4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/smp_lock.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/namei.h>
35 #include <asm/namei.h>
36 #include <asm/uaccess.h>
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
118 static int do_getname(const char __user *filename, char *page)
121 unsigned long len = PATH_MAX;
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
130 retval = strncpy_from_user(page, filename, len);
134 return -ENAMETOOLONG;
140 char * getname(const char __user * filename)
144 result = ERR_PTR(-ENOMEM);
147 int retval = do_getname(filename, tmp);
152 result = ERR_PTR(retval);
155 audit_getname(result);
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
162 if (unlikely(!audit_dummy_context()))
167 EXPORT_SYMBOL(putname);
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
185 umode_t mode = inode->i_mode;
187 if (current->fsuid == inode->i_uid)
190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 int error = check_acl(inode, mask);
192 if (error == -EACCES)
193 goto check_capabilities;
194 else if (error != -EAGAIN)
198 if (in_group_p(inode->i_gid))
203 * If the DACs are ok we don't need any capability check.
205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
210 * Read/write DACs are always overridable.
211 * Executable DACs are overridable if at least one exec bit is set.
213 if (!(mask & MAY_EXEC) ||
214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 if (capable(CAP_DAC_OVERRIDE))
219 * Searching includes executable on directories, else just read.
221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 if (capable(CAP_DAC_READ_SEARCH))
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
230 umode_t mode = inode->i_mode;
233 if (mask & MAY_WRITE) {
236 * Nobody gets write access to a read-only fs.
238 if (IS_RDONLY(inode) &&
239 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
243 * Nobody gets write access to an immutable file.
245 if (IS_IMMUTABLE(inode))
251 * MAY_EXEC on regular files requires special handling: We override
252 * filesystem execute permissions if the mode bits aren't set.
254 if ((mask & MAY_EXEC) && S_ISREG(mode) && !(mode & S_IXUGO))
257 /* Ordinary permission routines do not understand MAY_APPEND. */
258 submask = mask & ~MAY_APPEND;
259 if (inode->i_op && inode->i_op->permission)
260 retval = inode->i_op->permission(inode, submask, nd);
262 retval = generic_permission(inode, submask, NULL);
266 return security_inode_permission(inode, mask, nd);
270 * vfs_permission - check for access rights to a given path
271 * @nd: lookup result that describes the path
272 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
274 * Used to check for read/write/execute permissions on a path.
275 * We use "fsuid" for this, letting us set arbitrary permissions
276 * for filesystem access without changing the "normal" uids which
277 * are used for other things.
279 int vfs_permission(struct nameidata *nd, int mask)
281 return permission(nd->dentry->d_inode, mask, nd);
285 * file_permission - check for additional access rights to a given file
286 * @file: file to check access rights for
287 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
289 * Used to check for read/write/execute permissions on an already opened
293 * Do not use this function in new code. All access checks should
294 * be done using vfs_permission().
296 int file_permission(struct file *file, int mask)
298 return permission(file->f_dentry->d_inode, mask, NULL);
302 * get_write_access() gets write permission for a file.
303 * put_write_access() releases this write permission.
304 * This is used for regular files.
305 * We cannot support write (and maybe mmap read-write shared) accesses and
306 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
307 * can have the following values:
308 * 0: no writers, no VM_DENYWRITE mappings
309 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
310 * > 0: (i_writecount) users are writing to the file.
312 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
313 * except for the cases where we don't hold i_writecount yet. Then we need to
314 * use {get,deny}_write_access() - these functions check the sign and refuse
315 * to do the change if sign is wrong. Exclusion between them is provided by
316 * the inode->i_lock spinlock.
319 int get_write_access(struct inode * inode)
321 spin_lock(&inode->i_lock);
322 if (atomic_read(&inode->i_writecount) < 0) {
323 spin_unlock(&inode->i_lock);
326 atomic_inc(&inode->i_writecount);
327 spin_unlock(&inode->i_lock);
332 int deny_write_access(struct file * file)
334 struct inode *inode = file->f_dentry->d_inode;
336 spin_lock(&inode->i_lock);
337 if (atomic_read(&inode->i_writecount) > 0) {
338 spin_unlock(&inode->i_lock);
341 atomic_dec(&inode->i_writecount);
342 spin_unlock(&inode->i_lock);
347 void path_release(struct nameidata *nd)
354 * umount() mustn't call path_release()/mntput() as that would clear
357 void path_release_on_umount(struct nameidata *nd)
360 mntput_no_expire(nd->mnt);
364 * release_open_intent - free up open intent resources
365 * @nd: pointer to nameidata
367 void release_open_intent(struct nameidata *nd)
369 if (nd->intent.open.file->f_dentry == NULL)
370 put_filp(nd->intent.open.file);
372 fput(nd->intent.open.file);
375 static inline struct dentry *
376 do_revalidate(struct dentry *dentry, struct nameidata *nd)
378 int status = dentry->d_op->d_revalidate(dentry, nd);
379 if (unlikely(status <= 0)) {
381 * The dentry failed validation.
382 * If d_revalidate returned 0 attempt to invalidate
383 * the dentry otherwise d_revalidate is asking us
384 * to return a fail status.
387 if (!d_invalidate(dentry)) {
393 dentry = ERR_PTR(status);
400 * Internal lookup() using the new generic dcache.
403 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
405 struct dentry * dentry = __d_lookup(parent, name);
407 /* lockess __d_lookup may fail due to concurrent d_move()
408 * in some unrelated directory, so try with d_lookup
411 dentry = d_lookup(parent, name);
413 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
414 dentry = do_revalidate(dentry, nd);
420 * Short-cut version of permission(), for calling by
421 * path_walk(), when dcache lock is held. Combines parts
422 * of permission() and generic_permission(), and tests ONLY for
423 * MAY_EXEC permission.
425 * If appropriate, check DAC only. If not appropriate, or
426 * short-cut DAC fails, then call permission() to do more
427 * complete permission check.
429 static int exec_permission_lite(struct inode *inode,
430 struct nameidata *nd)
432 umode_t mode = inode->i_mode;
434 if (inode->i_op && inode->i_op->permission)
437 if (current->fsuid == inode->i_uid)
439 else if (in_group_p(inode->i_gid))
445 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
448 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
451 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
456 return security_inode_permission(inode, MAY_EXEC, nd);
460 * This is called when everything else fails, and we actually have
461 * to go to the low-level filesystem to find out what we should do..
463 * We get the directory semaphore, and after getting that we also
464 * make sure that nobody added the entry to the dcache in the meantime..
467 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
469 struct dentry * result;
470 struct inode *dir = parent->d_inode;
472 mutex_lock(&dir->i_mutex);
474 * First re-do the cached lookup just in case it was created
475 * while we waited for the directory semaphore..
477 * FIXME! This could use version numbering or similar to
478 * avoid unnecessary cache lookups.
480 * The "dcache_lock" is purely to protect the RCU list walker
481 * from concurrent renames at this point (we mustn't get false
482 * negatives from the RCU list walk here, unlike the optimistic
485 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
487 result = d_lookup(parent, name);
489 struct dentry * dentry = d_alloc(parent, name);
490 result = ERR_PTR(-ENOMEM);
492 result = dir->i_op->lookup(dir, dentry, nd);
498 mutex_unlock(&dir->i_mutex);
503 * Uhhuh! Nasty case: the cache was re-populated while
504 * we waited on the semaphore. Need to revalidate.
506 mutex_unlock(&dir->i_mutex);
507 if (result->d_op && result->d_op->d_revalidate) {
508 result = do_revalidate(result, nd);
510 result = ERR_PTR(-ENOENT);
515 static int __emul_lookup_dentry(const char *, struct nameidata *);
518 static __always_inline int
519 walk_init_root(const char *name, struct nameidata *nd)
521 struct fs_struct *fs = current->fs;
523 read_lock(&fs->lock);
524 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
525 nd->mnt = mntget(fs->altrootmnt);
526 nd->dentry = dget(fs->altroot);
527 read_unlock(&fs->lock);
528 if (__emul_lookup_dentry(name,nd))
530 read_lock(&fs->lock);
532 nd->mnt = mntget(fs->rootmnt);
533 nd->dentry = dget(fs->root);
534 read_unlock(&fs->lock);
538 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
547 if (!walk_init_root(link, nd))
548 /* weird __emul_prefix() stuff did it */
551 res = link_path_walk(link, nd);
553 if (nd->depth || res || nd->last_type!=LAST_NORM)
556 * If it is an iterative symlinks resolution in open_namei() we
557 * have to copy the last component. And all that crap because of
558 * bloody create() on broken symlinks. Furrfu...
561 if (unlikely(!name)) {
565 strcpy(name, nd->last.name);
566 nd->last.name = name;
570 return PTR_ERR(link);
574 struct vfsmount *mnt;
575 struct dentry *dentry;
578 static inline void dput_path(struct path *path, struct nameidata *nd)
581 if (path->mnt != nd->mnt)
585 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
588 if (nd->mnt != path->mnt)
591 nd->dentry = path->dentry;
594 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
598 struct dentry *dentry = path->dentry;
600 touch_atime(path->mnt, dentry);
601 nd_set_link(nd, NULL);
603 if (path->mnt != nd->mnt) {
604 path_to_nameidata(path, nd);
608 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
609 error = PTR_ERR(cookie);
610 if (!IS_ERR(cookie)) {
611 char *s = nd_get_link(nd);
614 error = __vfs_follow_link(nd, s);
615 if (dentry->d_inode->i_op->put_link)
616 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
625 * This limits recursive symlink follows to 8, while
626 * limiting consecutive symlinks to 40.
628 * Without that kind of total limit, nasty chains of consecutive
629 * symlinks can cause almost arbitrarily long lookups.
631 static inline int do_follow_link(struct path *path, struct nameidata *nd)
634 if (current->link_count >= MAX_NESTED_LINKS)
636 if (current->total_link_count >= 40)
638 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
640 err = security_inode_follow_link(path->dentry, nd);
643 current->link_count++;
644 current->total_link_count++;
646 err = __do_follow_link(path, nd);
647 current->link_count--;
656 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
658 struct vfsmount *parent;
659 struct dentry *mountpoint;
660 spin_lock(&vfsmount_lock);
661 parent=(*mnt)->mnt_parent;
662 if (parent == *mnt) {
663 spin_unlock(&vfsmount_lock);
667 mountpoint=dget((*mnt)->mnt_mountpoint);
668 spin_unlock(&vfsmount_lock);
670 *dentry = mountpoint;
676 /* no need for dcache_lock, as serialization is taken care in
679 static int __follow_mount(struct path *path)
682 while (d_mountpoint(path->dentry)) {
683 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
690 path->dentry = dget(mounted->mnt_root);
696 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
698 while (d_mountpoint(*dentry)) {
699 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
705 *dentry = dget(mounted->mnt_root);
709 /* no need for dcache_lock, as serialization is taken care in
712 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
714 struct vfsmount *mounted;
716 mounted = lookup_mnt(*mnt, *dentry);
721 *dentry = dget(mounted->mnt_root);
727 static __always_inline void follow_dotdot(struct nameidata *nd)
729 struct fs_struct *fs = current->fs;
732 struct vfsmount *parent;
733 struct dentry *old = nd->dentry;
735 read_lock(&fs->lock);
736 if (nd->dentry == fs->root &&
737 nd->mnt == fs->rootmnt) {
738 read_unlock(&fs->lock);
741 read_unlock(&fs->lock);
742 spin_lock(&dcache_lock);
743 if (nd->dentry != nd->mnt->mnt_root) {
744 nd->dentry = dget(nd->dentry->d_parent);
745 spin_unlock(&dcache_lock);
749 spin_unlock(&dcache_lock);
750 spin_lock(&vfsmount_lock);
751 parent = nd->mnt->mnt_parent;
752 if (parent == nd->mnt) {
753 spin_unlock(&vfsmount_lock);
757 nd->dentry = dget(nd->mnt->mnt_mountpoint);
758 spin_unlock(&vfsmount_lock);
763 follow_mount(&nd->mnt, &nd->dentry);
767 * It's more convoluted than I'd like it to be, but... it's still fairly
768 * small and for now I'd prefer to have fast path as straight as possible.
769 * It _is_ time-critical.
771 static int do_lookup(struct nameidata *nd, struct qstr *name,
774 struct vfsmount *mnt = nd->mnt;
775 struct dentry *dentry = __d_lookup(nd->dentry, name);
779 if (dentry->d_op && dentry->d_op->d_revalidate)
780 goto need_revalidate;
783 path->dentry = dentry;
784 __follow_mount(path);
788 dentry = real_lookup(nd->dentry, name, nd);
794 dentry = do_revalidate(dentry, nd);
802 return PTR_ERR(dentry);
807 * This is the basic name resolution function, turning a pathname into
808 * the final dentry. We expect 'base' to be positive and a directory.
810 * Returns 0 and nd will have valid dentry and mnt on success.
811 * Returns error and drops reference to input namei data on failure.
813 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
818 unsigned int lookup_flags = nd->flags;
825 inode = nd->dentry->d_inode;
827 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
829 /* At this point we know we have a real path component. */
835 nd->flags |= LOOKUP_CONTINUE;
836 err = exec_permission_lite(inode, nd);
838 err = vfs_permission(nd, MAY_EXEC);
843 c = *(const unsigned char *)name;
845 hash = init_name_hash();
848 hash = partial_name_hash(c, hash);
849 c = *(const unsigned char *)name;
850 } while (c && (c != '/'));
851 this.len = name - (const char *) this.name;
852 this.hash = end_name_hash(hash);
854 /* remove trailing slashes? */
857 while (*++name == '/');
859 goto last_with_slashes;
862 * "." and ".." are special - ".." especially so because it has
863 * to be able to know about the current root directory and
864 * parent relationships.
866 if (this.name[0] == '.') switch (this.len) {
870 if (this.name[1] != '.')
873 inode = nd->dentry->d_inode;
879 * See if the low-level filesystem might want
880 * to use its own hash..
882 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
883 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
887 /* This does the actual lookups.. */
888 err = do_lookup(nd, &this, &next);
893 inode = next.dentry->d_inode;
900 if (inode->i_op->follow_link) {
901 err = do_follow_link(&next, nd);
905 inode = nd->dentry->d_inode;
912 path_to_nameidata(&next, nd);
914 if (!inode->i_op->lookup)
917 /* here ends the main loop */
920 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
922 /* Clear LOOKUP_CONTINUE iff it was previously unset */
923 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
924 if (lookup_flags & LOOKUP_PARENT)
926 if (this.name[0] == '.') switch (this.len) {
930 if (this.name[1] != '.')
933 inode = nd->dentry->d_inode;
938 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
939 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
943 err = do_lookup(nd, &this, &next);
946 inode = next.dentry->d_inode;
947 if ((lookup_flags & LOOKUP_FOLLOW)
948 && inode && inode->i_op && inode->i_op->follow_link) {
949 err = do_follow_link(&next, nd);
952 inode = nd->dentry->d_inode;
954 path_to_nameidata(&next, nd);
958 if (lookup_flags & LOOKUP_DIRECTORY) {
960 if (!inode->i_op || !inode->i_op->lookup)
966 nd->last_type = LAST_NORM;
967 if (this.name[0] != '.')
970 nd->last_type = LAST_DOT;
971 else if (this.len == 2 && this.name[1] == '.')
972 nd->last_type = LAST_DOTDOT;
977 * We bypassed the ordinary revalidation routines.
978 * We may need to check the cached dentry for staleness.
980 if (nd->dentry && nd->dentry->d_sb &&
981 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
983 /* Note: we do not d_invalidate() */
984 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
990 dput_path(&next, nd);
999 * Wrapper to retry pathname resolution whenever the underlying
1000 * file system returns an ESTALE.
1002 * Retry the whole path once, forcing real lookup requests
1003 * instead of relying on the dcache.
1005 int fastcall link_path_walk(const char *name, struct nameidata *nd)
1007 struct nameidata save = *nd;
1010 /* make sure the stuff we saved doesn't go away */
1014 result = __link_path_walk(name, nd);
1015 if (result == -ESTALE) {
1019 nd->flags |= LOOKUP_REVAL;
1020 result = __link_path_walk(name, nd);
1029 int fastcall path_walk(const char * name, struct nameidata *nd)
1031 current->total_link_count = 0;
1032 return link_path_walk(name, nd);
1036 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1037 * everything is done. Returns 0 and drops input nd, if lookup failed;
1039 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1041 if (path_walk(name, nd))
1042 return 0; /* something went wrong... */
1044 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1045 struct dentry *old_dentry = nd->dentry;
1046 struct vfsmount *old_mnt = nd->mnt;
1047 struct qstr last = nd->last;
1048 int last_type = nd->last_type;
1049 struct fs_struct *fs = current->fs;
1052 * NAME was not found in alternate root or it's a directory.
1053 * Try to find it in the normal root:
1055 nd->last_type = LAST_ROOT;
1056 read_lock(&fs->lock);
1057 nd->mnt = mntget(fs->rootmnt);
1058 nd->dentry = dget(fs->root);
1059 read_unlock(&fs->lock);
1060 if (path_walk(name, nd) == 0) {
1061 if (nd->dentry->d_inode) {
1068 nd->dentry = old_dentry;
1071 nd->last_type = last_type;
1076 void set_fs_altroot(void)
1078 char *emul = __emul_prefix();
1079 struct nameidata nd;
1080 struct vfsmount *mnt = NULL, *oldmnt;
1081 struct dentry *dentry = NULL, *olddentry;
1083 struct fs_struct *fs = current->fs;
1087 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1093 write_lock(&fs->lock);
1094 oldmnt = fs->altrootmnt;
1095 olddentry = fs->altroot;
1096 fs->altrootmnt = mnt;
1097 fs->altroot = dentry;
1098 write_unlock(&fs->lock);
1105 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1106 static int fastcall do_path_lookup(int dfd, const char *name,
1107 unsigned int flags, struct nameidata *nd)
1112 struct fs_struct *fs = current->fs;
1114 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1119 read_lock(&fs->lock);
1120 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1121 nd->mnt = mntget(fs->altrootmnt);
1122 nd->dentry = dget(fs->altroot);
1123 read_unlock(&fs->lock);
1124 if (__emul_lookup_dentry(name,nd))
1125 goto out; /* found in altroot */
1126 read_lock(&fs->lock);
1128 nd->mnt = mntget(fs->rootmnt);
1129 nd->dentry = dget(fs->root);
1130 read_unlock(&fs->lock);
1131 } else if (dfd == AT_FDCWD) {
1132 read_lock(&fs->lock);
1133 nd->mnt = mntget(fs->pwdmnt);
1134 nd->dentry = dget(fs->pwd);
1135 read_unlock(&fs->lock);
1137 struct dentry *dentry;
1139 file = fget_light(dfd, &fput_needed);
1144 dentry = file->f_dentry;
1147 if (!S_ISDIR(dentry->d_inode->i_mode))
1150 retval = file_permission(file, MAY_EXEC);
1154 nd->mnt = mntget(file->f_vfsmnt);
1155 nd->dentry = dget(dentry);
1157 fput_light(file, fput_needed);
1159 current->total_link_count = 0;
1160 retval = link_path_walk(name, nd);
1162 if (likely(retval == 0)) {
1163 if (unlikely(!audit_dummy_context() && nd && nd->dentry &&
1164 nd->dentry->d_inode))
1165 audit_inode(name, nd->dentry->d_inode);
1171 fput_light(file, fput_needed);
1175 int fastcall path_lookup(const char *name, unsigned int flags,
1176 struct nameidata *nd)
1178 return do_path_lookup(AT_FDCWD, name, flags, nd);
1181 static int __path_lookup_intent_open(int dfd, const char *name,
1182 unsigned int lookup_flags, struct nameidata *nd,
1183 int open_flags, int create_mode)
1185 struct file *filp = get_empty_filp();
1190 nd->intent.open.file = filp;
1191 nd->intent.open.flags = open_flags;
1192 nd->intent.open.create_mode = create_mode;
1193 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1194 if (IS_ERR(nd->intent.open.file)) {
1196 err = PTR_ERR(nd->intent.open.file);
1199 } else if (err != 0)
1200 release_open_intent(nd);
1205 * path_lookup_open - lookup a file path with open intent
1206 * @dfd: the directory to use as base, or AT_FDCWD
1207 * @name: pointer to file name
1208 * @lookup_flags: lookup intent flags
1209 * @nd: pointer to nameidata
1210 * @open_flags: open intent flags
1212 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1213 struct nameidata *nd, int open_flags)
1215 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1220 * path_lookup_create - lookup a file path with open + create intent
1221 * @dfd: the directory to use as base, or AT_FDCWD
1222 * @name: pointer to file name
1223 * @lookup_flags: lookup intent flags
1224 * @nd: pointer to nameidata
1225 * @open_flags: open intent flags
1226 * @create_mode: create intent flags
1228 static int path_lookup_create(int dfd, const char *name,
1229 unsigned int lookup_flags, struct nameidata *nd,
1230 int open_flags, int create_mode)
1232 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1233 nd, open_flags, create_mode);
1236 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1237 struct nameidata *nd, int open_flags)
1239 char *tmp = getname(name);
1240 int err = PTR_ERR(tmp);
1243 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1250 * Restricted form of lookup. Doesn't follow links, single-component only,
1251 * needs parent already locked. Doesn't follow mounts.
1254 static struct dentry * __lookup_hash(struct qstr *name, struct dentry * base, struct nameidata *nd)
1256 struct dentry * dentry;
1257 struct inode *inode;
1260 inode = base->d_inode;
1261 err = permission(inode, MAY_EXEC, nd);
1262 dentry = ERR_PTR(err);
1267 * See if the low-level filesystem might want
1268 * to use its own hash..
1270 if (base->d_op && base->d_op->d_hash) {
1271 err = base->d_op->d_hash(base, name);
1272 dentry = ERR_PTR(err);
1277 dentry = cached_lookup(base, name, nd);
1279 struct dentry *new = d_alloc(base, name);
1280 dentry = ERR_PTR(-ENOMEM);
1283 dentry = inode->i_op->lookup(inode, new, nd);
1293 static struct dentry *lookup_hash(struct nameidata *nd)
1295 return __lookup_hash(&nd->last, nd->dentry, nd);
1299 struct dentry * lookup_one_len(const char * name, struct dentry * base, int len)
1310 hash = init_name_hash();
1312 c = *(const unsigned char *)name++;
1313 if (c == '/' || c == '\0')
1315 hash = partial_name_hash(c, hash);
1317 this.hash = end_name_hash(hash);
1319 return __lookup_hash(&this, base, NULL);
1321 return ERR_PTR(-EACCES);
1327 * is used by most simple commands to get the inode of a specified name.
1328 * Open, link etc use their own routines, but this is enough for things
1331 * namei exists in two versions: namei/lnamei. The only difference is
1332 * that namei follows links, while lnamei does not.
1335 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1336 struct nameidata *nd)
1338 char *tmp = getname(name);
1339 int err = PTR_ERR(tmp);
1342 err = do_path_lookup(dfd, tmp, flags, nd);
1348 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1350 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1354 * It's inline, so penalty for filesystems that don't use sticky bit is
1357 static inline int check_sticky(struct inode *dir, struct inode *inode)
1359 if (!(dir->i_mode & S_ISVTX))
1361 if (inode->i_uid == current->fsuid)
1363 if (dir->i_uid == current->fsuid)
1365 return !capable(CAP_FOWNER);
1369 * Check whether we can remove a link victim from directory dir, check
1370 * whether the type of victim is right.
1371 * 1. We can't do it if dir is read-only (done in permission())
1372 * 2. We should have write and exec permissions on dir
1373 * 3. We can't remove anything from append-only dir
1374 * 4. We can't do anything with immutable dir (done in permission())
1375 * 5. If the sticky bit on dir is set we should either
1376 * a. be owner of dir, or
1377 * b. be owner of victim, or
1378 * c. have CAP_FOWNER capability
1379 * 6. If the victim is append-only or immutable we can't do antyhing with
1380 * links pointing to it.
1381 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1382 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1383 * 9. We can't remove a root or mountpoint.
1384 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1385 * nfs_async_unlink().
1387 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1391 if (!victim->d_inode)
1394 BUG_ON(victim->d_parent->d_inode != dir);
1395 audit_inode_child(victim->d_name.name, victim->d_inode, dir);
1397 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1402 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1403 IS_IMMUTABLE(victim->d_inode))
1406 if (!S_ISDIR(victim->d_inode->i_mode))
1408 if (IS_ROOT(victim))
1410 } else if (S_ISDIR(victim->d_inode->i_mode))
1412 if (IS_DEADDIR(dir))
1414 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1419 /* Check whether we can create an object with dentry child in directory
1421 * 1. We can't do it if child already exists (open has special treatment for
1422 * this case, but since we are inlined it's OK)
1423 * 2. We can't do it if dir is read-only (done in permission())
1424 * 3. We should have write and exec permissions on dir
1425 * 4. We can't do it if dir is immutable (done in permission())
1427 static inline int may_create(struct inode *dir, struct dentry *child,
1428 struct nameidata *nd)
1432 if (IS_DEADDIR(dir))
1434 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1438 * O_DIRECTORY translates into forcing a directory lookup.
1440 static inline int lookup_flags(unsigned int f)
1442 unsigned long retval = LOOKUP_FOLLOW;
1445 retval &= ~LOOKUP_FOLLOW;
1447 if (f & O_DIRECTORY)
1448 retval |= LOOKUP_DIRECTORY;
1454 * p1 and p2 should be directories on the same fs.
1456 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1461 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1465 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1467 for (p = p1; p->d_parent != p; p = p->d_parent) {
1468 if (p->d_parent == p2) {
1469 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1470 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1475 for (p = p2; p->d_parent != p; p = p->d_parent) {
1476 if (p->d_parent == p1) {
1477 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1478 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1483 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1484 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1488 void unlock_rename(struct dentry *p1, struct dentry *p2)
1490 mutex_unlock(&p1->d_inode->i_mutex);
1492 mutex_unlock(&p2->d_inode->i_mutex);
1493 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1497 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1498 struct nameidata *nd)
1500 int error = may_create(dir, dentry, nd);
1505 if (!dir->i_op || !dir->i_op->create)
1506 return -EACCES; /* shouldn't it be ENOSYS? */
1509 error = security_inode_create(dir, dentry, mode);
1513 error = dir->i_op->create(dir, dentry, mode, nd);
1515 fsnotify_create(dir, dentry);
1519 int may_open(struct nameidata *nd, int acc_mode, int flag)
1521 struct dentry *dentry = nd->dentry;
1522 struct inode *inode = dentry->d_inode;
1528 if (S_ISLNK(inode->i_mode))
1531 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1534 error = vfs_permission(nd, acc_mode);
1539 * FIFO's, sockets and device files are special: they don't
1540 * actually live on the filesystem itself, and as such you
1541 * can write to them even if the filesystem is read-only.
1543 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1545 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1546 if (nd->mnt->mnt_flags & MNT_NODEV)
1550 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1553 * An append-only file must be opened in append mode for writing.
1555 if (IS_APPEND(inode)) {
1556 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1562 /* O_NOATIME can only be set by the owner or superuser */
1563 if (flag & O_NOATIME)
1564 if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1568 * Ensure there are no outstanding leases on the file.
1570 error = break_lease(inode, flag);
1574 if (flag & O_TRUNC) {
1575 error = get_write_access(inode);
1580 * Refuse to truncate files with mandatory locks held on them.
1582 error = locks_verify_locked(inode);
1586 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1588 put_write_access(inode);
1592 if (flag & FMODE_WRITE)
1601 * namei for open - this is in fact almost the whole open-routine.
1603 * Note that the low bits of "flag" aren't the same as in the open
1604 * system call - they are 00 - no permissions needed
1605 * 01 - read permission needed
1606 * 10 - write permission needed
1607 * 11 - read/write permissions needed
1608 * which is a lot more logical, and also allows the "no perm" needed
1609 * for symlinks (where the permissions are checked later).
1612 int open_namei(int dfd, const char *pathname, int flag,
1613 int mode, struct nameidata *nd)
1615 int acc_mode, error;
1620 acc_mode = ACC_MODE(flag);
1622 /* O_TRUNC implies we need access checks for write permissions */
1624 acc_mode |= MAY_WRITE;
1626 /* Allow the LSM permission hook to distinguish append
1627 access from general write access. */
1628 if (flag & O_APPEND)
1629 acc_mode |= MAY_APPEND;
1632 * The simplest case - just a plain lookup.
1634 if (!(flag & O_CREAT)) {
1635 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1643 * Create - we need to know the parent.
1645 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1650 * We have the parent and last component. First of all, check
1651 * that we are not asked to creat(2) an obvious directory - that
1655 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1659 nd->flags &= ~LOOKUP_PARENT;
1660 mutex_lock(&dir->d_inode->i_mutex);
1661 path.dentry = lookup_hash(nd);
1665 error = PTR_ERR(path.dentry);
1666 if (IS_ERR(path.dentry)) {
1667 mutex_unlock(&dir->d_inode->i_mutex);
1671 if (IS_ERR(nd->intent.open.file)) {
1672 mutex_unlock(&dir->d_inode->i_mutex);
1673 error = PTR_ERR(nd->intent.open.file);
1677 /* Negative dentry, just create the file */
1678 if (!path.dentry->d_inode) {
1679 if (!IS_POSIXACL(dir->d_inode))
1680 mode &= ~current->fs->umask;
1681 error = vfs_create(dir->d_inode, path.dentry, mode, nd);
1682 mutex_unlock(&dir->d_inode->i_mutex);
1684 nd->dentry = path.dentry;
1687 /* Don't check for write permission, don't truncate */
1694 * It already exists.
1696 mutex_unlock(&dir->d_inode->i_mutex);
1697 audit_inode_update(path.dentry->d_inode);
1703 if (__follow_mount(&path)) {
1705 if (flag & O_NOFOLLOW)
1710 if (!path.dentry->d_inode)
1712 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1715 path_to_nameidata(&path, nd);
1717 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1720 error = may_open(nd, acc_mode, flag);
1726 dput_path(&path, nd);
1728 if (!IS_ERR(nd->intent.open.file))
1729 release_open_intent(nd);
1735 if (flag & O_NOFOLLOW)
1738 * This is subtle. Instead of calling do_follow_link() we do the
1739 * thing by hands. The reason is that this way we have zero link_count
1740 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1741 * After that we have the parent and last component, i.e.
1742 * we are in the same situation as after the first path_walk().
1743 * Well, almost - if the last component is normal we get its copy
1744 * stored in nd->last.name and we will have to putname() it when we
1745 * are done. Procfs-like symlinks just set LAST_BIND.
1747 nd->flags |= LOOKUP_PARENT;
1748 error = security_inode_follow_link(path.dentry, nd);
1751 error = __do_follow_link(&path, nd);
1753 /* Does someone understand code flow here? Or it is only
1754 * me so stupid? Anathema to whoever designed this non-sense
1755 * with "intent.open".
1757 release_open_intent(nd);
1760 nd->flags &= ~LOOKUP_PARENT;
1761 if (nd->last_type == LAST_BIND)
1764 if (nd->last_type != LAST_NORM)
1766 if (nd->last.name[nd->last.len]) {
1767 __putname(nd->last.name);
1772 __putname(nd->last.name);
1776 mutex_lock(&dir->d_inode->i_mutex);
1777 path.dentry = lookup_hash(nd);
1779 __putname(nd->last.name);
1784 * lookup_create - lookup a dentry, creating it if it doesn't exist
1785 * @nd: nameidata info
1786 * @is_dir: directory flag
1788 * Simple function to lookup and return a dentry and create it
1789 * if it doesn't exist. Is SMP-safe.
1791 * Returns with nd->dentry->d_inode->i_mutex locked.
1793 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1795 struct dentry *dentry = ERR_PTR(-EEXIST);
1797 mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1799 * Yucky last component or no last component at all?
1800 * (foo/., foo/.., /////)
1802 if (nd->last_type != LAST_NORM)
1804 nd->flags &= ~LOOKUP_PARENT;
1805 nd->flags |= LOOKUP_CREATE;
1806 nd->intent.open.flags = O_EXCL;
1809 * Do the final lookup.
1811 dentry = lookup_hash(nd);
1816 * Special case - lookup gave negative, but... we had foo/bar/
1817 * From the vfs_mknod() POV we just have a negative dentry -
1818 * all is fine. Let's be bastards - you had / on the end, you've
1819 * been asking for (non-existent) directory. -ENOENT for you.
1821 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1826 dentry = ERR_PTR(-ENOENT);
1830 EXPORT_SYMBOL_GPL(lookup_create);
1832 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1834 int error = may_create(dir, dentry, NULL);
1839 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1842 if (!dir->i_op || !dir->i_op->mknod)
1845 error = security_inode_mknod(dir, dentry, mode, dev);
1850 error = dir->i_op->mknod(dir, dentry, mode, dev);
1852 fsnotify_create(dir, dentry);
1856 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1861 struct dentry * dentry;
1862 struct nameidata nd;
1866 tmp = getname(filename);
1868 return PTR_ERR(tmp);
1870 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1873 dentry = lookup_create(&nd, 0);
1874 error = PTR_ERR(dentry);
1876 if (!IS_POSIXACL(nd.dentry->d_inode))
1877 mode &= ~current->fs->umask;
1878 if (!IS_ERR(dentry)) {
1879 switch (mode & S_IFMT) {
1880 case 0: case S_IFREG:
1881 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1883 case S_IFCHR: case S_IFBLK:
1884 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1885 new_decode_dev(dev));
1887 case S_IFIFO: case S_IFSOCK:
1888 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1898 mutex_unlock(&nd.dentry->d_inode->i_mutex);
1906 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1908 return sys_mknodat(AT_FDCWD, filename, mode, dev);
1911 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1913 int error = may_create(dir, dentry, NULL);
1918 if (!dir->i_op || !dir->i_op->mkdir)
1921 mode &= (S_IRWXUGO|S_ISVTX);
1922 error = security_inode_mkdir(dir, dentry, mode);
1927 error = dir->i_op->mkdir(dir, dentry, mode);
1929 fsnotify_mkdir(dir, dentry);
1933 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
1938 tmp = getname(pathname);
1939 error = PTR_ERR(tmp);
1941 struct dentry *dentry;
1942 struct nameidata nd;
1944 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1947 dentry = lookup_create(&nd, 1);
1948 error = PTR_ERR(dentry);
1949 if (!IS_ERR(dentry)) {
1950 if (!IS_POSIXACL(nd.dentry->d_inode))
1951 mode &= ~current->fs->umask;
1952 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1955 mutex_unlock(&nd.dentry->d_inode->i_mutex);
1964 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
1966 return sys_mkdirat(AT_FDCWD, pathname, mode);
1970 * We try to drop the dentry early: we should have
1971 * a usage count of 2 if we're the only user of this
1972 * dentry, and if that is true (possibly after pruning
1973 * the dcache), then we drop the dentry now.
1975 * A low-level filesystem can, if it choses, legally
1978 * if (!d_unhashed(dentry))
1981 * if it cannot handle the case of removing a directory
1982 * that is still in use by something else..
1984 void dentry_unhash(struct dentry *dentry)
1987 if (atomic_read(&dentry->d_count))
1988 shrink_dcache_parent(dentry);
1989 spin_lock(&dcache_lock);
1990 spin_lock(&dentry->d_lock);
1991 if (atomic_read(&dentry->d_count) == 2)
1993 spin_unlock(&dentry->d_lock);
1994 spin_unlock(&dcache_lock);
1997 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
1999 int error = may_delete(dir, dentry, 1);
2004 if (!dir->i_op || !dir->i_op->rmdir)
2009 mutex_lock(&dentry->d_inode->i_mutex);
2010 dentry_unhash(dentry);
2011 if (d_mountpoint(dentry))
2014 error = security_inode_rmdir(dir, dentry);
2016 error = dir->i_op->rmdir(dir, dentry);
2018 dentry->d_inode->i_flags |= S_DEAD;
2021 mutex_unlock(&dentry->d_inode->i_mutex);
2030 static long do_rmdir(int dfd, const char __user *pathname)
2034 struct dentry *dentry;
2035 struct nameidata nd;
2037 name = getname(pathname);
2039 return PTR_ERR(name);
2041 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2045 switch(nd.last_type) {
2056 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2057 dentry = lookup_hash(&nd);
2058 error = PTR_ERR(dentry);
2059 if (!IS_ERR(dentry)) {
2060 error = vfs_rmdir(nd.dentry->d_inode, dentry);
2063 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2071 asmlinkage long sys_rmdir(const char __user *pathname)
2073 return do_rmdir(AT_FDCWD, pathname);
2076 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2078 int error = may_delete(dir, dentry, 0);
2083 if (!dir->i_op || !dir->i_op->unlink)
2088 mutex_lock(&dentry->d_inode->i_mutex);
2089 if (d_mountpoint(dentry))
2092 error = security_inode_unlink(dir, dentry);
2094 error = dir->i_op->unlink(dir, dentry);
2096 mutex_unlock(&dentry->d_inode->i_mutex);
2098 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2099 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2107 * Make sure that the actual truncation of the file will occur outside its
2108 * directory's i_mutex. Truncate can take a long time if there is a lot of
2109 * writeout happening, and we don't want to prevent access to the directory
2110 * while waiting on the I/O.
2112 static long do_unlinkat(int dfd, const char __user *pathname)
2116 struct dentry *dentry;
2117 struct nameidata nd;
2118 struct inode *inode = NULL;
2120 name = getname(pathname);
2122 return PTR_ERR(name);
2124 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2128 if (nd.last_type != LAST_NORM)
2130 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2131 dentry = lookup_hash(&nd);
2132 error = PTR_ERR(dentry);
2133 if (!IS_ERR(dentry)) {
2134 /* Why not before? Because we want correct error value */
2135 if (nd.last.name[nd.last.len])
2137 inode = dentry->d_inode;
2139 atomic_inc(&inode->i_count);
2140 error = vfs_unlink(nd.dentry->d_inode, dentry);
2144 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2146 iput(inode); /* truncate the inode here */
2154 error = !dentry->d_inode ? -ENOENT :
2155 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2159 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2161 if ((flag & ~AT_REMOVEDIR) != 0)
2164 if (flag & AT_REMOVEDIR)
2165 return do_rmdir(dfd, pathname);
2167 return do_unlinkat(dfd, pathname);
2170 asmlinkage long sys_unlink(const char __user *pathname)
2172 return do_unlinkat(AT_FDCWD, pathname);
2175 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2177 int error = may_create(dir, dentry, NULL);
2182 if (!dir->i_op || !dir->i_op->symlink)
2185 error = security_inode_symlink(dir, dentry, oldname);
2190 error = dir->i_op->symlink(dir, dentry, oldname);
2192 fsnotify_create(dir, dentry);
2196 asmlinkage long sys_symlinkat(const char __user *oldname,
2197 int newdfd, const char __user *newname)
2203 from = getname(oldname);
2205 return PTR_ERR(from);
2206 to = getname(newname);
2207 error = PTR_ERR(to);
2209 struct dentry *dentry;
2210 struct nameidata nd;
2212 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2215 dentry = lookup_create(&nd, 0);
2216 error = PTR_ERR(dentry);
2217 if (!IS_ERR(dentry)) {
2218 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2221 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2230 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2232 return sys_symlinkat(oldname, AT_FDCWD, newname);
2235 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2237 struct inode *inode = old_dentry->d_inode;
2243 error = may_create(dir, new_dentry, NULL);
2247 if (dir->i_sb != inode->i_sb)
2251 * A link to an append-only or immutable file cannot be created.
2253 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2255 if (!dir->i_op || !dir->i_op->link)
2257 if (S_ISDIR(old_dentry->d_inode->i_mode))
2260 error = security_inode_link(old_dentry, dir, new_dentry);
2264 mutex_lock(&old_dentry->d_inode->i_mutex);
2266 error = dir->i_op->link(old_dentry, dir, new_dentry);
2267 mutex_unlock(&old_dentry->d_inode->i_mutex);
2269 fsnotify_create(dir, new_dentry);
2274 * Hardlinks are often used in delicate situations. We avoid
2275 * security-related surprises by not following symlinks on the
2278 * We don't follow them on the oldname either to be compatible
2279 * with linux 2.0, and to avoid hard-linking to directories
2280 * and other special files. --ADM
2282 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2283 int newdfd, const char __user *newname,
2286 struct dentry *new_dentry;
2287 struct nameidata nd, old_nd;
2291 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2294 to = getname(newname);
2298 error = __user_walk_fd(olddfd, oldname,
2299 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2303 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2307 if (old_nd.mnt != nd.mnt)
2309 new_dentry = lookup_create(&nd, 0);
2310 error = PTR_ERR(new_dentry);
2311 if (!IS_ERR(new_dentry)) {
2312 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2315 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2319 path_release(&old_nd);
2326 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2328 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2332 * The worst of all namespace operations - renaming directory. "Perverted"
2333 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2335 * a) we can get into loop creation. Check is done in is_subdir().
2336 * b) race potential - two innocent renames can create a loop together.
2337 * That's where 4.4 screws up. Current fix: serialization on
2338 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2340 * c) we have to lock _three_ objects - parents and victim (if it exists).
2341 * And that - after we got ->i_mutex on parents (until then we don't know
2342 * whether the target exists). Solution: try to be smart with locking
2343 * order for inodes. We rely on the fact that tree topology may change
2344 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2345 * move will be locked. Thus we can rank directories by the tree
2346 * (ancestors first) and rank all non-directories after them.
2347 * That works since everybody except rename does "lock parent, lookup,
2348 * lock child" and rename is under ->s_vfs_rename_mutex.
2349 * HOWEVER, it relies on the assumption that any object with ->lookup()
2350 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2351 * we'd better make sure that there's no link(2) for them.
2352 * d) some filesystems don't support opened-but-unlinked directories,
2353 * either because of layout or because they are not ready to deal with
2354 * all cases correctly. The latter will be fixed (taking this sort of
2355 * stuff into VFS), but the former is not going away. Solution: the same
2356 * trick as in rmdir().
2357 * e) conversion from fhandle to dentry may come in the wrong moment - when
2358 * we are removing the target. Solution: we will have to grab ->i_mutex
2359 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2360 * ->i_mutex on parents, which works but leads to some truely excessive
2363 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2364 struct inode *new_dir, struct dentry *new_dentry)
2367 struct inode *target;
2370 * If we are going to change the parent - check write permissions,
2371 * we'll need to flip '..'.
2373 if (new_dir != old_dir) {
2374 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2379 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2383 target = new_dentry->d_inode;
2385 mutex_lock(&target->i_mutex);
2386 dentry_unhash(new_dentry);
2388 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2391 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2394 target->i_flags |= S_DEAD;
2395 mutex_unlock(&target->i_mutex);
2396 if (d_unhashed(new_dentry))
2397 d_rehash(new_dentry);
2401 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2402 d_move(old_dentry,new_dentry);
2406 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2407 struct inode *new_dir, struct dentry *new_dentry)
2409 struct inode *target;
2412 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2417 target = new_dentry->d_inode;
2419 mutex_lock(&target->i_mutex);
2420 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2423 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2425 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2426 d_move(old_dentry, new_dentry);
2429 mutex_unlock(&target->i_mutex);
2434 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2435 struct inode *new_dir, struct dentry *new_dentry)
2438 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2439 const char *old_name;
2441 if (old_dentry->d_inode == new_dentry->d_inode)
2444 error = may_delete(old_dir, old_dentry, is_dir);
2448 if (!new_dentry->d_inode)
2449 error = may_create(new_dir, new_dentry, NULL);
2451 error = may_delete(new_dir, new_dentry, is_dir);
2455 if (!old_dir->i_op || !old_dir->i_op->rename)
2458 DQUOT_INIT(old_dir);
2459 DQUOT_INIT(new_dir);
2461 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2464 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2466 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2468 const char *new_name = old_dentry->d_name.name;
2469 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2470 new_dentry->d_inode, old_dentry->d_inode);
2472 fsnotify_oldname_free(old_name);
2477 static int do_rename(int olddfd, const char *oldname,
2478 int newdfd, const char *newname)
2481 struct dentry * old_dir, * new_dir;
2482 struct dentry * old_dentry, *new_dentry;
2483 struct dentry * trap;
2484 struct nameidata oldnd, newnd;
2486 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2490 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2495 if (oldnd.mnt != newnd.mnt)
2498 old_dir = oldnd.dentry;
2500 if (oldnd.last_type != LAST_NORM)
2503 new_dir = newnd.dentry;
2504 if (newnd.last_type != LAST_NORM)
2507 trap = lock_rename(new_dir, old_dir);
2509 old_dentry = lookup_hash(&oldnd);
2510 error = PTR_ERR(old_dentry);
2511 if (IS_ERR(old_dentry))
2513 /* source must exist */
2515 if (!old_dentry->d_inode)
2517 /* unless the source is a directory trailing slashes give -ENOTDIR */
2518 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2520 if (oldnd.last.name[oldnd.last.len])
2522 if (newnd.last.name[newnd.last.len])
2525 /* source should not be ancestor of target */
2527 if (old_dentry == trap)
2529 new_dentry = lookup_hash(&newnd);
2530 error = PTR_ERR(new_dentry);
2531 if (IS_ERR(new_dentry))
2533 /* target should not be an ancestor of source */
2535 if (new_dentry == trap)
2538 error = vfs_rename(old_dir->d_inode, old_dentry,
2539 new_dir->d_inode, new_dentry);
2545 unlock_rename(new_dir, old_dir);
2547 path_release(&newnd);
2549 path_release(&oldnd);
2554 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2555 int newdfd, const char __user *newname)
2561 from = getname(oldname);
2563 return PTR_ERR(from);
2564 to = getname(newname);
2565 error = PTR_ERR(to);
2567 error = do_rename(olddfd, from, newdfd, to);
2574 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2576 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2579 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2583 len = PTR_ERR(link);
2588 if (len > (unsigned) buflen)
2590 if (copy_to_user(buffer, link, len))
2597 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2598 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2599 * using) it for any given inode is up to filesystem.
2601 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2603 struct nameidata nd;
2607 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2608 if (!IS_ERR(cookie)) {
2609 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2610 if (dentry->d_inode->i_op->put_link)
2611 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2612 cookie = ERR_PTR(res);
2614 return PTR_ERR(cookie);
2617 int vfs_follow_link(struct nameidata *nd, const char *link)
2619 return __vfs_follow_link(nd, link);
2622 /* get the link contents into pagecache */
2623 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2626 struct address_space *mapping = dentry->d_inode->i_mapping;
2627 page = read_mapping_page(mapping, 0, NULL);
2630 wait_on_page_locked(page);
2631 if (!PageUptodate(page))
2637 page_cache_release(page);
2638 return ERR_PTR(-EIO);
2644 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2646 struct page *page = NULL;
2647 char *s = page_getlink(dentry, &page);
2648 int res = vfs_readlink(dentry,buffer,buflen,s);
2651 page_cache_release(page);
2656 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2658 struct page *page = NULL;
2659 nd_set_link(nd, page_getlink(dentry, &page));
2663 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2665 struct page *page = cookie;
2669 page_cache_release(page);
2673 int __page_symlink(struct inode *inode, const char *symname, int len,
2676 struct address_space *mapping = inode->i_mapping;
2682 page = find_or_create_page(mapping, 0, gfp_mask);
2685 err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2686 if (err == AOP_TRUNCATED_PAGE) {
2687 page_cache_release(page);
2692 kaddr = kmap_atomic(page, KM_USER0);
2693 memcpy(kaddr, symname, len-1);
2694 kunmap_atomic(kaddr, KM_USER0);
2695 err = mapping->a_ops->commit_write(NULL, page, 0, len-1);
2696 if (err == AOP_TRUNCATED_PAGE) {
2697 page_cache_release(page);
2703 * Notice that we are _not_ going to block here - end of page is
2704 * unmapped, so this will only try to map the rest of page, see
2705 * that it is unmapped (typically even will not look into inode -
2706 * ->i_size will be enough for everything) and zero it out.
2707 * OTOH it's obviously correct and should make the page up-to-date.
2709 if (!PageUptodate(page)) {
2710 err = mapping->a_ops->readpage(NULL, page);
2711 if (err != AOP_TRUNCATED_PAGE)
2712 wait_on_page_locked(page);
2716 page_cache_release(page);
2719 mark_inode_dirty(inode);
2723 page_cache_release(page);
2728 int page_symlink(struct inode *inode, const char *symname, int len)
2730 return __page_symlink(inode, symname, len,
2731 mapping_gfp_mask(inode->i_mapping));
2734 struct inode_operations page_symlink_inode_operations = {
2735 .readlink = generic_readlink,
2736 .follow_link = page_follow_link_light,
2737 .put_link = page_put_link,
2740 EXPORT_SYMBOL(__user_walk);
2741 EXPORT_SYMBOL(__user_walk_fd);
2742 EXPORT_SYMBOL(follow_down);
2743 EXPORT_SYMBOL(follow_up);
2744 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2745 EXPORT_SYMBOL(getname);
2746 EXPORT_SYMBOL(lock_rename);
2747 EXPORT_SYMBOL(lookup_one_len);
2748 EXPORT_SYMBOL(page_follow_link_light);
2749 EXPORT_SYMBOL(page_put_link);
2750 EXPORT_SYMBOL(page_readlink);
2751 EXPORT_SYMBOL(__page_symlink);
2752 EXPORT_SYMBOL(page_symlink);
2753 EXPORT_SYMBOL(page_symlink_inode_operations);
2754 EXPORT_SYMBOL(path_lookup);
2755 EXPORT_SYMBOL(path_release);
2756 EXPORT_SYMBOL(path_walk);
2757 EXPORT_SYMBOL(permission);
2758 EXPORT_SYMBOL(vfs_permission);
2759 EXPORT_SYMBOL(file_permission);
2760 EXPORT_SYMBOL(unlock_rename);
2761 EXPORT_SYMBOL(vfs_create);
2762 EXPORT_SYMBOL(vfs_follow_link);
2763 EXPORT_SYMBOL(vfs_link);
2764 EXPORT_SYMBOL(vfs_mkdir);
2765 EXPORT_SYMBOL(vfs_mknod);
2766 EXPORT_SYMBOL(generic_permission);
2767 EXPORT_SYMBOL(vfs_readlink);
2768 EXPORT_SYMBOL(vfs_rename);
2769 EXPORT_SYMBOL(vfs_rmdir);
2770 EXPORT_SYMBOL(vfs_symlink);
2771 EXPORT_SYMBOL(vfs_unlink);
2772 EXPORT_SYMBOL(dentry_unhash);
2773 EXPORT_SYMBOL(generic_readlink);