2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/types.h>
55 #include <linux/fcntl.h>
56 #include <linux/module.h>
57 #include <linux/random.h>
58 #include <linux/cache.h>
59 #include <linux/jhash.h>
60 #include <linux/init.h>
61 #include <linux/times.h>
63 #include <net/net_namespace.h>
65 #include <net/inet_hashtables.h>
67 #include <net/transp_v6.h>
69 #include <net/inet_common.h>
70 #include <net/timewait_sock.h>
72 #include <net/netdma.h>
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
80 #include <linux/crypto.h>
81 #include <linux/scatterlist.h>
83 int sysctl_tcp_tw_reuse __read_mostly;
84 int sysctl_tcp_low_latency __read_mostly;
87 #ifdef CONFIG_TCP_MD5SIG
88 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
90 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
91 __be32 daddr, __be32 saddr, struct tcphdr *th);
94 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
100 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
101 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
102 .lhash_users = ATOMIC_INIT(0),
103 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
111 tcp_hdr(skb)->source);
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
145 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
147 /* This will initiate an outgoing connection. */
148 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
150 struct inet_sock *inet = inet_sk(sk);
151 struct tcp_sock *tp = tcp_sk(sk);
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
154 __be32 daddr, nexthop;
158 if (addr_len < sizeof(struct sockaddr_in))
161 if (usin->sin_family != AF_INET)
162 return -EAFNOSUPPORT;
164 nexthop = daddr = usin->sin_addr.s_addr;
165 if (inet->opt && inet->opt->srr) {
168 nexthop = inet->opt->faddr;
171 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
172 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 inet->sport, usin->sin_port, sk, 1);
176 if (tmp == -ENETUNREACH)
177 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
186 if (!inet->opt || !inet->opt->srr)
190 inet->saddr = rt->rt_src;
191 inet->rcv_saddr = inet->saddr;
193 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
194 /* Reset inherited state */
195 tp->rx_opt.ts_recent = 0;
196 tp->rx_opt.ts_recent_stamp = 0;
200 if (tcp_death_row.sysctl_tw_recycle &&
201 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
202 struct inet_peer *peer = rt_get_peer(rt);
204 * VJ's idea. We save last timestamp seen from
205 * the destination in peer table, when entering state
206 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
207 * when trying new connection.
210 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
211 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
212 tp->rx_opt.ts_recent = peer->tcp_ts;
216 inet->dport = usin->sin_port;
219 inet_csk(sk)->icsk_ext_hdr_len = 0;
221 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
223 tp->rx_opt.mss_clamp = 536;
225 /* Socket identity is still unknown (sport may be zero).
226 * However we set state to SYN-SENT and not releasing socket
227 * lock select source port, enter ourselves into the hash tables and
228 * complete initialization after this.
230 tcp_set_state(sk, TCP_SYN_SENT);
231 err = inet_hash_connect(&tcp_death_row, sk);
235 err = ip_route_newports(&rt, IPPROTO_TCP,
236 inet->sport, inet->dport, sk);
240 /* OK, now commit destination to socket. */
241 sk->sk_gso_type = SKB_GSO_TCPV4;
242 sk_setup_caps(sk, &rt->u.dst);
245 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
250 inet->id = tp->write_seq ^ jiffies;
252 err = tcp_connect(sk);
261 * This unhashes the socket and releases the local port,
264 tcp_set_state(sk, TCP_CLOSE);
266 sk->sk_route_caps = 0;
272 * This routine does path mtu discovery as defined in RFC1191.
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
276 struct dst_entry *dst;
277 struct inet_sock *inet = inet_sk(sk);
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
283 if (sk->sk_state == TCP_LISTEN)
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
292 if ((dst = __sk_dst_check(sk, 0)) == NULL)
295 dst->ops->update_pmtu(dst, mtu);
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
300 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301 sk->sk_err_soft = EMSGSIZE;
305 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307 tcp_sync_mss(sk, mtu);
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
314 tcp_simple_retransmit(sk);
315 } /* else let the usual retransmit timer handle it */
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
336 struct iphdr *iph = (struct iphdr *)skb->data;
337 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
339 struct inet_sock *inet;
340 const int type = icmp_hdr(skb)->type;
341 const int code = icmp_hdr(skb)->code;
345 struct net *net = dev_net(skb->dev);
347 if (skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(skb));
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
367 if (sock_owned_by_user(sk))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 if (sk->sk_state == TCP_CLOSE)
374 seq = ntohl(th->seq);
375 if (sk->sk_state != TCP_LISTEN &&
376 !between(seq, tp->snd_una, tp->snd_nxt)) {
377 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
382 case ICMP_SOURCE_QUENCH:
383 /* Just silently ignore these. */
385 case ICMP_PARAMETERPROB:
388 case ICMP_DEST_UNREACH:
389 if (code > NR_ICMP_UNREACH)
392 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
393 if (!sock_owned_by_user(sk))
394 do_pmtu_discovery(sk, iph, info);
398 err = icmp_err_convert[code].errno;
400 case ICMP_TIME_EXCEEDED:
407 switch (sk->sk_state) {
408 struct request_sock *req, **prev;
410 if (sock_owned_by_user(sk))
413 req = inet_csk_search_req(sk, &prev, th->dest,
414 iph->daddr, iph->saddr);
418 /* ICMPs are not backlogged, hence we cannot get
419 an established socket here.
423 if (seq != tcp_rsk(req)->snt_isn) {
424 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
429 * Still in SYN_RECV, just remove it silently.
430 * There is no good way to pass the error to the newly
431 * created socket, and POSIX does not want network
432 * errors returned from accept().
434 inet_csk_reqsk_queue_drop(sk, req, prev);
438 case TCP_SYN_RECV: /* Cannot happen.
439 It can f.e. if SYNs crossed.
441 if (!sock_owned_by_user(sk)) {
444 sk->sk_error_report(sk);
448 sk->sk_err_soft = err;
453 /* If we've already connected we will keep trying
454 * until we time out, or the user gives up.
456 * rfc1122 4.2.3.9 allows to consider as hard errors
457 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458 * but it is obsoleted by pmtu discovery).
460 * Note, that in modern internet, where routing is unreliable
461 * and in each dark corner broken firewalls sit, sending random
462 * errors ordered by their masters even this two messages finally lose
463 * their original sense (even Linux sends invalid PORT_UNREACHs)
465 * Now we are in compliance with RFCs.
470 if (!sock_owned_by_user(sk) && inet->recverr) {
472 sk->sk_error_report(sk);
473 } else { /* Only an error on timeout */
474 sk->sk_err_soft = err;
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
485 struct inet_sock *inet = inet_sk(sk);
486 struct tcphdr *th = tcp_hdr(skb);
488 if (skb->ip_summed == CHECKSUM_PARTIAL) {
489 th->check = ~tcp_v4_check(len, inet->saddr,
491 skb->csum_start = skb_transport_header(skb) - skb->head;
492 skb->csum_offset = offsetof(struct tcphdr, check);
494 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
495 csum_partial((char *)th,
501 int tcp_v4_gso_send_check(struct sk_buff *skb)
503 const struct iphdr *iph;
506 if (!pskb_may_pull(skb, sizeof(*th)))
513 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
514 skb->csum_start = skb_transport_header(skb) - skb->head;
515 skb->csum_offset = offsetof(struct tcphdr, check);
516 skb->ip_summed = CHECKSUM_PARTIAL;
521 * This routine will send an RST to the other tcp.
523 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
525 * Answer: if a packet caused RST, it is not for a socket
526 * existing in our system, if it is matched to a socket,
527 * it is just duplicate segment or bug in other side's TCP.
528 * So that we build reply only basing on parameters
529 * arrived with segment.
530 * Exception: precedence violation. We do not implement it in any case.
533 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
535 struct tcphdr *th = tcp_hdr(skb);
538 #ifdef CONFIG_TCP_MD5SIG
539 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
542 struct ip_reply_arg arg;
543 #ifdef CONFIG_TCP_MD5SIG
544 struct tcp_md5sig_key *key;
548 /* Never send a reset in response to a reset. */
552 if (skb->rtable->rt_type != RTN_LOCAL)
555 /* Swap the send and the receive. */
556 memset(&rep, 0, sizeof(rep));
557 rep.th.dest = th->source;
558 rep.th.source = th->dest;
559 rep.th.doff = sizeof(struct tcphdr) / 4;
563 rep.th.seq = th->ack_seq;
566 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
567 skb->len - (th->doff << 2));
570 memset(&arg, 0, sizeof(arg));
571 arg.iov[0].iov_base = (unsigned char *)&rep;
572 arg.iov[0].iov_len = sizeof(rep.th);
574 #ifdef CONFIG_TCP_MD5SIG
575 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
577 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
579 (TCPOPT_MD5SIG << 8) |
581 /* Update length and the length the header thinks exists */
582 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
583 rep.th.doff = arg.iov[0].iov_len / 4;
585 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
586 key, ip_hdr(skb)->daddr,
587 ip_hdr(skb)->saddr, &rep.th);
590 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
591 ip_hdr(skb)->saddr, /* XXX */
592 sizeof(struct tcphdr), IPPROTO_TCP, 0);
593 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
595 net = dev_net(skb->dst->dev);
596 ip_send_reply(net->ipv4.tcp_sock, skb,
597 &arg, arg.iov[0].iov_len);
599 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
600 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
603 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
604 outside socket context is ugly, certainly. What can I do?
607 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
608 u32 win, u32 ts, int oif,
609 struct tcp_md5sig_key *key)
611 struct tcphdr *th = tcp_hdr(skb);
614 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
615 #ifdef CONFIG_TCP_MD5SIG
616 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
620 struct ip_reply_arg arg;
621 struct net *net = dev_net(skb->dev);
623 memset(&rep.th, 0, sizeof(struct tcphdr));
624 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
629 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
630 (TCPOPT_TIMESTAMP << 8) |
632 rep.opt[1] = htonl(tcp_time_stamp);
633 rep.opt[2] = htonl(ts);
634 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
637 /* Swap the send and the receive. */
638 rep.th.dest = th->source;
639 rep.th.source = th->dest;
640 rep.th.doff = arg.iov[0].iov_len / 4;
641 rep.th.seq = htonl(seq);
642 rep.th.ack_seq = htonl(ack);
644 rep.th.window = htons(win);
646 #ifdef CONFIG_TCP_MD5SIG
648 int offset = (ts) ? 3 : 0;
650 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
652 (TCPOPT_MD5SIG << 8) |
654 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
655 rep.th.doff = arg.iov[0].iov_len/4;
657 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
658 key, ip_hdr(skb)->saddr,
659 ip_hdr(skb)->daddr, &rep.th);
662 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
663 ip_hdr(skb)->saddr, /* XXX */
664 arg.iov[0].iov_len, IPPROTO_TCP, 0);
665 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
667 arg.bound_dev_if = oif;
669 ip_send_reply(net->ipv4.tcp_sock, skb,
670 &arg, arg.iov[0].iov_len);
672 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
675 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
677 struct inet_timewait_sock *tw = inet_twsk(sk);
678 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
680 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
681 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
684 tcp_twsk_md5_key(tcptw)
690 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
691 struct request_sock *req)
693 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
694 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
697 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr));
701 * Send a SYN-ACK after having received a SYN.
702 * This still operates on a request_sock only, not on a big
705 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
706 struct dst_entry *dst)
708 const struct inet_request_sock *ireq = inet_rsk(req);
710 struct sk_buff * skb;
712 /* First, grab a route. */
713 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
716 skb = tcp_make_synack(sk, dst, req);
719 struct tcphdr *th = tcp_hdr(skb);
721 th->check = tcp_v4_check(skb->len,
724 csum_partial((char *)th, skb->len,
727 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
730 err = net_xmit_eval(err);
737 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
739 return __tcp_v4_send_synack(sk, req, NULL);
743 * IPv4 request_sock destructor.
745 static void tcp_v4_reqsk_destructor(struct request_sock *req)
747 kfree(inet_rsk(req)->opt);
750 #ifdef CONFIG_SYN_COOKIES
751 static void syn_flood_warning(struct sk_buff *skb)
753 static unsigned long warntime;
755 if (time_after(jiffies, (warntime + HZ * 60))) {
758 "possible SYN flooding on port %d. Sending cookies.\n",
759 ntohs(tcp_hdr(skb)->dest));
765 * Save and compile IPv4 options into the request_sock if needed.
767 static struct ip_options *tcp_v4_save_options(struct sock *sk,
770 struct ip_options *opt = &(IPCB(skb)->opt);
771 struct ip_options *dopt = NULL;
773 if (opt && opt->optlen) {
774 int opt_size = optlength(opt);
775 dopt = kmalloc(opt_size, GFP_ATOMIC);
777 if (ip_options_echo(dopt, skb)) {
786 #ifdef CONFIG_TCP_MD5SIG
788 * RFC2385 MD5 checksumming requires a mapping of
789 * IP address->MD5 Key.
790 * We need to maintain these in the sk structure.
793 /* Find the Key structure for an address. */
794 static struct tcp_md5sig_key *
795 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
797 struct tcp_sock *tp = tcp_sk(sk);
800 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
802 for (i = 0; i < tp->md5sig_info->entries4; i++) {
803 if (tp->md5sig_info->keys4[i].addr == addr)
804 return &tp->md5sig_info->keys4[i].base;
809 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
810 struct sock *addr_sk)
812 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
815 EXPORT_SYMBOL(tcp_v4_md5_lookup);
817 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
818 struct request_sock *req)
820 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
823 /* This can be called on a newly created socket, from other files */
824 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
825 u8 *newkey, u8 newkeylen)
827 /* Add Key to the list */
828 struct tcp_md5sig_key *key;
829 struct tcp_sock *tp = tcp_sk(sk);
830 struct tcp4_md5sig_key *keys;
832 key = tcp_v4_md5_do_lookup(sk, addr);
834 /* Pre-existing entry - just update that one. */
837 key->keylen = newkeylen;
839 struct tcp_md5sig_info *md5sig;
841 if (!tp->md5sig_info) {
842 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
844 if (!tp->md5sig_info) {
848 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
850 if (tcp_alloc_md5sig_pool() == NULL) {
854 md5sig = tp->md5sig_info;
856 if (md5sig->alloced4 == md5sig->entries4) {
857 keys = kmalloc((sizeof(*keys) *
858 (md5sig->entries4 + 1)), GFP_ATOMIC);
861 tcp_free_md5sig_pool();
865 if (md5sig->entries4)
866 memcpy(keys, md5sig->keys4,
867 sizeof(*keys) * md5sig->entries4);
869 /* Free old key list, and reference new one */
870 kfree(md5sig->keys4);
871 md5sig->keys4 = keys;
875 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
876 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
877 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
882 EXPORT_SYMBOL(tcp_v4_md5_do_add);
884 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
885 u8 *newkey, u8 newkeylen)
887 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
891 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
893 struct tcp_sock *tp = tcp_sk(sk);
896 for (i = 0; i < tp->md5sig_info->entries4; i++) {
897 if (tp->md5sig_info->keys4[i].addr == addr) {
899 kfree(tp->md5sig_info->keys4[i].base.key);
900 tp->md5sig_info->entries4--;
902 if (tp->md5sig_info->entries4 == 0) {
903 kfree(tp->md5sig_info->keys4);
904 tp->md5sig_info->keys4 = NULL;
905 tp->md5sig_info->alloced4 = 0;
906 } else if (tp->md5sig_info->entries4 != i) {
907 /* Need to do some manipulation */
908 memmove(&tp->md5sig_info->keys4[i],
909 &tp->md5sig_info->keys4[i+1],
910 (tp->md5sig_info->entries4 - i) *
911 sizeof(struct tcp4_md5sig_key));
913 tcp_free_md5sig_pool();
920 EXPORT_SYMBOL(tcp_v4_md5_do_del);
922 static void tcp_v4_clear_md5_list(struct sock *sk)
924 struct tcp_sock *tp = tcp_sk(sk);
926 /* Free each key, then the set of key keys,
927 * the crypto element, and then decrement our
928 * hold on the last resort crypto.
930 if (tp->md5sig_info->entries4) {
932 for (i = 0; i < tp->md5sig_info->entries4; i++)
933 kfree(tp->md5sig_info->keys4[i].base.key);
934 tp->md5sig_info->entries4 = 0;
935 tcp_free_md5sig_pool();
937 if (tp->md5sig_info->keys4) {
938 kfree(tp->md5sig_info->keys4);
939 tp->md5sig_info->keys4 = NULL;
940 tp->md5sig_info->alloced4 = 0;
944 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
947 struct tcp_md5sig cmd;
948 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
951 if (optlen < sizeof(cmd))
954 if (copy_from_user(&cmd, optval, sizeof(cmd)))
957 if (sin->sin_family != AF_INET)
960 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
961 if (!tcp_sk(sk)->md5sig_info)
963 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
966 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
969 if (!tcp_sk(sk)->md5sig_info) {
970 struct tcp_sock *tp = tcp_sk(sk);
971 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
977 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
980 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
983 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
984 newkey, cmd.tcpm_keylen);
987 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
988 __be32 daddr, __be32 saddr, int nbytes)
990 struct tcp4_pseudohdr *bp;
991 struct scatterlist sg;
993 bp = &hp->md5_blk.ip4;
996 * 1. the TCP pseudo-header (in the order: source IP address,
997 * destination IP address, zero-padded protocol number, and
1003 bp->protocol = IPPROTO_TCP;
1004 bp->len = cpu_to_be16(nbytes);
1006 sg_init_one(&sg, bp, sizeof(*bp));
1007 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1010 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1011 __be32 daddr, __be32 saddr, struct tcphdr *th)
1013 struct tcp_md5sig_pool *hp;
1014 struct hash_desc *desc;
1016 hp = tcp_get_md5sig_pool();
1018 goto clear_hash_noput;
1019 desc = &hp->md5_desc;
1021 if (crypto_hash_init(desc))
1023 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1025 if (tcp_md5_hash_header(hp, th))
1027 if (tcp_md5_hash_key(hp, key))
1029 if (crypto_hash_final(desc, md5_hash))
1032 tcp_put_md5sig_pool();
1036 tcp_put_md5sig_pool();
1038 memset(md5_hash, 0, 16);
1042 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1043 struct sock *sk, struct request_sock *req,
1044 struct sk_buff *skb)
1046 struct tcp_md5sig_pool *hp;
1047 struct hash_desc *desc;
1048 struct tcphdr *th = tcp_hdr(skb);
1049 __be32 saddr, daddr;
1052 saddr = inet_sk(sk)->saddr;
1053 daddr = inet_sk(sk)->daddr;
1055 saddr = inet_rsk(req)->loc_addr;
1056 daddr = inet_rsk(req)->rmt_addr;
1058 const struct iphdr *iph = ip_hdr(skb);
1063 hp = tcp_get_md5sig_pool();
1065 goto clear_hash_noput;
1066 desc = &hp->md5_desc;
1068 if (crypto_hash_init(desc))
1071 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1073 if (tcp_md5_hash_header(hp, th))
1075 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1077 if (tcp_md5_hash_key(hp, key))
1079 if (crypto_hash_final(desc, md5_hash))
1082 tcp_put_md5sig_pool();
1086 tcp_put_md5sig_pool();
1088 memset(md5_hash, 0, 16);
1092 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1094 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1097 * This gets called for each TCP segment that arrives
1098 * so we want to be efficient.
1099 * We have 3 drop cases:
1100 * o No MD5 hash and one expected.
1101 * o MD5 hash and we're not expecting one.
1102 * o MD5 hash and its wrong.
1104 __u8 *hash_location = NULL;
1105 struct tcp_md5sig_key *hash_expected;
1106 const struct iphdr *iph = ip_hdr(skb);
1107 struct tcphdr *th = tcp_hdr(skb);
1109 unsigned char newhash[16];
1111 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1112 hash_location = tcp_parse_md5sig_option(th);
1114 /* We've parsed the options - do we have a hash? */
1115 if (!hash_expected && !hash_location)
1118 if (hash_expected && !hash_location) {
1119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1123 if (!hash_expected && hash_location) {
1124 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1128 /* Okay, so this is hash_expected and hash_location -
1129 * so we need to calculate the checksum.
1131 genhash = tcp_v4_md5_hash_skb(newhash,
1135 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1136 if (net_ratelimit()) {
1137 printk(KERN_INFO "MD5 Hash failed for "
1138 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1139 NIPQUAD(iph->saddr), ntohs(th->source),
1140 NIPQUAD(iph->daddr), ntohs(th->dest),
1141 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1150 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1152 .obj_size = sizeof(struct tcp_request_sock),
1153 .rtx_syn_ack = tcp_v4_send_synack,
1154 .send_ack = tcp_v4_reqsk_send_ack,
1155 .destructor = tcp_v4_reqsk_destructor,
1156 .send_reset = tcp_v4_send_reset,
1159 #ifdef CONFIG_TCP_MD5SIG
1160 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1161 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1165 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1166 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1167 .twsk_unique = tcp_twsk_unique,
1168 .twsk_destructor= tcp_twsk_destructor,
1171 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1173 struct inet_request_sock *ireq;
1174 struct tcp_options_received tmp_opt;
1175 struct request_sock *req;
1176 __be32 saddr = ip_hdr(skb)->saddr;
1177 __be32 daddr = ip_hdr(skb)->daddr;
1178 __u32 isn = TCP_SKB_CB(skb)->when;
1179 struct dst_entry *dst = NULL;
1180 #ifdef CONFIG_SYN_COOKIES
1181 int want_cookie = 0;
1183 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1186 /* Never answer to SYNs send to broadcast or multicast */
1187 if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1190 /* TW buckets are converted to open requests without
1191 * limitations, they conserve resources and peer is
1192 * evidently real one.
1194 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1195 #ifdef CONFIG_SYN_COOKIES
1196 if (sysctl_tcp_syncookies) {
1203 /* Accept backlog is full. If we have already queued enough
1204 * of warm entries in syn queue, drop request. It is better than
1205 * clogging syn queue with openreqs with exponentially increasing
1208 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1211 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1215 #ifdef CONFIG_TCP_MD5SIG
1216 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1219 tcp_clear_options(&tmp_opt);
1220 tmp_opt.mss_clamp = 536;
1221 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1223 tcp_parse_options(skb, &tmp_opt, 0);
1225 if (want_cookie && !tmp_opt.saw_tstamp)
1226 tcp_clear_options(&tmp_opt);
1228 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1229 /* Some OSes (unknown ones, but I see them on web server, which
1230 * contains information interesting only for windows'
1231 * users) do not send their stamp in SYN. It is easy case.
1232 * We simply do not advertise TS support.
1234 tmp_opt.saw_tstamp = 0;
1235 tmp_opt.tstamp_ok = 0;
1237 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1239 tcp_openreq_init(req, &tmp_opt, skb);
1241 if (security_inet_conn_request(sk, skb, req))
1244 ireq = inet_rsk(req);
1245 ireq->loc_addr = daddr;
1246 ireq->rmt_addr = saddr;
1247 ireq->opt = tcp_v4_save_options(sk, skb);
1249 TCP_ECN_create_request(req, tcp_hdr(skb));
1252 #ifdef CONFIG_SYN_COOKIES
1253 syn_flood_warning(skb);
1254 req->cookie_ts = tmp_opt.tstamp_ok;
1256 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1258 struct inet_peer *peer = NULL;
1260 /* VJ's idea. We save last timestamp seen
1261 * from the destination in peer table, when entering
1262 * state TIME-WAIT, and check against it before
1263 * accepting new connection request.
1265 * If "isn" is not zero, this request hit alive
1266 * timewait bucket, so that all the necessary checks
1267 * are made in the function processing timewait state.
1269 if (tmp_opt.saw_tstamp &&
1270 tcp_death_row.sysctl_tw_recycle &&
1271 (dst = inet_csk_route_req(sk, req)) != NULL &&
1272 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1273 peer->v4daddr == saddr) {
1274 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1275 (s32)(peer->tcp_ts - req->ts_recent) >
1277 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1278 goto drop_and_release;
1281 /* Kill the following clause, if you dislike this way. */
1282 else if (!sysctl_tcp_syncookies &&
1283 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1284 (sysctl_max_syn_backlog >> 2)) &&
1285 (!peer || !peer->tcp_ts_stamp) &&
1286 (!dst || !dst_metric(dst, RTAX_RTT))) {
1287 /* Without syncookies last quarter of
1288 * backlog is filled with destinations,
1289 * proven to be alive.
1290 * It means that we continue to communicate
1291 * to destinations, already remembered
1292 * to the moment of synflood.
1294 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1295 "request from " NIPQUAD_FMT "/%u\n",
1297 ntohs(tcp_hdr(skb)->source));
1298 goto drop_and_release;
1301 isn = tcp_v4_init_sequence(skb);
1303 tcp_rsk(req)->snt_isn = isn;
1305 if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1308 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1321 * The three way handshake has completed - we got a valid synack -
1322 * now create the new socket.
1324 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1325 struct request_sock *req,
1326 struct dst_entry *dst)
1328 struct inet_request_sock *ireq;
1329 struct inet_sock *newinet;
1330 struct tcp_sock *newtp;
1332 #ifdef CONFIG_TCP_MD5SIG
1333 struct tcp_md5sig_key *key;
1336 if (sk_acceptq_is_full(sk))
1339 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1342 newsk = tcp_create_openreq_child(sk, req, skb);
1346 newsk->sk_gso_type = SKB_GSO_TCPV4;
1347 sk_setup_caps(newsk, dst);
1349 newtp = tcp_sk(newsk);
1350 newinet = inet_sk(newsk);
1351 ireq = inet_rsk(req);
1352 newinet->daddr = ireq->rmt_addr;
1353 newinet->rcv_saddr = ireq->loc_addr;
1354 newinet->saddr = ireq->loc_addr;
1355 newinet->opt = ireq->opt;
1357 newinet->mc_index = inet_iif(skb);
1358 newinet->mc_ttl = ip_hdr(skb)->ttl;
1359 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1361 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1362 newinet->id = newtp->write_seq ^ jiffies;
1364 tcp_mtup_init(newsk);
1365 tcp_sync_mss(newsk, dst_mtu(dst));
1366 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1367 tcp_initialize_rcv_mss(newsk);
1369 #ifdef CONFIG_TCP_MD5SIG
1370 /* Copy over the MD5 key from the original socket */
1371 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1373 * We're using one, so create a matching key
1374 * on the newsk structure. If we fail to get
1375 * memory, then we end up not copying the key
1378 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1380 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1381 newkey, key->keylen);
1382 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1386 __inet_hash_nolisten(newsk);
1387 __inet_inherit_port(sk, newsk);
1392 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1394 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1399 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1401 struct tcphdr *th = tcp_hdr(skb);
1402 const struct iphdr *iph = ip_hdr(skb);
1404 struct request_sock **prev;
1405 /* Find possible connection requests. */
1406 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1407 iph->saddr, iph->daddr);
1409 return tcp_check_req(sk, skb, req, prev);
1411 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1412 th->source, iph->daddr, th->dest, inet_iif(skb));
1415 if (nsk->sk_state != TCP_TIME_WAIT) {
1419 inet_twsk_put(inet_twsk(nsk));
1423 #ifdef CONFIG_SYN_COOKIES
1424 if (!th->rst && !th->syn && th->ack)
1425 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1430 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1432 const struct iphdr *iph = ip_hdr(skb);
1434 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1435 if (!tcp_v4_check(skb->len, iph->saddr,
1436 iph->daddr, skb->csum)) {
1437 skb->ip_summed = CHECKSUM_UNNECESSARY;
1442 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1443 skb->len, IPPROTO_TCP, 0);
1445 if (skb->len <= 76) {
1446 return __skb_checksum_complete(skb);
1452 /* The socket must have it's spinlock held when we get
1455 * We have a potential double-lock case here, so even when
1456 * doing backlog processing we use the BH locking scheme.
1457 * This is because we cannot sleep with the original spinlock
1460 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1463 #ifdef CONFIG_TCP_MD5SIG
1465 * We really want to reject the packet as early as possible
1467 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1468 * o There is an MD5 option and we're not expecting one
1470 if (tcp_v4_inbound_md5_hash(sk, skb))
1474 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1475 TCP_CHECK_TIMER(sk);
1476 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1480 TCP_CHECK_TIMER(sk);
1484 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1487 if (sk->sk_state == TCP_LISTEN) {
1488 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1493 if (tcp_child_process(sk, nsk, skb)) {
1501 TCP_CHECK_TIMER(sk);
1502 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1506 TCP_CHECK_TIMER(sk);
1510 tcp_v4_send_reset(rsk, skb);
1513 /* Be careful here. If this function gets more complicated and
1514 * gcc suffers from register pressure on the x86, sk (in %ebx)
1515 * might be destroyed here. This current version compiles correctly,
1516 * but you have been warned.
1521 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1529 int tcp_v4_rcv(struct sk_buff *skb)
1531 const struct iphdr *iph;
1535 struct net *net = dev_net(skb->dev);
1537 if (skb->pkt_type != PACKET_HOST)
1540 /* Count it even if it's bad */
1541 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1543 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1548 if (th->doff < sizeof(struct tcphdr) / 4)
1550 if (!pskb_may_pull(skb, th->doff * 4))
1553 /* An explanation is required here, I think.
1554 * Packet length and doff are validated by header prediction,
1555 * provided case of th->doff==0 is eliminated.
1556 * So, we defer the checks. */
1557 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1562 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1563 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1564 skb->len - th->doff * 4);
1565 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1566 TCP_SKB_CB(skb)->when = 0;
1567 TCP_SKB_CB(skb)->flags = iph->tos;
1568 TCP_SKB_CB(skb)->sacked = 0;
1570 sk = __inet_lookup(net, &tcp_hashinfo, iph->saddr,
1571 th->source, iph->daddr, th->dest, inet_iif(skb));
1576 if (sk->sk_state == TCP_TIME_WAIT)
1579 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1580 goto discard_and_relse;
1583 if (sk_filter(sk, skb))
1584 goto discard_and_relse;
1588 bh_lock_sock_nested(sk);
1590 if (!sock_owned_by_user(sk)) {
1591 #ifdef CONFIG_NET_DMA
1592 struct tcp_sock *tp = tcp_sk(sk);
1593 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1594 tp->ucopy.dma_chan = get_softnet_dma();
1595 if (tp->ucopy.dma_chan)
1596 ret = tcp_v4_do_rcv(sk, skb);
1600 if (!tcp_prequeue(sk, skb))
1601 ret = tcp_v4_do_rcv(sk, skb);
1604 sk_add_backlog(sk, skb);
1612 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1615 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1617 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1619 tcp_v4_send_reset(NULL, skb);
1623 /* Discard frame. */
1632 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1633 inet_twsk_put(inet_twsk(sk));
1637 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1638 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1639 inet_twsk_put(inet_twsk(sk));
1642 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1644 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1646 iph->daddr, th->dest,
1649 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1650 inet_twsk_put(inet_twsk(sk));
1654 /* Fall through to ACK */
1657 tcp_v4_timewait_ack(sk, skb);
1661 case TCP_TW_SUCCESS:;
1666 /* VJ's idea. Save last timestamp seen from this destination
1667 * and hold it at least for normal timewait interval to use for duplicate
1668 * segment detection in subsequent connections, before they enter synchronized
1672 int tcp_v4_remember_stamp(struct sock *sk)
1674 struct inet_sock *inet = inet_sk(sk);
1675 struct tcp_sock *tp = tcp_sk(sk);
1676 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1677 struct inet_peer *peer = NULL;
1680 if (!rt || rt->rt_dst != inet->daddr) {
1681 peer = inet_getpeer(inet->daddr, 1);
1685 rt_bind_peer(rt, 1);
1690 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1691 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1692 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1693 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1694 peer->tcp_ts = tp->rx_opt.ts_recent;
1704 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1706 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1709 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1711 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1712 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1713 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1714 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1715 peer->tcp_ts = tcptw->tw_ts_recent;
1724 struct inet_connection_sock_af_ops ipv4_specific = {
1725 .queue_xmit = ip_queue_xmit,
1726 .send_check = tcp_v4_send_check,
1727 .rebuild_header = inet_sk_rebuild_header,
1728 .conn_request = tcp_v4_conn_request,
1729 .syn_recv_sock = tcp_v4_syn_recv_sock,
1730 .remember_stamp = tcp_v4_remember_stamp,
1731 .net_header_len = sizeof(struct iphdr),
1732 .setsockopt = ip_setsockopt,
1733 .getsockopt = ip_getsockopt,
1734 .addr2sockaddr = inet_csk_addr2sockaddr,
1735 .sockaddr_len = sizeof(struct sockaddr_in),
1736 .bind_conflict = inet_csk_bind_conflict,
1737 #ifdef CONFIG_COMPAT
1738 .compat_setsockopt = compat_ip_setsockopt,
1739 .compat_getsockopt = compat_ip_getsockopt,
1743 #ifdef CONFIG_TCP_MD5SIG
1744 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1745 .md5_lookup = tcp_v4_md5_lookup,
1746 .calc_md5_hash = tcp_v4_md5_hash_skb,
1747 .md5_add = tcp_v4_md5_add_func,
1748 .md5_parse = tcp_v4_parse_md5_keys,
1752 /* NOTE: A lot of things set to zero explicitly by call to
1753 * sk_alloc() so need not be done here.
1755 static int tcp_v4_init_sock(struct sock *sk)
1757 struct inet_connection_sock *icsk = inet_csk(sk);
1758 struct tcp_sock *tp = tcp_sk(sk);
1760 skb_queue_head_init(&tp->out_of_order_queue);
1761 tcp_init_xmit_timers(sk);
1762 tcp_prequeue_init(tp);
1764 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1765 tp->mdev = TCP_TIMEOUT_INIT;
1767 /* So many TCP implementations out there (incorrectly) count the
1768 * initial SYN frame in their delayed-ACK and congestion control
1769 * algorithms that we must have the following bandaid to talk
1770 * efficiently to them. -DaveM
1774 /* See draft-stevens-tcpca-spec-01 for discussion of the
1775 * initialization of these values.
1777 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1778 tp->snd_cwnd_clamp = ~0;
1779 tp->mss_cache = 536;
1781 tp->reordering = sysctl_tcp_reordering;
1782 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1784 sk->sk_state = TCP_CLOSE;
1786 sk->sk_write_space = sk_stream_write_space;
1787 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1789 icsk->icsk_af_ops = &ipv4_specific;
1790 icsk->icsk_sync_mss = tcp_sync_mss;
1791 #ifdef CONFIG_TCP_MD5SIG
1792 tp->af_specific = &tcp_sock_ipv4_specific;
1795 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1796 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1798 atomic_inc(&tcp_sockets_allocated);
1803 void tcp_v4_destroy_sock(struct sock *sk)
1805 struct tcp_sock *tp = tcp_sk(sk);
1807 tcp_clear_xmit_timers(sk);
1809 tcp_cleanup_congestion_control(sk);
1811 /* Cleanup up the write buffer. */
1812 tcp_write_queue_purge(sk);
1814 /* Cleans up our, hopefully empty, out_of_order_queue. */
1815 __skb_queue_purge(&tp->out_of_order_queue);
1817 #ifdef CONFIG_TCP_MD5SIG
1818 /* Clean up the MD5 key list, if any */
1819 if (tp->md5sig_info) {
1820 tcp_v4_clear_md5_list(sk);
1821 kfree(tp->md5sig_info);
1822 tp->md5sig_info = NULL;
1826 #ifdef CONFIG_NET_DMA
1827 /* Cleans up our sk_async_wait_queue */
1828 __skb_queue_purge(&sk->sk_async_wait_queue);
1831 /* Clean prequeue, it must be empty really */
1832 __skb_queue_purge(&tp->ucopy.prequeue);
1834 /* Clean up a referenced TCP bind bucket. */
1835 if (inet_csk(sk)->icsk_bind_hash)
1839 * If sendmsg cached page exists, toss it.
1841 if (sk->sk_sndmsg_page) {
1842 __free_page(sk->sk_sndmsg_page);
1843 sk->sk_sndmsg_page = NULL;
1846 atomic_dec(&tcp_sockets_allocated);
1849 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1851 #ifdef CONFIG_PROC_FS
1852 /* Proc filesystem TCP sock list dumping. */
1854 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1856 return hlist_empty(head) ? NULL :
1857 list_entry(head->first, struct inet_timewait_sock, tw_node);
1860 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1862 return tw->tw_node.next ?
1863 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1866 static void *listening_get_next(struct seq_file *seq, void *cur)
1868 struct inet_connection_sock *icsk;
1869 struct hlist_node *node;
1870 struct sock *sk = cur;
1871 struct tcp_iter_state* st = seq->private;
1872 struct net *net = seq_file_net(seq);
1876 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1882 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1883 struct request_sock *req = cur;
1885 icsk = inet_csk(st->syn_wait_sk);
1889 if (req->rsk_ops->family == st->family) {
1895 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1898 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1900 sk = sk_next(st->syn_wait_sk);
1901 st->state = TCP_SEQ_STATE_LISTENING;
1902 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1904 icsk = inet_csk(sk);
1905 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1906 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1908 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1912 sk_for_each_from(sk, node) {
1913 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1917 icsk = inet_csk(sk);
1918 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1919 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1921 st->uid = sock_i_uid(sk);
1922 st->syn_wait_sk = sk;
1923 st->state = TCP_SEQ_STATE_OPENREQ;
1927 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1929 if (++st->bucket < INET_LHTABLE_SIZE) {
1930 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1938 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1940 void *rc = listening_get_next(seq, NULL);
1942 while (rc && *pos) {
1943 rc = listening_get_next(seq, rc);
1949 static void *established_get_first(struct seq_file *seq)
1951 struct tcp_iter_state* st = seq->private;
1952 struct net *net = seq_file_net(seq);
1955 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1957 struct hlist_node *node;
1958 struct inet_timewait_sock *tw;
1959 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1962 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1963 if (sk->sk_family != st->family ||
1964 !net_eq(sock_net(sk), net)) {
1970 st->state = TCP_SEQ_STATE_TIME_WAIT;
1971 inet_twsk_for_each(tw, node,
1972 &tcp_hashinfo.ehash[st->bucket].twchain) {
1973 if (tw->tw_family != st->family ||
1974 !net_eq(twsk_net(tw), net)) {
1980 read_unlock_bh(lock);
1981 st->state = TCP_SEQ_STATE_ESTABLISHED;
1987 static void *established_get_next(struct seq_file *seq, void *cur)
1989 struct sock *sk = cur;
1990 struct inet_timewait_sock *tw;
1991 struct hlist_node *node;
1992 struct tcp_iter_state* st = seq->private;
1993 struct net *net = seq_file_net(seq);
1997 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2001 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2008 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2009 st->state = TCP_SEQ_STATE_ESTABLISHED;
2011 if (++st->bucket < tcp_hashinfo.ehash_size) {
2012 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2013 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2021 sk_for_each_from(sk, node) {
2022 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2026 st->state = TCP_SEQ_STATE_TIME_WAIT;
2027 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2035 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2037 void *rc = established_get_first(seq);
2040 rc = established_get_next(seq, rc);
2046 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2049 struct tcp_iter_state* st = seq->private;
2051 inet_listen_lock(&tcp_hashinfo);
2052 st->state = TCP_SEQ_STATE_LISTENING;
2053 rc = listening_get_idx(seq, &pos);
2056 inet_listen_unlock(&tcp_hashinfo);
2057 st->state = TCP_SEQ_STATE_ESTABLISHED;
2058 rc = established_get_idx(seq, pos);
2064 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2066 struct tcp_iter_state* st = seq->private;
2067 st->state = TCP_SEQ_STATE_LISTENING;
2069 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2072 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2075 struct tcp_iter_state* st;
2077 if (v == SEQ_START_TOKEN) {
2078 rc = tcp_get_idx(seq, 0);
2083 switch (st->state) {
2084 case TCP_SEQ_STATE_OPENREQ:
2085 case TCP_SEQ_STATE_LISTENING:
2086 rc = listening_get_next(seq, v);
2088 inet_listen_unlock(&tcp_hashinfo);
2089 st->state = TCP_SEQ_STATE_ESTABLISHED;
2090 rc = established_get_first(seq);
2093 case TCP_SEQ_STATE_ESTABLISHED:
2094 case TCP_SEQ_STATE_TIME_WAIT:
2095 rc = established_get_next(seq, v);
2103 static void tcp_seq_stop(struct seq_file *seq, void *v)
2105 struct tcp_iter_state* st = seq->private;
2107 switch (st->state) {
2108 case TCP_SEQ_STATE_OPENREQ:
2110 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2111 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2113 case TCP_SEQ_STATE_LISTENING:
2114 if (v != SEQ_START_TOKEN)
2115 inet_listen_unlock(&tcp_hashinfo);
2117 case TCP_SEQ_STATE_TIME_WAIT:
2118 case TCP_SEQ_STATE_ESTABLISHED:
2120 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2125 static int tcp_seq_open(struct inode *inode, struct file *file)
2127 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2128 struct tcp_iter_state *s;
2131 err = seq_open_net(inode, file, &afinfo->seq_ops,
2132 sizeof(struct tcp_iter_state));
2136 s = ((struct seq_file *)file->private_data)->private;
2137 s->family = afinfo->family;
2141 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2144 struct proc_dir_entry *p;
2146 afinfo->seq_fops.open = tcp_seq_open;
2147 afinfo->seq_fops.read = seq_read;
2148 afinfo->seq_fops.llseek = seq_lseek;
2149 afinfo->seq_fops.release = seq_release_net;
2151 afinfo->seq_ops.start = tcp_seq_start;
2152 afinfo->seq_ops.next = tcp_seq_next;
2153 afinfo->seq_ops.stop = tcp_seq_stop;
2155 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2156 &afinfo->seq_fops, afinfo);
2162 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2164 proc_net_remove(net, afinfo->name);
2167 static void get_openreq4(struct sock *sk, struct request_sock *req,
2168 struct seq_file *f, int i, int uid, int *len)
2170 const struct inet_request_sock *ireq = inet_rsk(req);
2171 int ttd = req->expires - jiffies;
2173 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2174 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2177 ntohs(inet_sk(sk)->sport),
2179 ntohs(ireq->rmt_port),
2181 0, 0, /* could print option size, but that is af dependent. */
2182 1, /* timers active (only the expire timer) */
2183 jiffies_to_clock_t(ttd),
2186 0, /* non standard timer */
2187 0, /* open_requests have no inode */
2188 atomic_read(&sk->sk_refcnt),
2193 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2196 unsigned long timer_expires;
2197 struct tcp_sock *tp = tcp_sk(sk);
2198 const struct inet_connection_sock *icsk = inet_csk(sk);
2199 struct inet_sock *inet = inet_sk(sk);
2200 __be32 dest = inet->daddr;
2201 __be32 src = inet->rcv_saddr;
2202 __u16 destp = ntohs(inet->dport);
2203 __u16 srcp = ntohs(inet->sport);
2205 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2207 timer_expires = icsk->icsk_timeout;
2208 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2210 timer_expires = icsk->icsk_timeout;
2211 } else if (timer_pending(&sk->sk_timer)) {
2213 timer_expires = sk->sk_timer.expires;
2216 timer_expires = jiffies;
2219 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2220 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2221 i, src, srcp, dest, destp, sk->sk_state,
2222 tp->write_seq - tp->snd_una,
2223 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2224 (tp->rcv_nxt - tp->copied_seq),
2226 jiffies_to_clock_t(timer_expires - jiffies),
2227 icsk->icsk_retransmits,
2229 icsk->icsk_probes_out,
2231 atomic_read(&sk->sk_refcnt), sk,
2232 jiffies_to_clock_t(icsk->icsk_rto),
2233 jiffies_to_clock_t(icsk->icsk_ack.ato),
2234 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2236 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2240 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2241 struct seq_file *f, int i, int *len)
2245 int ttd = tw->tw_ttd - jiffies;
2250 dest = tw->tw_daddr;
2251 src = tw->tw_rcv_saddr;
2252 destp = ntohs(tw->tw_dport);
2253 srcp = ntohs(tw->tw_sport);
2255 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2256 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2257 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2258 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2259 atomic_read(&tw->tw_refcnt), tw, len);
2264 static int tcp4_seq_show(struct seq_file *seq, void *v)
2266 struct tcp_iter_state* st;
2269 if (v == SEQ_START_TOKEN) {
2270 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2271 " sl local_address rem_address st tx_queue "
2272 "rx_queue tr tm->when retrnsmt uid timeout "
2278 switch (st->state) {
2279 case TCP_SEQ_STATE_LISTENING:
2280 case TCP_SEQ_STATE_ESTABLISHED:
2281 get_tcp4_sock(v, seq, st->num, &len);
2283 case TCP_SEQ_STATE_OPENREQ:
2284 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2286 case TCP_SEQ_STATE_TIME_WAIT:
2287 get_timewait4_sock(v, seq, st->num, &len);
2290 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2295 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2299 .owner = THIS_MODULE,
2302 .show = tcp4_seq_show,
2306 static int tcp4_proc_init_net(struct net *net)
2308 return tcp_proc_register(net, &tcp4_seq_afinfo);
2311 static void tcp4_proc_exit_net(struct net *net)
2313 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2316 static struct pernet_operations tcp4_net_ops = {
2317 .init = tcp4_proc_init_net,
2318 .exit = tcp4_proc_exit_net,
2321 int __init tcp4_proc_init(void)
2323 return register_pernet_subsys(&tcp4_net_ops);
2326 void tcp4_proc_exit(void)
2328 unregister_pernet_subsys(&tcp4_net_ops);
2330 #endif /* CONFIG_PROC_FS */
2332 struct proto tcp_prot = {
2334 .owner = THIS_MODULE,
2336 .connect = tcp_v4_connect,
2337 .disconnect = tcp_disconnect,
2338 .accept = inet_csk_accept,
2340 .init = tcp_v4_init_sock,
2341 .destroy = tcp_v4_destroy_sock,
2342 .shutdown = tcp_shutdown,
2343 .setsockopt = tcp_setsockopt,
2344 .getsockopt = tcp_getsockopt,
2345 .recvmsg = tcp_recvmsg,
2346 .backlog_rcv = tcp_v4_do_rcv,
2348 .unhash = inet_unhash,
2349 .get_port = inet_csk_get_port,
2350 .enter_memory_pressure = tcp_enter_memory_pressure,
2351 .sockets_allocated = &tcp_sockets_allocated,
2352 .orphan_count = &tcp_orphan_count,
2353 .memory_allocated = &tcp_memory_allocated,
2354 .memory_pressure = &tcp_memory_pressure,
2355 .sysctl_mem = sysctl_tcp_mem,
2356 .sysctl_wmem = sysctl_tcp_wmem,
2357 .sysctl_rmem = sysctl_tcp_rmem,
2358 .max_header = MAX_TCP_HEADER,
2359 .obj_size = sizeof(struct tcp_sock),
2360 .twsk_prot = &tcp_timewait_sock_ops,
2361 .rsk_prot = &tcp_request_sock_ops,
2362 .h.hashinfo = &tcp_hashinfo,
2363 #ifdef CONFIG_COMPAT
2364 .compat_setsockopt = compat_tcp_setsockopt,
2365 .compat_getsockopt = compat_tcp_getsockopt,
2370 static int __net_init tcp_sk_init(struct net *net)
2372 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2373 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2376 static void __net_exit tcp_sk_exit(struct net *net)
2378 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2381 static struct pernet_operations __net_initdata tcp_sk_ops = {
2382 .init = tcp_sk_init,
2383 .exit = tcp_sk_exit,
2386 void __init tcp_v4_init(void)
2388 if (register_pernet_device(&tcp_sk_ops))
2389 panic("Failed to create the TCP control socket.\n");
2392 EXPORT_SYMBOL(ipv4_specific);
2393 EXPORT_SYMBOL(tcp_hashinfo);
2394 EXPORT_SYMBOL(tcp_prot);
2395 EXPORT_SYMBOL(tcp_v4_conn_request);
2396 EXPORT_SYMBOL(tcp_v4_connect);
2397 EXPORT_SYMBOL(tcp_v4_do_rcv);
2398 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2399 EXPORT_SYMBOL(tcp_v4_send_check);
2400 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2402 #ifdef CONFIG_PROC_FS
2403 EXPORT_SYMBOL(tcp_proc_register);
2404 EXPORT_SYMBOL(tcp_proc_unregister);
2406 EXPORT_SYMBOL(sysctl_tcp_low_latency);