OneNAND: Add touch_softlock_watchdog()
[linux-2.6] / drivers / mtd / mtdpart.c
1 /*
2  * Simple MTD partitioning layer
3  *
4  * (C) 2000 Nicolas Pitre <nico@cam.org>
5  *
6  * This code is GPL
7  *
8  * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
9  *
10  *      02-21-2002      Thomas Gleixner <gleixner@autronix.de>
11  *                      added support for read_oob, write_oob
12  */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/config.h>
20 #include <linux/kmod.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/compatmac.h>
24
25 /* Our partition linked list */
26 static LIST_HEAD(mtd_partitions);
27
28 /* Our partition node structure */
29 struct mtd_part {
30         struct mtd_info mtd;
31         struct mtd_info *master;
32         u_int32_t offset;
33         int index;
34         struct list_head list;
35         int registered;
36 };
37
38 /*
39  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
40  * the pointer to that structure with this macro.
41  */
42 #define PART(x)  ((struct mtd_part *)(x))
43
44
45 /*
46  * MTD methods which simply translate the effective address and pass through
47  * to the _real_ device.
48  */
49
50 static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
51                         size_t *retlen, u_char *buf)
52 {
53         struct mtd_part *part = PART(mtd);
54         if (from >= mtd->size)
55                 len = 0;
56         else if (from + len > mtd->size)
57                 len = mtd->size - from;
58         if (part->master->read_ecc == NULL)
59                 return part->master->read (part->master, from + part->offset,
60                                         len, retlen, buf);
61         else
62                 return part->master->read_ecc (part->master, from + part->offset,
63                                         len, retlen, buf, NULL, &mtd->oobinfo);
64 }
65
66 static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
67                         size_t *retlen, u_char **buf)
68 {
69         struct mtd_part *part = PART(mtd);
70         if (from >= mtd->size)
71                 len = 0;
72         else if (from + len > mtd->size)
73                 len = mtd->size - from;
74         return part->master->point (part->master, from + part->offset,
75                                     len, retlen, buf);
76 }
77 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
78 {
79         struct mtd_part *part = PART(mtd);
80
81         part->master->unpoint (part->master, addr, from + part->offset, len);
82 }
83
84
85 static int part_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
86                         size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel)
87 {
88         struct mtd_part *part = PART(mtd);
89         if (oobsel == NULL)
90                 oobsel = &mtd->oobinfo;
91         if (from >= mtd->size)
92                 len = 0;
93         else if (from + len > mtd->size)
94                 len = mtd->size - from;
95         return part->master->read_ecc (part->master, from + part->offset,
96                                         len, retlen, buf, eccbuf, oobsel);
97 }
98
99 static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
100                         size_t *retlen, u_char *buf)
101 {
102         struct mtd_part *part = PART(mtd);
103         if (from >= mtd->size)
104                 len = 0;
105         else if (from + len > mtd->size)
106                 len = mtd->size - from;
107         return part->master->read_oob (part->master, from + part->offset,
108                                         len, retlen, buf);
109 }
110
111 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
112                         size_t *retlen, u_char *buf)
113 {
114         struct mtd_part *part = PART(mtd);
115         return part->master->read_user_prot_reg (part->master, from,
116                                         len, retlen, buf);
117 }
118
119 static int part_get_user_prot_info (struct mtd_info *mtd,
120                                     struct otp_info *buf, size_t len)
121 {
122         struct mtd_part *part = PART(mtd);
123         return part->master->get_user_prot_info (part->master, buf, len);
124 }
125
126 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
127                         size_t *retlen, u_char *buf)
128 {
129         struct mtd_part *part = PART(mtd);
130         return part->master->read_fact_prot_reg (part->master, from,
131                                         len, retlen, buf);
132 }
133
134 static int part_get_fact_prot_info (struct mtd_info *mtd,
135                                     struct otp_info *buf, size_t len)
136 {
137         struct mtd_part *part = PART(mtd);
138         return part->master->get_fact_prot_info (part->master, buf, len);
139 }
140
141 static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
142                         size_t *retlen, const u_char *buf)
143 {
144         struct mtd_part *part = PART(mtd);
145         if (!(mtd->flags & MTD_WRITEABLE))
146                 return -EROFS;
147         if (to >= mtd->size)
148                 len = 0;
149         else if (to + len > mtd->size)
150                 len = mtd->size - to;
151         if (part->master->write_ecc == NULL)
152                 return part->master->write (part->master, to + part->offset,
153                                         len, retlen, buf);
154         else
155                 return part->master->write_ecc (part->master, to + part->offset,
156                                         len, retlen, buf, NULL, &mtd->oobinfo);
157
158 }
159
160 static int part_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
161                         size_t *retlen, const u_char *buf,
162                          u_char *eccbuf, struct nand_oobinfo *oobsel)
163 {
164         struct mtd_part *part = PART(mtd);
165         if (!(mtd->flags & MTD_WRITEABLE))
166                 return -EROFS;
167         if (oobsel == NULL)
168                 oobsel = &mtd->oobinfo;
169         if (to >= mtd->size)
170                 len = 0;
171         else if (to + len > mtd->size)
172                 len = mtd->size - to;
173         return part->master->write_ecc (part->master, to + part->offset,
174                                         len, retlen, buf, eccbuf, oobsel);
175 }
176
177 static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
178                         size_t *retlen, const u_char *buf)
179 {
180         struct mtd_part *part = PART(mtd);
181         if (!(mtd->flags & MTD_WRITEABLE))
182                 return -EROFS;
183         if (to >= mtd->size)
184                 len = 0;
185         else if (to + len > mtd->size)
186                 len = mtd->size - to;
187         return part->master->write_oob (part->master, to + part->offset,
188                                         len, retlen, buf);
189 }
190
191 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
192                         size_t *retlen, u_char *buf)
193 {
194         struct mtd_part *part = PART(mtd);
195         return part->master->write_user_prot_reg (part->master, from,
196                                         len, retlen, buf);
197 }
198
199 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
200 {
201         struct mtd_part *part = PART(mtd);
202         return part->master->lock_user_prot_reg (part->master, from, len);
203 }
204
205 static int part_writev (struct mtd_info *mtd,  const struct kvec *vecs,
206                          unsigned long count, loff_t to, size_t *retlen)
207 {
208         struct mtd_part *part = PART(mtd);
209         if (!(mtd->flags & MTD_WRITEABLE))
210                 return -EROFS;
211         if (part->master->writev_ecc == NULL)
212                 return part->master->writev (part->master, vecs, count,
213                                         to + part->offset, retlen);
214         else
215                 return part->master->writev_ecc (part->master, vecs, count,
216                                         to + part->offset, retlen,
217                                         NULL, &mtd->oobinfo);
218 }
219
220 static int part_readv (struct mtd_info *mtd,  struct kvec *vecs,
221                          unsigned long count, loff_t from, size_t *retlen)
222 {
223         struct mtd_part *part = PART(mtd);
224         if (part->master->readv_ecc == NULL)
225                 return part->master->readv (part->master, vecs, count,
226                                         from + part->offset, retlen);
227         else
228                 return part->master->readv_ecc (part->master, vecs, count,
229                                         from + part->offset, retlen,
230                                         NULL, &mtd->oobinfo);
231 }
232
233 static int part_writev_ecc (struct mtd_info *mtd,  const struct kvec *vecs,
234                          unsigned long count, loff_t to, size_t *retlen,
235                          u_char *eccbuf,  struct nand_oobinfo *oobsel)
236 {
237         struct mtd_part *part = PART(mtd);
238         if (!(mtd->flags & MTD_WRITEABLE))
239                 return -EROFS;
240         if (oobsel == NULL)
241                 oobsel = &mtd->oobinfo;
242         return part->master->writev_ecc (part->master, vecs, count,
243                                         to + part->offset, retlen,
244                                         eccbuf, oobsel);
245 }
246
247 static int part_readv_ecc (struct mtd_info *mtd,  struct kvec *vecs,
248                          unsigned long count, loff_t from, size_t *retlen,
249                          u_char *eccbuf,  struct nand_oobinfo *oobsel)
250 {
251         struct mtd_part *part = PART(mtd);
252         if (oobsel == NULL)
253                 oobsel = &mtd->oobinfo;
254         return part->master->readv_ecc (part->master, vecs, count,
255                                         from + part->offset, retlen,
256                                         eccbuf, oobsel);
257 }
258
259 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
260 {
261         struct mtd_part *part = PART(mtd);
262         int ret;
263         if (!(mtd->flags & MTD_WRITEABLE))
264                 return -EROFS;
265         if (instr->addr >= mtd->size)
266                 return -EINVAL;
267         instr->addr += part->offset;
268         ret = part->master->erase(part->master, instr);
269         return ret;
270 }
271
272 void mtd_erase_callback(struct erase_info *instr)
273 {
274         if (instr->mtd->erase == part_erase) {
275                 struct mtd_part *part = PART(instr->mtd);
276
277                 if (instr->fail_addr != 0xffffffff)
278                         instr->fail_addr -= part->offset;
279                 instr->addr -= part->offset;
280         }
281         if (instr->callback)
282                 instr->callback(instr);
283 }
284 EXPORT_SYMBOL_GPL(mtd_erase_callback);
285
286 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
287 {
288         struct mtd_part *part = PART(mtd);
289         if ((len + ofs) > mtd->size)
290                 return -EINVAL;
291         return part->master->lock(part->master, ofs + part->offset, len);
292 }
293
294 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
295 {
296         struct mtd_part *part = PART(mtd);
297         if ((len + ofs) > mtd->size)
298                 return -EINVAL;
299         return part->master->unlock(part->master, ofs + part->offset, len);
300 }
301
302 static void part_sync(struct mtd_info *mtd)
303 {
304         struct mtd_part *part = PART(mtd);
305         part->master->sync(part->master);
306 }
307
308 static int part_suspend(struct mtd_info *mtd)
309 {
310         struct mtd_part *part = PART(mtd);
311         return part->master->suspend(part->master);
312 }
313
314 static void part_resume(struct mtd_info *mtd)
315 {
316         struct mtd_part *part = PART(mtd);
317         part->master->resume(part->master);
318 }
319
320 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
321 {
322         struct mtd_part *part = PART(mtd);
323         if (ofs >= mtd->size)
324                 return -EINVAL;
325         ofs += part->offset;
326         return part->master->block_isbad(part->master, ofs);
327 }
328
329 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
330 {
331         struct mtd_part *part = PART(mtd);
332         if (!(mtd->flags & MTD_WRITEABLE))
333                 return -EROFS;
334         if (ofs >= mtd->size)
335                 return -EINVAL;
336         ofs += part->offset;
337         return part->master->block_markbad(part->master, ofs);
338 }
339
340 /*
341  * This function unregisters and destroy all slave MTD objects which are
342  * attached to the given master MTD object.
343  */
344
345 int del_mtd_partitions(struct mtd_info *master)
346 {
347         struct list_head *node;
348         struct mtd_part *slave;
349
350         for (node = mtd_partitions.next;
351              node != &mtd_partitions;
352              node = node->next) {
353                 slave = list_entry(node, struct mtd_part, list);
354                 if (slave->master == master) {
355                         struct list_head *prev = node->prev;
356                         __list_del(prev, node->next);
357                         if(slave->registered)
358                                 del_mtd_device(&slave->mtd);
359                         kfree(slave);
360                         node = prev;
361                 }
362         }
363
364         return 0;
365 }
366
367 /*
368  * This function, given a master MTD object and a partition table, creates
369  * and registers slave MTD objects which are bound to the master according to
370  * the partition definitions.
371  * (Q: should we register the master MTD object as well?)
372  */
373
374 int add_mtd_partitions(struct mtd_info *master,
375                        const struct mtd_partition *parts,
376                        int nbparts)
377 {
378         struct mtd_part *slave;
379         u_int32_t cur_offset = 0;
380         int i;
381
382         printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
383
384         for (i = 0; i < nbparts; i++) {
385
386                 /* allocate the partition structure */
387                 slave = kmalloc (sizeof(*slave), GFP_KERNEL);
388                 if (!slave) {
389                         printk ("memory allocation error while creating partitions for \"%s\"\n",
390                                 master->name);
391                         del_mtd_partitions(master);
392                         return -ENOMEM;
393                 }
394                 memset(slave, 0, sizeof(*slave));
395                 list_add(&slave->list, &mtd_partitions);
396
397                 /* set up the MTD object for this partition */
398                 slave->mtd.type = master->type;
399                 slave->mtd.flags = master->flags & ~parts[i].mask_flags;
400                 slave->mtd.size = parts[i].size;
401                 slave->mtd.oobblock = master->oobblock;
402                 slave->mtd.oobsize = master->oobsize;
403                 slave->mtd.ecctype = master->ecctype;
404                 slave->mtd.eccsize = master->eccsize;
405
406                 slave->mtd.name = parts[i].name;
407                 slave->mtd.bank_size = master->bank_size;
408                 slave->mtd.owner = master->owner;
409
410                 slave->mtd.read = part_read;
411                 slave->mtd.write = part_write;
412
413                 if(master->point && master->unpoint){
414                         slave->mtd.point = part_point;
415                         slave->mtd.unpoint = part_unpoint;
416                 }
417
418                 if (master->read_ecc)
419                         slave->mtd.read_ecc = part_read_ecc;
420                 if (master->write_ecc)
421                         slave->mtd.write_ecc = part_write_ecc;
422                 if (master->read_oob)
423                         slave->mtd.read_oob = part_read_oob;
424                 if (master->write_oob)
425                         slave->mtd.write_oob = part_write_oob;
426                 if(master->read_user_prot_reg)
427                         slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
428                 if(master->read_fact_prot_reg)
429                         slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
430                 if(master->write_user_prot_reg)
431                         slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
432                 if(master->lock_user_prot_reg)
433                         slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
434                 if(master->get_user_prot_info)
435                         slave->mtd.get_user_prot_info = part_get_user_prot_info;
436                 if(master->get_fact_prot_info)
437                         slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
438                 if (master->sync)
439                         slave->mtd.sync = part_sync;
440                 if (!i && master->suspend && master->resume) {
441                                 slave->mtd.suspend = part_suspend;
442                                 slave->mtd.resume = part_resume;
443                 }
444                 if (master->writev)
445                         slave->mtd.writev = part_writev;
446                 if (master->readv)
447                         slave->mtd.readv = part_readv;
448                 if (master->writev_ecc)
449                         slave->mtd.writev_ecc = part_writev_ecc;
450                 if (master->readv_ecc)
451                         slave->mtd.readv_ecc = part_readv_ecc;
452                 if (master->lock)
453                         slave->mtd.lock = part_lock;
454                 if (master->unlock)
455                         slave->mtd.unlock = part_unlock;
456                 if (master->block_isbad)
457                         slave->mtd.block_isbad = part_block_isbad;
458                 if (master->block_markbad)
459                         slave->mtd.block_markbad = part_block_markbad;
460                 slave->mtd.erase = part_erase;
461                 slave->master = master;
462                 slave->offset = parts[i].offset;
463                 slave->index = i;
464
465                 if (slave->offset == MTDPART_OFS_APPEND)
466                         slave->offset = cur_offset;
467                 if (slave->offset == MTDPART_OFS_NXTBLK) {
468                         slave->offset = cur_offset;
469                         if ((cur_offset % master->erasesize) != 0) {
470                                 /* Round up to next erasesize */
471                                 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
472                                 printk(KERN_NOTICE "Moving partition %d: "
473                                        "0x%08x -> 0x%08x\n", i,
474                                        cur_offset, slave->offset);
475                         }
476                 }
477                 if (slave->mtd.size == MTDPART_SIZ_FULL)
478                         slave->mtd.size = master->size - slave->offset;
479                 cur_offset = slave->offset + slave->mtd.size;
480
481                 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
482                         slave->offset + slave->mtd.size, slave->mtd.name);
483
484                 /* let's do some sanity checks */
485                 if (slave->offset >= master->size) {
486                                 /* let's register it anyway to preserve ordering */
487                         slave->offset = 0;
488                         slave->mtd.size = 0;
489                         printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
490                                 parts[i].name);
491                 }
492                 if (slave->offset + slave->mtd.size > master->size) {
493                         slave->mtd.size = master->size - slave->offset;
494                         printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
495                                 parts[i].name, master->name, slave->mtd.size);
496                 }
497                 if (master->numeraseregions>1) {
498                         /* Deal with variable erase size stuff */
499                         int i;
500                         struct mtd_erase_region_info *regions = master->eraseregions;
501
502                         /* Find the first erase regions which is part of this partition. */
503                         for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
504                                 ;
505
506                         for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
507                                 if (slave->mtd.erasesize < regions[i].erasesize) {
508                                         slave->mtd.erasesize = regions[i].erasesize;
509                                 }
510                         }
511                 } else {
512                         /* Single erase size */
513                         slave->mtd.erasesize = master->erasesize;
514                 }
515
516                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
517                     (slave->offset % slave->mtd.erasesize)) {
518                         /* Doesn't start on a boundary of major erase size */
519                         /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
520                         slave->mtd.flags &= ~MTD_WRITEABLE;
521                         printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
522                                 parts[i].name);
523                 }
524                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
525                     (slave->mtd.size % slave->mtd.erasesize)) {
526                         slave->mtd.flags &= ~MTD_WRITEABLE;
527                         printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
528                                 parts[i].name);
529                 }
530
531                 /* copy oobinfo from master */
532                 memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo));
533
534                 if(parts[i].mtdp)
535                 {       /* store the object pointer (caller may or may not register it */
536                         *parts[i].mtdp = &slave->mtd;
537                         slave->registered = 0;
538                 }
539                 else
540                 {
541                         /* register our partition */
542                         add_mtd_device(&slave->mtd);
543                         slave->registered = 1;
544                 }
545         }
546
547         return 0;
548 }
549
550 EXPORT_SYMBOL(add_mtd_partitions);
551 EXPORT_SYMBOL(del_mtd_partitions);
552
553 static DEFINE_SPINLOCK(part_parser_lock);
554 static LIST_HEAD(part_parsers);
555
556 static struct mtd_part_parser *get_partition_parser(const char *name)
557 {
558         struct list_head *this;
559         void *ret = NULL;
560         spin_lock(&part_parser_lock);
561
562         list_for_each(this, &part_parsers) {
563                 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
564
565                 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
566                         ret = p;
567                         break;
568                 }
569         }
570         spin_unlock(&part_parser_lock);
571
572         return ret;
573 }
574
575 int register_mtd_parser(struct mtd_part_parser *p)
576 {
577         spin_lock(&part_parser_lock);
578         list_add(&p->list, &part_parsers);
579         spin_unlock(&part_parser_lock);
580
581         return 0;
582 }
583
584 int deregister_mtd_parser(struct mtd_part_parser *p)
585 {
586         spin_lock(&part_parser_lock);
587         list_del(&p->list);
588         spin_unlock(&part_parser_lock);
589         return 0;
590 }
591
592 int parse_mtd_partitions(struct mtd_info *master, const char **types,
593                          struct mtd_partition **pparts, unsigned long origin)
594 {
595         struct mtd_part_parser *parser;
596         int ret = 0;
597
598         for ( ; ret <= 0 && *types; types++) {
599                 parser = get_partition_parser(*types);
600 #ifdef CONFIG_KMOD
601                 if (!parser && !request_module("%s", *types))
602                                 parser = get_partition_parser(*types);
603 #endif
604                 if (!parser) {
605                         printk(KERN_NOTICE "%s partition parsing not available\n",
606                                *types);
607                         continue;
608                 }
609                 ret = (*parser->parse_fn)(master, pparts, origin);
610                 if (ret > 0) {
611                         printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
612                                ret, parser->name, master->name);
613                 }
614                 put_partition_parser(parser);
615         }
616         return ret;
617 }
618
619 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
620 EXPORT_SYMBOL_GPL(register_mtd_parser);
621 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
622
623 MODULE_LICENSE("GPL");
624 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
625 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");
626