3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
118 #include <asm/cacheflush.h>
119 #include <asm/tlbflush.h>
120 #include <asm/page.h>
123 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * STATS - 1 to collect stats for /proc/slabinfo.
127 * 0 for faster, smaller code (especially in the critical paths).
129 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 #ifdef CONFIG_DEBUG_SLAB
135 #define FORCED_DEBUG 1
139 #define FORCED_DEBUG 0
142 /* Shouldn't this be in a header file somewhere? */
143 #define BYTES_PER_WORD sizeof(void *)
144 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
174 /* Legal flag mask for kmem_cache_create(). */
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
184 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
186 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
194 * Bufctl's are used for linking objs within a slab
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
210 typedef unsigned int kmem_bufctl_t;
211 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
212 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
213 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
214 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
229 unsigned short nodeid;
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU. This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking. We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
246 * We assume struct slab_rcu can overlay struct slab when destroying.
249 struct rcu_head head;
250 struct kmem_cache *cachep;
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
262 * The limit is stored in the per-cpu structure to reduce the data cache
269 unsigned int batchcount;
270 unsigned int touched;
273 * Must have this definition in here for the proper
274 * alignment of array_cache. Also simplifies accessing
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init {
285 struct array_cache cache;
286 void *entries[BOOT_CPUCACHE_ENTRIES];
290 * The slab lists for all objects.
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
307 * Need this for bootstrapping a per node allocator.
309 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
310 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311 #define CACHE_CACHE 0
312 #define SIZE_AC MAX_NUMNODES
313 #define SIZE_L3 (2 * MAX_NUMNODES)
315 static int drain_freelist(struct kmem_cache *cache,
316 struct kmem_list3 *l3, int tofree);
317 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
319 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
320 static void cache_reap(struct work_struct *unused);
323 * This function must be completely optimized away if a constant is passed to
324 * it. Mostly the same as what is in linux/slab.h except it returns an index.
326 static __always_inline int index_of(const size_t size)
328 extern void __bad_size(void);
330 if (__builtin_constant_p(size)) {
338 #include <linux/kmalloc_sizes.h>
346 static int slab_early_init = 1;
348 #define INDEX_AC index_of(sizeof(struct arraycache_init))
349 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
351 static void kmem_list3_init(struct kmem_list3 *parent)
353 INIT_LIST_HEAD(&parent->slabs_full);
354 INIT_LIST_HEAD(&parent->slabs_partial);
355 INIT_LIST_HEAD(&parent->slabs_free);
356 parent->shared = NULL;
357 parent->alien = NULL;
358 parent->colour_next = 0;
359 spin_lock_init(&parent->list_lock);
360 parent->free_objects = 0;
361 parent->free_touched = 0;
364 #define MAKE_LIST(cachep, listp, slab, nodeid) \
366 INIT_LIST_HEAD(listp); \
367 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
370 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
372 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
384 /* 1) per-cpu data, touched during every alloc/free */
385 struct array_cache *array[NR_CPUS];
386 /* 2) Cache tunables. Protected by cache_chain_mutex */
387 unsigned int batchcount;
391 unsigned int buffer_size;
392 u32 reciprocal_buffer_size;
393 /* 3) touched by every alloc & free from the backend */
395 unsigned int flags; /* constant flags */
396 unsigned int num; /* # of objs per slab */
398 /* 4) cache_grow/shrink */
399 /* order of pgs per slab (2^n) */
400 unsigned int gfporder;
402 /* force GFP flags, e.g. GFP_DMA */
405 size_t colour; /* cache colouring range */
406 unsigned int colour_off; /* colour offset */
407 struct kmem_cache *slabp_cache;
408 unsigned int slab_size;
409 unsigned int dflags; /* dynamic flags */
411 /* constructor func */
412 void (*ctor)(void *obj);
414 /* 5) cache creation/removal */
416 struct list_head next;
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
429 unsigned long node_overflow;
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
446 * We put nodelists[] at the end of kmem_cache, because we want to size
447 * this array to nr_node_ids slots instead of MAX_NUMNODES
448 * (see kmem_cache_init())
449 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
450 * is statically defined, so we reserve the max number of nodes.
452 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 * Do not add fields after nodelists[]
458 #define CFLGS_OFF_SLAB (0x80000000UL)
459 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461 #define BATCHREFILL_LIMIT 16
463 * Optimization question: fewer reaps means less probability for unnessary
464 * cpucache drain/refill cycles.
466 * OTOH the cpuarrays can contain lots of objects,
467 * which could lock up otherwise freeable slabs.
469 #define REAPTIMEOUT_CPUC (2*HZ)
470 #define REAPTIMEOUT_LIST3 (4*HZ)
473 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
474 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
475 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
476 #define STATS_INC_GROWN(x) ((x)->grown++)
477 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
478 #define STATS_SET_HIGH(x) \
480 if ((x)->num_active > (x)->high_mark) \
481 (x)->high_mark = (x)->num_active; \
483 #define STATS_INC_ERR(x) ((x)->errors++)
484 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
485 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
486 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
487 #define STATS_SET_FREEABLE(x, i) \
489 if ((x)->max_freeable < i) \
490 (x)->max_freeable = i; \
492 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
493 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
494 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
495 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497 #define STATS_INC_ACTIVE(x) do { } while (0)
498 #define STATS_DEC_ACTIVE(x) do { } while (0)
499 #define STATS_INC_ALLOCED(x) do { } while (0)
500 #define STATS_INC_GROWN(x) do { } while (0)
501 #define STATS_ADD_REAPED(x,y) do { } while (0)
502 #define STATS_SET_HIGH(x) do { } while (0)
503 #define STATS_INC_ERR(x) do { } while (0)
504 #define STATS_INC_NODEALLOCS(x) do { } while (0)
505 #define STATS_INC_NODEFREES(x) do { } while (0)
506 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
507 #define STATS_SET_FREEABLE(x, i) do { } while (0)
508 #define STATS_INC_ALLOCHIT(x) do { } while (0)
509 #define STATS_INC_ALLOCMISS(x) do { } while (0)
510 #define STATS_INC_FREEHIT(x) do { } while (0)
511 #define STATS_INC_FREEMISS(x) do { } while (0)
517 * memory layout of objects:
519 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
520 * the end of an object is aligned with the end of the real
521 * allocation. Catches writes behind the end of the allocation.
522 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
524 * cachep->obj_offset: The real object.
525 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
526 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
527 * [BYTES_PER_WORD long]
529 static int obj_offset(struct kmem_cache *cachep)
531 return cachep->obj_offset;
534 static int obj_size(struct kmem_cache *cachep)
536 return cachep->obj_size;
539 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
541 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 return (unsigned long long*) (objp + obj_offset(cachep) -
543 sizeof(unsigned long long));
546 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
548 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
549 if (cachep->flags & SLAB_STORE_USER)
550 return (unsigned long long *)(objp + cachep->buffer_size -
551 sizeof(unsigned long long) -
553 return (unsigned long long *) (objp + cachep->buffer_size -
554 sizeof(unsigned long long));
557 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
559 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
560 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
565 #define obj_offset(x) 0
566 #define obj_size(cachep) (cachep->buffer_size)
567 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
573 #ifdef CONFIG_KMEMTRACE
574 size_t slab_buffer_size(struct kmem_cache *cachep)
576 return cachep->buffer_size;
578 EXPORT_SYMBOL(slab_buffer_size);
582 * Do not go above this order unless 0 objects fit into the slab.
584 #define BREAK_GFP_ORDER_HI 1
585 #define BREAK_GFP_ORDER_LO 0
586 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
589 * Functions for storing/retrieving the cachep and or slab from the page
590 * allocator. These are used to find the slab an obj belongs to. With kfree(),
591 * these are used to find the cache which an obj belongs to.
593 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
595 page->lru.next = (struct list_head *)cache;
598 static inline struct kmem_cache *page_get_cache(struct page *page)
600 page = compound_head(page);
601 BUG_ON(!PageSlab(page));
602 return (struct kmem_cache *)page->lru.next;
605 static inline void page_set_slab(struct page *page, struct slab *slab)
607 page->lru.prev = (struct list_head *)slab;
610 static inline struct slab *page_get_slab(struct page *page)
612 BUG_ON(!PageSlab(page));
613 return (struct slab *)page->lru.prev;
616 static inline struct kmem_cache *virt_to_cache(const void *obj)
618 struct page *page = virt_to_head_page(obj);
619 return page_get_cache(page);
622 static inline struct slab *virt_to_slab(const void *obj)
624 struct page *page = virt_to_head_page(obj);
625 return page_get_slab(page);
628 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
631 return slab->s_mem + cache->buffer_size * idx;
635 * We want to avoid an expensive divide : (offset / cache->buffer_size)
636 * Using the fact that buffer_size is a constant for a particular cache,
637 * we can replace (offset / cache->buffer_size) by
638 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
640 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
641 const struct slab *slab, void *obj)
643 u32 offset = (obj - slab->s_mem);
644 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
648 * These are the default caches for kmalloc. Custom caches can have other sizes.
650 struct cache_sizes malloc_sizes[] = {
651 #define CACHE(x) { .cs_size = (x) },
652 #include <linux/kmalloc_sizes.h>
656 EXPORT_SYMBOL(malloc_sizes);
658 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
664 static struct cache_names __initdata cache_names[] = {
665 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
666 #include <linux/kmalloc_sizes.h>
671 static struct arraycache_init initarray_cache __initdata =
672 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
673 static struct arraycache_init initarray_generic =
674 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
676 /* internal cache of cache description objs */
677 static struct kmem_cache cache_cache = {
679 .limit = BOOT_CPUCACHE_ENTRIES,
681 .buffer_size = sizeof(struct kmem_cache),
682 .name = "kmem_cache",
685 #define BAD_ALIEN_MAGIC 0x01020304ul
687 #ifdef CONFIG_LOCKDEP
690 * Slab sometimes uses the kmalloc slabs to store the slab headers
691 * for other slabs "off slab".
692 * The locking for this is tricky in that it nests within the locks
693 * of all other slabs in a few places; to deal with this special
694 * locking we put on-slab caches into a separate lock-class.
696 * We set lock class for alien array caches which are up during init.
697 * The lock annotation will be lost if all cpus of a node goes down and
698 * then comes back up during hotplug
700 static struct lock_class_key on_slab_l3_key;
701 static struct lock_class_key on_slab_alc_key;
703 static inline void init_lock_keys(void)
707 struct cache_sizes *s = malloc_sizes;
709 while (s->cs_size != ULONG_MAX) {
711 struct array_cache **alc;
713 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
714 if (!l3 || OFF_SLAB(s->cs_cachep))
716 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
719 * FIXME: This check for BAD_ALIEN_MAGIC
720 * should go away when common slab code is taught to
721 * work even without alien caches.
722 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
723 * for alloc_alien_cache,
725 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
729 lockdep_set_class(&alc[r]->lock,
737 static inline void init_lock_keys(void)
743 * Guard access to the cache-chain.
745 static DEFINE_MUTEX(cache_chain_mutex);
746 static struct list_head cache_chain;
749 * chicken and egg problem: delay the per-cpu array allocation
750 * until the general caches are up.
760 * used by boot code to determine if it can use slab based allocator
762 int slab_is_available(void)
764 return g_cpucache_up == FULL;
767 static DEFINE_PER_CPU(struct delayed_work, reap_work);
769 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
771 return cachep->array[smp_processor_id()];
774 static inline struct kmem_cache *__find_general_cachep(size_t size,
777 struct cache_sizes *csizep = malloc_sizes;
780 /* This happens if someone tries to call
781 * kmem_cache_create(), or __kmalloc(), before
782 * the generic caches are initialized.
784 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
787 return ZERO_SIZE_PTR;
789 while (size > csizep->cs_size)
793 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
794 * has cs_{dma,}cachep==NULL. Thus no special case
795 * for large kmalloc calls required.
797 #ifdef CONFIG_ZONE_DMA
798 if (unlikely(gfpflags & GFP_DMA))
799 return csizep->cs_dmacachep;
801 return csizep->cs_cachep;
804 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
806 return __find_general_cachep(size, gfpflags);
809 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
811 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
815 * Calculate the number of objects and left-over bytes for a given buffer size.
817 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
818 size_t align, int flags, size_t *left_over,
823 size_t slab_size = PAGE_SIZE << gfporder;
826 * The slab management structure can be either off the slab or
827 * on it. For the latter case, the memory allocated for a
831 * - One kmem_bufctl_t for each object
832 * - Padding to respect alignment of @align
833 * - @buffer_size bytes for each object
835 * If the slab management structure is off the slab, then the
836 * alignment will already be calculated into the size. Because
837 * the slabs are all pages aligned, the objects will be at the
838 * correct alignment when allocated.
840 if (flags & CFLGS_OFF_SLAB) {
842 nr_objs = slab_size / buffer_size;
844 if (nr_objs > SLAB_LIMIT)
845 nr_objs = SLAB_LIMIT;
848 * Ignore padding for the initial guess. The padding
849 * is at most @align-1 bytes, and @buffer_size is at
850 * least @align. In the worst case, this result will
851 * be one greater than the number of objects that fit
852 * into the memory allocation when taking the padding
855 nr_objs = (slab_size - sizeof(struct slab)) /
856 (buffer_size + sizeof(kmem_bufctl_t));
859 * This calculated number will be either the right
860 * amount, or one greater than what we want.
862 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
866 if (nr_objs > SLAB_LIMIT)
867 nr_objs = SLAB_LIMIT;
869 mgmt_size = slab_mgmt_size(nr_objs, align);
872 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
875 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
877 static void __slab_error(const char *function, struct kmem_cache *cachep,
880 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
881 function, cachep->name, msg);
886 * By default on NUMA we use alien caches to stage the freeing of
887 * objects allocated from other nodes. This causes massive memory
888 * inefficiencies when using fake NUMA setup to split memory into a
889 * large number of small nodes, so it can be disabled on the command
893 static int use_alien_caches __read_mostly = 1;
894 static int numa_platform __read_mostly = 1;
895 static int __init noaliencache_setup(char *s)
897 use_alien_caches = 0;
900 __setup("noaliencache", noaliencache_setup);
904 * Special reaping functions for NUMA systems called from cache_reap().
905 * These take care of doing round robin flushing of alien caches (containing
906 * objects freed on different nodes from which they were allocated) and the
907 * flushing of remote pcps by calling drain_node_pages.
909 static DEFINE_PER_CPU(unsigned long, reap_node);
911 static void init_reap_node(int cpu)
915 node = next_node(cpu_to_node(cpu), node_online_map);
916 if (node == MAX_NUMNODES)
917 node = first_node(node_online_map);
919 per_cpu(reap_node, cpu) = node;
922 static void next_reap_node(void)
924 int node = __get_cpu_var(reap_node);
926 node = next_node(node, node_online_map);
927 if (unlikely(node >= MAX_NUMNODES))
928 node = first_node(node_online_map);
929 __get_cpu_var(reap_node) = node;
933 #define init_reap_node(cpu) do { } while (0)
934 #define next_reap_node(void) do { } while (0)
938 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
939 * via the workqueue/eventd.
940 * Add the CPU number into the expiration time to minimize the possibility of
941 * the CPUs getting into lockstep and contending for the global cache chain
944 static void __cpuinit start_cpu_timer(int cpu)
946 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
949 * When this gets called from do_initcalls via cpucache_init(),
950 * init_workqueues() has already run, so keventd will be setup
953 if (keventd_up() && reap_work->work.func == NULL) {
955 INIT_DELAYED_WORK(reap_work, cache_reap);
956 schedule_delayed_work_on(cpu, reap_work,
957 __round_jiffies_relative(HZ, cpu));
961 static struct array_cache *alloc_arraycache(int node, int entries,
962 int batchcount, gfp_t gfp)
964 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
965 struct array_cache *nc = NULL;
967 nc = kmalloc_node(memsize, gfp, node);
969 * The array_cache structures contain pointers to free object.
970 * However, when such objects are allocated or transfered to another
971 * cache the pointers are not cleared and they could be counted as
972 * valid references during a kmemleak scan. Therefore, kmemleak must
973 * not scan such objects.
975 kmemleak_no_scan(nc);
979 nc->batchcount = batchcount;
981 spin_lock_init(&nc->lock);
987 * Transfer objects in one arraycache to another.
988 * Locking must be handled by the caller.
990 * Return the number of entries transferred.
992 static int transfer_objects(struct array_cache *to,
993 struct array_cache *from, unsigned int max)
995 /* Figure out how many entries to transfer */
996 int nr = min(min(from->avail, max), to->limit - to->avail);
1001 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1002 sizeof(void *) *nr);
1012 #define drain_alien_cache(cachep, alien) do { } while (0)
1013 #define reap_alien(cachep, l3) do { } while (0)
1015 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1017 return (struct array_cache **)BAD_ALIEN_MAGIC;
1020 static inline void free_alien_cache(struct array_cache **ac_ptr)
1024 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1029 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1035 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1036 gfp_t flags, int nodeid)
1041 #else /* CONFIG_NUMA */
1043 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1044 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1046 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1048 struct array_cache **ac_ptr;
1049 int memsize = sizeof(void *) * nr_node_ids;
1054 ac_ptr = kmalloc_node(memsize, gfp, node);
1057 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1063 for (i--; i >= 0; i--)
1073 static void free_alien_cache(struct array_cache **ac_ptr)
1084 static void __drain_alien_cache(struct kmem_cache *cachep,
1085 struct array_cache *ac, int node)
1087 struct kmem_list3 *rl3 = cachep->nodelists[node];
1090 spin_lock(&rl3->list_lock);
1092 * Stuff objects into the remote nodes shared array first.
1093 * That way we could avoid the overhead of putting the objects
1094 * into the free lists and getting them back later.
1097 transfer_objects(rl3->shared, ac, ac->limit);
1099 free_block(cachep, ac->entry, ac->avail, node);
1101 spin_unlock(&rl3->list_lock);
1106 * Called from cache_reap() to regularly drain alien caches round robin.
1108 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1110 int node = __get_cpu_var(reap_node);
1113 struct array_cache *ac = l3->alien[node];
1115 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1116 __drain_alien_cache(cachep, ac, node);
1117 spin_unlock_irq(&ac->lock);
1122 static void drain_alien_cache(struct kmem_cache *cachep,
1123 struct array_cache **alien)
1126 struct array_cache *ac;
1127 unsigned long flags;
1129 for_each_online_node(i) {
1132 spin_lock_irqsave(&ac->lock, flags);
1133 __drain_alien_cache(cachep, ac, i);
1134 spin_unlock_irqrestore(&ac->lock, flags);
1139 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1141 struct slab *slabp = virt_to_slab(objp);
1142 int nodeid = slabp->nodeid;
1143 struct kmem_list3 *l3;
1144 struct array_cache *alien = NULL;
1147 node = numa_node_id();
1150 * Make sure we are not freeing a object from another node to the array
1151 * cache on this cpu.
1153 if (likely(slabp->nodeid == node))
1156 l3 = cachep->nodelists[node];
1157 STATS_INC_NODEFREES(cachep);
1158 if (l3->alien && l3->alien[nodeid]) {
1159 alien = l3->alien[nodeid];
1160 spin_lock(&alien->lock);
1161 if (unlikely(alien->avail == alien->limit)) {
1162 STATS_INC_ACOVERFLOW(cachep);
1163 __drain_alien_cache(cachep, alien, nodeid);
1165 alien->entry[alien->avail++] = objp;
1166 spin_unlock(&alien->lock);
1168 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1169 free_block(cachep, &objp, 1, nodeid);
1170 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1176 static void __cpuinit cpuup_canceled(long cpu)
1178 struct kmem_cache *cachep;
1179 struct kmem_list3 *l3 = NULL;
1180 int node = cpu_to_node(cpu);
1181 const struct cpumask *mask = cpumask_of_node(node);
1183 list_for_each_entry(cachep, &cache_chain, next) {
1184 struct array_cache *nc;
1185 struct array_cache *shared;
1186 struct array_cache **alien;
1188 /* cpu is dead; no one can alloc from it. */
1189 nc = cachep->array[cpu];
1190 cachep->array[cpu] = NULL;
1191 l3 = cachep->nodelists[node];
1194 goto free_array_cache;
1196 spin_lock_irq(&l3->list_lock);
1198 /* Free limit for this kmem_list3 */
1199 l3->free_limit -= cachep->batchcount;
1201 free_block(cachep, nc->entry, nc->avail, node);
1203 if (!cpus_empty(*mask)) {
1204 spin_unlock_irq(&l3->list_lock);
1205 goto free_array_cache;
1208 shared = l3->shared;
1210 free_block(cachep, shared->entry,
1211 shared->avail, node);
1218 spin_unlock_irq(&l3->list_lock);
1222 drain_alien_cache(cachep, alien);
1223 free_alien_cache(alien);
1229 * In the previous loop, all the objects were freed to
1230 * the respective cache's slabs, now we can go ahead and
1231 * shrink each nodelist to its limit.
1233 list_for_each_entry(cachep, &cache_chain, next) {
1234 l3 = cachep->nodelists[node];
1237 drain_freelist(cachep, l3, l3->free_objects);
1241 static int __cpuinit cpuup_prepare(long cpu)
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3 = NULL;
1245 int node = cpu_to_node(cpu);
1246 const int memsize = sizeof(struct kmem_list3);
1249 * We need to do this right in the beginning since
1250 * alloc_arraycache's are going to use this list.
1251 * kmalloc_node allows us to add the slab to the right
1252 * kmem_list3 and not this cpu's kmem_list3
1255 list_for_each_entry(cachep, &cache_chain, next) {
1257 * Set up the size64 kmemlist for cpu before we can
1258 * begin anything. Make sure some other cpu on this
1259 * node has not already allocated this
1261 if (!cachep->nodelists[node]) {
1262 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1265 kmem_list3_init(l3);
1266 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1267 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1270 * The l3s don't come and go as CPUs come and
1271 * go. cache_chain_mutex is sufficient
1274 cachep->nodelists[node] = l3;
1277 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1278 cachep->nodelists[node]->free_limit =
1279 (1 + nr_cpus_node(node)) *
1280 cachep->batchcount + cachep->num;
1281 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1285 * Now we can go ahead with allocating the shared arrays and
1288 list_for_each_entry(cachep, &cache_chain, next) {
1289 struct array_cache *nc;
1290 struct array_cache *shared = NULL;
1291 struct array_cache **alien = NULL;
1293 nc = alloc_arraycache(node, cachep->limit,
1294 cachep->batchcount, GFP_KERNEL);
1297 if (cachep->shared) {
1298 shared = alloc_arraycache(node,
1299 cachep->shared * cachep->batchcount,
1300 0xbaadf00d, GFP_KERNEL);
1306 if (use_alien_caches) {
1307 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1314 cachep->array[cpu] = nc;
1315 l3 = cachep->nodelists[node];
1318 spin_lock_irq(&l3->list_lock);
1321 * We are serialised from CPU_DEAD or
1322 * CPU_UP_CANCELLED by the cpucontrol lock
1324 l3->shared = shared;
1333 spin_unlock_irq(&l3->list_lock);
1335 free_alien_cache(alien);
1339 cpuup_canceled(cpu);
1343 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1344 unsigned long action, void *hcpu)
1346 long cpu = (long)hcpu;
1350 case CPU_UP_PREPARE:
1351 case CPU_UP_PREPARE_FROZEN:
1352 mutex_lock(&cache_chain_mutex);
1353 err = cpuup_prepare(cpu);
1354 mutex_unlock(&cache_chain_mutex);
1357 case CPU_ONLINE_FROZEN:
1358 start_cpu_timer(cpu);
1360 #ifdef CONFIG_HOTPLUG_CPU
1361 case CPU_DOWN_PREPARE:
1362 case CPU_DOWN_PREPARE_FROZEN:
1364 * Shutdown cache reaper. Note that the cache_chain_mutex is
1365 * held so that if cache_reap() is invoked it cannot do
1366 * anything expensive but will only modify reap_work
1367 * and reschedule the timer.
1369 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1370 /* Now the cache_reaper is guaranteed to be not running. */
1371 per_cpu(reap_work, cpu).work.func = NULL;
1373 case CPU_DOWN_FAILED:
1374 case CPU_DOWN_FAILED_FROZEN:
1375 start_cpu_timer(cpu);
1378 case CPU_DEAD_FROZEN:
1380 * Even if all the cpus of a node are down, we don't free the
1381 * kmem_list3 of any cache. This to avoid a race between
1382 * cpu_down, and a kmalloc allocation from another cpu for
1383 * memory from the node of the cpu going down. The list3
1384 * structure is usually allocated from kmem_cache_create() and
1385 * gets destroyed at kmem_cache_destroy().
1389 case CPU_UP_CANCELED:
1390 case CPU_UP_CANCELED_FROZEN:
1391 mutex_lock(&cache_chain_mutex);
1392 cpuup_canceled(cpu);
1393 mutex_unlock(&cache_chain_mutex);
1396 return err ? NOTIFY_BAD : NOTIFY_OK;
1399 static struct notifier_block __cpuinitdata cpucache_notifier = {
1400 &cpuup_callback, NULL, 0
1404 * swap the static kmem_list3 with kmalloced memory
1406 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1409 struct kmem_list3 *ptr;
1411 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1414 memcpy(ptr, list, sizeof(struct kmem_list3));
1416 * Do not assume that spinlocks can be initialized via memcpy:
1418 spin_lock_init(&ptr->list_lock);
1420 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1421 cachep->nodelists[nodeid] = ptr;
1425 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1426 * size of kmem_list3.
1428 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1432 for_each_online_node(node) {
1433 cachep->nodelists[node] = &initkmem_list3[index + node];
1434 cachep->nodelists[node]->next_reap = jiffies +
1436 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1444 void __init kmem_cache_init(void)
1447 struct cache_sizes *sizes;
1448 struct cache_names *names;
1453 if (num_possible_nodes() == 1) {
1454 use_alien_caches = 0;
1458 for (i = 0; i < NUM_INIT_LISTS; i++) {
1459 kmem_list3_init(&initkmem_list3[i]);
1460 if (i < MAX_NUMNODES)
1461 cache_cache.nodelists[i] = NULL;
1463 set_up_list3s(&cache_cache, CACHE_CACHE);
1466 * Fragmentation resistance on low memory - only use bigger
1467 * page orders on machines with more than 32MB of memory.
1469 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1470 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1472 /* Bootstrap is tricky, because several objects are allocated
1473 * from caches that do not exist yet:
1474 * 1) initialize the cache_cache cache: it contains the struct
1475 * kmem_cache structures of all caches, except cache_cache itself:
1476 * cache_cache is statically allocated.
1477 * Initially an __init data area is used for the head array and the
1478 * kmem_list3 structures, it's replaced with a kmalloc allocated
1479 * array at the end of the bootstrap.
1480 * 2) Create the first kmalloc cache.
1481 * The struct kmem_cache for the new cache is allocated normally.
1482 * An __init data area is used for the head array.
1483 * 3) Create the remaining kmalloc caches, with minimally sized
1485 * 4) Replace the __init data head arrays for cache_cache and the first
1486 * kmalloc cache with kmalloc allocated arrays.
1487 * 5) Replace the __init data for kmem_list3 for cache_cache and
1488 * the other cache's with kmalloc allocated memory.
1489 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1492 node = numa_node_id();
1494 /* 1) create the cache_cache */
1495 INIT_LIST_HEAD(&cache_chain);
1496 list_add(&cache_cache.next, &cache_chain);
1497 cache_cache.colour_off = cache_line_size();
1498 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1499 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1502 * struct kmem_cache size depends on nr_node_ids, which
1503 * can be less than MAX_NUMNODES.
1505 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1506 nr_node_ids * sizeof(struct kmem_list3 *);
1508 cache_cache.obj_size = cache_cache.buffer_size;
1510 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1512 cache_cache.reciprocal_buffer_size =
1513 reciprocal_value(cache_cache.buffer_size);
1515 for (order = 0; order < MAX_ORDER; order++) {
1516 cache_estimate(order, cache_cache.buffer_size,
1517 cache_line_size(), 0, &left_over, &cache_cache.num);
1518 if (cache_cache.num)
1521 BUG_ON(!cache_cache.num);
1522 cache_cache.gfporder = order;
1523 cache_cache.colour = left_over / cache_cache.colour_off;
1524 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1525 sizeof(struct slab), cache_line_size());
1527 /* 2+3) create the kmalloc caches */
1528 sizes = malloc_sizes;
1529 names = cache_names;
1532 * Initialize the caches that provide memory for the array cache and the
1533 * kmem_list3 structures first. Without this, further allocations will
1537 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1538 sizes[INDEX_AC].cs_size,
1539 ARCH_KMALLOC_MINALIGN,
1540 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1543 if (INDEX_AC != INDEX_L3) {
1544 sizes[INDEX_L3].cs_cachep =
1545 kmem_cache_create(names[INDEX_L3].name,
1546 sizes[INDEX_L3].cs_size,
1547 ARCH_KMALLOC_MINALIGN,
1548 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1552 slab_early_init = 0;
1554 while (sizes->cs_size != ULONG_MAX) {
1556 * For performance, all the general caches are L1 aligned.
1557 * This should be particularly beneficial on SMP boxes, as it
1558 * eliminates "false sharing".
1559 * Note for systems short on memory removing the alignment will
1560 * allow tighter packing of the smaller caches.
1562 if (!sizes->cs_cachep) {
1563 sizes->cs_cachep = kmem_cache_create(names->name,
1565 ARCH_KMALLOC_MINALIGN,
1566 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1569 #ifdef CONFIG_ZONE_DMA
1570 sizes->cs_dmacachep = kmem_cache_create(
1573 ARCH_KMALLOC_MINALIGN,
1574 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1581 /* 4) Replace the bootstrap head arrays */
1583 struct array_cache *ptr;
1585 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1587 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1588 memcpy(ptr, cpu_cache_get(&cache_cache),
1589 sizeof(struct arraycache_init));
1591 * Do not assume that spinlocks can be initialized via memcpy:
1593 spin_lock_init(&ptr->lock);
1595 cache_cache.array[smp_processor_id()] = ptr;
1597 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1599 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1600 != &initarray_generic.cache);
1601 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1602 sizeof(struct arraycache_init));
1604 * Do not assume that spinlocks can be initialized via memcpy:
1606 spin_lock_init(&ptr->lock);
1608 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1611 /* 5) Replace the bootstrap kmem_list3's */
1615 for_each_online_node(nid) {
1616 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1618 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1619 &initkmem_list3[SIZE_AC + nid], nid);
1621 if (INDEX_AC != INDEX_L3) {
1622 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1623 &initkmem_list3[SIZE_L3 + nid], nid);
1628 /* 6) resize the head arrays to their final sizes */
1630 struct kmem_cache *cachep;
1631 mutex_lock(&cache_chain_mutex);
1632 list_for_each_entry(cachep, &cache_chain, next)
1633 if (enable_cpucache(cachep, GFP_NOWAIT))
1635 mutex_unlock(&cache_chain_mutex);
1638 /* Annotate slab for lockdep -- annotate the malloc caches */
1643 g_cpucache_up = FULL;
1646 * Register a cpu startup notifier callback that initializes
1647 * cpu_cache_get for all new cpus
1649 register_cpu_notifier(&cpucache_notifier);
1652 * The reap timers are started later, with a module init call: That part
1653 * of the kernel is not yet operational.
1657 static int __init cpucache_init(void)
1662 * Register the timers that return unneeded pages to the page allocator
1664 for_each_online_cpu(cpu)
1665 start_cpu_timer(cpu);
1668 __initcall(cpucache_init);
1671 * Interface to system's page allocator. No need to hold the cache-lock.
1673 * If we requested dmaable memory, we will get it. Even if we
1674 * did not request dmaable memory, we might get it, but that
1675 * would be relatively rare and ignorable.
1677 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1685 * Nommu uses slab's for process anonymous memory allocations, and thus
1686 * requires __GFP_COMP to properly refcount higher order allocations
1688 flags |= __GFP_COMP;
1691 flags |= cachep->gfpflags;
1692 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1693 flags |= __GFP_RECLAIMABLE;
1695 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1699 nr_pages = (1 << cachep->gfporder);
1700 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1701 add_zone_page_state(page_zone(page),
1702 NR_SLAB_RECLAIMABLE, nr_pages);
1704 add_zone_page_state(page_zone(page),
1705 NR_SLAB_UNRECLAIMABLE, nr_pages);
1706 for (i = 0; i < nr_pages; i++)
1707 __SetPageSlab(page + i);
1708 return page_address(page);
1712 * Interface to system's page release.
1714 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1716 unsigned long i = (1 << cachep->gfporder);
1717 struct page *page = virt_to_page(addr);
1718 const unsigned long nr_freed = i;
1720 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1721 sub_zone_page_state(page_zone(page),
1722 NR_SLAB_RECLAIMABLE, nr_freed);
1724 sub_zone_page_state(page_zone(page),
1725 NR_SLAB_UNRECLAIMABLE, nr_freed);
1727 BUG_ON(!PageSlab(page));
1728 __ClearPageSlab(page);
1731 if (current->reclaim_state)
1732 current->reclaim_state->reclaimed_slab += nr_freed;
1733 free_pages((unsigned long)addr, cachep->gfporder);
1736 static void kmem_rcu_free(struct rcu_head *head)
1738 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1739 struct kmem_cache *cachep = slab_rcu->cachep;
1741 kmem_freepages(cachep, slab_rcu->addr);
1742 if (OFF_SLAB(cachep))
1743 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1748 #ifdef CONFIG_DEBUG_PAGEALLOC
1749 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1750 unsigned long caller)
1752 int size = obj_size(cachep);
1754 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1756 if (size < 5 * sizeof(unsigned long))
1759 *addr++ = 0x12345678;
1761 *addr++ = smp_processor_id();
1762 size -= 3 * sizeof(unsigned long);
1764 unsigned long *sptr = &caller;
1765 unsigned long svalue;
1767 while (!kstack_end(sptr)) {
1769 if (kernel_text_address(svalue)) {
1771 size -= sizeof(unsigned long);
1772 if (size <= sizeof(unsigned long))
1778 *addr++ = 0x87654321;
1782 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1784 int size = obj_size(cachep);
1785 addr = &((char *)addr)[obj_offset(cachep)];
1787 memset(addr, val, size);
1788 *(unsigned char *)(addr + size - 1) = POISON_END;
1791 static void dump_line(char *data, int offset, int limit)
1794 unsigned char error = 0;
1797 printk(KERN_ERR "%03x:", offset);
1798 for (i = 0; i < limit; i++) {
1799 if (data[offset + i] != POISON_FREE) {
1800 error = data[offset + i];
1803 printk(" %02x", (unsigned char)data[offset + i]);
1807 if (bad_count == 1) {
1808 error ^= POISON_FREE;
1809 if (!(error & (error - 1))) {
1810 printk(KERN_ERR "Single bit error detected. Probably "
1813 printk(KERN_ERR "Run memtest86+ or a similar memory "
1816 printk(KERN_ERR "Run a memory test tool.\n");
1825 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1830 if (cachep->flags & SLAB_RED_ZONE) {
1831 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1832 *dbg_redzone1(cachep, objp),
1833 *dbg_redzone2(cachep, objp));
1836 if (cachep->flags & SLAB_STORE_USER) {
1837 printk(KERN_ERR "Last user: [<%p>]",
1838 *dbg_userword(cachep, objp));
1839 print_symbol("(%s)",
1840 (unsigned long)*dbg_userword(cachep, objp));
1843 realobj = (char *)objp + obj_offset(cachep);
1844 size = obj_size(cachep);
1845 for (i = 0; i < size && lines; i += 16, lines--) {
1848 if (i + limit > size)
1850 dump_line(realobj, i, limit);
1854 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1860 realobj = (char *)objp + obj_offset(cachep);
1861 size = obj_size(cachep);
1863 for (i = 0; i < size; i++) {
1864 char exp = POISON_FREE;
1867 if (realobj[i] != exp) {
1873 "Slab corruption: %s start=%p, len=%d\n",
1874 cachep->name, realobj, size);
1875 print_objinfo(cachep, objp, 0);
1877 /* Hexdump the affected line */
1880 if (i + limit > size)
1882 dump_line(realobj, i, limit);
1885 /* Limit to 5 lines */
1891 /* Print some data about the neighboring objects, if they
1894 struct slab *slabp = virt_to_slab(objp);
1897 objnr = obj_to_index(cachep, slabp, objp);
1899 objp = index_to_obj(cachep, slabp, objnr - 1);
1900 realobj = (char *)objp + obj_offset(cachep);
1901 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1903 print_objinfo(cachep, objp, 2);
1905 if (objnr + 1 < cachep->num) {
1906 objp = index_to_obj(cachep, slabp, objnr + 1);
1907 realobj = (char *)objp + obj_offset(cachep);
1908 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1910 print_objinfo(cachep, objp, 2);
1917 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1920 for (i = 0; i < cachep->num; i++) {
1921 void *objp = index_to_obj(cachep, slabp, i);
1923 if (cachep->flags & SLAB_POISON) {
1924 #ifdef CONFIG_DEBUG_PAGEALLOC
1925 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1927 kernel_map_pages(virt_to_page(objp),
1928 cachep->buffer_size / PAGE_SIZE, 1);
1930 check_poison_obj(cachep, objp);
1932 check_poison_obj(cachep, objp);
1935 if (cachep->flags & SLAB_RED_ZONE) {
1936 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1937 slab_error(cachep, "start of a freed object "
1939 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1940 slab_error(cachep, "end of a freed object "
1946 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1952 * slab_destroy - destroy and release all objects in a slab
1953 * @cachep: cache pointer being destroyed
1954 * @slabp: slab pointer being destroyed
1956 * Destroy all the objs in a slab, and release the mem back to the system.
1957 * Before calling the slab must have been unlinked from the cache. The
1958 * cache-lock is not held/needed.
1960 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1962 void *addr = slabp->s_mem - slabp->colouroff;
1964 slab_destroy_debugcheck(cachep, slabp);
1965 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1966 struct slab_rcu *slab_rcu;
1968 slab_rcu = (struct slab_rcu *)slabp;
1969 slab_rcu->cachep = cachep;
1970 slab_rcu->addr = addr;
1971 call_rcu(&slab_rcu->head, kmem_rcu_free);
1973 kmem_freepages(cachep, addr);
1974 if (OFF_SLAB(cachep))
1975 kmem_cache_free(cachep->slabp_cache, slabp);
1979 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1982 struct kmem_list3 *l3;
1984 for_each_online_cpu(i)
1985 kfree(cachep->array[i]);
1987 /* NUMA: free the list3 structures */
1988 for_each_online_node(i) {
1989 l3 = cachep->nodelists[i];
1992 free_alien_cache(l3->alien);
1996 kmem_cache_free(&cache_cache, cachep);
2001 * calculate_slab_order - calculate size (page order) of slabs
2002 * @cachep: pointer to the cache that is being created
2003 * @size: size of objects to be created in this cache.
2004 * @align: required alignment for the objects.
2005 * @flags: slab allocation flags
2007 * Also calculates the number of objects per slab.
2009 * This could be made much more intelligent. For now, try to avoid using
2010 * high order pages for slabs. When the gfp() functions are more friendly
2011 * towards high-order requests, this should be changed.
2013 static size_t calculate_slab_order(struct kmem_cache *cachep,
2014 size_t size, size_t align, unsigned long flags)
2016 unsigned long offslab_limit;
2017 size_t left_over = 0;
2020 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2024 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2028 if (flags & CFLGS_OFF_SLAB) {
2030 * Max number of objs-per-slab for caches which
2031 * use off-slab slabs. Needed to avoid a possible
2032 * looping condition in cache_grow().
2034 offslab_limit = size - sizeof(struct slab);
2035 offslab_limit /= sizeof(kmem_bufctl_t);
2037 if (num > offslab_limit)
2041 /* Found something acceptable - save it away */
2043 cachep->gfporder = gfporder;
2044 left_over = remainder;
2047 * A VFS-reclaimable slab tends to have most allocations
2048 * as GFP_NOFS and we really don't want to have to be allocating
2049 * higher-order pages when we are unable to shrink dcache.
2051 if (flags & SLAB_RECLAIM_ACCOUNT)
2055 * Large number of objects is good, but very large slabs are
2056 * currently bad for the gfp()s.
2058 if (gfporder >= slab_break_gfp_order)
2062 * Acceptable internal fragmentation?
2064 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2070 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2072 if (g_cpucache_up == FULL)
2073 return enable_cpucache(cachep, gfp);
2075 if (g_cpucache_up == NONE) {
2077 * Note: the first kmem_cache_create must create the cache
2078 * that's used by kmalloc(24), otherwise the creation of
2079 * further caches will BUG().
2081 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2084 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2085 * the first cache, then we need to set up all its list3s,
2086 * otherwise the creation of further caches will BUG().
2088 set_up_list3s(cachep, SIZE_AC);
2089 if (INDEX_AC == INDEX_L3)
2090 g_cpucache_up = PARTIAL_L3;
2092 g_cpucache_up = PARTIAL_AC;
2094 cachep->array[smp_processor_id()] =
2095 kmalloc(sizeof(struct arraycache_init), gfp);
2097 if (g_cpucache_up == PARTIAL_AC) {
2098 set_up_list3s(cachep, SIZE_L3);
2099 g_cpucache_up = PARTIAL_L3;
2102 for_each_online_node(node) {
2103 cachep->nodelists[node] =
2104 kmalloc_node(sizeof(struct kmem_list3),
2106 BUG_ON(!cachep->nodelists[node]);
2107 kmem_list3_init(cachep->nodelists[node]);
2111 cachep->nodelists[numa_node_id()]->next_reap =
2112 jiffies + REAPTIMEOUT_LIST3 +
2113 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2115 cpu_cache_get(cachep)->avail = 0;
2116 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2117 cpu_cache_get(cachep)->batchcount = 1;
2118 cpu_cache_get(cachep)->touched = 0;
2119 cachep->batchcount = 1;
2120 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2125 * kmem_cache_create - Create a cache.
2126 * @name: A string which is used in /proc/slabinfo to identify this cache.
2127 * @size: The size of objects to be created in this cache.
2128 * @align: The required alignment for the objects.
2129 * @flags: SLAB flags
2130 * @ctor: A constructor for the objects.
2132 * Returns a ptr to the cache on success, NULL on failure.
2133 * Cannot be called within a int, but can be interrupted.
2134 * The @ctor is run when new pages are allocated by the cache.
2136 * @name must be valid until the cache is destroyed. This implies that
2137 * the module calling this has to destroy the cache before getting unloaded.
2138 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2139 * therefore applications must manage it themselves.
2143 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2144 * to catch references to uninitialised memory.
2146 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2147 * for buffer overruns.
2149 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2150 * cacheline. This can be beneficial if you're counting cycles as closely
2154 kmem_cache_create (const char *name, size_t size, size_t align,
2155 unsigned long flags, void (*ctor)(void *))
2157 size_t left_over, slab_size, ralign;
2158 struct kmem_cache *cachep = NULL, *pc;
2162 * Sanity checks... these are all serious usage bugs.
2164 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2165 size > KMALLOC_MAX_SIZE) {
2166 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2172 * We use cache_chain_mutex to ensure a consistent view of
2173 * cpu_online_mask as well. Please see cpuup_callback
2175 if (slab_is_available()) {
2177 mutex_lock(&cache_chain_mutex);
2180 list_for_each_entry(pc, &cache_chain, next) {
2185 * This happens when the module gets unloaded and doesn't
2186 * destroy its slab cache and no-one else reuses the vmalloc
2187 * area of the module. Print a warning.
2189 res = probe_kernel_address(pc->name, tmp);
2192 "SLAB: cache with size %d has lost its name\n",
2197 if (!strcmp(pc->name, name)) {
2199 "kmem_cache_create: duplicate cache %s\n", name);
2206 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2209 * Enable redzoning and last user accounting, except for caches with
2210 * large objects, if the increased size would increase the object size
2211 * above the next power of two: caches with object sizes just above a
2212 * power of two have a significant amount of internal fragmentation.
2214 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2215 2 * sizeof(unsigned long long)))
2216 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2217 if (!(flags & SLAB_DESTROY_BY_RCU))
2218 flags |= SLAB_POISON;
2220 if (flags & SLAB_DESTROY_BY_RCU)
2221 BUG_ON(flags & SLAB_POISON);
2224 * Always checks flags, a caller might be expecting debug support which
2227 BUG_ON(flags & ~CREATE_MASK);
2230 * Check that size is in terms of words. This is needed to avoid
2231 * unaligned accesses for some archs when redzoning is used, and makes
2232 * sure any on-slab bufctl's are also correctly aligned.
2234 if (size & (BYTES_PER_WORD - 1)) {
2235 size += (BYTES_PER_WORD - 1);
2236 size &= ~(BYTES_PER_WORD - 1);
2239 /* calculate the final buffer alignment: */
2241 /* 1) arch recommendation: can be overridden for debug */
2242 if (flags & SLAB_HWCACHE_ALIGN) {
2244 * Default alignment: as specified by the arch code. Except if
2245 * an object is really small, then squeeze multiple objects into
2248 ralign = cache_line_size();
2249 while (size <= ralign / 2)
2252 ralign = BYTES_PER_WORD;
2256 * Redzoning and user store require word alignment or possibly larger.
2257 * Note this will be overridden by architecture or caller mandated
2258 * alignment if either is greater than BYTES_PER_WORD.
2260 if (flags & SLAB_STORE_USER)
2261 ralign = BYTES_PER_WORD;
2263 if (flags & SLAB_RED_ZONE) {
2264 ralign = REDZONE_ALIGN;
2265 /* If redzoning, ensure that the second redzone is suitably
2266 * aligned, by adjusting the object size accordingly. */
2267 size += REDZONE_ALIGN - 1;
2268 size &= ~(REDZONE_ALIGN - 1);
2271 /* 2) arch mandated alignment */
2272 if (ralign < ARCH_SLAB_MINALIGN) {
2273 ralign = ARCH_SLAB_MINALIGN;
2275 /* 3) caller mandated alignment */
2276 if (ralign < align) {
2279 /* disable debug if necessary */
2280 if (ralign > __alignof__(unsigned long long))
2281 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2287 if (slab_is_available())
2292 /* Get cache's description obj. */
2293 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2298 cachep->obj_size = size;
2301 * Both debugging options require word-alignment which is calculated
2304 if (flags & SLAB_RED_ZONE) {
2305 /* add space for red zone words */
2306 cachep->obj_offset += sizeof(unsigned long long);
2307 size += 2 * sizeof(unsigned long long);
2309 if (flags & SLAB_STORE_USER) {
2310 /* user store requires one word storage behind the end of
2311 * the real object. But if the second red zone needs to be
2312 * aligned to 64 bits, we must allow that much space.
2314 if (flags & SLAB_RED_ZONE)
2315 size += REDZONE_ALIGN;
2317 size += BYTES_PER_WORD;
2319 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2320 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2321 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2322 cachep->obj_offset += PAGE_SIZE - size;
2329 * Determine if the slab management is 'on' or 'off' slab.
2330 * (bootstrapping cannot cope with offslab caches so don't do
2333 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2335 * Size is large, assume best to place the slab management obj
2336 * off-slab (should allow better packing of objs).
2338 flags |= CFLGS_OFF_SLAB;
2340 size = ALIGN(size, align);
2342 left_over = calculate_slab_order(cachep, size, align, flags);
2346 "kmem_cache_create: couldn't create cache %s.\n", name);
2347 kmem_cache_free(&cache_cache, cachep);
2351 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2352 + sizeof(struct slab), align);
2355 * If the slab has been placed off-slab, and we have enough space then
2356 * move it on-slab. This is at the expense of any extra colouring.
2358 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2359 flags &= ~CFLGS_OFF_SLAB;
2360 left_over -= slab_size;
2363 if (flags & CFLGS_OFF_SLAB) {
2364 /* really off slab. No need for manual alignment */
2366 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2369 cachep->colour_off = cache_line_size();
2370 /* Offset must be a multiple of the alignment. */
2371 if (cachep->colour_off < align)
2372 cachep->colour_off = align;
2373 cachep->colour = left_over / cachep->colour_off;
2374 cachep->slab_size = slab_size;
2375 cachep->flags = flags;
2376 cachep->gfpflags = 0;
2377 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2378 cachep->gfpflags |= GFP_DMA;
2379 cachep->buffer_size = size;
2380 cachep->reciprocal_buffer_size = reciprocal_value(size);
2382 if (flags & CFLGS_OFF_SLAB) {
2383 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2385 * This is a possibility for one of the malloc_sizes caches.
2386 * But since we go off slab only for object size greater than
2387 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2388 * this should not happen at all.
2389 * But leave a BUG_ON for some lucky dude.
2391 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2393 cachep->ctor = ctor;
2394 cachep->name = name;
2396 if (setup_cpu_cache(cachep, gfp)) {
2397 __kmem_cache_destroy(cachep);
2402 /* cache setup completed, link it into the list */
2403 list_add(&cachep->next, &cache_chain);
2405 if (!cachep && (flags & SLAB_PANIC))
2406 panic("kmem_cache_create(): failed to create slab `%s'\n",
2408 if (slab_is_available()) {
2409 mutex_unlock(&cache_chain_mutex);
2414 EXPORT_SYMBOL(kmem_cache_create);
2417 static void check_irq_off(void)
2419 BUG_ON(!irqs_disabled());
2422 static void check_irq_on(void)
2424 BUG_ON(irqs_disabled());
2427 static void check_spinlock_acquired(struct kmem_cache *cachep)
2431 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2435 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2439 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2444 #define check_irq_off() do { } while(0)
2445 #define check_irq_on() do { } while(0)
2446 #define check_spinlock_acquired(x) do { } while(0)
2447 #define check_spinlock_acquired_node(x, y) do { } while(0)
2450 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2451 struct array_cache *ac,
2452 int force, int node);
2454 static void do_drain(void *arg)
2456 struct kmem_cache *cachep = arg;
2457 struct array_cache *ac;
2458 int node = numa_node_id();
2461 ac = cpu_cache_get(cachep);
2462 spin_lock(&cachep->nodelists[node]->list_lock);
2463 free_block(cachep, ac->entry, ac->avail, node);
2464 spin_unlock(&cachep->nodelists[node]->list_lock);
2468 static void drain_cpu_caches(struct kmem_cache *cachep)
2470 struct kmem_list3 *l3;
2473 on_each_cpu(do_drain, cachep, 1);
2475 for_each_online_node(node) {
2476 l3 = cachep->nodelists[node];
2477 if (l3 && l3->alien)
2478 drain_alien_cache(cachep, l3->alien);
2481 for_each_online_node(node) {
2482 l3 = cachep->nodelists[node];
2484 drain_array(cachep, l3, l3->shared, 1, node);
2489 * Remove slabs from the list of free slabs.
2490 * Specify the number of slabs to drain in tofree.
2492 * Returns the actual number of slabs released.
2494 static int drain_freelist(struct kmem_cache *cache,
2495 struct kmem_list3 *l3, int tofree)
2497 struct list_head *p;
2502 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2504 spin_lock_irq(&l3->list_lock);
2505 p = l3->slabs_free.prev;
2506 if (p == &l3->slabs_free) {
2507 spin_unlock_irq(&l3->list_lock);
2511 slabp = list_entry(p, struct slab, list);
2513 BUG_ON(slabp->inuse);
2515 list_del(&slabp->list);
2517 * Safe to drop the lock. The slab is no longer linked
2520 l3->free_objects -= cache->num;
2521 spin_unlock_irq(&l3->list_lock);
2522 slab_destroy(cache, slabp);
2529 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2530 static int __cache_shrink(struct kmem_cache *cachep)
2533 struct kmem_list3 *l3;
2535 drain_cpu_caches(cachep);
2538 for_each_online_node(i) {
2539 l3 = cachep->nodelists[i];
2543 drain_freelist(cachep, l3, l3->free_objects);
2545 ret += !list_empty(&l3->slabs_full) ||
2546 !list_empty(&l3->slabs_partial);
2548 return (ret ? 1 : 0);
2552 * kmem_cache_shrink - Shrink a cache.
2553 * @cachep: The cache to shrink.
2555 * Releases as many slabs as possible for a cache.
2556 * To help debugging, a zero exit status indicates all slabs were released.
2558 int kmem_cache_shrink(struct kmem_cache *cachep)
2561 BUG_ON(!cachep || in_interrupt());
2564 mutex_lock(&cache_chain_mutex);
2565 ret = __cache_shrink(cachep);
2566 mutex_unlock(&cache_chain_mutex);
2570 EXPORT_SYMBOL(kmem_cache_shrink);
2573 * kmem_cache_destroy - delete a cache
2574 * @cachep: the cache to destroy
2576 * Remove a &struct kmem_cache object from the slab cache.
2578 * It is expected this function will be called by a module when it is
2579 * unloaded. This will remove the cache completely, and avoid a duplicate
2580 * cache being allocated each time a module is loaded and unloaded, if the
2581 * module doesn't have persistent in-kernel storage across loads and unloads.
2583 * The cache must be empty before calling this function.
2585 * The caller must guarantee that noone will allocate memory from the cache
2586 * during the kmem_cache_destroy().
2588 void kmem_cache_destroy(struct kmem_cache *cachep)
2590 BUG_ON(!cachep || in_interrupt());
2592 /* Find the cache in the chain of caches. */
2594 mutex_lock(&cache_chain_mutex);
2596 * the chain is never empty, cache_cache is never destroyed
2598 list_del(&cachep->next);
2599 if (__cache_shrink(cachep)) {
2600 slab_error(cachep, "Can't free all objects");
2601 list_add(&cachep->next, &cache_chain);
2602 mutex_unlock(&cache_chain_mutex);
2607 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2610 __kmem_cache_destroy(cachep);
2611 mutex_unlock(&cache_chain_mutex);
2614 EXPORT_SYMBOL(kmem_cache_destroy);
2617 * Get the memory for a slab management obj.
2618 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2619 * always come from malloc_sizes caches. The slab descriptor cannot
2620 * come from the same cache which is getting created because,
2621 * when we are searching for an appropriate cache for these
2622 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2623 * If we are creating a malloc_sizes cache here it would not be visible to
2624 * kmem_find_general_cachep till the initialization is complete.
2625 * Hence we cannot have slabp_cache same as the original cache.
2627 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2628 int colour_off, gfp_t local_flags,
2633 if (OFF_SLAB(cachep)) {
2634 /* Slab management obj is off-slab. */
2635 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2636 local_flags, nodeid);
2638 * If the first object in the slab is leaked (it's allocated
2639 * but no one has a reference to it), we want to make sure
2640 * kmemleak does not treat the ->s_mem pointer as a reference
2641 * to the object. Otherwise we will not report the leak.
2643 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2644 sizeof(struct list_head), local_flags);
2648 slabp = objp + colour_off;
2649 colour_off += cachep->slab_size;
2652 slabp->colouroff = colour_off;
2653 slabp->s_mem = objp + colour_off;
2654 slabp->nodeid = nodeid;
2659 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2661 return (kmem_bufctl_t *) (slabp + 1);
2664 static void cache_init_objs(struct kmem_cache *cachep,
2669 for (i = 0; i < cachep->num; i++) {
2670 void *objp = index_to_obj(cachep, slabp, i);
2672 /* need to poison the objs? */
2673 if (cachep->flags & SLAB_POISON)
2674 poison_obj(cachep, objp, POISON_FREE);
2675 if (cachep->flags & SLAB_STORE_USER)
2676 *dbg_userword(cachep, objp) = NULL;
2678 if (cachep->flags & SLAB_RED_ZONE) {
2679 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2680 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2683 * Constructors are not allowed to allocate memory from the same
2684 * cache which they are a constructor for. Otherwise, deadlock.
2685 * They must also be threaded.
2687 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2688 cachep->ctor(objp + obj_offset(cachep));
2690 if (cachep->flags & SLAB_RED_ZONE) {
2691 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2692 slab_error(cachep, "constructor overwrote the"
2693 " end of an object");
2694 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2695 slab_error(cachep, "constructor overwrote the"
2696 " start of an object");
2698 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2699 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2700 kernel_map_pages(virt_to_page(objp),
2701 cachep->buffer_size / PAGE_SIZE, 0);
2706 slab_bufctl(slabp)[i] = i + 1;
2708 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2711 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2713 if (CONFIG_ZONE_DMA_FLAG) {
2714 if (flags & GFP_DMA)
2715 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2717 BUG_ON(cachep->gfpflags & GFP_DMA);
2721 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2724 void *objp = index_to_obj(cachep, slabp, slabp->free);
2728 next = slab_bufctl(slabp)[slabp->free];
2730 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2731 WARN_ON(slabp->nodeid != nodeid);
2738 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2739 void *objp, int nodeid)
2741 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2744 /* Verify that the slab belongs to the intended node */
2745 WARN_ON(slabp->nodeid != nodeid);
2747 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2748 printk(KERN_ERR "slab: double free detected in cache "
2749 "'%s', objp %p\n", cachep->name, objp);
2753 slab_bufctl(slabp)[objnr] = slabp->free;
2754 slabp->free = objnr;
2759 * Map pages beginning at addr to the given cache and slab. This is required
2760 * for the slab allocator to be able to lookup the cache and slab of a
2761 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2763 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2769 page = virt_to_page(addr);
2772 if (likely(!PageCompound(page)))
2773 nr_pages <<= cache->gfporder;
2776 page_set_cache(page, cache);
2777 page_set_slab(page, slab);
2779 } while (--nr_pages);
2783 * Grow (by 1) the number of slabs within a cache. This is called by
2784 * kmem_cache_alloc() when there are no active objs left in a cache.
2786 static int cache_grow(struct kmem_cache *cachep,
2787 gfp_t flags, int nodeid, void *objp)
2792 struct kmem_list3 *l3;
2795 * Be lazy and only check for valid flags here, keeping it out of the
2796 * critical path in kmem_cache_alloc().
2798 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2799 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2801 /* Take the l3 list lock to change the colour_next on this node */
2803 l3 = cachep->nodelists[nodeid];
2804 spin_lock(&l3->list_lock);
2806 /* Get colour for the slab, and cal the next value. */
2807 offset = l3->colour_next;
2809 if (l3->colour_next >= cachep->colour)
2810 l3->colour_next = 0;
2811 spin_unlock(&l3->list_lock);
2813 offset *= cachep->colour_off;
2815 if (local_flags & __GFP_WAIT)
2819 * The test for missing atomic flag is performed here, rather than
2820 * the more obvious place, simply to reduce the critical path length
2821 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2822 * will eventually be caught here (where it matters).
2824 kmem_flagcheck(cachep, flags);
2827 * Get mem for the objs. Attempt to allocate a physical page from
2831 objp = kmem_getpages(cachep, local_flags, nodeid);
2835 /* Get slab management. */
2836 slabp = alloc_slabmgmt(cachep, objp, offset,
2837 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2841 slab_map_pages(cachep, slabp, objp);
2843 cache_init_objs(cachep, slabp);
2845 if (local_flags & __GFP_WAIT)
2846 local_irq_disable();
2848 spin_lock(&l3->list_lock);
2850 /* Make slab active. */
2851 list_add_tail(&slabp->list, &(l3->slabs_free));
2852 STATS_INC_GROWN(cachep);
2853 l3->free_objects += cachep->num;
2854 spin_unlock(&l3->list_lock);
2857 kmem_freepages(cachep, objp);
2859 if (local_flags & __GFP_WAIT)
2860 local_irq_disable();
2867 * Perform extra freeing checks:
2868 * - detect bad pointers.
2869 * - POISON/RED_ZONE checking
2871 static void kfree_debugcheck(const void *objp)
2873 if (!virt_addr_valid(objp)) {
2874 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2875 (unsigned long)objp);
2880 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2882 unsigned long long redzone1, redzone2;
2884 redzone1 = *dbg_redzone1(cache, obj);
2885 redzone2 = *dbg_redzone2(cache, obj);
2890 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2893 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2894 slab_error(cache, "double free detected");
2896 slab_error(cache, "memory outside object was overwritten");
2898 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2899 obj, redzone1, redzone2);
2902 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2909 BUG_ON(virt_to_cache(objp) != cachep);
2911 objp -= obj_offset(cachep);
2912 kfree_debugcheck(objp);
2913 page = virt_to_head_page(objp);
2915 slabp = page_get_slab(page);
2917 if (cachep->flags & SLAB_RED_ZONE) {
2918 verify_redzone_free(cachep, objp);
2919 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2920 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2922 if (cachep->flags & SLAB_STORE_USER)
2923 *dbg_userword(cachep, objp) = caller;
2925 objnr = obj_to_index(cachep, slabp, objp);
2927 BUG_ON(objnr >= cachep->num);
2928 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2930 #ifdef CONFIG_DEBUG_SLAB_LEAK
2931 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2933 if (cachep->flags & SLAB_POISON) {
2934 #ifdef CONFIG_DEBUG_PAGEALLOC
2935 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2936 store_stackinfo(cachep, objp, (unsigned long)caller);
2937 kernel_map_pages(virt_to_page(objp),
2938 cachep->buffer_size / PAGE_SIZE, 0);
2940 poison_obj(cachep, objp, POISON_FREE);
2943 poison_obj(cachep, objp, POISON_FREE);
2949 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2954 /* Check slab's freelist to see if this obj is there. */
2955 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2957 if (entries > cachep->num || i >= cachep->num)
2960 if (entries != cachep->num - slabp->inuse) {
2962 printk(KERN_ERR "slab: Internal list corruption detected in "
2963 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2964 cachep->name, cachep->num, slabp, slabp->inuse);
2966 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2969 printk("\n%03x:", i);
2970 printk(" %02x", ((unsigned char *)slabp)[i]);
2977 #define kfree_debugcheck(x) do { } while(0)
2978 #define cache_free_debugcheck(x,objp,z) (objp)
2979 #define check_slabp(x,y) do { } while(0)
2982 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2985 struct kmem_list3 *l3;
2986 struct array_cache *ac;
2991 node = numa_node_id();
2992 ac = cpu_cache_get(cachep);
2993 batchcount = ac->batchcount;
2994 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2996 * If there was little recent activity on this cache, then
2997 * perform only a partial refill. Otherwise we could generate
3000 batchcount = BATCHREFILL_LIMIT;
3002 l3 = cachep->nodelists[node];
3004 BUG_ON(ac->avail > 0 || !l3);
3005 spin_lock(&l3->list_lock);
3007 /* See if we can refill from the shared array */
3008 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
3011 while (batchcount > 0) {
3012 struct list_head *entry;
3014 /* Get slab alloc is to come from. */
3015 entry = l3->slabs_partial.next;
3016 if (entry == &l3->slabs_partial) {
3017 l3->free_touched = 1;
3018 entry = l3->slabs_free.next;
3019 if (entry == &l3->slabs_free)
3023 slabp = list_entry(entry, struct slab, list);
3024 check_slabp(cachep, slabp);
3025 check_spinlock_acquired(cachep);
3028 * The slab was either on partial or free list so
3029 * there must be at least one object available for
3032 BUG_ON(slabp->inuse >= cachep->num);
3034 while (slabp->inuse < cachep->num && batchcount--) {
3035 STATS_INC_ALLOCED(cachep);
3036 STATS_INC_ACTIVE(cachep);
3037 STATS_SET_HIGH(cachep);
3039 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3042 check_slabp(cachep, slabp);
3044 /* move slabp to correct slabp list: */
3045 list_del(&slabp->list);
3046 if (slabp->free == BUFCTL_END)
3047 list_add(&slabp->list, &l3->slabs_full);
3049 list_add(&slabp->list, &l3->slabs_partial);
3053 l3->free_objects -= ac->avail;
3055 spin_unlock(&l3->list_lock);
3057 if (unlikely(!ac->avail)) {
3059 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3061 /* cache_grow can reenable interrupts, then ac could change. */
3062 ac = cpu_cache_get(cachep);
3063 if (!x && ac->avail == 0) /* no objects in sight? abort */
3066 if (!ac->avail) /* objects refilled by interrupt? */
3070 return ac->entry[--ac->avail];
3073 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3076 might_sleep_if(flags & __GFP_WAIT);
3078 kmem_flagcheck(cachep, flags);
3083 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3084 gfp_t flags, void *objp, void *caller)
3088 if (cachep->flags & SLAB_POISON) {
3089 #ifdef CONFIG_DEBUG_PAGEALLOC
3090 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3091 kernel_map_pages(virt_to_page(objp),
3092 cachep->buffer_size / PAGE_SIZE, 1);
3094 check_poison_obj(cachep, objp);
3096 check_poison_obj(cachep, objp);
3098 poison_obj(cachep, objp, POISON_INUSE);
3100 if (cachep->flags & SLAB_STORE_USER)
3101 *dbg_userword(cachep, objp) = caller;
3103 if (cachep->flags & SLAB_RED_ZONE) {
3104 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3105 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3106 slab_error(cachep, "double free, or memory outside"
3107 " object was overwritten");
3109 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3110 objp, *dbg_redzone1(cachep, objp),
3111 *dbg_redzone2(cachep, objp));
3113 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3114 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3116 #ifdef CONFIG_DEBUG_SLAB_LEAK
3121 slabp = page_get_slab(virt_to_head_page(objp));
3122 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3123 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3126 objp += obj_offset(cachep);
3127 if (cachep->ctor && cachep->flags & SLAB_POISON)
3129 #if ARCH_SLAB_MINALIGN
3130 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3131 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3132 objp, ARCH_SLAB_MINALIGN);
3138 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3141 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3143 if (cachep == &cache_cache)
3146 return should_failslab(obj_size(cachep), flags);
3149 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3152 struct array_cache *ac;
3156 ac = cpu_cache_get(cachep);
3157 if (likely(ac->avail)) {
3158 STATS_INC_ALLOCHIT(cachep);
3160 objp = ac->entry[--ac->avail];
3162 STATS_INC_ALLOCMISS(cachep);
3163 objp = cache_alloc_refill(cachep, flags);
3166 * To avoid a false negative, if an object that is in one of the
3167 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3168 * treat the array pointers as a reference to the object.
3170 kmemleak_erase(&ac->entry[ac->avail]);
3176 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3178 * If we are in_interrupt, then process context, including cpusets and
3179 * mempolicy, may not apply and should not be used for allocation policy.
3181 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3183 int nid_alloc, nid_here;
3185 if (in_interrupt() || (flags & __GFP_THISNODE))
3187 nid_alloc = nid_here = numa_node_id();
3188 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3189 nid_alloc = cpuset_mem_spread_node();
3190 else if (current->mempolicy)
3191 nid_alloc = slab_node(current->mempolicy);
3192 if (nid_alloc != nid_here)
3193 return ____cache_alloc_node(cachep, flags, nid_alloc);
3198 * Fallback function if there was no memory available and no objects on a
3199 * certain node and fall back is permitted. First we scan all the
3200 * available nodelists for available objects. If that fails then we
3201 * perform an allocation without specifying a node. This allows the page
3202 * allocator to do its reclaim / fallback magic. We then insert the
3203 * slab into the proper nodelist and then allocate from it.
3205 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3207 struct zonelist *zonelist;
3211 enum zone_type high_zoneidx = gfp_zone(flags);
3215 if (flags & __GFP_THISNODE)
3218 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3219 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3223 * Look through allowed nodes for objects available
3224 * from existing per node queues.
3226 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3227 nid = zone_to_nid(zone);
3229 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3230 cache->nodelists[nid] &&
3231 cache->nodelists[nid]->free_objects) {
3232 obj = ____cache_alloc_node(cache,
3233 flags | GFP_THISNODE, nid);
3241 * This allocation will be performed within the constraints
3242 * of the current cpuset / memory policy requirements.
3243 * We may trigger various forms of reclaim on the allowed
3244 * set and go into memory reserves if necessary.
3246 if (local_flags & __GFP_WAIT)
3248 kmem_flagcheck(cache, flags);
3249 obj = kmem_getpages(cache, local_flags, -1);
3250 if (local_flags & __GFP_WAIT)
3251 local_irq_disable();
3254 * Insert into the appropriate per node queues
3256 nid = page_to_nid(virt_to_page(obj));
3257 if (cache_grow(cache, flags, nid, obj)) {
3258 obj = ____cache_alloc_node(cache,
3259 flags | GFP_THISNODE, nid);
3262 * Another processor may allocate the
3263 * objects in the slab since we are
3264 * not holding any locks.
3268 /* cache_grow already freed obj */
3277 * A interface to enable slab creation on nodeid
3279 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3282 struct list_head *entry;
3284 struct kmem_list3 *l3;
3288 l3 = cachep->nodelists[nodeid];
3293 spin_lock(&l3->list_lock);
3294 entry = l3->slabs_partial.next;
3295 if (entry == &l3->slabs_partial) {
3296 l3->free_touched = 1;
3297 entry = l3->slabs_free.next;
3298 if (entry == &l3->slabs_free)
3302 slabp = list_entry(entry, struct slab, list);
3303 check_spinlock_acquired_node(cachep, nodeid);
3304 check_slabp(cachep, slabp);
3306 STATS_INC_NODEALLOCS(cachep);
3307 STATS_INC_ACTIVE(cachep);
3308 STATS_SET_HIGH(cachep);
3310 BUG_ON(slabp->inuse == cachep->num);
3312 obj = slab_get_obj(cachep, slabp, nodeid);
3313 check_slabp(cachep, slabp);
3315 /* move slabp to correct slabp list: */
3316 list_del(&slabp->list);
3318 if (slabp->free == BUFCTL_END)
3319 list_add(&slabp->list, &l3->slabs_full);
3321 list_add(&slabp->list, &l3->slabs_partial);
3323 spin_unlock(&l3->list_lock);
3327 spin_unlock(&l3->list_lock);
3328 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3332 return fallback_alloc(cachep, flags);
3339 * kmem_cache_alloc_node - Allocate an object on the specified node
3340 * @cachep: The cache to allocate from.
3341 * @flags: See kmalloc().
3342 * @nodeid: node number of the target node.
3343 * @caller: return address of caller, used for debug information
3345 * Identical to kmem_cache_alloc but it will allocate memory on the given
3346 * node, which can improve the performance for cpu bound structures.
3348 * Fallback to other node is possible if __GFP_THISNODE is not set.
3350 static __always_inline void *
3351 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3354 unsigned long save_flags;
3357 lockdep_trace_alloc(flags);
3359 if (slab_should_failslab(cachep, flags))
3362 cache_alloc_debugcheck_before(cachep, flags);
3363 local_irq_save(save_flags);
3365 if (unlikely(nodeid == -1))
3366 nodeid = numa_node_id();
3368 if (unlikely(!cachep->nodelists[nodeid])) {
3369 /* Node not bootstrapped yet */
3370 ptr = fallback_alloc(cachep, flags);
3374 if (nodeid == numa_node_id()) {
3376 * Use the locally cached objects if possible.
3377 * However ____cache_alloc does not allow fallback
3378 * to other nodes. It may fail while we still have
3379 * objects on other nodes available.
3381 ptr = ____cache_alloc(cachep, flags);
3385 /* ___cache_alloc_node can fall back to other nodes */
3386 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3388 local_irq_restore(save_flags);
3389 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3390 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3393 if (unlikely((flags & __GFP_ZERO) && ptr))
3394 memset(ptr, 0, obj_size(cachep));
3399 static __always_inline void *
3400 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3404 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3405 objp = alternate_node_alloc(cache, flags);
3409 objp = ____cache_alloc(cache, flags);
3412 * We may just have run out of memory on the local node.
3413 * ____cache_alloc_node() knows how to locate memory on other nodes
3416 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3423 static __always_inline void *
3424 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3426 return ____cache_alloc(cachep, flags);
3429 #endif /* CONFIG_NUMA */
3431 static __always_inline void *
3432 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3434 unsigned long save_flags;
3437 lockdep_trace_alloc(flags);
3439 if (slab_should_failslab(cachep, flags))
3442 cache_alloc_debugcheck_before(cachep, flags);
3443 local_irq_save(save_flags);
3444 objp = __do_cache_alloc(cachep, flags);
3445 local_irq_restore(save_flags);
3446 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3447 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3451 if (unlikely((flags & __GFP_ZERO) && objp))
3452 memset(objp, 0, obj_size(cachep));
3458 * Caller needs to acquire correct kmem_list's list_lock
3460 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3464 struct kmem_list3 *l3;
3466 for (i = 0; i < nr_objects; i++) {
3467 void *objp = objpp[i];
3470 slabp = virt_to_slab(objp);
3471 l3 = cachep->nodelists[node];
3472 list_del(&slabp->list);
3473 check_spinlock_acquired_node(cachep, node);
3474 check_slabp(cachep, slabp);
3475 slab_put_obj(cachep, slabp, objp, node);
3476 STATS_DEC_ACTIVE(cachep);
3478 check_slabp(cachep, slabp);
3480 /* fixup slab chains */
3481 if (slabp->inuse == 0) {
3482 if (l3->free_objects > l3->free_limit) {
3483 l3->free_objects -= cachep->num;
3484 /* No need to drop any previously held
3485 * lock here, even if we have a off-slab slab
3486 * descriptor it is guaranteed to come from
3487 * a different cache, refer to comments before
3490 slab_destroy(cachep, slabp);
3492 list_add(&slabp->list, &l3->slabs_free);
3495 /* Unconditionally move a slab to the end of the
3496 * partial list on free - maximum time for the
3497 * other objects to be freed, too.
3499 list_add_tail(&slabp->list, &l3->slabs_partial);
3504 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3507 struct kmem_list3 *l3;
3508 int node = numa_node_id();
3510 batchcount = ac->batchcount;
3512 BUG_ON(!batchcount || batchcount > ac->avail);
3515 l3 = cachep->nodelists[node];
3516 spin_lock(&l3->list_lock);
3518 struct array_cache *shared_array = l3->shared;
3519 int max = shared_array->limit - shared_array->avail;
3521 if (batchcount > max)
3523 memcpy(&(shared_array->entry[shared_array->avail]),
3524 ac->entry, sizeof(void *) * batchcount);
3525 shared_array->avail += batchcount;
3530 free_block(cachep, ac->entry, batchcount, node);
3535 struct list_head *p;
3537 p = l3->slabs_free.next;
3538 while (p != &(l3->slabs_free)) {
3541 slabp = list_entry(p, struct slab, list);
3542 BUG_ON(slabp->inuse);
3547 STATS_SET_FREEABLE(cachep, i);
3550 spin_unlock(&l3->list_lock);
3551 ac->avail -= batchcount;
3552 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3556 * Release an obj back to its cache. If the obj has a constructed state, it must
3557 * be in this state _before_ it is released. Called with disabled ints.
3559 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3561 struct array_cache *ac = cpu_cache_get(cachep);
3564 kmemleak_free_recursive(objp, cachep->flags);
3565 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3568 * Skip calling cache_free_alien() when the platform is not numa.
3569 * This will avoid cache misses that happen while accessing slabp (which
3570 * is per page memory reference) to get nodeid. Instead use a global
3571 * variable to skip the call, which is mostly likely to be present in
3574 if (numa_platform && cache_free_alien(cachep, objp))
3577 if (likely(ac->avail < ac->limit)) {
3578 STATS_INC_FREEHIT(cachep);
3579 ac->entry[ac->avail++] = objp;
3582 STATS_INC_FREEMISS(cachep);
3583 cache_flusharray(cachep, ac);
3584 ac->entry[ac->avail++] = objp;
3589 * kmem_cache_alloc - Allocate an object
3590 * @cachep: The cache to allocate from.
3591 * @flags: See kmalloc().
3593 * Allocate an object from this cache. The flags are only relevant
3594 * if the cache has no available objects.
3596 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3598 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3600 trace_kmem_cache_alloc(_RET_IP_, ret,
3601 obj_size(cachep), cachep->buffer_size, flags);
3605 EXPORT_SYMBOL(kmem_cache_alloc);
3607 #ifdef CONFIG_KMEMTRACE
3608 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3610 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3612 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3616 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3617 * @cachep: the cache we're checking against
3618 * @ptr: pointer to validate
3620 * This verifies that the untrusted pointer looks sane;
3621 * it is _not_ a guarantee that the pointer is actually
3622 * part of the slab cache in question, but it at least
3623 * validates that the pointer can be dereferenced and
3624 * looks half-way sane.
3626 * Currently only used for dentry validation.
3628 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3630 unsigned long addr = (unsigned long)ptr;
3631 unsigned long min_addr = PAGE_OFFSET;
3632 unsigned long align_mask = BYTES_PER_WORD - 1;
3633 unsigned long size = cachep->buffer_size;
3636 if (unlikely(addr < min_addr))
3638 if (unlikely(addr > (unsigned long)high_memory - size))
3640 if (unlikely(addr & align_mask))
3642 if (unlikely(!kern_addr_valid(addr)))
3644 if (unlikely(!kern_addr_valid(addr + size - 1)))
3646 page = virt_to_page(ptr);
3647 if (unlikely(!PageSlab(page)))
3649 if (unlikely(page_get_cache(page) != cachep))
3657 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3659 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3660 __builtin_return_address(0));
3662 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3663 obj_size(cachep), cachep->buffer_size,
3668 EXPORT_SYMBOL(kmem_cache_alloc_node);
3670 #ifdef CONFIG_KMEMTRACE
3671 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3675 return __cache_alloc_node(cachep, flags, nodeid,
3676 __builtin_return_address(0));
3678 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3681 static __always_inline void *
3682 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3684 struct kmem_cache *cachep;
3687 cachep = kmem_find_general_cachep(size, flags);
3688 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3690 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3692 trace_kmalloc_node((unsigned long) caller, ret,
3693 size, cachep->buffer_size, flags, node);
3698 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3699 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3701 return __do_kmalloc_node(size, flags, node,
3702 __builtin_return_address(0));
3704 EXPORT_SYMBOL(__kmalloc_node);
3706 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3707 int node, unsigned long caller)
3709 return __do_kmalloc_node(size, flags, node, (void *)caller);
3711 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3713 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3715 return __do_kmalloc_node(size, flags, node, NULL);
3717 EXPORT_SYMBOL(__kmalloc_node);
3718 #endif /* CONFIG_DEBUG_SLAB */
3719 #endif /* CONFIG_NUMA */
3722 * __do_kmalloc - allocate memory
3723 * @size: how many bytes of memory are required.
3724 * @flags: the type of memory to allocate (see kmalloc).
3725 * @caller: function caller for debug tracking of the caller
3727 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3730 struct kmem_cache *cachep;
3733 /* If you want to save a few bytes .text space: replace
3735 * Then kmalloc uses the uninlined functions instead of the inline
3738 cachep = __find_general_cachep(size, flags);
3739 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3741 ret = __cache_alloc(cachep, flags, caller);
3743 trace_kmalloc((unsigned long) caller, ret,
3744 size, cachep->buffer_size, flags);
3750 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3751 void *__kmalloc(size_t size, gfp_t flags)
3753 return __do_kmalloc(size, flags, __builtin_return_address(0));
3755 EXPORT_SYMBOL(__kmalloc);
3757 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3759 return __do_kmalloc(size, flags, (void *)caller);
3761 EXPORT_SYMBOL(__kmalloc_track_caller);
3764 void *__kmalloc(size_t size, gfp_t flags)
3766 return __do_kmalloc(size, flags, NULL);
3768 EXPORT_SYMBOL(__kmalloc);
3772 * kmem_cache_free - Deallocate an object
3773 * @cachep: The cache the allocation was from.
3774 * @objp: The previously allocated object.
3776 * Free an object which was previously allocated from this
3779 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3781 unsigned long flags;
3783 local_irq_save(flags);
3784 debug_check_no_locks_freed(objp, obj_size(cachep));
3785 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3786 debug_check_no_obj_freed(objp, obj_size(cachep));
3787 __cache_free(cachep, objp);
3788 local_irq_restore(flags);
3790 trace_kmem_cache_free(_RET_IP_, objp);
3792 EXPORT_SYMBOL(kmem_cache_free);
3795 * kfree - free previously allocated memory
3796 * @objp: pointer returned by kmalloc.
3798 * If @objp is NULL, no operation is performed.
3800 * Don't free memory not originally allocated by kmalloc()
3801 * or you will run into trouble.
3803 void kfree(const void *objp)
3805 struct kmem_cache *c;
3806 unsigned long flags;
3808 trace_kfree(_RET_IP_, objp);
3810 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3812 local_irq_save(flags);
3813 kfree_debugcheck(objp);
3814 c = virt_to_cache(objp);
3815 debug_check_no_locks_freed(objp, obj_size(c));
3816 debug_check_no_obj_freed(objp, obj_size(c));
3817 __cache_free(c, (void *)objp);
3818 local_irq_restore(flags);
3820 EXPORT_SYMBOL(kfree);
3822 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3824 return obj_size(cachep);
3826 EXPORT_SYMBOL(kmem_cache_size);
3828 const char *kmem_cache_name(struct kmem_cache *cachep)
3830 return cachep->name;
3832 EXPORT_SYMBOL_GPL(kmem_cache_name);
3835 * This initializes kmem_list3 or resizes various caches for all nodes.
3837 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3840 struct kmem_list3 *l3;
3841 struct array_cache *new_shared;
3842 struct array_cache **new_alien = NULL;
3844 for_each_online_node(node) {
3846 if (use_alien_caches) {
3847 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3853 if (cachep->shared) {
3854 new_shared = alloc_arraycache(node,
3855 cachep->shared*cachep->batchcount,
3858 free_alien_cache(new_alien);
3863 l3 = cachep->nodelists[node];
3865 struct array_cache *shared = l3->shared;
3867 spin_lock_irq(&l3->list_lock);
3870 free_block(cachep, shared->entry,
3871 shared->avail, node);
3873 l3->shared = new_shared;
3875 l3->alien = new_alien;
3878 l3->free_limit = (1 + nr_cpus_node(node)) *
3879 cachep->batchcount + cachep->num;
3880 spin_unlock_irq(&l3->list_lock);
3882 free_alien_cache(new_alien);
3885 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3887 free_alien_cache(new_alien);
3892 kmem_list3_init(l3);
3893 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3894 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3895 l3->shared = new_shared;
3896 l3->alien = new_alien;
3897 l3->free_limit = (1 + nr_cpus_node(node)) *
3898 cachep->batchcount + cachep->num;
3899 cachep->nodelists[node] = l3;
3904 if (!cachep->next.next) {
3905 /* Cache is not active yet. Roll back what we did */
3908 if (cachep->nodelists[node]) {
3909 l3 = cachep->nodelists[node];
3912 free_alien_cache(l3->alien);
3914 cachep->nodelists[node] = NULL;
3922 struct ccupdate_struct {
3923 struct kmem_cache *cachep;
3924 struct array_cache *new[NR_CPUS];
3927 static void do_ccupdate_local(void *info)
3929 struct ccupdate_struct *new = info;
3930 struct array_cache *old;
3933 old = cpu_cache_get(new->cachep);
3935 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3936 new->new[smp_processor_id()] = old;
3939 /* Always called with the cache_chain_mutex held */
3940 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3941 int batchcount, int shared, gfp_t gfp)
3943 struct ccupdate_struct *new;
3946 new = kzalloc(sizeof(*new), gfp);
3950 for_each_online_cpu(i) {
3951 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3954 for (i--; i >= 0; i--)
3960 new->cachep = cachep;
3962 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3965 cachep->batchcount = batchcount;
3966 cachep->limit = limit;
3967 cachep->shared = shared;
3969 for_each_online_cpu(i) {
3970 struct array_cache *ccold = new->new[i];
3973 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3974 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3975 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3979 return alloc_kmemlist(cachep, gfp);
3982 /* Called with cache_chain_mutex held always */
3983 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3989 * The head array serves three purposes:
3990 * - create a LIFO ordering, i.e. return objects that are cache-warm
3991 * - reduce the number of spinlock operations.
3992 * - reduce the number of linked list operations on the slab and
3993 * bufctl chains: array operations are cheaper.
3994 * The numbers are guessed, we should auto-tune as described by
3997 if (cachep->buffer_size > 131072)
3999 else if (cachep->buffer_size > PAGE_SIZE)
4001 else if (cachep->buffer_size > 1024)
4003 else if (cachep->buffer_size > 256)
4009 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4010 * allocation behaviour: Most allocs on one cpu, most free operations
4011 * on another cpu. For these cases, an efficient object passing between
4012 * cpus is necessary. This is provided by a shared array. The array
4013 * replaces Bonwick's magazine layer.
4014 * On uniprocessor, it's functionally equivalent (but less efficient)
4015 * to a larger limit. Thus disabled by default.
4018 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4023 * With debugging enabled, large batchcount lead to excessively long
4024 * periods with disabled local interrupts. Limit the batchcount
4029 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4031 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4032 cachep->name, -err);
4037 * Drain an array if it contains any elements taking the l3 lock only if
4038 * necessary. Note that the l3 listlock also protects the array_cache
4039 * if drain_array() is used on the shared array.
4041 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4042 struct array_cache *ac, int force, int node)
4046 if (!ac || !ac->avail)
4048 if (ac->touched && !force) {
4051 spin_lock_irq(&l3->list_lock);
4053 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4054 if (tofree > ac->avail)
4055 tofree = (ac->avail + 1) / 2;
4056 free_block(cachep, ac->entry, tofree, node);
4057 ac->avail -= tofree;
4058 memmove(ac->entry, &(ac->entry[tofree]),
4059 sizeof(void *) * ac->avail);
4061 spin_unlock_irq(&l3->list_lock);
4066 * cache_reap - Reclaim memory from caches.
4067 * @w: work descriptor
4069 * Called from workqueue/eventd every few seconds.
4071 * - clear the per-cpu caches for this CPU.
4072 * - return freeable pages to the main free memory pool.
4074 * If we cannot acquire the cache chain mutex then just give up - we'll try
4075 * again on the next iteration.
4077 static void cache_reap(struct work_struct *w)
4079 struct kmem_cache *searchp;
4080 struct kmem_list3 *l3;
4081 int node = numa_node_id();
4082 struct delayed_work *work = to_delayed_work(w);
4084 if (!mutex_trylock(&cache_chain_mutex))
4085 /* Give up. Setup the next iteration. */
4088 list_for_each_entry(searchp, &cache_chain, next) {
4092 * We only take the l3 lock if absolutely necessary and we
4093 * have established with reasonable certainty that
4094 * we can do some work if the lock was obtained.
4096 l3 = searchp->nodelists[node];
4098 reap_alien(searchp, l3);
4100 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4103 * These are racy checks but it does not matter
4104 * if we skip one check or scan twice.
4106 if (time_after(l3->next_reap, jiffies))
4109 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4111 drain_array(searchp, l3, l3->shared, 0, node);
4113 if (l3->free_touched)
4114 l3->free_touched = 0;
4118 freed = drain_freelist(searchp, l3, (l3->free_limit +
4119 5 * searchp->num - 1) / (5 * searchp->num));
4120 STATS_ADD_REAPED(searchp, freed);
4126 mutex_unlock(&cache_chain_mutex);
4129 /* Set up the next iteration */
4130 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4133 #ifdef CONFIG_SLABINFO
4135 static void print_slabinfo_header(struct seq_file *m)
4138 * Output format version, so at least we can change it
4139 * without _too_ many complaints.
4142 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4144 seq_puts(m, "slabinfo - version: 2.1\n");
4146 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4147 "<objperslab> <pagesperslab>");
4148 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4149 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4151 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4152 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4153 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4158 static void *s_start(struct seq_file *m, loff_t *pos)
4162 mutex_lock(&cache_chain_mutex);
4164 print_slabinfo_header(m);
4166 return seq_list_start(&cache_chain, *pos);
4169 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4171 return seq_list_next(p, &cache_chain, pos);
4174 static void s_stop(struct seq_file *m, void *p)
4176 mutex_unlock(&cache_chain_mutex);
4179 static int s_show(struct seq_file *m, void *p)
4181 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4183 unsigned long active_objs;
4184 unsigned long num_objs;
4185 unsigned long active_slabs = 0;
4186 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4190 struct kmem_list3 *l3;
4194 for_each_online_node(node) {
4195 l3 = cachep->nodelists[node];
4200 spin_lock_irq(&l3->list_lock);
4202 list_for_each_entry(slabp, &l3->slabs_full, list) {
4203 if (slabp->inuse != cachep->num && !error)
4204 error = "slabs_full accounting error";
4205 active_objs += cachep->num;
4208 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4209 if (slabp->inuse == cachep->num && !error)
4210 error = "slabs_partial inuse accounting error";
4211 if (!slabp->inuse && !error)
4212 error = "slabs_partial/inuse accounting error";
4213 active_objs += slabp->inuse;
4216 list_for_each_entry(slabp, &l3->slabs_free, list) {
4217 if (slabp->inuse && !error)
4218 error = "slabs_free/inuse accounting error";
4221 free_objects += l3->free_objects;
4223 shared_avail += l3->shared->avail;
4225 spin_unlock_irq(&l3->list_lock);
4227 num_slabs += active_slabs;
4228 num_objs = num_slabs * cachep->num;
4229 if (num_objs - active_objs != free_objects && !error)
4230 error = "free_objects accounting error";
4232 name = cachep->name;
4234 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4236 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4237 name, active_objs, num_objs, cachep->buffer_size,
4238 cachep->num, (1 << cachep->gfporder));
4239 seq_printf(m, " : tunables %4u %4u %4u",
4240 cachep->limit, cachep->batchcount, cachep->shared);
4241 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4242 active_slabs, num_slabs, shared_avail);
4245 unsigned long high = cachep->high_mark;
4246 unsigned long allocs = cachep->num_allocations;
4247 unsigned long grown = cachep->grown;
4248 unsigned long reaped = cachep->reaped;
4249 unsigned long errors = cachep->errors;
4250 unsigned long max_freeable = cachep->max_freeable;
4251 unsigned long node_allocs = cachep->node_allocs;
4252 unsigned long node_frees = cachep->node_frees;
4253 unsigned long overflows = cachep->node_overflow;
4255 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4256 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4257 reaped, errors, max_freeable, node_allocs,
4258 node_frees, overflows);
4262 unsigned long allochit = atomic_read(&cachep->allochit);
4263 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4264 unsigned long freehit = atomic_read(&cachep->freehit);
4265 unsigned long freemiss = atomic_read(&cachep->freemiss);
4267 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4268 allochit, allocmiss, freehit, freemiss);
4276 * slabinfo_op - iterator that generates /proc/slabinfo
4285 * num-pages-per-slab
4286 * + further values on SMP and with statistics enabled
4289 static const struct seq_operations slabinfo_op = {
4296 #define MAX_SLABINFO_WRITE 128
4298 * slabinfo_write - Tuning for the slab allocator
4300 * @buffer: user buffer
4301 * @count: data length
4304 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4305 size_t count, loff_t *ppos)
4307 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4308 int limit, batchcount, shared, res;
4309 struct kmem_cache *cachep;
4311 if (count > MAX_SLABINFO_WRITE)
4313 if (copy_from_user(&kbuf, buffer, count))
4315 kbuf[MAX_SLABINFO_WRITE] = '\0';
4317 tmp = strchr(kbuf, ' ');
4322 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4325 /* Find the cache in the chain of caches. */
4326 mutex_lock(&cache_chain_mutex);
4328 list_for_each_entry(cachep, &cache_chain, next) {
4329 if (!strcmp(cachep->name, kbuf)) {
4330 if (limit < 1 || batchcount < 1 ||
4331 batchcount > limit || shared < 0) {
4334 res = do_tune_cpucache(cachep, limit,
4341 mutex_unlock(&cache_chain_mutex);
4347 static int slabinfo_open(struct inode *inode, struct file *file)
4349 return seq_open(file, &slabinfo_op);
4352 static const struct file_operations proc_slabinfo_operations = {
4353 .open = slabinfo_open,
4355 .write = slabinfo_write,
4356 .llseek = seq_lseek,
4357 .release = seq_release,
4360 #ifdef CONFIG_DEBUG_SLAB_LEAK
4362 static void *leaks_start(struct seq_file *m, loff_t *pos)
4364 mutex_lock(&cache_chain_mutex);
4365 return seq_list_start(&cache_chain, *pos);
4368 static inline int add_caller(unsigned long *n, unsigned long v)
4378 unsigned long *q = p + 2 * i;
4392 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4398 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4404 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4405 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4407 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4412 static void show_symbol(struct seq_file *m, unsigned long address)
4414 #ifdef CONFIG_KALLSYMS
4415 unsigned long offset, size;
4416 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4418 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4419 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4421 seq_printf(m, " [%s]", modname);
4425 seq_printf(m, "%p", (void *)address);
4428 static int leaks_show(struct seq_file *m, void *p)
4430 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4432 struct kmem_list3 *l3;
4434 unsigned long *n = m->private;
4438 if (!(cachep->flags & SLAB_STORE_USER))
4440 if (!(cachep->flags & SLAB_RED_ZONE))
4443 /* OK, we can do it */
4447 for_each_online_node(node) {
4448 l3 = cachep->nodelists[node];
4453 spin_lock_irq(&l3->list_lock);
4455 list_for_each_entry(slabp, &l3->slabs_full, list)
4456 handle_slab(n, cachep, slabp);
4457 list_for_each_entry(slabp, &l3->slabs_partial, list)
4458 handle_slab(n, cachep, slabp);
4459 spin_unlock_irq(&l3->list_lock);
4461 name = cachep->name;
4463 /* Increase the buffer size */
4464 mutex_unlock(&cache_chain_mutex);
4465 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4467 /* Too bad, we are really out */
4469 mutex_lock(&cache_chain_mutex);
4472 *(unsigned long *)m->private = n[0] * 2;
4474 mutex_lock(&cache_chain_mutex);
4475 /* Now make sure this entry will be retried */
4479 for (i = 0; i < n[1]; i++) {
4480 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4481 show_symbol(m, n[2*i+2]);
4488 static const struct seq_operations slabstats_op = {
4489 .start = leaks_start,
4495 static int slabstats_open(struct inode *inode, struct file *file)
4497 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4500 ret = seq_open(file, &slabstats_op);
4502 struct seq_file *m = file->private_data;
4503 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4512 static const struct file_operations proc_slabstats_operations = {
4513 .open = slabstats_open,
4515 .llseek = seq_lseek,
4516 .release = seq_release_private,
4520 static int __init slab_proc_init(void)
4522 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4523 #ifdef CONFIG_DEBUG_SLAB_LEAK
4524 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4528 module_init(slab_proc_init);
4532 * ksize - get the actual amount of memory allocated for a given object
4533 * @objp: Pointer to the object
4535 * kmalloc may internally round up allocations and return more memory
4536 * than requested. ksize() can be used to determine the actual amount of
4537 * memory allocated. The caller may use this additional memory, even though
4538 * a smaller amount of memory was initially specified with the kmalloc call.
4539 * The caller must guarantee that objp points to a valid object previously
4540 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4541 * must not be freed during the duration of the call.
4543 size_t ksize(const void *objp)
4546 if (unlikely(objp == ZERO_SIZE_PTR))
4549 return obj_size(virt_to_cache(objp));
4551 EXPORT_SYMBOL(ksize);