powerpc/ps3: Quiet dmesg output
[linux-2.6] / Documentation / crypto / async-tx-api.txt
1                  Asynchronous Transfers/Transforms API
2
3 1 INTRODUCTION
4
5 2 GENEALOGY
6
7 3 USAGE
8 3.1 General format of the API
9 3.2 Supported operations
10 3.3 Descriptor management
11 3.4 When does the operation execute?
12 3.5 When does the operation complete?
13 3.6 Constraints
14 3.7 Example
15
16 4 DRIVER DEVELOPER NOTES
17 4.1 Conformance points
18 4.2 "My application needs finer control of hardware channels"
19
20 5 SOURCE
21
22 ---
23
24 1 INTRODUCTION
25
26 The async_tx API provides methods for describing a chain of asynchronous
27 bulk memory transfers/transforms with support for inter-transactional
28 dependencies.  It is implemented as a dmaengine client that smooths over
29 the details of different hardware offload engine implementations.  Code
30 that is written to the API can optimize for asynchronous operation and
31 the API will fit the chain of operations to the available offload
32 resources.
33
34 2 GENEALOGY
35
36 The API was initially designed to offload the memory copy and
37 xor-parity-calculations of the md-raid5 driver using the offload engines
38 present in the Intel(R) Xscale series of I/O processors.  It also built
39 on the 'dmaengine' layer developed for offloading memory copies in the
40 network stack using Intel(R) I/OAT engines.  The following design
41 features surfaced as a result:
42 1/ implicit synchronous path: users of the API do not need to know if
43    the platform they are running on has offload capabilities.  The
44    operation will be offloaded when an engine is available and carried out
45    in software otherwise.
46 2/ cross channel dependency chains: the API allows a chain of dependent
47    operations to be submitted, like xor->copy->xor in the raid5 case.  The
48    API automatically handles cases where the transition from one operation
49    to another implies a hardware channel switch.
50 3/ dmaengine extensions to support multiple clients and operation types
51    beyond 'memcpy'
52
53 3 USAGE
54
55 3.1 General format of the API:
56 struct dma_async_tx_descriptor *
57 async_<operation>(<op specific parameters>,
58                   enum async_tx_flags flags,
59                   struct dma_async_tx_descriptor *dependency,
60                   dma_async_tx_callback callback_routine,
61                   void *callback_parameter);
62
63 3.2 Supported operations:
64 memcpy       - memory copy between a source and a destination buffer
65 memset       - fill a destination buffer with a byte value
66 xor          - xor a series of source buffers and write the result to a
67                destination buffer
68 xor_zero_sum - xor a series of source buffers and set a flag if the
69                result is zero.  The implementation attempts to prevent
70                writes to memory
71
72 3.3 Descriptor management:
73 The return value is non-NULL and points to a 'descriptor' when the operation
74 has been queued to execute asynchronously.  Descriptors are recycled
75 resources, under control of the offload engine driver, to be reused as
76 operations complete.  When an application needs to submit a chain of
77 operations it must guarantee that the descriptor is not automatically recycled
78 before the dependency is submitted.  This requires that all descriptors be
79 acknowledged by the application before the offload engine driver is allowed to
80 recycle (or free) the descriptor.  A descriptor can be acked by one of the
81 following methods:
82 1/ setting the ASYNC_TX_ACK flag if no child operations are to be submitted
83 2/ setting the ASYNC_TX_DEP_ACK flag to acknowledge the parent
84    descriptor of a new operation.
85 3/ calling async_tx_ack() on the descriptor.
86
87 3.4 When does the operation execute?
88 Operations do not immediately issue after return from the
89 async_<operation> call.  Offload engine drivers batch operations to
90 improve performance by reducing the number of mmio cycles needed to
91 manage the channel.  Once a driver-specific threshold is met the driver
92 automatically issues pending operations.  An application can force this
93 event by calling async_tx_issue_pending_all().  This operates on all
94 channels since the application has no knowledge of channel to operation
95 mapping.
96
97 3.5 When does the operation complete?
98 There are two methods for an application to learn about the completion
99 of an operation.
100 1/ Call dma_wait_for_async_tx().  This call causes the CPU to spin while
101    it polls for the completion of the operation.  It handles dependency
102    chains and issuing pending operations.
103 2/ Specify a completion callback.  The callback routine runs in tasklet
104    context if the offload engine driver supports interrupts, or it is
105    called in application context if the operation is carried out
106    synchronously in software.  The callback can be set in the call to
107    async_<operation>, or when the application needs to submit a chain of
108    unknown length it can use the async_trigger_callback() routine to set a
109    completion interrupt/callback at the end of the chain.
110
111 3.6 Constraints:
112 1/ Calls to async_<operation> are not permitted in IRQ context.  Other
113    contexts are permitted provided constraint #2 is not violated.
114 2/ Completion callback routines cannot submit new operations.  This
115    results in recursion in the synchronous case and spin_locks being
116    acquired twice in the asynchronous case.
117
118 3.7 Example:
119 Perform a xor->copy->xor operation where each operation depends on the
120 result from the previous operation:
121
122 void complete_xor_copy_xor(void *param)
123 {
124         printk("complete\n");
125 }
126
127 int run_xor_copy_xor(struct page **xor_srcs,
128                      int xor_src_cnt,
129                      struct page *xor_dest,
130                      size_t xor_len,
131                      struct page *copy_src,
132                      struct page *copy_dest,
133                      size_t copy_len)
134 {
135         struct dma_async_tx_descriptor *tx;
136
137         tx = async_xor(xor_dest, xor_srcs, 0, xor_src_cnt, xor_len,
138                        ASYNC_TX_XOR_DROP_DST, NULL, NULL, NULL);
139         tx = async_memcpy(copy_dest, copy_src, 0, 0, copy_len,
140                           ASYNC_TX_DEP_ACK, tx, NULL, NULL);
141         tx = async_xor(xor_dest, xor_srcs, 0, xor_src_cnt, xor_len,
142                        ASYNC_TX_XOR_DROP_DST | ASYNC_TX_DEP_ACK | ASYNC_TX_ACK,
143                        tx, complete_xor_copy_xor, NULL);
144
145         async_tx_issue_pending_all();
146 }
147
148 See include/linux/async_tx.h for more information on the flags.  See the
149 ops_run_* and ops_complete_* routines in drivers/md/raid5.c for more
150 implementation examples.
151
152 4 DRIVER DEVELOPMENT NOTES
153 4.1 Conformance points:
154 There are a few conformance points required in dmaengine drivers to
155 accommodate assumptions made by applications using the async_tx API:
156 1/ Completion callbacks are expected to happen in tasklet context
157 2/ dma_async_tx_descriptor fields are never manipulated in IRQ context
158 3/ Use async_tx_run_dependencies() in the descriptor clean up path to
159    handle submission of dependent operations
160
161 4.2 "My application needs finer control of hardware channels"
162 This requirement seems to arise from cases where a DMA engine driver is
163 trying to support device-to-memory DMA.  The dmaengine and async_tx
164 implementations were designed for offloading memory-to-memory
165 operations; however, there are some capabilities of the dmaengine layer
166 that can be used for platform-specific channel management.
167 Platform-specific constraints can be handled by registering the
168 application as a 'dma_client' and implementing a 'dma_event_callback' to
169 apply a filter to the available channels in the system.  Before showing
170 how to implement a custom dma_event callback some background of
171 dmaengine's client support is required.
172
173 The following routines in dmaengine support multiple clients requesting
174 use of a channel:
175 - dma_async_client_register(struct dma_client *client)
176 - dma_async_client_chan_request(struct dma_client *client)
177
178 dma_async_client_register takes a pointer to an initialized dma_client
179 structure.  It expects that the 'event_callback' and 'cap_mask' fields
180 are already initialized.
181
182 dma_async_client_chan_request triggers dmaengine to notify the client of
183 all channels that satisfy the capability mask.  It is up to the client's
184 event_callback routine to track how many channels the client needs and
185 how many it is currently using.  The dma_event_callback routine returns a
186 dma_state_client code to let dmaengine know the status of the
187 allocation.
188
189 Below is the example of how to extend this functionality for
190 platform-specific filtering of the available channels beyond the
191 standard capability mask:
192
193 static enum dma_state_client
194 my_dma_client_callback(struct dma_client *client,
195                         struct dma_chan *chan, enum dma_state state)
196 {
197         struct dma_device *dma_dev;
198         struct my_platform_specific_dma *plat_dma_dev;
199         
200         dma_dev = chan->device;
201         plat_dma_dev = container_of(dma_dev,
202                                     struct my_platform_specific_dma,
203                                     dma_dev);
204
205         if (!plat_dma_dev->platform_specific_capability)
206                 return DMA_DUP;
207
208         . . .
209 }
210
211 5 SOURCE
212 include/linux/dmaengine.h: core header file for DMA drivers and clients
213 drivers/dma/dmaengine.c: offload engine channel management routines
214 drivers/dma/: location for offload engine drivers
215 include/linux/async_tx.h: core header file for the async_tx api
216 crypto/async_tx/async_tx.c: async_tx interface to dmaengine and common code
217 crypto/async_tx/async_memcpy.c: copy offload
218 crypto/async_tx/async_memset.c: memory fill offload
219 crypto/async_tx/async_xor.c: xor and xor zero sum offload