * comes from cpusets) is not set. During the second scan, we bypass
346 * this zonelist_cache, to ensure we look methodically at each zone.
348 * Once per second, we zero out (zap) fullzones, forcing us to
349 * reconsider nodes that might have regained more free memory.
350 * The field last_full_zap is the time we last zapped fullzones.
352 * This mechanism reduces the amount of time we waste repeatedly
353 * reexaming zones for free memory when they just came up low on
354 * memory momentarilly ago.
356 * The zonelist_cache struct members logically belong in struct
357 * zonelist. However, the mempolicy zonelists constructed for
358 * MPOL_BIND are intentionally variable length (and usually much
359 * shorter). A general purpose mechanism for handling structs with
360 * multiple variable length members is more mechanism than we want
361 * here. We resort to some special case hackery instead.
363 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
364 * part because they are shorter), so we put the fixed length stuff
365 * at the front of the zonelist struct, ending in a variable length
366 * zones[], as is needed by MPOL_BIND.
368 * Then we put the optional zonelist cache on the end of the zonelist
369 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
370 * the fixed length portion at the front of the struct. This pointer
371 * both enables us to find the zonelist cache, and in the case of
372 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
373 * to know that the zonelist cache is not there.
375 * The end result is that struct zonelists come in two flavors:
376 * 1) The full, fixed length version, shown below, and
377 * 2) The custom zonelists for MPOL_BIND.
378 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
380 * Even though there may be multiple CPU cores on a node modifying
381 * fullzones or last_full_zap in the same zonelist_cache at the same
382 * time, we don't lock it. This is just hint data - if it is wrong now
383 * and then, the allocator will still function, perhaps a bit slower.
387 struct zonelist_cache {
388 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
389 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
390 unsigned long last_full_zap; /* when last zap'd (jiffies) */
393 struct zonelist_cache;
397 * One allocation request operates on a zonelist. A zonelist
398 * is a list of zones, the first one is the 'goal' of the
399 * allocation, the other zones are fallback zones, in decreasing
402 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
403 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
407 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
408 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
410 struct zonelist_cache zlcache; // optional ...
414 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
415 struct node_active_region {
416 unsigned long start_pfn;
417 unsigned long end_pfn;
420 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
422 #ifndef CONFIG_DISCONTIGMEM
423 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
424 extern struct page *mem_map;
428 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
429 * (mostly NUMA machines?) to denote a higher-level memory zone than the
432 * On NUMA machines, each NUMA node would have a pg_data_t to describe
433 * it's memory layout.
435 * Memory statistics and page replacement data structures are maintained on a
439 typedef struct pglist_data {
440 struct zone node_zones[MAX_NR_ZONES];
441 struct zonelist node_zonelists[MAX_NR_ZONES];
443 #ifdef CONFIG_FLAT_NODE_MEM_MAP
444 struct page *node_mem_map;
446 struct bootmem_data *bdata;
447 #ifdef CONFIG_MEMORY_HOTPLUG
449 * Must be held any time you expect node_start_pfn, node_present_pages
450 * or node_spanned_pages stay constant. Holding this will also
451 * guarantee that any pfn_valid() stays that way.
453 * Nests above zone->lock and zone->size_seqlock.
455 spinlock_t node_size_lock;
457 unsigned long node_start_pfn;
458 unsigned long node_present_pages; /* total number of physical pages */
459 unsigned long node_spanned_pages; /* total size of physical page
460 range, including holes */
462 wait_queue_head_t kswapd_wait;
463 struct task_struct *kswapd;
464 int kswapd_max_order;
467 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
468 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
469 #ifdef CONFIG_FLAT_NODE_MEM_MAP
470 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
472 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
474 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
476 #include <linux/memory_hotplug.h>
478 void get_zone_counts(unsigned long *active, unsigned long *inactive,
479 unsigned long *free);
480 void build_all_zonelists(void);
481 void wakeup_kswapd(struct zone *zone, int order);
482 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
483 int classzone_idx, int alloc_flags);
484 enum memmap_context {
488 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
490 enum memmap_context context);
492 #ifdef CONFIG_HAVE_MEMORY_PRESENT
493 void memory_present(int nid, unsigned long start, unsigned long end);
495 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
498 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
499 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
503 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
505 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
507 static inline int populated_zone(struct zone *zone)
509 return (!!zone->present_pages);
512 extern int movable_zone;
514 static inline int zone_movable_is_highmem(void)
516 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
517 return movable_zone == ZONE_HIGHMEM;
523 static inline int is_highmem_idx(enum zone_type idx)
525 #ifdef CONFIG_HIGHMEM
526 return (idx == ZONE_HIGHMEM ||
527 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
533 static inline int is_normal_idx(enum zone_type idx)
535 return (idx == ZONE_NORMAL);
539 * is_highmem - helper function to quickly check if a struct zone is a
540 * highmem zone or not. This is an attempt to keep references
541 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
542 * @zone - pointer to struct zone variable
544 static inline int is_highmem(struct zone *zone)
546 #ifdef CONFIG_HIGHMEM
547 int zone_idx = zone - zone->zone_pgdat->node_zones;
548 return zone_idx == ZONE_HIGHMEM ||
549 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
555 static inline int is_normal(struct zone *zone)
557 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
560 static inline int is_dma32(struct zone *zone)
562 #ifdef CONFIG_ZONE_DMA32
563 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
569 static inline int is_dma(struct zone *zone)
571 #ifdef CONFIG_ZONE_DMA
572 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
578 /* These two functions are used to setup the per zone pages min values */
581 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
582 void __user *, size_t *, loff_t *);
583 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
584 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
585 void __user *, size_t *, loff_t *);
586 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
587 void __user *, size_t *, loff_t *);
588 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
589 struct file *, void __user *, size_t *, loff_t *);
590 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
591 struct file *, void __user *, size_t *, loff_t *);
593 extern int numa_zonelist_order_handler(struct ctl_table *, int,
594 struct file *, void __user *, size_t *, loff_t *);
595 extern char numa_zonelist_order[];
596 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
598 #include <linux/topology.h>
599 /* Returns the number of the current Node. */
601 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
604 #ifndef CONFIG_NEED_MULTIPLE_NODES
606 extern struct pglist_data contig_page_data;
607 #define NODE_DATA(nid) (&contig_page_data)
608 #define NODE_MEM_MAP(nid) mem_map
609 #define MAX_NODES_SHIFT 1
611 #else /* CONFIG_NEED_MULTIPLE_NODES */
613 #include <asm/mmzone.h>
615 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
617 extern struct pglist_data *first_online_pgdat(void);
618 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
619 extern struct zone *next_zone(struct zone *zone);
622 * for_each_pgdat - helper macro to iterate over all nodes
623 * @pgdat - pointer to a pg_data_t variable
625 #define for_each_online_pgdat(pgdat) \
626 for (pgdat = first_online_pgdat(); \
628 pgdat = next_online_pgdat(pgdat))
630 * for_each_zone - helper macro to iterate over all memory zones
631 * @zone - pointer to struct zone variable
633 * The user only needs to declare the zone variable, for_each_zone
636 #define for_each_zone(zone) \
637 for (zone = (first_online_pgdat())->node_zones; \
639 zone = next_zone(zone))
641 #ifdef CONFIG_SPARSEMEM
642 #include <asm/sparsemem.h>
645 #if BITS_PER_LONG == 32
647 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
648 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
650 #define FLAGS_RESERVED 9
652 #elif BITS_PER_LONG == 64
654 * with 64 bit flags field, there's plenty of room.
656 #define FLAGS_RESERVED 32
660 #error BITS_PER_LONG not defined
664 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
665 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
666 #define early_pfn_to_nid(nid) (0UL)
669 #ifdef CONFIG_FLATMEM
670 #define pfn_to_nid(pfn) (0)
673 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
674 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
676 #ifdef CONFIG_SPARSEMEM
679 * SECTION_SHIFT #bits space required to store a section #
681 * PA_SECTION_SHIFT physical address to/from section number
682 * PFN_SECTION_SHIFT pfn to/from section number
684 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
686 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
687 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
689 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
691 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
692 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
694 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
695 #error Allocator MAX_ORDER exceeds SECTION_SIZE
701 * This is, logically, a pointer to an array of struct
702 * pages. However, it is stored with some other magic.
703 * (see sparse.c::sparse_init_one_section())
705 * Additionally during early boot we encode node id of
706 * the location of the section here to guide allocation.
707 * (see sparse.c::memory_present())
709 * Making it a UL at least makes someone do a cast
710 * before using it wrong.
712 unsigned long section_mem_map;
715 #ifdef CONFIG_SPARSEMEM_EXTREME
716 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
718 #define SECTIONS_PER_ROOT 1
721 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
722 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
723 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
725 #ifdef CONFIG_SPARSEMEM_EXTREME
726 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
728 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
731 static inline struct mem_section *__nr_to_section(unsigned long nr)
733 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
735 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
737 extern int __section_nr(struct mem_section* ms);
740 * We use the lower bits of the mem_map pointer to store
741 * a little bit of information. There should be at least
742 * 3 bits here due to 32-bit alignment.
744 #define SECTION_MARKED_PRESENT (1UL<<0)
745 #define SECTION_HAS_MEM_MAP (1UL<<1)
746 #define SECTION_MAP_LAST_BIT (1UL<<2)
747 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
748 #define SECTION_NID_SHIFT 2
750 static inline struct page *__section_mem_map_addr(struct mem_section *section)
752 unsigned long map = section->section_mem_map;
753 map &= SECTION_MAP_MASK;
754 return (struct page *)map;
757 static inline int valid_section(struct mem_section *section)
759 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
762 static inline int section_has_mem_map(struct mem_section *section)
764 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
767 static inline int valid_section_nr(unsigned long nr)
769 return valid_section(__nr_to_section(nr));
772 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
774 return __nr_to_section(pfn_to_section_nr(pfn));
777 static inline int pfn_valid(unsigned long pfn)
779 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
781 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
785 * These are _only_ used during initialisation, therefore they
786 * can use __initdata ... They could have names to indicate
790 #define pfn_to_nid(pfn) \
792 unsigned long __pfn_to_nid_pfn = (pfn); \
793 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
796 #define pfn_to_nid(pfn) (0)
799 #define early_pfn_valid(pfn) pfn_valid(pfn)
800 void sparse_init(void);
802 #define sparse_init() do {} while (0)
803 #define sparse_index_init(_sec, _nid) do {} while (0)
804 #endif /* CONFIG_SPARSEMEM */
806 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
807 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
809 #define early_pfn_in_nid(pfn, nid) (1)
812 #ifndef early_pfn_valid
813 #define early_pfn_valid(pfn) (1)
816 void memory_present(int nid, unsigned long start, unsigned long end);
817 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
820 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
821 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
822 * pfn_valid_within() should be used in this case; we optimise this away
823 * when we have no holes within a MAX_ORDER_NR_PAGES block.
825 #ifdef CONFIG_HOLES_IN_ZONE
826 #define pfn_valid_within(pfn) pfn_valid(pfn)
828 #define pfn_valid_within(pfn) (1)
831 #endif /* !__ASSEMBLY__ */
832 #endif /* __KERNEL__ */
833 #endif /* _LINUX_MMZONE_H */