Merge branch 'for-linus' into for-next
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58                unsigned int nr_bytes)
59 {
60         /*
61          * decide whether to reenable DMA -- 3 is a random magic for now,
62          * if we DMA timeout more than 3 times, just stay in PIO
63          */
64         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65             drive->retry_pio <= 3) {
66                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67                 ide_dma_on(drive);
68         }
69
70         return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75 {
76         const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77         struct ide_taskfile *tf = &cmd->tf;
78         struct request *rq = cmd->rq;
79         u8 tf_cmd = tf->command;
80
81         tf->error = err;
82         tf->status = stat;
83
84         if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85                 u8 data[2];
86
87                 tp_ops->input_data(drive, cmd, data, 2);
88
89                 cmd->tf.data  = data[0];
90                 cmd->hob.data = data[1];
91         }
92
93         ide_tf_readback(drive, cmd);
94
95         if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96             tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97                 if (tf->lbal != 0xc4) {
98                         printk(KERN_ERR "%s: head unload failed!\n",
99                                drive->name);
100                         ide_tf_dump(drive->name, cmd);
101                 } else
102                         drive->dev_flags |= IDE_DFLAG_PARKED;
103         }
104
105         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106                 struct ide_cmd *orig_cmd = rq->special;
107
108                 if (cmd->tf_flags & IDE_TFLAG_DYN)
109                         kfree(orig_cmd);
110                 else
111                         memcpy(orig_cmd, cmd, sizeof(*cmd));
112         }
113 }
114
115 /* obsolete, blk_rq_bytes() should be used instead */
116 unsigned int ide_rq_bytes(struct request *rq)
117 {
118         if (blk_pc_request(rq))
119                 return rq->data_len;
120         else
121                 return rq->hard_cur_sectors << 9;
122 }
123 EXPORT_SYMBOL_GPL(ide_rq_bytes);
124
125 int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
126 {
127         ide_hwif_t *hwif = drive->hwif;
128         struct request *rq = hwif->rq;
129         int rc;
130
131         /*
132          * if failfast is set on a request, override number of sectors
133          * and complete the whole request right now
134          */
135         if (blk_noretry_request(rq) && error <= 0)
136                 nr_bytes = rq->hard_nr_sectors << 9;
137
138         rc = ide_end_rq(drive, rq, error, nr_bytes);
139         if (rc == 0)
140                 hwif->rq = NULL;
141
142         return rc;
143 }
144 EXPORT_SYMBOL(ide_complete_rq);
145
146 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147 {
148         u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149         u8 media = drive->media;
150
151         drive->failed_pc = NULL;
152
153         if ((media == ide_floppy || media == ide_tape) && drv_req) {
154                 rq->errors = 0;
155                 ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156         } else {
157                 if (media == ide_tape)
158                         rq->errors = IDE_DRV_ERROR_GENERAL;
159                 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160                         rq->errors = -EIO;
161                 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162         }
163 }
164
165 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166 {
167         tf->nsect   = drive->sect;
168         tf->lbal    = drive->sect;
169         tf->lbam    = drive->cyl;
170         tf->lbah    = drive->cyl >> 8;
171         tf->device  = (drive->head - 1) | drive->select;
172         tf->command = ATA_CMD_INIT_DEV_PARAMS;
173 }
174
175 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176 {
177         tf->nsect   = drive->sect;
178         tf->command = ATA_CMD_RESTORE;
179 }
180
181 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182 {
183         tf->nsect   = drive->mult_req;
184         tf->command = ATA_CMD_SET_MULTI;
185 }
186
187 /**
188  *      do_special              -       issue some special commands
189  *      @drive: drive the command is for
190  *
191  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
192  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
193  */
194
195 static ide_startstop_t do_special(ide_drive_t *drive)
196 {
197         struct ide_cmd cmd;
198
199 #ifdef DEBUG
200         printk(KERN_DEBUG "%s: %s: 0x%02x\n", drive->name, __func__,
201                 drive->special_flags);
202 #endif
203         if (drive->media != ide_disk) {
204                 drive->special_flags = 0;
205                 drive->mult_req = 0;
206                 return ide_stopped;
207         }
208
209         memset(&cmd, 0, sizeof(cmd));
210         cmd.protocol = ATA_PROT_NODATA;
211
212         if (drive->special_flags & IDE_SFLAG_SET_GEOMETRY) {
213                 drive->special_flags &= ~IDE_SFLAG_SET_GEOMETRY;
214                 ide_tf_set_specify_cmd(drive, &cmd.tf);
215         } else if (drive->special_flags & IDE_SFLAG_RECALIBRATE) {
216                 drive->special_flags &= ~IDE_SFLAG_RECALIBRATE;
217                 ide_tf_set_restore_cmd(drive, &cmd.tf);
218         } else if (drive->special_flags & IDE_SFLAG_SET_MULTMODE) {
219                 drive->special_flags &= ~IDE_SFLAG_SET_MULTMODE;
220                 ide_tf_set_setmult_cmd(drive, &cmd.tf);
221         } else
222                 BUG();
223
224         cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
225         cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
226         cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
227
228         do_rw_taskfile(drive, &cmd);
229
230         return ide_started;
231 }
232
233 void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
234 {
235         ide_hwif_t *hwif = drive->hwif;
236         struct scatterlist *sg = hwif->sg_table;
237         struct request *rq = cmd->rq;
238
239         cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
240 }
241 EXPORT_SYMBOL_GPL(ide_map_sg);
242
243 void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
244 {
245         cmd->nbytes = cmd->nleft = nr_bytes;
246         cmd->cursg_ofs = 0;
247         cmd->cursg = NULL;
248 }
249 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
250
251 /**
252  *      execute_drive_command   -       issue special drive command
253  *      @drive: the drive to issue the command on
254  *      @rq: the request structure holding the command
255  *
256  *      execute_drive_cmd() issues a special drive command,  usually 
257  *      initiated by ioctl() from the external hdparm program. The
258  *      command can be a drive command, drive task or taskfile 
259  *      operation. Weirdly you can call it with NULL to wait for
260  *      all commands to finish. Don't do this as that is due to change
261  */
262
263 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
264                 struct request *rq)
265 {
266         struct ide_cmd *cmd = rq->special;
267
268         if (cmd) {
269                 if (cmd->protocol == ATA_PROT_PIO) {
270                         ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
271                         ide_map_sg(drive, cmd);
272                 }
273
274                 return do_rw_taskfile(drive, cmd);
275         }
276
277         /*
278          * NULL is actually a valid way of waiting for
279          * all current requests to be flushed from the queue.
280          */
281 #ifdef DEBUG
282         printk("%s: DRIVE_CMD (null)\n", drive->name);
283 #endif
284         rq->errors = 0;
285         ide_complete_rq(drive, 0, blk_rq_bytes(rq));
286
287         return ide_stopped;
288 }
289
290 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
291 {
292         u8 cmd = rq->cmd[0];
293
294         switch (cmd) {
295         case REQ_PARK_HEADS:
296         case REQ_UNPARK_HEADS:
297                 return ide_do_park_unpark(drive, rq);
298         case REQ_DEVSET_EXEC:
299                 return ide_do_devset(drive, rq);
300         case REQ_DRIVE_RESET:
301                 return ide_do_reset(drive);
302         default:
303                 BUG();
304         }
305 }
306
307 /**
308  *      start_request   -       start of I/O and command issuing for IDE
309  *
310  *      start_request() initiates handling of a new I/O request. It
311  *      accepts commands and I/O (read/write) requests.
312  *
313  *      FIXME: this function needs a rename
314  */
315  
316 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
317 {
318         ide_startstop_t startstop;
319
320         BUG_ON(!blk_rq_started(rq));
321
322 #ifdef DEBUG
323         printk("%s: start_request: current=0x%08lx\n",
324                 drive->hwif->name, (unsigned long) rq);
325 #endif
326
327         /* bail early if we've exceeded max_failures */
328         if (drive->max_failures && (drive->failures > drive->max_failures)) {
329                 rq->cmd_flags |= REQ_FAILED;
330                 goto kill_rq;
331         }
332
333         if (blk_pm_request(rq))
334                 ide_check_pm_state(drive, rq);
335
336         drive->hwif->tp_ops->dev_select(drive);
337         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
338                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
339                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
340                 return startstop;
341         }
342
343         if (drive->special_flags == 0) {
344                 struct ide_driver *drv;
345
346                 /*
347                  * We reset the drive so we need to issue a SETFEATURES.
348                  * Do it _after_ do_special() restored device parameters.
349                  */
350                 if (drive->current_speed == 0xff)
351                         ide_config_drive_speed(drive, drive->desired_speed);
352
353                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
354                         return execute_drive_cmd(drive, rq);
355                 else if (blk_pm_request(rq)) {
356                         struct request_pm_state *pm = rq->special;
357 #ifdef DEBUG_PM
358                         printk("%s: start_power_step(step: %d)\n",
359                                 drive->name, pm->pm_step);
360 #endif
361                         startstop = ide_start_power_step(drive, rq);
362                         if (startstop == ide_stopped &&
363                             pm->pm_step == IDE_PM_COMPLETED)
364                                 ide_complete_pm_rq(drive, rq);
365                         return startstop;
366                 } else if (!rq->rq_disk && blk_special_request(rq))
367                         /*
368                          * TODO: Once all ULDs have been modified to
369                          * check for specific op codes rather than
370                          * blindly accepting any special request, the
371                          * check for ->rq_disk above may be replaced
372                          * by a more suitable mechanism or even
373                          * dropped entirely.
374                          */
375                         return ide_special_rq(drive, rq);
376
377                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
378
379                 return drv->do_request(drive, rq, rq->sector);
380         }
381         return do_special(drive);
382 kill_rq:
383         ide_kill_rq(drive, rq);
384         return ide_stopped;
385 }
386
387 /**
388  *      ide_stall_queue         -       pause an IDE device
389  *      @drive: drive to stall
390  *      @timeout: time to stall for (jiffies)
391  *
392  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
393  *      to the port by sleeping for timeout jiffies.
394  */
395  
396 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
397 {
398         if (timeout > WAIT_WORSTCASE)
399                 timeout = WAIT_WORSTCASE;
400         drive->sleep = timeout + jiffies;
401         drive->dev_flags |= IDE_DFLAG_SLEEPING;
402 }
403 EXPORT_SYMBOL(ide_stall_queue);
404
405 static inline int ide_lock_port(ide_hwif_t *hwif)
406 {
407         if (hwif->busy)
408                 return 1;
409
410         hwif->busy = 1;
411
412         return 0;
413 }
414
415 static inline void ide_unlock_port(ide_hwif_t *hwif)
416 {
417         hwif->busy = 0;
418 }
419
420 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
421 {
422         int rc = 0;
423
424         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
425                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
426                 if (rc == 0) {
427                         if (host->get_lock)
428                                 host->get_lock(ide_intr, hwif);
429                 }
430         }
431         return rc;
432 }
433
434 static inline void ide_unlock_host(struct ide_host *host)
435 {
436         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
437                 if (host->release_lock)
438                         host->release_lock();
439                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
440         }
441 }
442
443 /*
444  * Issue a new request to a device.
445  */
446 void do_ide_request(struct request_queue *q)
447 {
448         ide_drive_t     *drive = q->queuedata;
449         ide_hwif_t      *hwif = drive->hwif;
450         struct ide_host *host = hwif->host;
451         struct request  *rq = NULL;
452         ide_startstop_t startstop;
453
454         /*
455          * drive is doing pre-flush, ordered write, post-flush sequence. even
456          * though that is 3 requests, it must be seen as a single transaction.
457          * we must not preempt this drive until that is complete
458          */
459         if (blk_queue_flushing(q))
460                 /*
461                  * small race where queue could get replugged during
462                  * the 3-request flush cycle, just yank the plug since
463                  * we want it to finish asap
464                  */
465                 blk_remove_plug(q);
466
467         spin_unlock_irq(q->queue_lock);
468
469         /* HLD do_request() callback might sleep, make sure it's okay */
470         might_sleep();
471
472         if (ide_lock_host(host, hwif))
473                 goto plug_device_2;
474
475         spin_lock_irq(&hwif->lock);
476
477         if (!ide_lock_port(hwif)) {
478                 ide_hwif_t *prev_port;
479 repeat:
480                 prev_port = hwif->host->cur_port;
481                 hwif->rq = NULL;
482
483                 if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
484                     time_after(drive->sleep, jiffies)) {
485                         ide_unlock_port(hwif);
486                         goto plug_device;
487                 }
488
489                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
490                     hwif != prev_port) {
491                         /*
492                          * set nIEN for previous port, drives in the
493                          * quirk_list may not like intr setups/cleanups
494                          */
495                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
496                                 prev_port->tp_ops->write_devctl(prev_port,
497                                                                 ATA_NIEN |
498                                                                 ATA_DEVCTL_OBS);
499
500                         hwif->host->cur_port = hwif;
501                 }
502                 hwif->cur_dev = drive;
503                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
504
505                 spin_unlock_irq(&hwif->lock);
506                 spin_lock_irq(q->queue_lock);
507                 /*
508                  * we know that the queue isn't empty, but this can happen
509                  * if the q->prep_rq_fn() decides to kill a request
510                  */
511                 rq = elv_next_request(drive->queue);
512                 spin_unlock_irq(q->queue_lock);
513                 spin_lock_irq(&hwif->lock);
514
515                 if (!rq) {
516                         ide_unlock_port(hwif);
517                         goto out;
518                 }
519
520                 /*
521                  * Sanity: don't accept a request that isn't a PM request
522                  * if we are currently power managed. This is very important as
523                  * blk_stop_queue() doesn't prevent the elv_next_request()
524                  * above to return us whatever is in the queue. Since we call
525                  * ide_do_request() ourselves, we end up taking requests while
526                  * the queue is blocked...
527                  * 
528                  * We let requests forced at head of queue with ide-preempt
529                  * though. I hope that doesn't happen too much, hopefully not
530                  * unless the subdriver triggers such a thing in its own PM
531                  * state machine.
532                  */
533                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
534                     blk_pm_request(rq) == 0 &&
535                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
536                         /* there should be no pending command at this point */
537                         ide_unlock_port(hwif);
538                         goto plug_device;
539                 }
540
541                 hwif->rq = rq;
542
543                 spin_unlock_irq(&hwif->lock);
544                 startstop = start_request(drive, rq);
545                 spin_lock_irq(&hwif->lock);
546
547                 if (startstop == ide_stopped)
548                         goto repeat;
549         } else
550                 goto plug_device;
551 out:
552         spin_unlock_irq(&hwif->lock);
553         if (rq == NULL)
554                 ide_unlock_host(host);
555         spin_lock_irq(q->queue_lock);
556         return;
557
558 plug_device:
559         spin_unlock_irq(&hwif->lock);
560         ide_unlock_host(host);
561 plug_device_2:
562         spin_lock_irq(q->queue_lock);
563
564         if (!elv_queue_empty(q))
565                 blk_plug_device(q);
566 }
567
568 static void ide_plug_device(ide_drive_t *drive)
569 {
570         struct request_queue *q = drive->queue;
571         unsigned long flags;
572
573         spin_lock_irqsave(q->queue_lock, flags);
574         if (!elv_queue_empty(q))
575                 blk_plug_device(q);
576         spin_unlock_irqrestore(q->queue_lock, flags);
577 }
578
579 static int drive_is_ready(ide_drive_t *drive)
580 {
581         ide_hwif_t *hwif = drive->hwif;
582         u8 stat = 0;
583
584         if (drive->waiting_for_dma)
585                 return hwif->dma_ops->dma_test_irq(drive);
586
587         if (hwif->io_ports.ctl_addr &&
588             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
589                 stat = hwif->tp_ops->read_altstatus(hwif);
590         else
591                 /* Note: this may clear a pending IRQ!! */
592                 stat = hwif->tp_ops->read_status(hwif);
593
594         if (stat & ATA_BUSY)
595                 /* drive busy: definitely not interrupting */
596                 return 0;
597
598         /* drive ready: *might* be interrupting */
599         return 1;
600 }
601
602 /**
603  *      ide_timer_expiry        -       handle lack of an IDE interrupt
604  *      @data: timer callback magic (hwif)
605  *
606  *      An IDE command has timed out before the expected drive return
607  *      occurred. At this point we attempt to clean up the current
608  *      mess. If the current handler includes an expiry handler then
609  *      we invoke the expiry handler, and providing it is happy the
610  *      work is done. If that fails we apply generic recovery rules
611  *      invoking the handler and checking the drive DMA status. We
612  *      have an excessively incestuous relationship with the DMA
613  *      logic that wants cleaning up.
614  */
615  
616 void ide_timer_expiry (unsigned long data)
617 {
618         ide_hwif_t      *hwif = (ide_hwif_t *)data;
619         ide_drive_t     *uninitialized_var(drive);
620         ide_handler_t   *handler;
621         unsigned long   flags;
622         int             wait = -1;
623         int             plug_device = 0;
624
625         spin_lock_irqsave(&hwif->lock, flags);
626
627         handler = hwif->handler;
628
629         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
630                 /*
631                  * Either a marginal timeout occurred
632                  * (got the interrupt just as timer expired),
633                  * or we were "sleeping" to give other devices a chance.
634                  * Either way, we don't really want to complain about anything.
635                  */
636         } else {
637                 ide_expiry_t *expiry = hwif->expiry;
638                 ide_startstop_t startstop = ide_stopped;
639
640                 drive = hwif->cur_dev;
641
642                 if (expiry) {
643                         wait = expiry(drive);
644                         if (wait > 0) { /* continue */
645                                 /* reset timer */
646                                 hwif->timer.expires = jiffies + wait;
647                                 hwif->req_gen_timer = hwif->req_gen;
648                                 add_timer(&hwif->timer);
649                                 spin_unlock_irqrestore(&hwif->lock, flags);
650                                 return;
651                         }
652                 }
653                 hwif->handler = NULL;
654                 hwif->expiry = NULL;
655                 /*
656                  * We need to simulate a real interrupt when invoking
657                  * the handler() function, which means we need to
658                  * globally mask the specific IRQ:
659                  */
660                 spin_unlock(&hwif->lock);
661                 /* disable_irq_nosync ?? */
662                 disable_irq(hwif->irq);
663                 /* local CPU only, as if we were handling an interrupt */
664                 local_irq_disable();
665                 if (hwif->polling) {
666                         startstop = handler(drive);
667                 } else if (drive_is_ready(drive)) {
668                         if (drive->waiting_for_dma)
669                                 hwif->dma_ops->dma_lost_irq(drive);
670                         if (hwif->ack_intr)
671                                 hwif->ack_intr(hwif);
672                         printk(KERN_WARNING "%s: lost interrupt\n",
673                                 drive->name);
674                         startstop = handler(drive);
675                 } else {
676                         if (drive->waiting_for_dma)
677                                 startstop = ide_dma_timeout_retry(drive, wait);
678                         else
679                                 startstop = ide_error(drive, "irq timeout",
680                                         hwif->tp_ops->read_status(hwif));
681                 }
682                 spin_lock_irq(&hwif->lock);
683                 enable_irq(hwif->irq);
684                 if (startstop == ide_stopped && hwif->polling == 0) {
685                         ide_unlock_port(hwif);
686                         plug_device = 1;
687                 }
688         }
689         spin_unlock_irqrestore(&hwif->lock, flags);
690
691         if (plug_device) {
692                 ide_unlock_host(hwif->host);
693                 ide_plug_device(drive);
694         }
695 }
696
697 /**
698  *      unexpected_intr         -       handle an unexpected IDE interrupt
699  *      @irq: interrupt line
700  *      @hwif: port being processed
701  *
702  *      There's nothing really useful we can do with an unexpected interrupt,
703  *      other than reading the status register (to clear it), and logging it.
704  *      There should be no way that an irq can happen before we're ready for it,
705  *      so we needn't worry much about losing an "important" interrupt here.
706  *
707  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
708  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
709  *      looks "good", we just ignore the interrupt completely.
710  *
711  *      This routine assumes __cli() is in effect when called.
712  *
713  *      If an unexpected interrupt happens on irq15 while we are handling irq14
714  *      and if the two interfaces are "serialized" (CMD640), then it looks like
715  *      we could screw up by interfering with a new request being set up for 
716  *      irq15.
717  *
718  *      In reality, this is a non-issue.  The new command is not sent unless 
719  *      the drive is ready to accept one, in which case we know the drive is
720  *      not trying to interrupt us.  And ide_set_handler() is always invoked
721  *      before completing the issuance of any new drive command, so we will not
722  *      be accidentally invoked as a result of any valid command completion
723  *      interrupt.
724  */
725
726 static void unexpected_intr(int irq, ide_hwif_t *hwif)
727 {
728         u8 stat = hwif->tp_ops->read_status(hwif);
729
730         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
731                 /* Try to not flood the console with msgs */
732                 static unsigned long last_msgtime, count;
733                 ++count;
734
735                 if (time_after(jiffies, last_msgtime + HZ)) {
736                         last_msgtime = jiffies;
737                         printk(KERN_ERR "%s: unexpected interrupt, "
738                                 "status=0x%02x, count=%ld\n",
739                                 hwif->name, stat, count);
740                 }
741         }
742 }
743
744 /**
745  *      ide_intr        -       default IDE interrupt handler
746  *      @irq: interrupt number
747  *      @dev_id: hwif
748  *      @regs: unused weirdness from the kernel irq layer
749  *
750  *      This is the default IRQ handler for the IDE layer. You should
751  *      not need to override it. If you do be aware it is subtle in
752  *      places
753  *
754  *      hwif is the interface in the group currently performing
755  *      a command. hwif->cur_dev is the drive and hwif->handler is
756  *      the IRQ handler to call. As we issue a command the handlers
757  *      step through multiple states, reassigning the handler to the
758  *      next step in the process. Unlike a smart SCSI controller IDE
759  *      expects the main processor to sequence the various transfer
760  *      stages. We also manage a poll timer to catch up with most
761  *      timeout situations. There are still a few where the handlers
762  *      don't ever decide to give up.
763  *
764  *      The handler eventually returns ide_stopped to indicate the
765  *      request completed. At this point we issue the next request
766  *      on the port and the process begins again.
767  */
768
769 irqreturn_t ide_intr (int irq, void *dev_id)
770 {
771         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
772         struct ide_host *host = hwif->host;
773         ide_drive_t *uninitialized_var(drive);
774         ide_handler_t *handler;
775         unsigned long flags;
776         ide_startstop_t startstop;
777         irqreturn_t irq_ret = IRQ_NONE;
778         int plug_device = 0;
779
780         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
781                 if (hwif != host->cur_port)
782                         goto out_early;
783         }
784
785         spin_lock_irqsave(&hwif->lock, flags);
786
787         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
788                 goto out;
789
790         handler = hwif->handler;
791
792         if (handler == NULL || hwif->polling) {
793                 /*
794                  * Not expecting an interrupt from this drive.
795                  * That means this could be:
796                  *      (1) an interrupt from another PCI device
797                  *      sharing the same PCI INT# as us.
798                  * or   (2) a drive just entered sleep or standby mode,
799                  *      and is interrupting to let us know.
800                  * or   (3) a spurious interrupt of unknown origin.
801                  *
802                  * For PCI, we cannot tell the difference,
803                  * so in that case we just ignore it and hope it goes away.
804                  */
805                 if ((host->irq_flags & IRQF_SHARED) == 0) {
806                         /*
807                          * Probably not a shared PCI interrupt,
808                          * so we can safely try to do something about it:
809                          */
810                         unexpected_intr(irq, hwif);
811                 } else {
812                         /*
813                          * Whack the status register, just in case
814                          * we have a leftover pending IRQ.
815                          */
816                         (void)hwif->tp_ops->read_status(hwif);
817                 }
818                 goto out;
819         }
820
821         drive = hwif->cur_dev;
822
823         if (!drive_is_ready(drive))
824                 /*
825                  * This happens regularly when we share a PCI IRQ with
826                  * another device.  Unfortunately, it can also happen
827                  * with some buggy drives that trigger the IRQ before
828                  * their status register is up to date.  Hopefully we have
829                  * enough advance overhead that the latter isn't a problem.
830                  */
831                 goto out;
832
833         hwif->handler = NULL;
834         hwif->expiry = NULL;
835         hwif->req_gen++;
836         del_timer(&hwif->timer);
837         spin_unlock(&hwif->lock);
838
839         if (hwif->port_ops && hwif->port_ops->clear_irq)
840                 hwif->port_ops->clear_irq(drive);
841
842         if (drive->dev_flags & IDE_DFLAG_UNMASK)
843                 local_irq_enable_in_hardirq();
844
845         /* service this interrupt, may set handler for next interrupt */
846         startstop = handler(drive);
847
848         spin_lock_irq(&hwif->lock);
849         /*
850          * Note that handler() may have set things up for another
851          * interrupt to occur soon, but it cannot happen until
852          * we exit from this routine, because it will be the
853          * same irq as is currently being serviced here, and Linux
854          * won't allow another of the same (on any CPU) until we return.
855          */
856         if (startstop == ide_stopped && hwif->polling == 0) {
857                 BUG_ON(hwif->handler);
858                 ide_unlock_port(hwif);
859                 plug_device = 1;
860         }
861         irq_ret = IRQ_HANDLED;
862 out:
863         spin_unlock_irqrestore(&hwif->lock, flags);
864 out_early:
865         if (plug_device) {
866                 ide_unlock_host(hwif->host);
867                 ide_plug_device(drive);
868         }
869
870         return irq_ret;
871 }
872 EXPORT_SYMBOL_GPL(ide_intr);
873
874 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
875 {
876         ide_hwif_t *hwif = drive->hwif;
877         u8 buf[4] = { 0 };
878
879         while (len > 0) {
880                 if (write)
881                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
882                 else
883                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
884                 len -= 4;
885         }
886 }
887 EXPORT_SYMBOL_GPL(ide_pad_transfer);