1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/clockchips.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/cpumask.h>
7 #include <linux/interrupt.h>
8 #include <linux/kernel_stat.h>
9 #include <linux/module.h>
12 #include <asm/processor.h>
13 #include <asm/atomic.h>
14 #include <asm/system.h>
15 #include <asm/hardirq.h>
16 #include <asm/hazards.h>
18 #include <asm/mmu_context.h>
20 #include <asm/mipsregs.h>
21 #include <asm/cacheflush.h>
23 #include <asm/addrspace.h>
25 #include <asm/smtc_ipi.h>
26 #include <asm/smtc_proc.h>
29 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
30 * in do_IRQ. These are passed in setup_irq_smtc() and stored
33 unsigned long irq_hwmask[NR_IRQS];
35 #define LOCK_MT_PRA() \
36 local_irq_save(flags); \
39 #define UNLOCK_MT_PRA() \
41 local_irq_restore(flags)
43 #define LOCK_CORE_PRA() \
44 local_irq_save(flags); \
47 #define UNLOCK_CORE_PRA() \
49 local_irq_restore(flags)
52 * Data structures purely associated with SMTC parallelism
57 * Table for tracking ASIDs whose lifetime is prolonged.
60 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
63 * Clock interrupt "latch" buffers, per "CPU"
66 static atomic_t ipi_timer_latch[NR_CPUS];
69 * Number of InterProcessor Interupt (IPI) message buffers to allocate
72 #define IPIBUF_PER_CPU 4
74 static struct smtc_ipi_q IPIQ[NR_CPUS];
75 static struct smtc_ipi_q freeIPIq;
78 /* Forward declarations */
80 void ipi_decode(struct smtc_ipi *);
81 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
82 static void setup_cross_vpe_interrupts(unsigned int nvpe);
83 void init_smtc_stats(void);
85 /* Global SMTC Status */
87 unsigned int smtc_status = 0;
89 /* Boot command line configuration overrides */
92 static int ipibuffers = 0;
93 static int nostlb = 0;
94 static int asidmask = 0;
95 unsigned long smtc_asid_mask = 0xff;
97 static int __init vpe0tcs(char *str)
99 get_option(&str, &vpe0limit);
104 static int __init ipibufs(char *str)
106 get_option(&str, &ipibuffers);
110 static int __init stlb_disable(char *s)
116 static int __init asidmask_set(char *str)
118 get_option(&str, &asidmask);
128 smtc_asid_mask = (unsigned long)asidmask;
131 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
136 __setup("vpe0tcs=", vpe0tcs);
137 __setup("ipibufs=", ipibufs);
138 __setup("nostlb", stlb_disable);
139 __setup("asidmask=", asidmask_set);
141 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
143 static int hang_trig = 0;
145 static int __init hangtrig_enable(char *s)
152 __setup("hangtrig", hangtrig_enable);
154 #define DEFAULT_BLOCKED_IPI_LIMIT 32
156 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
158 static int __init tintq(char *str)
160 get_option(&str, &timerq_limit);
164 __setup("tintq=", tintq);
166 static int imstuckcount[2][8];
167 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
168 static int vpemask[2][8] = {
169 {0, 0, 1, 0, 0, 0, 0, 1},
170 {0, 0, 0, 0, 0, 0, 0, 1}
172 int tcnoprog[NR_CPUS];
173 static atomic_t idle_hook_initialized = {0};
174 static int clock_hang_reported[NR_CPUS];
176 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
178 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
180 void __init sanitize_tlb_entries(void)
182 printk("Deprecated sanitize_tlb_entries() invoked\n");
187 * Configure shared TLB - VPC configuration bit must be set by caller
190 static void smtc_configure_tlb(void)
193 unsigned long mvpconf0;
194 unsigned long config1val;
196 /* Set up ASID preservation table */
197 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
198 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
199 smtc_live_asid[vpes][i] = 0;
202 mvpconf0 = read_c0_mvpconf0();
204 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
205 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
206 /* If we have multiple VPEs, try to share the TLB */
207 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
209 * If TLB sizing is programmable, shared TLB
210 * size is the total available complement.
211 * Otherwise, we have to take the sum of all
212 * static VPE TLB entries.
214 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
215 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
217 * If there's more than one VPE, there had better
218 * be more than one TC, because we need one to bind
219 * to each VPE in turn to be able to read
220 * its configuration state!
223 /* Stop the TC from doing anything foolish */
224 write_tc_c0_tchalt(TCHALT_H);
226 /* No need to un-Halt - that happens later anyway */
227 for (i=0; i < vpes; i++) {
228 write_tc_c0_tcbind(i);
230 * To be 100% sure we're really getting the right
231 * information, we exit the configuration state
232 * and do an IHB after each rebinding.
235 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
238 * Only count if the MMU Type indicated is TLB
240 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
241 config1val = read_vpe_c0_config1();
242 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
245 /* Put core back in configuration state */
247 read_c0_mvpcontrol() | MVPCONTROL_VPC );
251 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
255 * Setup kernel data structures to use software total,
256 * rather than read the per-VPE Config1 value. The values
257 * for "CPU 0" gets copied to all the other CPUs as part
258 * of their initialization in smtc_cpu_setup().
261 /* MIPS32 limits TLB indices to 64 */
264 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
265 smtc_status |= SMTC_TLB_SHARED;
266 local_flush_tlb_all();
268 printk("TLB of %d entry pairs shared by %d VPEs\n",
271 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
278 * Incrementally build the CPU map out of constituent MIPS MT cores,
279 * using the specified available VPEs and TCs. Plaform code needs
280 * to ensure that each MIPS MT core invokes this routine on reset,
283 * This version of the build_cpu_map and prepare_cpus routines assumes
284 * that *all* TCs of a MIPS MT core will be used for Linux, and that
285 * they will be spread across *all* available VPEs (to minimise the
286 * loss of efficiency due to exception service serialization).
287 * An improved version would pick up configuration information and
288 * possibly leave some TCs/VPEs as "slave" processors.
290 * Use c0_MVPConf0 to find out how many TCs are available, setting up
291 * phys_cpu_present_map and the logical/physical mappings.
294 int __init mipsmt_build_cpu_map(int start_cpu_slot)
299 * The CPU map isn't actually used for anything at this point,
300 * so it's not clear what else we should do apart from set
301 * everything up so that "logical" = "physical".
303 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
304 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
305 cpu_set(i, phys_cpu_present_map);
306 __cpu_number_map[i] = i;
307 __cpu_logical_map[i] = i;
309 #ifdef CONFIG_MIPS_MT_FPAFF
310 /* Initialize map of CPUs with FPUs */
311 cpus_clear(mt_fpu_cpumask);
314 /* One of those TC's is the one booting, and not a secondary... */
315 printk("%i available secondary CPU TC(s)\n", i - 1);
321 * Common setup before any secondaries are started
322 * Make sure all CPU's are in a sensible state before we boot any of the
325 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
326 * as possible across the available VPEs.
329 static void smtc_tc_setup(int vpe, int tc, int cpu)
332 write_tc_c0_tchalt(TCHALT_H);
334 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
335 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
337 write_tc_c0_tccontext(0);
339 write_tc_c0_tcbind(vpe);
340 /* In general, all TCs should have the same cpu_data indications */
341 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
342 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
343 if (cpu_data[0].cputype == CPU_34K)
344 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
345 cpu_data[cpu].vpe_id = vpe;
346 cpu_data[cpu].tc_id = tc;
350 void mipsmt_prepare_cpus(void)
352 int i, vpe, tc, ntc, nvpe, tcpervpe[NR_CPUS], slop, cpu;
356 struct smtc_ipi *pipi;
358 /* disable interrupts so we can disable MT */
359 local_irq_save(flags);
360 /* disable MT so we can configure */
364 spin_lock_init(&freeIPIq.lock);
367 * We probably don't have as many VPEs as we do SMP "CPUs",
368 * but it's possible - and in any case we'll never use more!
370 for (i=0; i<NR_CPUS; i++) {
371 IPIQ[i].head = IPIQ[i].tail = NULL;
372 spin_lock_init(&IPIQ[i].lock);
374 atomic_set(&ipi_timer_latch[i], 0);
377 /* cpu_data index starts at zero */
379 cpu_data[cpu].vpe_id = 0;
380 cpu_data[cpu].tc_id = 0;
383 /* Report on boot-time options */
384 mips_mt_set_cpuoptions();
386 printk("Limit of %d VPEs set\n", vpelimit);
388 printk("Limit of %d TCs set\n", tclimit);
390 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
393 printk("ASID mask value override to 0x%x\n", asidmask);
396 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
398 printk("Logic Analyser Trigger on suspected TC hang\n");
399 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
401 /* Put MVPE's into 'configuration state' */
402 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
404 val = read_c0_mvpconf0();
405 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
406 if (vpelimit > 0 && nvpe > vpelimit)
408 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
411 if (tclimit > 0 && ntc > tclimit)
414 for (i = 0; i < nvpe; i++) {
415 tcpervpe[i] = ntc / nvpe;
417 if((slop - i) > 0) tcpervpe[i]++;
420 /* Handle command line override for VPE0 */
421 if (vpe0limit > ntc) vpe0limit = ntc;
424 if (vpe0limit < tcpervpe[0]) {
425 /* Reducing TC count - distribute to others */
426 slop = tcpervpe[0] - vpe0limit;
427 slopslop = slop % (nvpe - 1);
428 tcpervpe[0] = vpe0limit;
429 for (i = 1; i < nvpe; i++) {
430 tcpervpe[i] += slop / (nvpe - 1);
431 if(slopslop && ((slopslop - (i - 1) > 0)))
434 } else if (vpe0limit > tcpervpe[0]) {
435 /* Increasing TC count - steal from others */
436 slop = vpe0limit - tcpervpe[0];
437 slopslop = slop % (nvpe - 1);
438 tcpervpe[0] = vpe0limit;
439 for (i = 1; i < nvpe; i++) {
440 tcpervpe[i] -= slop / (nvpe - 1);
441 if(slopslop && ((slopslop - (i - 1) > 0)))
447 /* Set up shared TLB */
448 smtc_configure_tlb();
450 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
455 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
458 printk("VPE %d: TC", vpe);
459 for (i = 0; i < tcpervpe[vpe]; i++) {
461 * TC 0 is bound to VPE 0 at reset,
462 * and is presumably executing this
463 * code. Leave it alone!
466 smtc_tc_setup(vpe, tc, cpu);
474 * Clear any stale software interrupts from VPE's Cause
476 write_vpe_c0_cause(0);
479 * Clear ERL/EXL of VPEs other than 0
480 * and set restricted interrupt enable/mask.
482 write_vpe_c0_status((read_vpe_c0_status()
483 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
484 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
487 * set config to be the same as vpe0,
488 * particularly kseg0 coherency alg
490 write_vpe_c0_config(read_c0_config());
491 /* Clear any pending timer interrupt */
492 write_vpe_c0_compare(0);
493 /* Propagate Config7 */
494 write_vpe_c0_config7(read_c0_config7());
495 write_vpe_c0_count(read_c0_count());
497 /* enable multi-threading within VPE */
498 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
500 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
504 * Pull any physically present but unused TCs out of circulation.
506 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
507 cpu_clear(tc, phys_cpu_present_map);
508 cpu_clear(tc, cpu_present_map);
512 /* release config state */
513 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
517 /* Set up coprocessor affinity CPU mask(s) */
519 #ifdef CONFIG_MIPS_MT_FPAFF
520 for (tc = 0; tc < ntc; tc++) {
521 if (cpu_data[tc].options & MIPS_CPU_FPU)
522 cpu_set(tc, mt_fpu_cpumask);
526 /* set up ipi interrupts... */
528 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
530 setup_cross_vpe_interrupts(nvpe);
532 /* Set up queue of free IPI "messages". */
533 nipi = NR_CPUS * IPIBUF_PER_CPU;
537 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
539 panic("kmalloc of IPI message buffers failed\n");
541 printk("IPI buffer pool of %d buffers\n", nipi);
542 for (i = 0; i < nipi; i++) {
543 smtc_ipi_nq(&freeIPIq, pipi);
547 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
550 local_irq_restore(flags);
551 /* Initialize SMTC /proc statistics/diagnostics */
557 * Setup the PC, SP, and GP of a secondary processor and start it
559 * smp_bootstrap is the place to resume from
560 * __KSTK_TOS(idle) is apparently the stack pointer
561 * (unsigned long)idle->thread_info the gp
564 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
566 extern u32 kernelsp[NR_CPUS];
571 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
574 settc(cpu_data[cpu].tc_id);
577 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
580 kernelsp[cpu] = __KSTK_TOS(idle);
581 write_tc_gpr_sp(__KSTK_TOS(idle));
584 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
586 smtc_status |= SMTC_MTC_ACTIVE;
587 write_tc_c0_tchalt(0);
588 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
594 void smtc_init_secondary(void)
597 * Start timer on secondary VPEs if necessary.
598 * plat_timer_setup has already have been invoked by init/main
599 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
600 * SMTC init code assigns TCs consdecutively and in ascending order
601 * to across available VPEs.
603 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
604 ((read_c0_tcbind() & TCBIND_CURVPE)
605 != cpu_data[smp_processor_id() - 1].vpe_id)){
606 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
612 void smtc_smp_finish(void)
614 printk("TC %d going on-line as CPU %d\n",
615 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
618 void smtc_cpus_done(void)
623 * Support for SMTC-optimized driver IRQ registration
627 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
628 * in do_IRQ. These are passed in setup_irq_smtc() and stored
632 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
633 unsigned long hwmask)
635 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
636 unsigned int vpe = current_cpu_data.vpe_id;
638 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
640 irq_hwmask[irq] = hwmask;
642 return setup_irq(irq, new);
645 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
647 * Support for IRQ affinity to TCs
650 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
653 * If a "fast path" cache of quickly decodable affinity state
654 * is maintained, this is where it gets done, on a call up
655 * from the platform affinity code.
659 void smtc_forward_irq(unsigned int irq)
664 * OK wise guy, now figure out how to get the IRQ
665 * to be serviced on an authorized "CPU".
667 * Ideally, to handle the situation where an IRQ has multiple
668 * eligible CPUS, we would maintain state per IRQ that would
669 * allow a fair distribution of service requests. Since the
670 * expected use model is any-or-only-one, for simplicity
671 * and efficiency, we just pick the easiest one to find.
674 target = first_cpu(irq_desc[irq].affinity);
677 * We depend on the platform code to have correctly processed
678 * IRQ affinity change requests to ensure that the IRQ affinity
679 * mask has been purged of bits corresponding to nonexistent and
680 * offline "CPUs", and to TCs bound to VPEs other than the VPE
681 * connected to the physical interrupt input for the interrupt
682 * in question. Otherwise we have a nasty problem with interrupt
683 * mask management. This is best handled in non-performance-critical
684 * platform IRQ affinity setting code, to minimize interrupt-time
688 /* If no one is eligible, service locally */
689 if (target >= NR_CPUS) {
690 do_IRQ_no_affinity(irq);
694 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
697 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
700 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
701 * Within a VPE one TC can interrupt another by different approaches.
702 * The easiest to get right would probably be to make all TCs except
703 * the target IXMT and set a software interrupt, but an IXMT-based
704 * scheme requires that a handler must run before a new IPI could
705 * be sent, which would break the "broadcast" loops in MIPS MT.
706 * A more gonzo approach within a VPE is to halt the TC, extract
707 * its Restart, Status, and a couple of GPRs, and program the Restart
708 * address to emulate an interrupt.
710 * Within a VPE, one can be confident that the target TC isn't in
711 * a critical EXL state when halted, since the write to the Halt
712 * register could not have issued on the writing thread if the
713 * halting thread had EXL set. So k0 and k1 of the target TC
714 * can be used by the injection code. Across VPEs, one can't
715 * be certain that the target TC isn't in a critical exception
716 * state. So we try a two-step process of sending a software
717 * interrupt to the target VPE, which either handles the event
718 * itself (if it was the target) or injects the event within
722 static void smtc_ipi_qdump(void)
726 for (i = 0; i < NR_CPUS ;i++) {
727 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
728 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
734 * The standard atomic.h primitives don't quite do what we want
735 * here: We need an atomic add-and-return-previous-value (which
736 * could be done with atomic_add_return and a decrement) and an
737 * atomic set/zero-and-return-previous-value (which can't really
738 * be done with the atomic.h primitives). And since this is
739 * MIPS MT, we can assume that we have LL/SC.
741 static inline int atomic_postincrement(atomic_t *v)
743 unsigned long result;
747 __asm__ __volatile__(
753 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
760 void smtc_send_ipi(int cpu, int type, unsigned int action)
763 struct smtc_ipi *pipi;
767 if (cpu == smp_processor_id()) {
768 printk("Cannot Send IPI to self!\n");
771 /* Set up a descriptor, to be delivered either promptly or queued */
772 pipi = smtc_ipi_dq(&freeIPIq);
775 mips_mt_regdump(dvpe());
776 panic("IPI Msg. Buffers Depleted\n");
779 pipi->arg = (void *)action;
781 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
782 if (type == SMTC_CLOCK_TICK)
783 atomic_inc(&ipi_timer_latch[cpu]);
784 /* If not on same VPE, enqueue and send cross-VPE interupt */
785 smtc_ipi_nq(&IPIQ[cpu], pipi);
787 settc(cpu_data[cpu].tc_id);
788 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
792 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
793 * since ASID shootdown on the other VPE may
794 * collide with this operation.
797 settc(cpu_data[cpu].tc_id);
798 /* Halt the targeted TC */
799 write_tc_c0_tchalt(TCHALT_H);
803 * Inspect TCStatus - if IXMT is set, we have to queue
804 * a message. Otherwise, we set up the "interrupt"
807 tcstatus = read_tc_c0_tcstatus();
809 if ((tcstatus & TCSTATUS_IXMT) != 0) {
811 * Spin-waiting here can deadlock,
812 * so we queue the message for the target TC.
814 write_tc_c0_tchalt(0);
816 /* Try to reduce redundant timer interrupt messages */
817 if (type == SMTC_CLOCK_TICK) {
818 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
819 smtc_ipi_nq(&freeIPIq, pipi);
823 smtc_ipi_nq(&IPIQ[cpu], pipi);
825 if (type == SMTC_CLOCK_TICK)
826 atomic_inc(&ipi_timer_latch[cpu]);
827 post_direct_ipi(cpu, pipi);
828 write_tc_c0_tchalt(0);
835 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
837 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
839 struct pt_regs *kstack;
840 unsigned long tcstatus;
841 unsigned long tcrestart;
842 extern u32 kernelsp[NR_CPUS];
843 extern void __smtc_ipi_vector(void);
844 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
846 /* Extract Status, EPC from halted TC */
847 tcstatus = read_tc_c0_tcstatus();
848 tcrestart = read_tc_c0_tcrestart();
849 /* If TCRestart indicates a WAIT instruction, advance the PC */
850 if ((tcrestart & 0x80000000)
851 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
855 * Save on TC's future kernel stack
857 * CU bit of Status is indicator that TC was
858 * already running on a kernel stack...
860 if (tcstatus & ST0_CU0) {
861 /* Note that this "- 1" is pointer arithmetic */
862 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
864 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
867 kstack->cp0_epc = (long)tcrestart;
869 kstack->cp0_tcstatus = tcstatus;
870 /* Pass token of operation to be performed kernel stack pad area */
871 kstack->pad0[4] = (unsigned long)pipi;
872 /* Pass address of function to be called likewise */
873 kstack->pad0[5] = (unsigned long)&ipi_decode;
874 /* Set interrupt exempt and kernel mode */
875 tcstatus |= TCSTATUS_IXMT;
876 tcstatus &= ~TCSTATUS_TKSU;
877 write_tc_c0_tcstatus(tcstatus);
879 /* Set TC Restart address to be SMTC IPI vector */
880 write_tc_c0_tcrestart(__smtc_ipi_vector);
883 static void ipi_resched_interrupt(void)
885 /* Return from interrupt should be enough to cause scheduler check */
889 static void ipi_call_interrupt(void)
891 /* Invoke generic function invocation code in smp.c */
892 smp_call_function_interrupt();
895 DECLARE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
897 void ipi_decode(struct smtc_ipi *pipi)
899 unsigned int cpu = smp_processor_id();
900 struct clock_event_device *cd;
901 void *arg_copy = pipi->arg;
902 int type_copy = pipi->type;
905 smtc_ipi_nq(&freeIPIq, pipi);
907 case SMTC_CLOCK_TICK:
909 kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + 1]++;
910 cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
911 ticks = atomic_read(&ipi_timer_latch[cpu]);
912 atomic_sub(ticks, &ipi_timer_latch[cpu]);
914 cd->event_handler(cd);
921 switch ((int)arg_copy) {
922 case SMP_RESCHEDULE_YOURSELF:
923 ipi_resched_interrupt();
925 case SMP_CALL_FUNCTION:
926 ipi_call_interrupt();
929 printk("Impossible SMTC IPI Argument 0x%x\n",
934 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
935 case IRQ_AFFINITY_IPI:
937 * Accept a "forwarded" interrupt that was initially
938 * taken by a TC who doesn't have affinity for the IRQ.
940 do_IRQ_no_affinity((int)arg_copy);
942 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
944 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
949 void deferred_smtc_ipi(void)
951 struct smtc_ipi *pipi;
954 int q = smp_processor_id();
957 * Test is not atomic, but much faster than a dequeue,
958 * and the vast majority of invocations will have a null queue.
960 if (IPIQ[q].head != NULL) {
961 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
962 /* ipi_decode() should be called with interrupts off */
963 local_irq_save(flags);
965 local_irq_restore(flags);
971 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
972 * set via cross-VPE MTTR manipulation of the Cause register. It would be
973 * in some regards preferable to have external logic for "doorbell" hardware
977 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
979 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
981 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
982 int my_tc = cpu_data[smp_processor_id()].tc_id;
984 struct smtc_ipi *pipi;
985 unsigned long tcstatus;
988 unsigned int mtflags;
989 unsigned int vpflags;
992 * So long as cross-VPE interrupts are done via
993 * MFTR/MTTR read-modify-writes of Cause, we need
994 * to stop other VPEs whenever the local VPE does
997 local_irq_save(flags);
999 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
1000 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
1001 irq_enable_hazard();
1003 local_irq_restore(flags);
1006 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
1007 * queued for TCs on this VPE other than the current one.
1008 * Return-from-interrupt should cause us to drain the queue
1009 * for the current TC, so we ought not to have to do it explicitly here.
1012 for_each_online_cpu(cpu) {
1013 if (cpu_data[cpu].vpe_id != my_vpe)
1016 pipi = smtc_ipi_dq(&IPIQ[cpu]);
1018 if (cpu_data[cpu].tc_id != my_tc) {
1021 settc(cpu_data[cpu].tc_id);
1022 write_tc_c0_tchalt(TCHALT_H);
1024 tcstatus = read_tc_c0_tcstatus();
1025 if ((tcstatus & TCSTATUS_IXMT) == 0) {
1026 post_direct_ipi(cpu, pipi);
1029 write_tc_c0_tchalt(0);
1032 smtc_ipi_req(&IPIQ[cpu], pipi);
1036 * ipi_decode() should be called
1037 * with interrupts off
1039 local_irq_save(flags);
1041 local_irq_restore(flags);
1049 static void ipi_irq_dispatch(void)
1051 do_IRQ(cpu_ipi_irq);
1054 static struct irqaction irq_ipi = {
1055 .handler = ipi_interrupt,
1056 .flags = IRQF_DISABLED,
1058 .flags = IRQF_PERCPU
1061 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1067 panic("SMTC Kernel requires Vectored Interupt support");
1069 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1071 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1073 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1077 * SMTC-specific hacks invoked from elsewhere in the kernel.
1079 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
1080 * called with interrupts disabled. We do rely on interrupts being disabled
1081 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
1082 * result in a recursive call to raw_local_irq_restore().
1085 static void __smtc_ipi_replay(void)
1087 unsigned int cpu = smp_processor_id();
1090 * To the extent that we've ever turned interrupts off,
1091 * we may have accumulated deferred IPIs. This is subtle.
1092 * If we use the smtc_ipi_qdepth() macro, we'll get an
1093 * exact number - but we'll also disable interrupts
1094 * and create a window of failure where a new IPI gets
1095 * queued after we test the depth but before we re-enable
1096 * interrupts. So long as IXMT never gets set, however,
1097 * we should be OK: If we pick up something and dispatch
1098 * it here, that's great. If we see nothing, but concurrent
1099 * with this operation, another TC sends us an IPI, IXMT
1100 * is clear, and we'll handle it as a real pseudo-interrupt
1101 * and not a pseudo-pseudo interrupt.
1103 if (IPIQ[cpu].depth > 0) {
1105 struct smtc_ipi_q *q = &IPIQ[cpu];
1106 struct smtc_ipi *pipi;
1107 extern void self_ipi(struct smtc_ipi *);
1109 spin_lock(&q->lock);
1110 pipi = __smtc_ipi_dq(q);
1111 spin_unlock(&q->lock);
1116 smtc_cpu_stats[cpu].selfipis++;
1121 void smtc_ipi_replay(void)
1123 raw_local_irq_disable();
1124 __smtc_ipi_replay();
1127 EXPORT_SYMBOL(smtc_ipi_replay);
1129 void smtc_idle_loop_hook(void)
1131 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1140 * printk within DMT-protected regions can deadlock,
1141 * so buffer diagnostic messages for later output.
1144 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1146 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1147 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1149 /* Tedious stuff to just do once */
1150 mvpconf0 = read_c0_mvpconf0();
1151 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1152 if (hook_ntcs > NR_CPUS)
1153 hook_ntcs = NR_CPUS;
1154 for (tc = 0; tc < hook_ntcs; tc++) {
1156 clock_hang_reported[tc] = 0;
1158 for (vpe = 0; vpe < 2; vpe++)
1159 for (im = 0; im < 8; im++)
1160 imstuckcount[vpe][im] = 0;
1161 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1162 atomic_set(&idle_hook_initialized, 1000);
1164 /* Someone else is initializing in parallel - let 'em finish */
1165 while (atomic_read(&idle_hook_initialized) < 1000)
1170 /* Have we stupidly left IXMT set somewhere? */
1171 if (read_c0_tcstatus() & 0x400) {
1172 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1174 printk("Dangling IXMT in cpu_idle()\n");
1177 /* Have we stupidly left an IM bit turned off? */
1178 #define IM_LIMIT 2000
1179 local_irq_save(flags);
1181 pdb_msg = &id_ho_db_msg[0];
1182 im = read_c0_status();
1183 vpe = current_cpu_data.vpe_id;
1184 for (bit = 0; bit < 8; bit++) {
1186 * In current prototype, I/O interrupts
1187 * are masked for VPE > 0
1189 if (vpemask[vpe][bit]) {
1190 if (!(im & (0x100 << bit)))
1191 imstuckcount[vpe][bit]++;
1193 imstuckcount[vpe][bit] = 0;
1194 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1195 set_c0_status(0x100 << bit);
1197 imstuckcount[vpe][bit] = 0;
1198 pdb_msg += sprintf(pdb_msg,
1199 "Dangling IM %d fixed for VPE %d\n", bit,
1206 * Now that we limit outstanding timer IPIs, check for hung TC
1208 for (tc = 0; tc < NR_CPUS; tc++) {
1209 /* Don't check ourself - we'll dequeue IPIs just below */
1210 if ((tc != smp_processor_id()) &&
1211 atomic_read(&ipi_timer_latch[tc]) > timerq_limit) {
1212 if (clock_hang_reported[tc] == 0) {
1213 pdb_msg += sprintf(pdb_msg,
1214 "TC %d looks hung with timer latch at %d\n",
1215 tc, atomic_read(&ipi_timer_latch[tc]));
1216 clock_hang_reported[tc]++;
1221 local_irq_restore(flags);
1222 if (pdb_msg != &id_ho_db_msg[0])
1223 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1224 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1227 * Replay any accumulated deferred IPIs. If "Instant Replay"
1228 * is in use, there should never be any.
1230 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1232 unsigned long flags;
1234 local_irq_save(flags);
1235 __smtc_ipi_replay();
1236 local_irq_restore(flags);
1238 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1241 void smtc_soft_dump(void)
1245 printk("Counter Interrupts taken per CPU (TC)\n");
1246 for (i=0; i < NR_CPUS; i++) {
1247 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1249 printk("Self-IPI invocations:\n");
1250 for (i=0; i < NR_CPUS; i++) {
1251 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1254 printk("Timer IPI Backlogs:\n");
1255 for (i=0; i < NR_CPUS; i++) {
1256 printk("%d: %d\n", i, atomic_read(&ipi_timer_latch[i]));
1258 printk("%d Recoveries of \"stolen\" FPU\n",
1259 atomic_read(&smtc_fpu_recoveries));
1264 * TLB management routines special to SMTC
1267 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1269 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1273 * It would be nice to be able to use a spinlock here,
1274 * but this is invoked from within TLB flush routines
1275 * that protect themselves with DVPE, so if a lock is
1276 * held by another TC, it'll never be freed.
1278 * DVPE/DMT must not be done with interrupts enabled,
1279 * so even so most callers will already have disabled
1280 * them, let's be really careful...
1283 local_irq_save(flags);
1284 if (smtc_status & SMTC_TLB_SHARED) {
1289 tlb = cpu_data[cpu].vpe_id;
1291 asid = asid_cache(cpu);
1294 if (!((asid += ASID_INC) & ASID_MASK) ) {
1295 if (cpu_has_vtag_icache)
1297 /* Traverse all online CPUs (hack requires contigous range) */
1298 for_each_online_cpu(i) {
1300 * We don't need to worry about our own CPU, nor those of
1301 * CPUs who don't share our TLB.
1303 if ((i != smp_processor_id()) &&
1304 ((smtc_status & SMTC_TLB_SHARED) ||
1305 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1306 settc(cpu_data[i].tc_id);
1307 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1309 write_tc_c0_tchalt(TCHALT_H);
1312 tcstat = read_tc_c0_tcstatus();
1313 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1315 write_tc_c0_tchalt(0);
1318 if (!asid) /* fix version if needed */
1319 asid = ASID_FIRST_VERSION;
1320 local_flush_tlb_all(); /* start new asid cycle */
1322 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1325 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1327 for_each_online_cpu(i) {
1328 if ((smtc_status & SMTC_TLB_SHARED) ||
1329 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1330 cpu_context(i, mm) = asid_cache(i) = asid;
1333 if (smtc_status & SMTC_TLB_SHARED)
1337 local_irq_restore(flags);
1341 * Invoked from macros defined in mmu_context.h
1342 * which must already have disabled interrupts
1343 * and done a DVPE or DMT as appropriate.
1346 void smtc_flush_tlb_asid(unsigned long asid)
1351 entry = read_c0_wired();
1353 /* Traverse all non-wired entries */
1354 while (entry < current_cpu_data.tlbsize) {
1355 write_c0_index(entry);
1359 ehi = read_c0_entryhi();
1360 if ((ehi & ASID_MASK) == asid) {
1362 * Invalidate only entries with specified ASID,
1363 * makiing sure all entries differ.
1365 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1366 write_c0_entrylo0(0);
1367 write_c0_entrylo1(0);
1369 tlb_write_indexed();
1373 write_c0_index(PARKED_INDEX);
1378 * Support for single-threading cache flush operations.
1381 static int halt_state_save[NR_CPUS];
1384 * To really, really be sure that nothing is being done
1385 * by other TCs, halt them all. This code assumes that
1386 * a DVPE has already been done, so while their Halted
1387 * state is theoretically architecturally unstable, in
1388 * practice, it's not going to change while we're looking
1392 void smtc_cflush_lockdown(void)
1396 for_each_online_cpu(cpu) {
1397 if (cpu != smp_processor_id()) {
1398 settc(cpu_data[cpu].tc_id);
1399 halt_state_save[cpu] = read_tc_c0_tchalt();
1400 write_tc_c0_tchalt(TCHALT_H);
1406 /* It would be cheating to change the cpu_online states during a flush! */
1408 void smtc_cflush_release(void)
1413 * Start with a hazard barrier to ensure
1414 * that all CACHE ops have played through.
1418 for_each_online_cpu(cpu) {
1419 if (cpu != smp_processor_id()) {
1420 settc(cpu_data[cpu].tc_id);
1421 write_tc_c0_tchalt(halt_state_save[cpu]);