2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
31 #include <asm/uaccess.h>
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS \
37 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS \
41 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
43 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
44 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
48 * - enable syscall per default because its emulated by KVM
49 * - enable LME and LMA per default on 64 bit KVM
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61 struct kvm_cpuid_entry2 __user *entries);
63 struct kvm_x86_ops *kvm_x86_ops;
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66 { "pf_fixed", VCPU_STAT(pf_fixed) },
67 { "pf_guest", VCPU_STAT(pf_guest) },
68 { "tlb_flush", VCPU_STAT(tlb_flush) },
69 { "invlpg", VCPU_STAT(invlpg) },
70 { "exits", VCPU_STAT(exits) },
71 { "io_exits", VCPU_STAT(io_exits) },
72 { "mmio_exits", VCPU_STAT(mmio_exits) },
73 { "signal_exits", VCPU_STAT(signal_exits) },
74 { "irq_window", VCPU_STAT(irq_window_exits) },
75 { "halt_exits", VCPU_STAT(halt_exits) },
76 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
77 { "hypercalls", VCPU_STAT(hypercalls) },
78 { "request_irq", VCPU_STAT(request_irq_exits) },
79 { "irq_exits", VCPU_STAT(irq_exits) },
80 { "host_state_reload", VCPU_STAT(host_state_reload) },
81 { "efer_reload", VCPU_STAT(efer_reload) },
82 { "fpu_reload", VCPU_STAT(fpu_reload) },
83 { "insn_emulation", VCPU_STAT(insn_emulation) },
84 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
85 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
86 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
87 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
88 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
89 { "mmu_flooded", VM_STAT(mmu_flooded) },
90 { "mmu_recycled", VM_STAT(mmu_recycled) },
91 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
92 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
93 { "largepages", VM_STAT(lpages) },
98 unsigned long segment_base(u16 selector)
100 struct descriptor_table gdt;
101 struct desc_struct *d;
102 unsigned long table_base;
108 asm("sgdt %0" : "=m"(gdt));
109 table_base = gdt.base;
111 if (selector & 4) { /* from ldt */
114 asm("sldt %0" : "=g"(ldt_selector));
115 table_base = segment_base(ldt_selector);
117 d = (struct desc_struct *)(table_base + (selector & ~7));
118 v = d->base0 | ((unsigned long)d->base1 << 16) |
119 ((unsigned long)d->base2 << 24);
121 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
122 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
126 EXPORT_SYMBOL_GPL(segment_base);
128 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
130 if (irqchip_in_kernel(vcpu->kvm))
131 return vcpu->arch.apic_base;
133 return vcpu->arch.apic_base;
135 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
137 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
139 /* TODO: reserve bits check */
140 if (irqchip_in_kernel(vcpu->kvm))
141 kvm_lapic_set_base(vcpu, data);
143 vcpu->arch.apic_base = data;
145 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
147 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
149 WARN_ON(vcpu->arch.exception.pending);
150 vcpu->arch.exception.pending = true;
151 vcpu->arch.exception.has_error_code = false;
152 vcpu->arch.exception.nr = nr;
154 EXPORT_SYMBOL_GPL(kvm_queue_exception);
156 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
159 ++vcpu->stat.pf_guest;
160 if (vcpu->arch.exception.pending) {
161 if (vcpu->arch.exception.nr == PF_VECTOR) {
162 printk(KERN_DEBUG "kvm: inject_page_fault:"
163 " double fault 0x%lx\n", addr);
164 vcpu->arch.exception.nr = DF_VECTOR;
165 vcpu->arch.exception.error_code = 0;
166 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
167 /* triple fault -> shutdown */
168 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
172 vcpu->arch.cr2 = addr;
173 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
176 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
178 WARN_ON(vcpu->arch.exception.pending);
179 vcpu->arch.exception.pending = true;
180 vcpu->arch.exception.has_error_code = true;
181 vcpu->arch.exception.nr = nr;
182 vcpu->arch.exception.error_code = error_code;
184 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
186 static void __queue_exception(struct kvm_vcpu *vcpu)
188 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
189 vcpu->arch.exception.has_error_code,
190 vcpu->arch.exception.error_code);
194 * Load the pae pdptrs. Return true is they are all valid.
196 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
198 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
199 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
202 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
204 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
205 offset * sizeof(u64), sizeof(pdpte));
210 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
211 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
218 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
223 EXPORT_SYMBOL_GPL(load_pdptrs);
225 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
227 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
231 if (is_long_mode(vcpu) || !is_pae(vcpu))
234 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
237 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
243 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
245 if (cr0 & CR0_RESERVED_BITS) {
246 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
247 cr0, vcpu->arch.cr0);
248 kvm_inject_gp(vcpu, 0);
252 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
253 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
254 kvm_inject_gp(vcpu, 0);
258 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
259 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
260 "and a clear PE flag\n");
261 kvm_inject_gp(vcpu, 0);
265 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
267 if ((vcpu->arch.shadow_efer & EFER_LME)) {
271 printk(KERN_DEBUG "set_cr0: #GP, start paging "
272 "in long mode while PAE is disabled\n");
273 kvm_inject_gp(vcpu, 0);
276 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
278 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279 "in long mode while CS.L == 1\n");
280 kvm_inject_gp(vcpu, 0);
286 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
287 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
289 kvm_inject_gp(vcpu, 0);
295 kvm_x86_ops->set_cr0(vcpu, cr0);
296 vcpu->arch.cr0 = cr0;
298 kvm_mmu_reset_context(vcpu);
301 EXPORT_SYMBOL_GPL(kvm_set_cr0);
303 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
305 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
306 KVMTRACE_1D(LMSW, vcpu,
307 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
310 EXPORT_SYMBOL_GPL(kvm_lmsw);
312 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
314 if (cr4 & CR4_RESERVED_BITS) {
315 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
316 kvm_inject_gp(vcpu, 0);
320 if (is_long_mode(vcpu)) {
321 if (!(cr4 & X86_CR4_PAE)) {
322 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
324 kvm_inject_gp(vcpu, 0);
327 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
328 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
329 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
330 kvm_inject_gp(vcpu, 0);
334 if (cr4 & X86_CR4_VMXE) {
335 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
336 kvm_inject_gp(vcpu, 0);
339 kvm_x86_ops->set_cr4(vcpu, cr4);
340 vcpu->arch.cr4 = cr4;
341 kvm_mmu_reset_context(vcpu);
343 EXPORT_SYMBOL_GPL(kvm_set_cr4);
345 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
347 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
348 kvm_mmu_flush_tlb(vcpu);
352 if (is_long_mode(vcpu)) {
353 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
354 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
355 kvm_inject_gp(vcpu, 0);
360 if (cr3 & CR3_PAE_RESERVED_BITS) {
362 "set_cr3: #GP, reserved bits\n");
363 kvm_inject_gp(vcpu, 0);
366 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
367 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
369 kvm_inject_gp(vcpu, 0);
374 * We don't check reserved bits in nonpae mode, because
375 * this isn't enforced, and VMware depends on this.
380 * Does the new cr3 value map to physical memory? (Note, we
381 * catch an invalid cr3 even in real-mode, because it would
382 * cause trouble later on when we turn on paging anyway.)
384 * A real CPU would silently accept an invalid cr3 and would
385 * attempt to use it - with largely undefined (and often hard
386 * to debug) behavior on the guest side.
388 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
389 kvm_inject_gp(vcpu, 0);
391 vcpu->arch.cr3 = cr3;
392 vcpu->arch.mmu.new_cr3(vcpu);
395 EXPORT_SYMBOL_GPL(kvm_set_cr3);
397 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
399 if (cr8 & CR8_RESERVED_BITS) {
400 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
401 kvm_inject_gp(vcpu, 0);
404 if (irqchip_in_kernel(vcpu->kvm))
405 kvm_lapic_set_tpr(vcpu, cr8);
407 vcpu->arch.cr8 = cr8;
409 EXPORT_SYMBOL_GPL(kvm_set_cr8);
411 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
413 if (irqchip_in_kernel(vcpu->kvm))
414 return kvm_lapic_get_cr8(vcpu);
416 return vcpu->arch.cr8;
418 EXPORT_SYMBOL_GPL(kvm_get_cr8);
421 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
422 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
424 * This list is modified at module load time to reflect the
425 * capabilities of the host cpu.
427 static u32 msrs_to_save[] = {
428 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
431 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
433 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
434 MSR_IA32_PERF_STATUS,
437 static unsigned num_msrs_to_save;
439 static u32 emulated_msrs[] = {
440 MSR_IA32_MISC_ENABLE,
443 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
445 if (efer & efer_reserved_bits) {
446 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
448 kvm_inject_gp(vcpu, 0);
453 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
454 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
455 kvm_inject_gp(vcpu, 0);
459 kvm_x86_ops->set_efer(vcpu, efer);
462 efer |= vcpu->arch.shadow_efer & EFER_LMA;
464 vcpu->arch.shadow_efer = efer;
467 void kvm_enable_efer_bits(u64 mask)
469 efer_reserved_bits &= ~mask;
471 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
475 * Writes msr value into into the appropriate "register".
476 * Returns 0 on success, non-0 otherwise.
477 * Assumes vcpu_load() was already called.
479 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
481 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
485 * Adapt set_msr() to msr_io()'s calling convention
487 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
489 return kvm_set_msr(vcpu, index, *data);
492 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
495 struct pvclock_wall_clock wc;
496 struct timespec now, sys, boot;
503 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
506 * The guest calculates current wall clock time by adding
507 * system time (updated by kvm_write_guest_time below) to the
508 * wall clock specified here. guest system time equals host
509 * system time for us, thus we must fill in host boot time here.
511 now = current_kernel_time();
513 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
515 wc.sec = boot.tv_sec;
516 wc.nsec = boot.tv_nsec;
517 wc.version = version;
519 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
522 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
525 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
527 uint32_t quotient, remainder;
529 /* Don't try to replace with do_div(), this one calculates
530 * "(dividend << 32) / divisor" */
532 : "=a" (quotient), "=d" (remainder)
533 : "0" (0), "1" (dividend), "r" (divisor) );
537 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
539 uint64_t nsecs = 1000000000LL;
544 tps64 = tsc_khz * 1000LL;
545 while (tps64 > nsecs*2) {
550 tps32 = (uint32_t)tps64;
551 while (tps32 <= (uint32_t)nsecs) {
556 hv_clock->tsc_shift = shift;
557 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
559 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
560 __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
561 hv_clock->tsc_to_system_mul);
564 static void kvm_write_guest_time(struct kvm_vcpu *v)
568 struct kvm_vcpu_arch *vcpu = &v->arch;
571 if ((!vcpu->time_page))
574 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
575 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
576 vcpu->hv_clock_tsc_khz = tsc_khz;
579 /* Keep irq disabled to prevent changes to the clock */
580 local_irq_save(flags);
581 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
582 &vcpu->hv_clock.tsc_timestamp);
584 local_irq_restore(flags);
586 /* With all the info we got, fill in the values */
588 vcpu->hv_clock.system_time = ts.tv_nsec +
589 (NSEC_PER_SEC * (u64)ts.tv_sec);
591 * The interface expects us to write an even number signaling that the
592 * update is finished. Since the guest won't see the intermediate
593 * state, we just increase by 2 at the end.
595 vcpu->hv_clock.version += 2;
597 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
599 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
600 sizeof(vcpu->hv_clock));
602 kunmap_atomic(shared_kaddr, KM_USER0);
604 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
608 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
612 set_efer(vcpu, data);
614 case MSR_IA32_MC0_STATUS:
615 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
618 case MSR_IA32_MCG_STATUS:
619 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
622 case MSR_IA32_MCG_CTL:
623 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
626 case MSR_IA32_UCODE_REV:
627 case MSR_IA32_UCODE_WRITE:
628 case 0x200 ... 0x2ff: /* MTRRs */
630 case MSR_IA32_APICBASE:
631 kvm_set_apic_base(vcpu, data);
633 case MSR_IA32_MISC_ENABLE:
634 vcpu->arch.ia32_misc_enable_msr = data;
636 case MSR_KVM_WALL_CLOCK:
637 vcpu->kvm->arch.wall_clock = data;
638 kvm_write_wall_clock(vcpu->kvm, data);
640 case MSR_KVM_SYSTEM_TIME: {
641 if (vcpu->arch.time_page) {
642 kvm_release_page_dirty(vcpu->arch.time_page);
643 vcpu->arch.time_page = NULL;
646 vcpu->arch.time = data;
648 /* we verify if the enable bit is set... */
652 /* ...but clean it before doing the actual write */
653 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
655 down_read(¤t->mm->mmap_sem);
656 vcpu->arch.time_page =
657 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
658 up_read(¤t->mm->mmap_sem);
660 if (is_error_page(vcpu->arch.time_page)) {
661 kvm_release_page_clean(vcpu->arch.time_page);
662 vcpu->arch.time_page = NULL;
665 kvm_write_guest_time(vcpu);
669 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
674 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
678 * Reads an msr value (of 'msr_index') into 'pdata'.
679 * Returns 0 on success, non-0 otherwise.
680 * Assumes vcpu_load() was already called.
682 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
684 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
687 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
692 case 0xc0010010: /* SYSCFG */
693 case 0xc0010015: /* HWCR */
694 case MSR_IA32_PLATFORM_ID:
695 case MSR_IA32_P5_MC_ADDR:
696 case MSR_IA32_P5_MC_TYPE:
697 case MSR_IA32_MC0_CTL:
698 case MSR_IA32_MCG_STATUS:
699 case MSR_IA32_MCG_CAP:
700 case MSR_IA32_MCG_CTL:
701 case MSR_IA32_MC0_MISC:
702 case MSR_IA32_MC0_MISC+4:
703 case MSR_IA32_MC0_MISC+8:
704 case MSR_IA32_MC0_MISC+12:
705 case MSR_IA32_MC0_MISC+16:
706 case MSR_IA32_UCODE_REV:
707 case MSR_IA32_EBL_CR_POWERON:
710 case 0x200 ... 0x2ff:
713 case 0xcd: /* fsb frequency */
716 case MSR_IA32_APICBASE:
717 data = kvm_get_apic_base(vcpu);
719 case MSR_IA32_MISC_ENABLE:
720 data = vcpu->arch.ia32_misc_enable_msr;
722 case MSR_IA32_PERF_STATUS:
723 /* TSC increment by tick */
726 data |= (((uint64_t)4ULL) << 40);
729 data = vcpu->arch.shadow_efer;
731 case MSR_KVM_WALL_CLOCK:
732 data = vcpu->kvm->arch.wall_clock;
734 case MSR_KVM_SYSTEM_TIME:
735 data = vcpu->arch.time;
738 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
744 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
747 * Read or write a bunch of msrs. All parameters are kernel addresses.
749 * @return number of msrs set successfully.
751 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
752 struct kvm_msr_entry *entries,
753 int (*do_msr)(struct kvm_vcpu *vcpu,
754 unsigned index, u64 *data))
760 down_read(&vcpu->kvm->slots_lock);
761 for (i = 0; i < msrs->nmsrs; ++i)
762 if (do_msr(vcpu, entries[i].index, &entries[i].data))
764 up_read(&vcpu->kvm->slots_lock);
772 * Read or write a bunch of msrs. Parameters are user addresses.
774 * @return number of msrs set successfully.
776 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
777 int (*do_msr)(struct kvm_vcpu *vcpu,
778 unsigned index, u64 *data),
781 struct kvm_msrs msrs;
782 struct kvm_msr_entry *entries;
787 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
791 if (msrs.nmsrs >= MAX_IO_MSRS)
795 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
796 entries = vmalloc(size);
801 if (copy_from_user(entries, user_msrs->entries, size))
804 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
809 if (writeback && copy_to_user(user_msrs->entries, entries, size))
821 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
824 void decache_vcpus_on_cpu(int cpu)
827 struct kvm_vcpu *vcpu;
830 spin_lock(&kvm_lock);
831 list_for_each_entry(vm, &vm_list, vm_list)
832 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
837 * If the vcpu is locked, then it is running on some
838 * other cpu and therefore it is not cached on the
841 * If it's not locked, check the last cpu it executed
844 if (mutex_trylock(&vcpu->mutex)) {
845 if (vcpu->cpu == cpu) {
846 kvm_x86_ops->vcpu_decache(vcpu);
849 mutex_unlock(&vcpu->mutex);
852 spin_unlock(&kvm_lock);
855 int kvm_dev_ioctl_check_extension(long ext)
860 case KVM_CAP_IRQCHIP:
862 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
863 case KVM_CAP_USER_MEMORY:
864 case KVM_CAP_SET_TSS_ADDR:
865 case KVM_CAP_EXT_CPUID:
866 case KVM_CAP_CLOCKSOURCE:
868 case KVM_CAP_NOP_IO_DELAY:
869 case KVM_CAP_MP_STATE:
873 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
875 case KVM_CAP_NR_VCPUS:
878 case KVM_CAP_NR_MEMSLOTS:
879 r = KVM_MEMORY_SLOTS;
892 long kvm_arch_dev_ioctl(struct file *filp,
893 unsigned int ioctl, unsigned long arg)
895 void __user *argp = (void __user *)arg;
899 case KVM_GET_MSR_INDEX_LIST: {
900 struct kvm_msr_list __user *user_msr_list = argp;
901 struct kvm_msr_list msr_list;
905 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
908 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
909 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
912 if (n < num_msrs_to_save)
915 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
916 num_msrs_to_save * sizeof(u32)))
918 if (copy_to_user(user_msr_list->indices
919 + num_msrs_to_save * sizeof(u32),
921 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
926 case KVM_GET_SUPPORTED_CPUID: {
927 struct kvm_cpuid2 __user *cpuid_arg = argp;
928 struct kvm_cpuid2 cpuid;
931 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
933 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
939 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
951 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
953 kvm_x86_ops->vcpu_load(vcpu, cpu);
954 kvm_write_guest_time(vcpu);
957 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
959 kvm_x86_ops->vcpu_put(vcpu);
960 kvm_put_guest_fpu(vcpu);
963 static int is_efer_nx(void)
967 rdmsrl(MSR_EFER, efer);
968 return efer & EFER_NX;
971 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
974 struct kvm_cpuid_entry2 *e, *entry;
977 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
978 e = &vcpu->arch.cpuid_entries[i];
979 if (e->function == 0x80000001) {
984 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
985 entry->edx &= ~(1 << 20);
986 printk(KERN_INFO "kvm: guest NX capability removed\n");
990 /* when an old userspace process fills a new kernel module */
991 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
992 struct kvm_cpuid *cpuid,
993 struct kvm_cpuid_entry __user *entries)
996 struct kvm_cpuid_entry *cpuid_entries;
999 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1002 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1006 if (copy_from_user(cpuid_entries, entries,
1007 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1009 for (i = 0; i < cpuid->nent; i++) {
1010 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1011 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1012 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1013 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1014 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1015 vcpu->arch.cpuid_entries[i].index = 0;
1016 vcpu->arch.cpuid_entries[i].flags = 0;
1017 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1018 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1019 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1021 vcpu->arch.cpuid_nent = cpuid->nent;
1022 cpuid_fix_nx_cap(vcpu);
1026 vfree(cpuid_entries);
1031 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1032 struct kvm_cpuid2 *cpuid,
1033 struct kvm_cpuid_entry2 __user *entries)
1038 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1041 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1042 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1044 vcpu->arch.cpuid_nent = cpuid->nent;
1051 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1052 struct kvm_cpuid2 *cpuid,
1053 struct kvm_cpuid_entry2 __user *entries)
1058 if (cpuid->nent < vcpu->arch.cpuid_nent)
1061 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1062 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1067 cpuid->nent = vcpu->arch.cpuid_nent;
1071 static inline u32 bit(int bitno)
1073 return 1 << (bitno & 31);
1076 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1079 entry->function = function;
1080 entry->index = index;
1081 cpuid_count(entry->function, entry->index,
1082 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1086 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1087 u32 index, int *nent, int maxnent)
1089 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1090 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1091 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1092 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1093 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1094 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1095 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1096 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1097 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1098 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1099 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1100 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1101 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1102 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1103 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1104 bit(X86_FEATURE_PGE) |
1105 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1106 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1107 bit(X86_FEATURE_SYSCALL) |
1108 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1109 #ifdef CONFIG_X86_64
1110 bit(X86_FEATURE_LM) |
1112 bit(X86_FEATURE_MMXEXT) |
1113 bit(X86_FEATURE_3DNOWEXT) |
1114 bit(X86_FEATURE_3DNOW);
1115 const u32 kvm_supported_word3_x86_features =
1116 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1117 const u32 kvm_supported_word6_x86_features =
1118 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1120 /* all func 2 cpuid_count() should be called on the same cpu */
1122 do_cpuid_1_ent(entry, function, index);
1127 entry->eax = min(entry->eax, (u32)0xb);
1130 entry->edx &= kvm_supported_word0_x86_features;
1131 entry->ecx &= kvm_supported_word3_x86_features;
1133 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1134 * may return different values. This forces us to get_cpu() before
1135 * issuing the first command, and also to emulate this annoying behavior
1136 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1138 int t, times = entry->eax & 0xff;
1140 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1141 for (t = 1; t < times && *nent < maxnent; ++t) {
1142 do_cpuid_1_ent(&entry[t], function, 0);
1143 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1148 /* function 4 and 0xb have additional index. */
1152 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1153 /* read more entries until cache_type is zero */
1154 for (i = 1; *nent < maxnent; ++i) {
1155 cache_type = entry[i - 1].eax & 0x1f;
1158 do_cpuid_1_ent(&entry[i], function, i);
1160 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1168 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1169 /* read more entries until level_type is zero */
1170 for (i = 1; *nent < maxnent; ++i) {
1171 level_type = entry[i - 1].ecx & 0xff;
1174 do_cpuid_1_ent(&entry[i], function, i);
1176 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1182 entry->eax = min(entry->eax, 0x8000001a);
1185 entry->edx &= kvm_supported_word1_x86_features;
1186 entry->ecx &= kvm_supported_word6_x86_features;
1192 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1193 struct kvm_cpuid_entry2 __user *entries)
1195 struct kvm_cpuid_entry2 *cpuid_entries;
1196 int limit, nent = 0, r = -E2BIG;
1199 if (cpuid->nent < 1)
1202 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1206 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1207 limit = cpuid_entries[0].eax;
1208 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1209 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1210 &nent, cpuid->nent);
1212 if (nent >= cpuid->nent)
1215 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1216 limit = cpuid_entries[nent - 1].eax;
1217 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1218 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1219 &nent, cpuid->nent);
1221 if (copy_to_user(entries, cpuid_entries,
1222 nent * sizeof(struct kvm_cpuid_entry2)))
1228 vfree(cpuid_entries);
1233 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1234 struct kvm_lapic_state *s)
1237 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1243 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1244 struct kvm_lapic_state *s)
1247 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1248 kvm_apic_post_state_restore(vcpu);
1254 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1255 struct kvm_interrupt *irq)
1257 if (irq->irq < 0 || irq->irq >= 256)
1259 if (irqchip_in_kernel(vcpu->kvm))
1263 set_bit(irq->irq, vcpu->arch.irq_pending);
1264 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1271 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1272 struct kvm_tpr_access_ctl *tac)
1276 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1280 long kvm_arch_vcpu_ioctl(struct file *filp,
1281 unsigned int ioctl, unsigned long arg)
1283 struct kvm_vcpu *vcpu = filp->private_data;
1284 void __user *argp = (void __user *)arg;
1288 case KVM_GET_LAPIC: {
1289 struct kvm_lapic_state lapic;
1291 memset(&lapic, 0, sizeof lapic);
1292 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1296 if (copy_to_user(argp, &lapic, sizeof lapic))
1301 case KVM_SET_LAPIC: {
1302 struct kvm_lapic_state lapic;
1305 if (copy_from_user(&lapic, argp, sizeof lapic))
1307 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1313 case KVM_INTERRUPT: {
1314 struct kvm_interrupt irq;
1317 if (copy_from_user(&irq, argp, sizeof irq))
1319 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1325 case KVM_SET_CPUID: {
1326 struct kvm_cpuid __user *cpuid_arg = argp;
1327 struct kvm_cpuid cpuid;
1330 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1332 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1337 case KVM_SET_CPUID2: {
1338 struct kvm_cpuid2 __user *cpuid_arg = argp;
1339 struct kvm_cpuid2 cpuid;
1342 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1344 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1345 cpuid_arg->entries);
1350 case KVM_GET_CPUID2: {
1351 struct kvm_cpuid2 __user *cpuid_arg = argp;
1352 struct kvm_cpuid2 cpuid;
1355 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1357 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1358 cpuid_arg->entries);
1362 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1368 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1371 r = msr_io(vcpu, argp, do_set_msr, 0);
1373 case KVM_TPR_ACCESS_REPORTING: {
1374 struct kvm_tpr_access_ctl tac;
1377 if (copy_from_user(&tac, argp, sizeof tac))
1379 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1383 if (copy_to_user(argp, &tac, sizeof tac))
1388 case KVM_SET_VAPIC_ADDR: {
1389 struct kvm_vapic_addr va;
1392 if (!irqchip_in_kernel(vcpu->kvm))
1395 if (copy_from_user(&va, argp, sizeof va))
1398 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1408 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1412 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1414 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1418 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1419 u32 kvm_nr_mmu_pages)
1421 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1424 down_write(&kvm->slots_lock);
1426 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1427 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1429 up_write(&kvm->slots_lock);
1433 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1435 return kvm->arch.n_alloc_mmu_pages;
1438 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1441 struct kvm_mem_alias *alias;
1443 for (i = 0; i < kvm->arch.naliases; ++i) {
1444 alias = &kvm->arch.aliases[i];
1445 if (gfn >= alias->base_gfn
1446 && gfn < alias->base_gfn + alias->npages)
1447 return alias->target_gfn + gfn - alias->base_gfn;
1453 * Set a new alias region. Aliases map a portion of physical memory into
1454 * another portion. This is useful for memory windows, for example the PC
1457 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1458 struct kvm_memory_alias *alias)
1461 struct kvm_mem_alias *p;
1464 /* General sanity checks */
1465 if (alias->memory_size & (PAGE_SIZE - 1))
1467 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1469 if (alias->slot >= KVM_ALIAS_SLOTS)
1471 if (alias->guest_phys_addr + alias->memory_size
1472 < alias->guest_phys_addr)
1474 if (alias->target_phys_addr + alias->memory_size
1475 < alias->target_phys_addr)
1478 down_write(&kvm->slots_lock);
1480 p = &kvm->arch.aliases[alias->slot];
1481 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1482 p->npages = alias->memory_size >> PAGE_SHIFT;
1483 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1485 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1486 if (kvm->arch.aliases[n - 1].npages)
1488 kvm->arch.naliases = n;
1490 kvm_mmu_zap_all(kvm);
1492 up_write(&kvm->slots_lock);
1500 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1505 switch (chip->chip_id) {
1506 case KVM_IRQCHIP_PIC_MASTER:
1507 memcpy(&chip->chip.pic,
1508 &pic_irqchip(kvm)->pics[0],
1509 sizeof(struct kvm_pic_state));
1511 case KVM_IRQCHIP_PIC_SLAVE:
1512 memcpy(&chip->chip.pic,
1513 &pic_irqchip(kvm)->pics[1],
1514 sizeof(struct kvm_pic_state));
1516 case KVM_IRQCHIP_IOAPIC:
1517 memcpy(&chip->chip.ioapic,
1518 ioapic_irqchip(kvm),
1519 sizeof(struct kvm_ioapic_state));
1528 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1533 switch (chip->chip_id) {
1534 case KVM_IRQCHIP_PIC_MASTER:
1535 memcpy(&pic_irqchip(kvm)->pics[0],
1537 sizeof(struct kvm_pic_state));
1539 case KVM_IRQCHIP_PIC_SLAVE:
1540 memcpy(&pic_irqchip(kvm)->pics[1],
1542 sizeof(struct kvm_pic_state));
1544 case KVM_IRQCHIP_IOAPIC:
1545 memcpy(ioapic_irqchip(kvm),
1547 sizeof(struct kvm_ioapic_state));
1553 kvm_pic_update_irq(pic_irqchip(kvm));
1557 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1561 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1565 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1569 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1570 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1575 * Get (and clear) the dirty memory log for a memory slot.
1577 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1578 struct kvm_dirty_log *log)
1582 struct kvm_memory_slot *memslot;
1585 down_write(&kvm->slots_lock);
1587 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1591 /* If nothing is dirty, don't bother messing with page tables. */
1593 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1594 kvm_flush_remote_tlbs(kvm);
1595 memslot = &kvm->memslots[log->slot];
1596 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1597 memset(memslot->dirty_bitmap, 0, n);
1601 up_write(&kvm->slots_lock);
1605 long kvm_arch_vm_ioctl(struct file *filp,
1606 unsigned int ioctl, unsigned long arg)
1608 struct kvm *kvm = filp->private_data;
1609 void __user *argp = (void __user *)arg;
1613 case KVM_SET_TSS_ADDR:
1614 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1618 case KVM_SET_MEMORY_REGION: {
1619 struct kvm_memory_region kvm_mem;
1620 struct kvm_userspace_memory_region kvm_userspace_mem;
1623 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1625 kvm_userspace_mem.slot = kvm_mem.slot;
1626 kvm_userspace_mem.flags = kvm_mem.flags;
1627 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1628 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1629 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1634 case KVM_SET_NR_MMU_PAGES:
1635 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1639 case KVM_GET_NR_MMU_PAGES:
1640 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1642 case KVM_SET_MEMORY_ALIAS: {
1643 struct kvm_memory_alias alias;
1646 if (copy_from_user(&alias, argp, sizeof alias))
1648 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1653 case KVM_CREATE_IRQCHIP:
1655 kvm->arch.vpic = kvm_create_pic(kvm);
1656 if (kvm->arch.vpic) {
1657 r = kvm_ioapic_init(kvm);
1659 kfree(kvm->arch.vpic);
1660 kvm->arch.vpic = NULL;
1666 case KVM_CREATE_PIT:
1668 kvm->arch.vpit = kvm_create_pit(kvm);
1672 case KVM_IRQ_LINE: {
1673 struct kvm_irq_level irq_event;
1676 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1678 if (irqchip_in_kernel(kvm)) {
1679 mutex_lock(&kvm->lock);
1680 if (irq_event.irq < 16)
1681 kvm_pic_set_irq(pic_irqchip(kvm),
1684 kvm_ioapic_set_irq(kvm->arch.vioapic,
1687 mutex_unlock(&kvm->lock);
1692 case KVM_GET_IRQCHIP: {
1693 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1694 struct kvm_irqchip chip;
1697 if (copy_from_user(&chip, argp, sizeof chip))
1700 if (!irqchip_in_kernel(kvm))
1702 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1706 if (copy_to_user(argp, &chip, sizeof chip))
1711 case KVM_SET_IRQCHIP: {
1712 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1713 struct kvm_irqchip chip;
1716 if (copy_from_user(&chip, argp, sizeof chip))
1719 if (!irqchip_in_kernel(kvm))
1721 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1728 struct kvm_pit_state ps;
1730 if (copy_from_user(&ps, argp, sizeof ps))
1733 if (!kvm->arch.vpit)
1735 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1739 if (copy_to_user(argp, &ps, sizeof ps))
1745 struct kvm_pit_state ps;
1747 if (copy_from_user(&ps, argp, sizeof ps))
1750 if (!kvm->arch.vpit)
1752 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1765 static void kvm_init_msr_list(void)
1770 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1771 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1774 msrs_to_save[j] = msrs_to_save[i];
1777 num_msrs_to_save = j;
1781 * Only apic need an MMIO device hook, so shortcut now..
1783 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1786 struct kvm_io_device *dev;
1788 if (vcpu->arch.apic) {
1789 dev = &vcpu->arch.apic->dev;
1790 if (dev->in_range(dev, addr))
1797 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1800 struct kvm_io_device *dev;
1802 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1804 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1808 int emulator_read_std(unsigned long addr,
1811 struct kvm_vcpu *vcpu)
1814 int r = X86EMUL_CONTINUE;
1817 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1818 unsigned offset = addr & (PAGE_SIZE-1);
1819 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1822 if (gpa == UNMAPPED_GVA) {
1823 r = X86EMUL_PROPAGATE_FAULT;
1826 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1828 r = X86EMUL_UNHANDLEABLE;
1839 EXPORT_SYMBOL_GPL(emulator_read_std);
1841 static int emulator_read_emulated(unsigned long addr,
1844 struct kvm_vcpu *vcpu)
1846 struct kvm_io_device *mmio_dev;
1849 if (vcpu->mmio_read_completed) {
1850 memcpy(val, vcpu->mmio_data, bytes);
1851 vcpu->mmio_read_completed = 0;
1852 return X86EMUL_CONTINUE;
1855 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1857 /* For APIC access vmexit */
1858 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1861 if (emulator_read_std(addr, val, bytes, vcpu)
1862 == X86EMUL_CONTINUE)
1863 return X86EMUL_CONTINUE;
1864 if (gpa == UNMAPPED_GVA)
1865 return X86EMUL_PROPAGATE_FAULT;
1869 * Is this MMIO handled locally?
1871 mutex_lock(&vcpu->kvm->lock);
1872 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1874 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1875 mutex_unlock(&vcpu->kvm->lock);
1876 return X86EMUL_CONTINUE;
1878 mutex_unlock(&vcpu->kvm->lock);
1880 vcpu->mmio_needed = 1;
1881 vcpu->mmio_phys_addr = gpa;
1882 vcpu->mmio_size = bytes;
1883 vcpu->mmio_is_write = 0;
1885 return X86EMUL_UNHANDLEABLE;
1888 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1889 const void *val, int bytes)
1893 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1896 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1900 static int emulator_write_emulated_onepage(unsigned long addr,
1903 struct kvm_vcpu *vcpu)
1905 struct kvm_io_device *mmio_dev;
1908 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1910 if (gpa == UNMAPPED_GVA) {
1911 kvm_inject_page_fault(vcpu, addr, 2);
1912 return X86EMUL_PROPAGATE_FAULT;
1915 /* For APIC access vmexit */
1916 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1919 if (emulator_write_phys(vcpu, gpa, val, bytes))
1920 return X86EMUL_CONTINUE;
1924 * Is this MMIO handled locally?
1926 mutex_lock(&vcpu->kvm->lock);
1927 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1929 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1930 mutex_unlock(&vcpu->kvm->lock);
1931 return X86EMUL_CONTINUE;
1933 mutex_unlock(&vcpu->kvm->lock);
1935 vcpu->mmio_needed = 1;
1936 vcpu->mmio_phys_addr = gpa;
1937 vcpu->mmio_size = bytes;
1938 vcpu->mmio_is_write = 1;
1939 memcpy(vcpu->mmio_data, val, bytes);
1941 return X86EMUL_CONTINUE;
1944 int emulator_write_emulated(unsigned long addr,
1947 struct kvm_vcpu *vcpu)
1949 /* Crossing a page boundary? */
1950 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1953 now = -addr & ~PAGE_MASK;
1954 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1955 if (rc != X86EMUL_CONTINUE)
1961 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1963 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1965 static int emulator_cmpxchg_emulated(unsigned long addr,
1969 struct kvm_vcpu *vcpu)
1971 static int reported;
1975 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1977 #ifndef CONFIG_X86_64
1978 /* guests cmpxchg8b have to be emulated atomically */
1985 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1987 if (gpa == UNMAPPED_GVA ||
1988 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1991 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
1996 down_read(¤t->mm->mmap_sem);
1997 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1998 up_read(¤t->mm->mmap_sem);
2000 kaddr = kmap_atomic(page, KM_USER0);
2001 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2002 kunmap_atomic(kaddr, KM_USER0);
2003 kvm_release_page_dirty(page);
2008 return emulator_write_emulated(addr, new, bytes, vcpu);
2011 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2013 return kvm_x86_ops->get_segment_base(vcpu, seg);
2016 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2018 return X86EMUL_CONTINUE;
2021 int emulate_clts(struct kvm_vcpu *vcpu)
2023 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2024 return X86EMUL_CONTINUE;
2027 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2029 struct kvm_vcpu *vcpu = ctxt->vcpu;
2033 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2034 return X86EMUL_CONTINUE;
2036 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2037 return X86EMUL_UNHANDLEABLE;
2041 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2043 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2046 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2048 /* FIXME: better handling */
2049 return X86EMUL_UNHANDLEABLE;
2051 return X86EMUL_CONTINUE;
2054 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2056 static int reported;
2058 unsigned long rip = vcpu->arch.rip;
2059 unsigned long rip_linear;
2061 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2066 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2068 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2069 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2072 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2074 static struct x86_emulate_ops emulate_ops = {
2075 .read_std = emulator_read_std,
2076 .read_emulated = emulator_read_emulated,
2077 .write_emulated = emulator_write_emulated,
2078 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2081 int emulate_instruction(struct kvm_vcpu *vcpu,
2082 struct kvm_run *run,
2088 struct decode_cache *c;
2090 vcpu->arch.mmio_fault_cr2 = cr2;
2091 kvm_x86_ops->cache_regs(vcpu);
2093 vcpu->mmio_is_write = 0;
2094 vcpu->arch.pio.string = 0;
2096 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2098 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2100 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2101 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2102 vcpu->arch.emulate_ctxt.mode =
2103 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2104 ? X86EMUL_MODE_REAL : cs_l
2105 ? X86EMUL_MODE_PROT64 : cs_db
2106 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2108 if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
2109 vcpu->arch.emulate_ctxt.cs_base = 0;
2110 vcpu->arch.emulate_ctxt.ds_base = 0;
2111 vcpu->arch.emulate_ctxt.es_base = 0;
2112 vcpu->arch.emulate_ctxt.ss_base = 0;
2114 vcpu->arch.emulate_ctxt.cs_base =
2115 get_segment_base(vcpu, VCPU_SREG_CS);
2116 vcpu->arch.emulate_ctxt.ds_base =
2117 get_segment_base(vcpu, VCPU_SREG_DS);
2118 vcpu->arch.emulate_ctxt.es_base =
2119 get_segment_base(vcpu, VCPU_SREG_ES);
2120 vcpu->arch.emulate_ctxt.ss_base =
2121 get_segment_base(vcpu, VCPU_SREG_SS);
2124 vcpu->arch.emulate_ctxt.gs_base =
2125 get_segment_base(vcpu, VCPU_SREG_GS);
2126 vcpu->arch.emulate_ctxt.fs_base =
2127 get_segment_base(vcpu, VCPU_SREG_FS);
2129 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2131 /* Reject the instructions other than VMCALL/VMMCALL when
2132 * try to emulate invalid opcode */
2133 c = &vcpu->arch.emulate_ctxt.decode;
2134 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2135 (!(c->twobyte && c->b == 0x01 &&
2136 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2137 c->modrm_mod == 3 && c->modrm_rm == 1)))
2138 return EMULATE_FAIL;
2140 ++vcpu->stat.insn_emulation;
2142 ++vcpu->stat.insn_emulation_fail;
2143 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2144 return EMULATE_DONE;
2145 return EMULATE_FAIL;
2149 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2151 if (vcpu->arch.pio.string)
2152 return EMULATE_DO_MMIO;
2154 if ((r || vcpu->mmio_is_write) && run) {
2155 run->exit_reason = KVM_EXIT_MMIO;
2156 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2157 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2158 run->mmio.len = vcpu->mmio_size;
2159 run->mmio.is_write = vcpu->mmio_is_write;
2163 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2164 return EMULATE_DONE;
2165 if (!vcpu->mmio_needed) {
2166 kvm_report_emulation_failure(vcpu, "mmio");
2167 return EMULATE_FAIL;
2169 return EMULATE_DO_MMIO;
2172 kvm_x86_ops->decache_regs(vcpu);
2173 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2175 if (vcpu->mmio_is_write) {
2176 vcpu->mmio_needed = 0;
2177 return EMULATE_DO_MMIO;
2180 return EMULATE_DONE;
2182 EXPORT_SYMBOL_GPL(emulate_instruction);
2184 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2188 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2189 if (vcpu->arch.pio.guest_pages[i]) {
2190 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2191 vcpu->arch.pio.guest_pages[i] = NULL;
2195 static int pio_copy_data(struct kvm_vcpu *vcpu)
2197 void *p = vcpu->arch.pio_data;
2200 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2202 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2205 free_pio_guest_pages(vcpu);
2208 q += vcpu->arch.pio.guest_page_offset;
2209 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2210 if (vcpu->arch.pio.in)
2211 memcpy(q, p, bytes);
2213 memcpy(p, q, bytes);
2214 q -= vcpu->arch.pio.guest_page_offset;
2216 free_pio_guest_pages(vcpu);
2220 int complete_pio(struct kvm_vcpu *vcpu)
2222 struct kvm_pio_request *io = &vcpu->arch.pio;
2226 kvm_x86_ops->cache_regs(vcpu);
2230 memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2234 r = pio_copy_data(vcpu);
2236 kvm_x86_ops->cache_regs(vcpu);
2243 delta *= io->cur_count;
2245 * The size of the register should really depend on
2246 * current address size.
2248 vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2254 vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2256 vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2259 kvm_x86_ops->decache_regs(vcpu);
2261 io->count -= io->cur_count;
2267 static void kernel_pio(struct kvm_io_device *pio_dev,
2268 struct kvm_vcpu *vcpu,
2271 /* TODO: String I/O for in kernel device */
2273 mutex_lock(&vcpu->kvm->lock);
2274 if (vcpu->arch.pio.in)
2275 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2276 vcpu->arch.pio.size,
2279 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2280 vcpu->arch.pio.size,
2282 mutex_unlock(&vcpu->kvm->lock);
2285 static void pio_string_write(struct kvm_io_device *pio_dev,
2286 struct kvm_vcpu *vcpu)
2288 struct kvm_pio_request *io = &vcpu->arch.pio;
2289 void *pd = vcpu->arch.pio_data;
2292 mutex_lock(&vcpu->kvm->lock);
2293 for (i = 0; i < io->cur_count; i++) {
2294 kvm_iodevice_write(pio_dev, io->port,
2299 mutex_unlock(&vcpu->kvm->lock);
2302 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2305 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
2308 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2309 int size, unsigned port)
2311 struct kvm_io_device *pio_dev;
2313 vcpu->run->exit_reason = KVM_EXIT_IO;
2314 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2315 vcpu->run->io.size = vcpu->arch.pio.size = size;
2316 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2317 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2318 vcpu->run->io.port = vcpu->arch.pio.port = port;
2319 vcpu->arch.pio.in = in;
2320 vcpu->arch.pio.string = 0;
2321 vcpu->arch.pio.down = 0;
2322 vcpu->arch.pio.guest_page_offset = 0;
2323 vcpu->arch.pio.rep = 0;
2325 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2326 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2329 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2332 kvm_x86_ops->cache_regs(vcpu);
2333 memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2334 kvm_x86_ops->decache_regs(vcpu);
2336 kvm_x86_ops->skip_emulated_instruction(vcpu);
2338 pio_dev = vcpu_find_pio_dev(vcpu, port);
2340 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2346 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2348 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2349 int size, unsigned long count, int down,
2350 gva_t address, int rep, unsigned port)
2352 unsigned now, in_page;
2356 struct kvm_io_device *pio_dev;
2358 vcpu->run->exit_reason = KVM_EXIT_IO;
2359 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2360 vcpu->run->io.size = vcpu->arch.pio.size = size;
2361 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2362 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2363 vcpu->run->io.port = vcpu->arch.pio.port = port;
2364 vcpu->arch.pio.in = in;
2365 vcpu->arch.pio.string = 1;
2366 vcpu->arch.pio.down = down;
2367 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2368 vcpu->arch.pio.rep = rep;
2370 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2371 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2374 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2378 kvm_x86_ops->skip_emulated_instruction(vcpu);
2383 in_page = PAGE_SIZE - offset_in_page(address);
2385 in_page = offset_in_page(address) + size;
2386 now = min(count, (unsigned long)in_page / size);
2389 * String I/O straddles page boundary. Pin two guest pages
2390 * so that we satisfy atomicity constraints. Do just one
2391 * transaction to avoid complexity.
2398 * String I/O in reverse. Yuck. Kill the guest, fix later.
2400 pr_unimpl(vcpu, "guest string pio down\n");
2401 kvm_inject_gp(vcpu, 0);
2404 vcpu->run->io.count = now;
2405 vcpu->arch.pio.cur_count = now;
2407 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2408 kvm_x86_ops->skip_emulated_instruction(vcpu);
2410 for (i = 0; i < nr_pages; ++i) {
2411 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2412 vcpu->arch.pio.guest_pages[i] = page;
2414 kvm_inject_gp(vcpu, 0);
2415 free_pio_guest_pages(vcpu);
2420 pio_dev = vcpu_find_pio_dev(vcpu, port);
2421 if (!vcpu->arch.pio.in) {
2422 /* string PIO write */
2423 ret = pio_copy_data(vcpu);
2424 if (ret >= 0 && pio_dev) {
2425 pio_string_write(pio_dev, vcpu);
2427 if (vcpu->arch.pio.count == 0)
2431 pr_unimpl(vcpu, "no string pio read support yet, "
2432 "port %x size %d count %ld\n",
2437 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2439 int kvm_arch_init(void *opaque)
2442 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2445 printk(KERN_ERR "kvm: already loaded the other module\n");
2450 if (!ops->cpu_has_kvm_support()) {
2451 printk(KERN_ERR "kvm: no hardware support\n");
2455 if (ops->disabled_by_bios()) {
2456 printk(KERN_ERR "kvm: disabled by bios\n");
2461 r = kvm_mmu_module_init();
2465 kvm_init_msr_list();
2468 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2469 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2470 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2471 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2478 void kvm_arch_exit(void)
2481 kvm_mmu_module_exit();
2484 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2486 ++vcpu->stat.halt_exits;
2487 KVMTRACE_0D(HLT, vcpu, handler);
2488 if (irqchip_in_kernel(vcpu->kvm)) {
2489 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2490 up_read(&vcpu->kvm->slots_lock);
2491 kvm_vcpu_block(vcpu);
2492 down_read(&vcpu->kvm->slots_lock);
2493 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2497 vcpu->run->exit_reason = KVM_EXIT_HLT;
2501 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2503 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2506 if (is_long_mode(vcpu))
2509 return a0 | ((gpa_t)a1 << 32);
2512 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2514 unsigned long nr, a0, a1, a2, a3, ret;
2517 kvm_x86_ops->cache_regs(vcpu);
2519 nr = vcpu->arch.regs[VCPU_REGS_RAX];
2520 a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2521 a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2522 a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2523 a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2525 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2527 if (!is_long_mode(vcpu)) {
2536 case KVM_HC_VAPIC_POLL_IRQ:
2540 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2546 vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2547 kvm_x86_ops->decache_regs(vcpu);
2548 ++vcpu->stat.hypercalls;
2551 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2553 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2555 char instruction[3];
2560 * Blow out the MMU to ensure that no other VCPU has an active mapping
2561 * to ensure that the updated hypercall appears atomically across all
2564 kvm_mmu_zap_all(vcpu->kvm);
2566 kvm_x86_ops->cache_regs(vcpu);
2567 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2568 if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2569 != X86EMUL_CONTINUE)
2575 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2577 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2580 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2582 struct descriptor_table dt = { limit, base };
2584 kvm_x86_ops->set_gdt(vcpu, &dt);
2587 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2589 struct descriptor_table dt = { limit, base };
2591 kvm_x86_ops->set_idt(vcpu, &dt);
2594 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2595 unsigned long *rflags)
2597 kvm_lmsw(vcpu, msw);
2598 *rflags = kvm_x86_ops->get_rflags(vcpu);
2601 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2603 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2606 return vcpu->arch.cr0;
2608 return vcpu->arch.cr2;
2610 return vcpu->arch.cr3;
2612 return vcpu->arch.cr4;
2614 return kvm_get_cr8(vcpu);
2616 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2621 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2622 unsigned long *rflags)
2626 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2627 *rflags = kvm_x86_ops->get_rflags(vcpu);
2630 vcpu->arch.cr2 = val;
2633 kvm_set_cr3(vcpu, val);
2636 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2639 kvm_set_cr8(vcpu, val & 0xfUL);
2642 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2646 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2648 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2649 int j, nent = vcpu->arch.cpuid_nent;
2651 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2652 /* when no next entry is found, the current entry[i] is reselected */
2653 for (j = i + 1; j == i; j = (j + 1) % nent) {
2654 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2655 if (ej->function == e->function) {
2656 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2660 return 0; /* silence gcc, even though control never reaches here */
2663 /* find an entry with matching function, matching index (if needed), and that
2664 * should be read next (if it's stateful) */
2665 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2666 u32 function, u32 index)
2668 if (e->function != function)
2670 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2672 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2673 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2678 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2681 u32 function, index;
2682 struct kvm_cpuid_entry2 *e, *best;
2684 kvm_x86_ops->cache_regs(vcpu);
2685 function = vcpu->arch.regs[VCPU_REGS_RAX];
2686 index = vcpu->arch.regs[VCPU_REGS_RCX];
2687 vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2688 vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2689 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2690 vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2692 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2693 e = &vcpu->arch.cpuid_entries[i];
2694 if (is_matching_cpuid_entry(e, function, index)) {
2695 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2696 move_to_next_stateful_cpuid_entry(vcpu, i);
2701 * Both basic or both extended?
2703 if (((e->function ^ function) & 0x80000000) == 0)
2704 if (!best || e->function > best->function)
2708 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2709 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2710 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2711 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2713 kvm_x86_ops->decache_regs(vcpu);
2714 kvm_x86_ops->skip_emulated_instruction(vcpu);
2715 KVMTRACE_5D(CPUID, vcpu, function,
2716 (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2717 (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2718 (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2719 (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2721 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2724 * Check if userspace requested an interrupt window, and that the
2725 * interrupt window is open.
2727 * No need to exit to userspace if we already have an interrupt queued.
2729 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2730 struct kvm_run *kvm_run)
2732 return (!vcpu->arch.irq_summary &&
2733 kvm_run->request_interrupt_window &&
2734 vcpu->arch.interrupt_window_open &&
2735 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2738 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2739 struct kvm_run *kvm_run)
2741 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2742 kvm_run->cr8 = kvm_get_cr8(vcpu);
2743 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2744 if (irqchip_in_kernel(vcpu->kvm))
2745 kvm_run->ready_for_interrupt_injection = 1;
2747 kvm_run->ready_for_interrupt_injection =
2748 (vcpu->arch.interrupt_window_open &&
2749 vcpu->arch.irq_summary == 0);
2752 static void vapic_enter(struct kvm_vcpu *vcpu)
2754 struct kvm_lapic *apic = vcpu->arch.apic;
2757 if (!apic || !apic->vapic_addr)
2760 down_read(¤t->mm->mmap_sem);
2761 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2762 up_read(¤t->mm->mmap_sem);
2764 vcpu->arch.apic->vapic_page = page;
2767 static void vapic_exit(struct kvm_vcpu *vcpu)
2769 struct kvm_lapic *apic = vcpu->arch.apic;
2771 if (!apic || !apic->vapic_addr)
2774 kvm_release_page_dirty(apic->vapic_page);
2775 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2778 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2782 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2783 pr_debug("vcpu %d received sipi with vector # %x\n",
2784 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2785 kvm_lapic_reset(vcpu);
2786 r = kvm_x86_ops->vcpu_reset(vcpu);
2789 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2792 down_read(&vcpu->kvm->slots_lock);
2796 if (vcpu->guest_debug.enabled)
2797 kvm_x86_ops->guest_debug_pre(vcpu);
2801 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2802 kvm_mmu_unload(vcpu);
2804 r = kvm_mmu_reload(vcpu);
2808 if (vcpu->requests) {
2809 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2810 __kvm_migrate_timers(vcpu);
2811 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2812 kvm_x86_ops->tlb_flush(vcpu);
2813 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2815 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2819 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2820 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2826 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2827 kvm_inject_pending_timer_irqs(vcpu);
2831 kvm_x86_ops->prepare_guest_switch(vcpu);
2832 kvm_load_guest_fpu(vcpu);
2834 local_irq_disable();
2836 if (vcpu->requests || need_resched()) {
2843 if (signal_pending(current)) {
2847 kvm_run->exit_reason = KVM_EXIT_INTR;
2848 ++vcpu->stat.signal_exits;
2852 vcpu->guest_mode = 1;
2854 * Make sure that guest_mode assignment won't happen after
2855 * testing the pending IRQ vector bitmap.
2859 if (vcpu->arch.exception.pending)
2860 __queue_exception(vcpu);
2861 else if (irqchip_in_kernel(vcpu->kvm))
2862 kvm_x86_ops->inject_pending_irq(vcpu);
2864 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2866 kvm_lapic_sync_to_vapic(vcpu);
2868 up_read(&vcpu->kvm->slots_lock);
2873 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2874 kvm_x86_ops->run(vcpu, kvm_run);
2876 vcpu->guest_mode = 0;
2882 * We must have an instruction between local_irq_enable() and
2883 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2884 * the interrupt shadow. The stat.exits increment will do nicely.
2885 * But we need to prevent reordering, hence this barrier():
2893 down_read(&vcpu->kvm->slots_lock);
2896 * Profile KVM exit RIPs:
2898 if (unlikely(prof_on == KVM_PROFILING)) {
2899 kvm_x86_ops->cache_regs(vcpu);
2900 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2903 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2904 vcpu->arch.exception.pending = false;
2906 kvm_lapic_sync_from_vapic(vcpu);
2908 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2911 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2913 kvm_run->exit_reason = KVM_EXIT_INTR;
2914 ++vcpu->stat.request_irq_exits;
2917 if (!need_resched())
2922 up_read(&vcpu->kvm->slots_lock);
2925 down_read(&vcpu->kvm->slots_lock);
2929 post_kvm_run_save(vcpu, kvm_run);
2931 down_read(&vcpu->kvm->slots_lock);
2933 up_read(&vcpu->kvm->slots_lock);
2938 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2945 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2946 kvm_vcpu_block(vcpu);
2951 if (vcpu->sigset_active)
2952 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2954 /* re-sync apic's tpr */
2955 if (!irqchip_in_kernel(vcpu->kvm))
2956 kvm_set_cr8(vcpu, kvm_run->cr8);
2958 if (vcpu->arch.pio.cur_count) {
2959 r = complete_pio(vcpu);
2963 #if CONFIG_HAS_IOMEM
2964 if (vcpu->mmio_needed) {
2965 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2966 vcpu->mmio_read_completed = 1;
2967 vcpu->mmio_needed = 0;
2969 down_read(&vcpu->kvm->slots_lock);
2970 r = emulate_instruction(vcpu, kvm_run,
2971 vcpu->arch.mmio_fault_cr2, 0,
2972 EMULTYPE_NO_DECODE);
2973 up_read(&vcpu->kvm->slots_lock);
2974 if (r == EMULATE_DO_MMIO) {
2976 * Read-modify-write. Back to userspace.
2983 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2984 kvm_x86_ops->cache_regs(vcpu);
2985 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2986 kvm_x86_ops->decache_regs(vcpu);
2989 r = __vcpu_run(vcpu, kvm_run);
2992 if (vcpu->sigset_active)
2993 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2999 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3003 kvm_x86_ops->cache_regs(vcpu);
3005 regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
3006 regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
3007 regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
3008 regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
3009 regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
3010 regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
3011 regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3012 regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3013 #ifdef CONFIG_X86_64
3014 regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
3015 regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
3016 regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
3017 regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
3018 regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
3019 regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
3020 regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
3021 regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3024 regs->rip = vcpu->arch.rip;
3025 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3028 * Don't leak debug flags in case they were set for guest debugging
3030 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3031 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3038 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3042 vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3043 vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3044 vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3045 vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3046 vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3047 vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3048 vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3049 vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3050 #ifdef CONFIG_X86_64
3051 vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3052 vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3053 vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3054 vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3055 vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3056 vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3057 vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3058 vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3061 vcpu->arch.rip = regs->rip;
3062 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3064 kvm_x86_ops->decache_regs(vcpu);
3066 vcpu->arch.exception.pending = false;
3073 static void get_segment(struct kvm_vcpu *vcpu,
3074 struct kvm_segment *var, int seg)
3076 kvm_x86_ops->get_segment(vcpu, var, seg);
3079 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3081 struct kvm_segment cs;
3083 get_segment(vcpu, &cs, VCPU_SREG_CS);
3087 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3089 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3090 struct kvm_sregs *sregs)
3092 struct descriptor_table dt;
3097 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3098 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3099 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3100 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3101 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3102 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3104 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3105 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3107 kvm_x86_ops->get_idt(vcpu, &dt);
3108 sregs->idt.limit = dt.limit;
3109 sregs->idt.base = dt.base;
3110 kvm_x86_ops->get_gdt(vcpu, &dt);
3111 sregs->gdt.limit = dt.limit;
3112 sregs->gdt.base = dt.base;
3114 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3115 sregs->cr0 = vcpu->arch.cr0;
3116 sregs->cr2 = vcpu->arch.cr2;
3117 sregs->cr3 = vcpu->arch.cr3;
3118 sregs->cr4 = vcpu->arch.cr4;
3119 sregs->cr8 = kvm_get_cr8(vcpu);
3120 sregs->efer = vcpu->arch.shadow_efer;
3121 sregs->apic_base = kvm_get_apic_base(vcpu);
3123 if (irqchip_in_kernel(vcpu->kvm)) {
3124 memset(sregs->interrupt_bitmap, 0,
3125 sizeof sregs->interrupt_bitmap);
3126 pending_vec = kvm_x86_ops->get_irq(vcpu);
3127 if (pending_vec >= 0)
3128 set_bit(pending_vec,
3129 (unsigned long *)sregs->interrupt_bitmap);
3131 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3132 sizeof sregs->interrupt_bitmap);
3139 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3140 struct kvm_mp_state *mp_state)
3143 mp_state->mp_state = vcpu->arch.mp_state;
3148 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3149 struct kvm_mp_state *mp_state)
3152 vcpu->arch.mp_state = mp_state->mp_state;
3157 static void set_segment(struct kvm_vcpu *vcpu,
3158 struct kvm_segment *var, int seg)
3160 kvm_x86_ops->set_segment(vcpu, var, seg);
3163 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3164 struct kvm_segment *kvm_desct)
3166 kvm_desct->base = seg_desc->base0;
3167 kvm_desct->base |= seg_desc->base1 << 16;
3168 kvm_desct->base |= seg_desc->base2 << 24;
3169 kvm_desct->limit = seg_desc->limit0;
3170 kvm_desct->limit |= seg_desc->limit << 16;
3171 kvm_desct->selector = selector;
3172 kvm_desct->type = seg_desc->type;
3173 kvm_desct->present = seg_desc->p;
3174 kvm_desct->dpl = seg_desc->dpl;
3175 kvm_desct->db = seg_desc->d;
3176 kvm_desct->s = seg_desc->s;
3177 kvm_desct->l = seg_desc->l;
3178 kvm_desct->g = seg_desc->g;
3179 kvm_desct->avl = seg_desc->avl;
3181 kvm_desct->unusable = 1;
3183 kvm_desct->unusable = 0;
3184 kvm_desct->padding = 0;
3187 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3189 struct descriptor_table *dtable)
3191 if (selector & 1 << 2) {
3192 struct kvm_segment kvm_seg;
3194 get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3196 if (kvm_seg.unusable)
3199 dtable->limit = kvm_seg.limit;
3200 dtable->base = kvm_seg.base;
3203 kvm_x86_ops->get_gdt(vcpu, dtable);
3206 /* allowed just for 8 bytes segments */
3207 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3208 struct desc_struct *seg_desc)
3210 struct descriptor_table dtable;
3211 u16 index = selector >> 3;
3213 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3215 if (dtable.limit < index * 8 + 7) {
3216 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3219 return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3222 /* allowed just for 8 bytes segments */
3223 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3224 struct desc_struct *seg_desc)
3226 struct descriptor_table dtable;
3227 u16 index = selector >> 3;
3229 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3231 if (dtable.limit < index * 8 + 7)
3233 return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
3236 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3237 struct desc_struct *seg_desc)
3241 base_addr = seg_desc->base0;
3242 base_addr |= (seg_desc->base1 << 16);
3243 base_addr |= (seg_desc->base2 << 24);
3248 static int load_tss_segment32(struct kvm_vcpu *vcpu,
3249 struct desc_struct *seg_desc,
3250 struct tss_segment_32 *tss)
3254 base_addr = get_tss_base_addr(vcpu, seg_desc);
3256 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3257 sizeof(struct tss_segment_32));
3260 static int save_tss_segment32(struct kvm_vcpu *vcpu,
3261 struct desc_struct *seg_desc,
3262 struct tss_segment_32 *tss)
3266 base_addr = get_tss_base_addr(vcpu, seg_desc);
3268 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3269 sizeof(struct tss_segment_32));
3272 static int load_tss_segment16(struct kvm_vcpu *vcpu,
3273 struct desc_struct *seg_desc,
3274 struct tss_segment_16 *tss)
3278 base_addr = get_tss_base_addr(vcpu, seg_desc);
3280 return kvm_read_guest(vcpu->kvm, base_addr, tss,
3281 sizeof(struct tss_segment_16));
3284 static int save_tss_segment16(struct kvm_vcpu *vcpu,
3285 struct desc_struct *seg_desc,
3286 struct tss_segment_16 *tss)
3290 base_addr = get_tss_base_addr(vcpu, seg_desc);
3292 return kvm_write_guest(vcpu->kvm, base_addr, tss,
3293 sizeof(struct tss_segment_16));
3296 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3298 struct kvm_segment kvm_seg;
3300 get_segment(vcpu, &kvm_seg, seg);
3301 return kvm_seg.selector;
3304 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3306 struct kvm_segment *kvm_seg)
3308 struct desc_struct seg_desc;
3310 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3312 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3316 static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3317 int type_bits, int seg)
3319 struct kvm_segment kvm_seg;
3321 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3323 kvm_seg.type |= type_bits;
3325 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3326 seg != VCPU_SREG_LDTR)
3328 kvm_seg.unusable = 1;
3330 set_segment(vcpu, &kvm_seg, seg);
3334 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3335 struct tss_segment_32 *tss)
3337 tss->cr3 = vcpu->arch.cr3;
3338 tss->eip = vcpu->arch.rip;
3339 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3340 tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3341 tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3342 tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3343 tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3344 tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3345 tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3346 tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3347 tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3349 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3350 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3351 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3352 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3353 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3354 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3355 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3356 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3359 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3360 struct tss_segment_32 *tss)
3362 kvm_set_cr3(vcpu, tss->cr3);
3364 vcpu->arch.rip = tss->eip;
3365 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3367 vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3368 vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3369 vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3370 vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
3371 vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
3372 vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
3373 vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
3374 vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
3376 if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3379 if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3382 if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3385 if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3388 if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3391 if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3394 if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3399 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3400 struct tss_segment_16 *tss)
3402 tss->ip = vcpu->arch.rip;
3403 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3404 tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
3405 tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
3406 tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
3407 tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
3408 tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
3409 tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
3410 tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
3411 tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
3413 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3414 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3415 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3416 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3417 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3418 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3421 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3422 struct tss_segment_16 *tss)
3424 vcpu->arch.rip = tss->ip;
3425 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3426 vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
3427 vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
3428 vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
3429 vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
3430 vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
3431 vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
3432 vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
3433 vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
3435 if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3438 if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3441 if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3444 if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3447 if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3452 int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3453 struct desc_struct *cseg_desc,
3454 struct desc_struct *nseg_desc)
3456 struct tss_segment_16 tss_segment_16;
3459 if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
3462 save_state_to_tss16(vcpu, &tss_segment_16);
3463 save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
3465 if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
3467 if (load_state_from_tss16(vcpu, &tss_segment_16))
3475 int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3476 struct desc_struct *cseg_desc,
3477 struct desc_struct *nseg_desc)
3479 struct tss_segment_32 tss_segment_32;
3482 if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
3485 save_state_to_tss32(vcpu, &tss_segment_32);
3486 save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
3488 if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
3490 if (load_state_from_tss32(vcpu, &tss_segment_32))
3498 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3500 struct kvm_segment tr_seg;
3501 struct desc_struct cseg_desc;
3502 struct desc_struct nseg_desc;
3505 get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3507 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3510 if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
3514 if (reason != TASK_SWITCH_IRET) {
3517 cpl = kvm_x86_ops->get_cpl(vcpu);
3518 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3519 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3524 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3525 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3529 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3530 cseg_desc.type &= ~(1 << 1); //clear the B flag
3531 save_guest_segment_descriptor(vcpu, tr_seg.selector,
3535 if (reason == TASK_SWITCH_IRET) {
3536 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3537 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3540 kvm_x86_ops->skip_emulated_instruction(vcpu);
3541 kvm_x86_ops->cache_regs(vcpu);
3543 if (nseg_desc.type & 8)
3544 ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
3547 ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
3550 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3551 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3552 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3555 if (reason != TASK_SWITCH_IRET) {
3556 nseg_desc.type |= (1 << 1);
3557 save_guest_segment_descriptor(vcpu, tss_selector,
3561 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3562 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3564 set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3566 kvm_x86_ops->decache_regs(vcpu);
3569 EXPORT_SYMBOL_GPL(kvm_task_switch);
3571 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3572 struct kvm_sregs *sregs)
3574 int mmu_reset_needed = 0;
3575 int i, pending_vec, max_bits;
3576 struct descriptor_table dt;
3580 dt.limit = sregs->idt.limit;
3581 dt.base = sregs->idt.base;
3582 kvm_x86_ops->set_idt(vcpu, &dt);
3583 dt.limit = sregs->gdt.limit;
3584 dt.base = sregs->gdt.base;
3585 kvm_x86_ops->set_gdt(vcpu, &dt);
3587 vcpu->arch.cr2 = sregs->cr2;
3588 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3589 vcpu->arch.cr3 = sregs->cr3;
3591 kvm_set_cr8(vcpu, sregs->cr8);
3593 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3594 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3595 kvm_set_apic_base(vcpu, sregs->apic_base);
3597 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3599 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3600 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3601 vcpu->arch.cr0 = sregs->cr0;
3603 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3604 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3605 if (!is_long_mode(vcpu) && is_pae(vcpu))
3606 load_pdptrs(vcpu, vcpu->arch.cr3);
3608 if (mmu_reset_needed)
3609 kvm_mmu_reset_context(vcpu);
3611 if (!irqchip_in_kernel(vcpu->kvm)) {
3612 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3613 sizeof vcpu->arch.irq_pending);
3614 vcpu->arch.irq_summary = 0;
3615 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3616 if (vcpu->arch.irq_pending[i])
3617 __set_bit(i, &vcpu->arch.irq_summary);
3619 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3620 pending_vec = find_first_bit(
3621 (const unsigned long *)sregs->interrupt_bitmap,
3623 /* Only pending external irq is handled here */
3624 if (pending_vec < max_bits) {
3625 kvm_x86_ops->set_irq(vcpu, pending_vec);
3626 pr_debug("Set back pending irq %d\n",
3631 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3632 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3633 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3634 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3635 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3636 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3638 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3639 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3646 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3647 struct kvm_debug_guest *dbg)
3653 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3661 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3662 * we have asm/x86/processor.h
3673 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3674 #ifdef CONFIG_X86_64
3675 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3677 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3682 * Translate a guest virtual address to a guest physical address.
3684 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3685 struct kvm_translation *tr)
3687 unsigned long vaddr = tr->linear_address;
3691 down_read(&vcpu->kvm->slots_lock);
3692 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3693 up_read(&vcpu->kvm->slots_lock);
3694 tr->physical_address = gpa;
3695 tr->valid = gpa != UNMAPPED_GVA;
3703 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3705 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3709 memcpy(fpu->fpr, fxsave->st_space, 128);
3710 fpu->fcw = fxsave->cwd;
3711 fpu->fsw = fxsave->swd;
3712 fpu->ftwx = fxsave->twd;
3713 fpu->last_opcode = fxsave->fop;
3714 fpu->last_ip = fxsave->rip;
3715 fpu->last_dp = fxsave->rdp;
3716 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3723 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3725 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3729 memcpy(fxsave->st_space, fpu->fpr, 128);
3730 fxsave->cwd = fpu->fcw;
3731 fxsave->swd = fpu->fsw;
3732 fxsave->twd = fpu->ftwx;
3733 fxsave->fop = fpu->last_opcode;
3734 fxsave->rip = fpu->last_ip;
3735 fxsave->rdp = fpu->last_dp;
3736 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3743 void fx_init(struct kvm_vcpu *vcpu)
3745 unsigned after_mxcsr_mask;
3748 * Touch the fpu the first time in non atomic context as if
3749 * this is the first fpu instruction the exception handler
3750 * will fire before the instruction returns and it'll have to
3751 * allocate ram with GFP_KERNEL.
3754 fx_save(&vcpu->arch.host_fx_image);
3756 /* Initialize guest FPU by resetting ours and saving into guest's */
3758 fx_save(&vcpu->arch.host_fx_image);
3760 fx_save(&vcpu->arch.guest_fx_image);
3761 fx_restore(&vcpu->arch.host_fx_image);
3764 vcpu->arch.cr0 |= X86_CR0_ET;
3765 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3766 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3767 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3768 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3770 EXPORT_SYMBOL_GPL(fx_init);
3772 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3774 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3777 vcpu->guest_fpu_loaded = 1;
3778 fx_save(&vcpu->arch.host_fx_image);
3779 fx_restore(&vcpu->arch.guest_fx_image);
3781 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3783 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3785 if (!vcpu->guest_fpu_loaded)
3788 vcpu->guest_fpu_loaded = 0;
3789 fx_save(&vcpu->arch.guest_fx_image);
3790 fx_restore(&vcpu->arch.host_fx_image);
3791 ++vcpu->stat.fpu_reload;
3793 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3795 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3797 kvm_x86_ops->vcpu_free(vcpu);
3800 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3803 return kvm_x86_ops->vcpu_create(kvm, id);
3806 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3810 /* We do fxsave: this must be aligned. */
3811 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3814 r = kvm_arch_vcpu_reset(vcpu);
3816 r = kvm_mmu_setup(vcpu);
3823 kvm_x86_ops->vcpu_free(vcpu);
3827 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3830 kvm_mmu_unload(vcpu);
3833 kvm_x86_ops->vcpu_free(vcpu);
3836 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3838 return kvm_x86_ops->vcpu_reset(vcpu);
3841 void kvm_arch_hardware_enable(void *garbage)
3843 kvm_x86_ops->hardware_enable(garbage);
3846 void kvm_arch_hardware_disable(void *garbage)
3848 kvm_x86_ops->hardware_disable(garbage);
3851 int kvm_arch_hardware_setup(void)
3853 return kvm_x86_ops->hardware_setup();
3856 void kvm_arch_hardware_unsetup(void)
3858 kvm_x86_ops->hardware_unsetup();
3861 void kvm_arch_check_processor_compat(void *rtn)
3863 kvm_x86_ops->check_processor_compatibility(rtn);
3866 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3872 BUG_ON(vcpu->kvm == NULL);
3875 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3876 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3877 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3879 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3881 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3886 vcpu->arch.pio_data = page_address(page);
3888 r = kvm_mmu_create(vcpu);
3890 goto fail_free_pio_data;
3892 if (irqchip_in_kernel(kvm)) {
3893 r = kvm_create_lapic(vcpu);
3895 goto fail_mmu_destroy;
3901 kvm_mmu_destroy(vcpu);
3903 free_page((unsigned long)vcpu->arch.pio_data);
3908 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3910 kvm_free_lapic(vcpu);
3911 down_read(&vcpu->kvm->slots_lock);
3912 kvm_mmu_destroy(vcpu);
3913 up_read(&vcpu->kvm->slots_lock);
3914 free_page((unsigned long)vcpu->arch.pio_data);
3917 struct kvm *kvm_arch_create_vm(void)
3919 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3922 return ERR_PTR(-ENOMEM);
3924 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3929 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3932 kvm_mmu_unload(vcpu);
3936 static void kvm_free_vcpus(struct kvm *kvm)
3941 * Unpin any mmu pages first.
3943 for (i = 0; i < KVM_MAX_VCPUS; ++i)
3945 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3946 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3947 if (kvm->vcpus[i]) {
3948 kvm_arch_vcpu_free(kvm->vcpus[i]);
3949 kvm->vcpus[i] = NULL;
3955 void kvm_arch_destroy_vm(struct kvm *kvm)
3958 kfree(kvm->arch.vpic);
3959 kfree(kvm->arch.vioapic);
3960 kvm_free_vcpus(kvm);
3961 kvm_free_physmem(kvm);
3962 if (kvm->arch.apic_access_page)
3963 put_page(kvm->arch.apic_access_page);
3964 if (kvm->arch.ept_identity_pagetable)
3965 put_page(kvm->arch.ept_identity_pagetable);
3969 int kvm_arch_set_memory_region(struct kvm *kvm,
3970 struct kvm_userspace_memory_region *mem,
3971 struct kvm_memory_slot old,
3974 int npages = mem->memory_size >> PAGE_SHIFT;
3975 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3977 /*To keep backward compatibility with older userspace,
3978 *x86 needs to hanlde !user_alloc case.
3981 if (npages && !old.rmap) {
3982 down_write(¤t->mm->mmap_sem);
3983 memslot->userspace_addr = do_mmap(NULL, 0,
3985 PROT_READ | PROT_WRITE,
3986 MAP_SHARED | MAP_ANONYMOUS,
3988 up_write(¤t->mm->mmap_sem);
3990 if (IS_ERR((void *)memslot->userspace_addr))
3991 return PTR_ERR((void *)memslot->userspace_addr);
3993 if (!old.user_alloc && old.rmap) {
3996 down_write(¤t->mm->mmap_sem);
3997 ret = do_munmap(current->mm, old.userspace_addr,
3998 old.npages * PAGE_SIZE);
3999 up_write(¤t->mm->mmap_sem);
4002 "kvm_vm_ioctl_set_memory_region: "
4003 "failed to munmap memory\n");
4008 if (!kvm->arch.n_requested_mmu_pages) {
4009 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4010 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4013 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4014 kvm_flush_remote_tlbs(kvm);
4019 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4021 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4022 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4025 static void vcpu_kick_intr(void *info)
4028 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4029 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4033 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4035 int ipi_pcpu = vcpu->cpu;
4036 int cpu = get_cpu();
4038 if (waitqueue_active(&vcpu->wq)) {
4039 wake_up_interruptible(&vcpu->wq);
4040 ++vcpu->stat.halt_wakeup;
4043 * We may be called synchronously with irqs disabled in guest mode,
4044 * So need not to call smp_call_function_single() in that case.
4046 if (vcpu->guest_mode && vcpu->cpu != cpu)
4047 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);