[ARM] 5224/2: PXA SSP: Introduce register accessors
[linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Avi Kivity   <avi@qumranet.com>
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16
17 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "i8254.h"
21 #include "tss.h"
22
23 #include <linux/clocksource.h>
24 #include <linux/kvm.h>
25 #include <linux/fs.h>
26 #include <linux/vmalloc.h>
27 #include <linux/module.h>
28 #include <linux/mman.h>
29 #include <linux/highmem.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/msr.h>
33 #include <asm/desc.h>
34
35 #define MAX_IO_MSRS 256
36 #define CR0_RESERVED_BITS                                               \
37         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
38                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
39                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
40 #define CR4_RESERVED_BITS                                               \
41         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
42                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
43                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
44                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
45
46 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
47 /* EFER defaults:
48  * - enable syscall per default because its emulated by KVM
49  * - enable LME and LMA per default on 64 bit KVM
50  */
51 #ifdef CONFIG_X86_64
52 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
53 #else
54 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
55 #endif
56
57 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59
60 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
61                                     struct kvm_cpuid_entry2 __user *entries);
62
63 struct kvm_x86_ops *kvm_x86_ops;
64
65 struct kvm_stats_debugfs_item debugfs_entries[] = {
66         { "pf_fixed", VCPU_STAT(pf_fixed) },
67         { "pf_guest", VCPU_STAT(pf_guest) },
68         { "tlb_flush", VCPU_STAT(tlb_flush) },
69         { "invlpg", VCPU_STAT(invlpg) },
70         { "exits", VCPU_STAT(exits) },
71         { "io_exits", VCPU_STAT(io_exits) },
72         { "mmio_exits", VCPU_STAT(mmio_exits) },
73         { "signal_exits", VCPU_STAT(signal_exits) },
74         { "irq_window", VCPU_STAT(irq_window_exits) },
75         { "nmi_window", VCPU_STAT(nmi_window_exits) },
76         { "halt_exits", VCPU_STAT(halt_exits) },
77         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
78         { "hypercalls", VCPU_STAT(hypercalls) },
79         { "request_irq", VCPU_STAT(request_irq_exits) },
80         { "irq_exits", VCPU_STAT(irq_exits) },
81         { "host_state_reload", VCPU_STAT(host_state_reload) },
82         { "efer_reload", VCPU_STAT(efer_reload) },
83         { "fpu_reload", VCPU_STAT(fpu_reload) },
84         { "insn_emulation", VCPU_STAT(insn_emulation) },
85         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
86         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
87         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
88         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
89         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
90         { "mmu_flooded", VM_STAT(mmu_flooded) },
91         { "mmu_recycled", VM_STAT(mmu_recycled) },
92         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
93         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
94         { "largepages", VM_STAT(lpages) },
95         { NULL }
96 };
97
98
99 unsigned long segment_base(u16 selector)
100 {
101         struct descriptor_table gdt;
102         struct desc_struct *d;
103         unsigned long table_base;
104         unsigned long v;
105
106         if (selector == 0)
107                 return 0;
108
109         asm("sgdt %0" : "=m"(gdt));
110         table_base = gdt.base;
111
112         if (selector & 4) {           /* from ldt */
113                 u16 ldt_selector;
114
115                 asm("sldt %0" : "=g"(ldt_selector));
116                 table_base = segment_base(ldt_selector);
117         }
118         d = (struct desc_struct *)(table_base + (selector & ~7));
119         v = d->base0 | ((unsigned long)d->base1 << 16) |
120                 ((unsigned long)d->base2 << 24);
121 #ifdef CONFIG_X86_64
122         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
123                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
124 #endif
125         return v;
126 }
127 EXPORT_SYMBOL_GPL(segment_base);
128
129 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
130 {
131         if (irqchip_in_kernel(vcpu->kvm))
132                 return vcpu->arch.apic_base;
133         else
134                 return vcpu->arch.apic_base;
135 }
136 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
137
138 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
139 {
140         /* TODO: reserve bits check */
141         if (irqchip_in_kernel(vcpu->kvm))
142                 kvm_lapic_set_base(vcpu, data);
143         else
144                 vcpu->arch.apic_base = data;
145 }
146 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
147
148 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
149 {
150         WARN_ON(vcpu->arch.exception.pending);
151         vcpu->arch.exception.pending = true;
152         vcpu->arch.exception.has_error_code = false;
153         vcpu->arch.exception.nr = nr;
154 }
155 EXPORT_SYMBOL_GPL(kvm_queue_exception);
156
157 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
158                            u32 error_code)
159 {
160         ++vcpu->stat.pf_guest;
161         if (vcpu->arch.exception.pending) {
162                 if (vcpu->arch.exception.nr == PF_VECTOR) {
163                         printk(KERN_DEBUG "kvm: inject_page_fault:"
164                                         " double fault 0x%lx\n", addr);
165                         vcpu->arch.exception.nr = DF_VECTOR;
166                         vcpu->arch.exception.error_code = 0;
167                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
168                         /* triple fault -> shutdown */
169                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
170                 }
171                 return;
172         }
173         vcpu->arch.cr2 = addr;
174         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
175 }
176
177 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
178 {
179         vcpu->arch.nmi_pending = 1;
180 }
181 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
182
183 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
184 {
185         WARN_ON(vcpu->arch.exception.pending);
186         vcpu->arch.exception.pending = true;
187         vcpu->arch.exception.has_error_code = true;
188         vcpu->arch.exception.nr = nr;
189         vcpu->arch.exception.error_code = error_code;
190 }
191 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
192
193 static void __queue_exception(struct kvm_vcpu *vcpu)
194 {
195         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
196                                      vcpu->arch.exception.has_error_code,
197                                      vcpu->arch.exception.error_code);
198 }
199
200 /*
201  * Load the pae pdptrs.  Return true is they are all valid.
202  */
203 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
204 {
205         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
206         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
207         int i;
208         int ret;
209         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
210
211         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
212                                   offset * sizeof(u64), sizeof(pdpte));
213         if (ret < 0) {
214                 ret = 0;
215                 goto out;
216         }
217         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
218                 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
219                         ret = 0;
220                         goto out;
221                 }
222         }
223         ret = 1;
224
225         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
226 out:
227
228         return ret;
229 }
230 EXPORT_SYMBOL_GPL(load_pdptrs);
231
232 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
233 {
234         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
235         bool changed = true;
236         int r;
237
238         if (is_long_mode(vcpu) || !is_pae(vcpu))
239                 return false;
240
241         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
242         if (r < 0)
243                 goto out;
244         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
245 out:
246
247         return changed;
248 }
249
250 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
251 {
252         if (cr0 & CR0_RESERVED_BITS) {
253                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
254                        cr0, vcpu->arch.cr0);
255                 kvm_inject_gp(vcpu, 0);
256                 return;
257         }
258
259         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
260                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
261                 kvm_inject_gp(vcpu, 0);
262                 return;
263         }
264
265         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
266                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
267                        "and a clear PE flag\n");
268                 kvm_inject_gp(vcpu, 0);
269                 return;
270         }
271
272         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
273 #ifdef CONFIG_X86_64
274                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
275                         int cs_db, cs_l;
276
277                         if (!is_pae(vcpu)) {
278                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
279                                        "in long mode while PAE is disabled\n");
280                                 kvm_inject_gp(vcpu, 0);
281                                 return;
282                         }
283                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
284                         if (cs_l) {
285                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
286                                        "in long mode while CS.L == 1\n");
287                                 kvm_inject_gp(vcpu, 0);
288                                 return;
289
290                         }
291                 } else
292 #endif
293                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
294                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
295                                "reserved bits\n");
296                         kvm_inject_gp(vcpu, 0);
297                         return;
298                 }
299
300         }
301
302         kvm_x86_ops->set_cr0(vcpu, cr0);
303         vcpu->arch.cr0 = cr0;
304
305         kvm_mmu_reset_context(vcpu);
306         return;
307 }
308 EXPORT_SYMBOL_GPL(kvm_set_cr0);
309
310 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
311 {
312         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
313         KVMTRACE_1D(LMSW, vcpu,
314                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
315                     handler);
316 }
317 EXPORT_SYMBOL_GPL(kvm_lmsw);
318
319 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
320 {
321         if (cr4 & CR4_RESERVED_BITS) {
322                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
323                 kvm_inject_gp(vcpu, 0);
324                 return;
325         }
326
327         if (is_long_mode(vcpu)) {
328                 if (!(cr4 & X86_CR4_PAE)) {
329                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
330                                "in long mode\n");
331                         kvm_inject_gp(vcpu, 0);
332                         return;
333                 }
334         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
335                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
336                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
337                 kvm_inject_gp(vcpu, 0);
338                 return;
339         }
340
341         if (cr4 & X86_CR4_VMXE) {
342                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
343                 kvm_inject_gp(vcpu, 0);
344                 return;
345         }
346         kvm_x86_ops->set_cr4(vcpu, cr4);
347         vcpu->arch.cr4 = cr4;
348         kvm_mmu_reset_context(vcpu);
349 }
350 EXPORT_SYMBOL_GPL(kvm_set_cr4);
351
352 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
353 {
354         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
355                 kvm_mmu_flush_tlb(vcpu);
356                 return;
357         }
358
359         if (is_long_mode(vcpu)) {
360                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
361                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
362                         kvm_inject_gp(vcpu, 0);
363                         return;
364                 }
365         } else {
366                 if (is_pae(vcpu)) {
367                         if (cr3 & CR3_PAE_RESERVED_BITS) {
368                                 printk(KERN_DEBUG
369                                        "set_cr3: #GP, reserved bits\n");
370                                 kvm_inject_gp(vcpu, 0);
371                                 return;
372                         }
373                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
374                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
375                                        "reserved bits\n");
376                                 kvm_inject_gp(vcpu, 0);
377                                 return;
378                         }
379                 }
380                 /*
381                  * We don't check reserved bits in nonpae mode, because
382                  * this isn't enforced, and VMware depends on this.
383                  */
384         }
385
386         /*
387          * Does the new cr3 value map to physical memory? (Note, we
388          * catch an invalid cr3 even in real-mode, because it would
389          * cause trouble later on when we turn on paging anyway.)
390          *
391          * A real CPU would silently accept an invalid cr3 and would
392          * attempt to use it - with largely undefined (and often hard
393          * to debug) behavior on the guest side.
394          */
395         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
396                 kvm_inject_gp(vcpu, 0);
397         else {
398                 vcpu->arch.cr3 = cr3;
399                 vcpu->arch.mmu.new_cr3(vcpu);
400         }
401 }
402 EXPORT_SYMBOL_GPL(kvm_set_cr3);
403
404 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
405 {
406         if (cr8 & CR8_RESERVED_BITS) {
407                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
408                 kvm_inject_gp(vcpu, 0);
409                 return;
410         }
411         if (irqchip_in_kernel(vcpu->kvm))
412                 kvm_lapic_set_tpr(vcpu, cr8);
413         else
414                 vcpu->arch.cr8 = cr8;
415 }
416 EXPORT_SYMBOL_GPL(kvm_set_cr8);
417
418 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
419 {
420         if (irqchip_in_kernel(vcpu->kvm))
421                 return kvm_lapic_get_cr8(vcpu);
422         else
423                 return vcpu->arch.cr8;
424 }
425 EXPORT_SYMBOL_GPL(kvm_get_cr8);
426
427 /*
428  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
429  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
430  *
431  * This list is modified at module load time to reflect the
432  * capabilities of the host cpu.
433  */
434 static u32 msrs_to_save[] = {
435         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
436         MSR_K6_STAR,
437 #ifdef CONFIG_X86_64
438         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
439 #endif
440         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
441         MSR_IA32_PERF_STATUS,
442 };
443
444 static unsigned num_msrs_to_save;
445
446 static u32 emulated_msrs[] = {
447         MSR_IA32_MISC_ENABLE,
448 };
449
450 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
451 {
452         if (efer & efer_reserved_bits) {
453                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
454                        efer);
455                 kvm_inject_gp(vcpu, 0);
456                 return;
457         }
458
459         if (is_paging(vcpu)
460             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
461                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
462                 kvm_inject_gp(vcpu, 0);
463                 return;
464         }
465
466         kvm_x86_ops->set_efer(vcpu, efer);
467
468         efer &= ~EFER_LMA;
469         efer |= vcpu->arch.shadow_efer & EFER_LMA;
470
471         vcpu->arch.shadow_efer = efer;
472 }
473
474 void kvm_enable_efer_bits(u64 mask)
475 {
476        efer_reserved_bits &= ~mask;
477 }
478 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
479
480
481 /*
482  * Writes msr value into into the appropriate "register".
483  * Returns 0 on success, non-0 otherwise.
484  * Assumes vcpu_load() was already called.
485  */
486 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
487 {
488         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
489 }
490
491 /*
492  * Adapt set_msr() to msr_io()'s calling convention
493  */
494 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
495 {
496         return kvm_set_msr(vcpu, index, *data);
497 }
498
499 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
500 {
501         static int version;
502         struct pvclock_wall_clock wc;
503         struct timespec now, sys, boot;
504
505         if (!wall_clock)
506                 return;
507
508         version++;
509
510         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
511
512         /*
513          * The guest calculates current wall clock time by adding
514          * system time (updated by kvm_write_guest_time below) to the
515          * wall clock specified here.  guest system time equals host
516          * system time for us, thus we must fill in host boot time here.
517          */
518         now = current_kernel_time();
519         ktime_get_ts(&sys);
520         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
521
522         wc.sec = boot.tv_sec;
523         wc.nsec = boot.tv_nsec;
524         wc.version = version;
525
526         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
527
528         version++;
529         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
530 }
531
532 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
533 {
534         uint32_t quotient, remainder;
535
536         /* Don't try to replace with do_div(), this one calculates
537          * "(dividend << 32) / divisor" */
538         __asm__ ( "divl %4"
539                   : "=a" (quotient), "=d" (remainder)
540                   : "0" (0), "1" (dividend), "r" (divisor) );
541         return quotient;
542 }
543
544 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
545 {
546         uint64_t nsecs = 1000000000LL;
547         int32_t  shift = 0;
548         uint64_t tps64;
549         uint32_t tps32;
550
551         tps64 = tsc_khz * 1000LL;
552         while (tps64 > nsecs*2) {
553                 tps64 >>= 1;
554                 shift--;
555         }
556
557         tps32 = (uint32_t)tps64;
558         while (tps32 <= (uint32_t)nsecs) {
559                 tps32 <<= 1;
560                 shift++;
561         }
562
563         hv_clock->tsc_shift = shift;
564         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
565
566         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
567                  __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
568                  hv_clock->tsc_to_system_mul);
569 }
570
571 static void kvm_write_guest_time(struct kvm_vcpu *v)
572 {
573         struct timespec ts;
574         unsigned long flags;
575         struct kvm_vcpu_arch *vcpu = &v->arch;
576         void *shared_kaddr;
577
578         if ((!vcpu->time_page))
579                 return;
580
581         if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
582                 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
583                 vcpu->hv_clock_tsc_khz = tsc_khz;
584         }
585
586         /* Keep irq disabled to prevent changes to the clock */
587         local_irq_save(flags);
588         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
589                           &vcpu->hv_clock.tsc_timestamp);
590         ktime_get_ts(&ts);
591         local_irq_restore(flags);
592
593         /* With all the info we got, fill in the values */
594
595         vcpu->hv_clock.system_time = ts.tv_nsec +
596                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
597         /*
598          * The interface expects us to write an even number signaling that the
599          * update is finished. Since the guest won't see the intermediate
600          * state, we just increase by 2 at the end.
601          */
602         vcpu->hv_clock.version += 2;
603
604         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
605
606         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
607                sizeof(vcpu->hv_clock));
608
609         kunmap_atomic(shared_kaddr, KM_USER0);
610
611         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
612 }
613
614 static bool msr_mtrr_valid(unsigned msr)
615 {
616         switch (msr) {
617         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
618         case MSR_MTRRfix64K_00000:
619         case MSR_MTRRfix16K_80000:
620         case MSR_MTRRfix16K_A0000:
621         case MSR_MTRRfix4K_C0000:
622         case MSR_MTRRfix4K_C8000:
623         case MSR_MTRRfix4K_D0000:
624         case MSR_MTRRfix4K_D8000:
625         case MSR_MTRRfix4K_E0000:
626         case MSR_MTRRfix4K_E8000:
627         case MSR_MTRRfix4K_F0000:
628         case MSR_MTRRfix4K_F8000:
629         case MSR_MTRRdefType:
630         case MSR_IA32_CR_PAT:
631                 return true;
632         case 0x2f8:
633                 return true;
634         }
635         return false;
636 }
637
638 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
639 {
640         if (!msr_mtrr_valid(msr))
641                 return 1;
642
643         vcpu->arch.mtrr[msr - 0x200] = data;
644         return 0;
645 }
646
647 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
648 {
649         switch (msr) {
650         case MSR_EFER:
651                 set_efer(vcpu, data);
652                 break;
653         case MSR_IA32_MC0_STATUS:
654                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
655                        __func__, data);
656                 break;
657         case MSR_IA32_MCG_STATUS:
658                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
659                         __func__, data);
660                 break;
661         case MSR_IA32_MCG_CTL:
662                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
663                         __func__, data);
664                 break;
665         case MSR_IA32_UCODE_REV:
666         case MSR_IA32_UCODE_WRITE:
667                 break;
668         case 0x200 ... 0x2ff:
669                 return set_msr_mtrr(vcpu, msr, data);
670         case MSR_IA32_APICBASE:
671                 kvm_set_apic_base(vcpu, data);
672                 break;
673         case MSR_IA32_MISC_ENABLE:
674                 vcpu->arch.ia32_misc_enable_msr = data;
675                 break;
676         case MSR_KVM_WALL_CLOCK:
677                 vcpu->kvm->arch.wall_clock = data;
678                 kvm_write_wall_clock(vcpu->kvm, data);
679                 break;
680         case MSR_KVM_SYSTEM_TIME: {
681                 if (vcpu->arch.time_page) {
682                         kvm_release_page_dirty(vcpu->arch.time_page);
683                         vcpu->arch.time_page = NULL;
684                 }
685
686                 vcpu->arch.time = data;
687
688                 /* we verify if the enable bit is set... */
689                 if (!(data & 1))
690                         break;
691
692                 /* ...but clean it before doing the actual write */
693                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
694
695                 down_read(&current->mm->mmap_sem);
696                 vcpu->arch.time_page =
697                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
698                 up_read(&current->mm->mmap_sem);
699
700                 if (is_error_page(vcpu->arch.time_page)) {
701                         kvm_release_page_clean(vcpu->arch.time_page);
702                         vcpu->arch.time_page = NULL;
703                 }
704
705                 kvm_write_guest_time(vcpu);
706                 break;
707         }
708         default:
709                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
710                 return 1;
711         }
712         return 0;
713 }
714 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
715
716
717 /*
718  * Reads an msr value (of 'msr_index') into 'pdata'.
719  * Returns 0 on success, non-0 otherwise.
720  * Assumes vcpu_load() was already called.
721  */
722 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
723 {
724         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
725 }
726
727 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
728 {
729         if (!msr_mtrr_valid(msr))
730                 return 1;
731
732         *pdata = vcpu->arch.mtrr[msr - 0x200];
733         return 0;
734 }
735
736 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
737 {
738         u64 data;
739
740         switch (msr) {
741         case 0xc0010010: /* SYSCFG */
742         case 0xc0010015: /* HWCR */
743         case MSR_IA32_PLATFORM_ID:
744         case MSR_IA32_P5_MC_ADDR:
745         case MSR_IA32_P5_MC_TYPE:
746         case MSR_IA32_MC0_CTL:
747         case MSR_IA32_MCG_STATUS:
748         case MSR_IA32_MCG_CAP:
749         case MSR_IA32_MCG_CTL:
750         case MSR_IA32_MC0_MISC:
751         case MSR_IA32_MC0_MISC+4:
752         case MSR_IA32_MC0_MISC+8:
753         case MSR_IA32_MC0_MISC+12:
754         case MSR_IA32_MC0_MISC+16:
755         case MSR_IA32_UCODE_REV:
756         case MSR_IA32_EBL_CR_POWERON:
757                 data = 0;
758                 break;
759         case MSR_MTRRcap:
760                 data = 0x500 | KVM_NR_VAR_MTRR;
761                 break;
762         case 0x200 ... 0x2ff:
763                 return get_msr_mtrr(vcpu, msr, pdata);
764         case 0xcd: /* fsb frequency */
765                 data = 3;
766                 break;
767         case MSR_IA32_APICBASE:
768                 data = kvm_get_apic_base(vcpu);
769                 break;
770         case MSR_IA32_MISC_ENABLE:
771                 data = vcpu->arch.ia32_misc_enable_msr;
772                 break;
773         case MSR_IA32_PERF_STATUS:
774                 /* TSC increment by tick */
775                 data = 1000ULL;
776                 /* CPU multiplier */
777                 data |= (((uint64_t)4ULL) << 40);
778                 break;
779         case MSR_EFER:
780                 data = vcpu->arch.shadow_efer;
781                 break;
782         case MSR_KVM_WALL_CLOCK:
783                 data = vcpu->kvm->arch.wall_clock;
784                 break;
785         case MSR_KVM_SYSTEM_TIME:
786                 data = vcpu->arch.time;
787                 break;
788         default:
789                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
790                 return 1;
791         }
792         *pdata = data;
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
796
797 /*
798  * Read or write a bunch of msrs. All parameters are kernel addresses.
799  *
800  * @return number of msrs set successfully.
801  */
802 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
803                     struct kvm_msr_entry *entries,
804                     int (*do_msr)(struct kvm_vcpu *vcpu,
805                                   unsigned index, u64 *data))
806 {
807         int i;
808
809         vcpu_load(vcpu);
810
811         down_read(&vcpu->kvm->slots_lock);
812         for (i = 0; i < msrs->nmsrs; ++i)
813                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
814                         break;
815         up_read(&vcpu->kvm->slots_lock);
816
817         vcpu_put(vcpu);
818
819         return i;
820 }
821
822 /*
823  * Read or write a bunch of msrs. Parameters are user addresses.
824  *
825  * @return number of msrs set successfully.
826  */
827 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
828                   int (*do_msr)(struct kvm_vcpu *vcpu,
829                                 unsigned index, u64 *data),
830                   int writeback)
831 {
832         struct kvm_msrs msrs;
833         struct kvm_msr_entry *entries;
834         int r, n;
835         unsigned size;
836
837         r = -EFAULT;
838         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
839                 goto out;
840
841         r = -E2BIG;
842         if (msrs.nmsrs >= MAX_IO_MSRS)
843                 goto out;
844
845         r = -ENOMEM;
846         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
847         entries = vmalloc(size);
848         if (!entries)
849                 goto out;
850
851         r = -EFAULT;
852         if (copy_from_user(entries, user_msrs->entries, size))
853                 goto out_free;
854
855         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
856         if (r < 0)
857                 goto out_free;
858
859         r = -EFAULT;
860         if (writeback && copy_to_user(user_msrs->entries, entries, size))
861                 goto out_free;
862
863         r = n;
864
865 out_free:
866         vfree(entries);
867 out:
868         return r;
869 }
870
871 int kvm_dev_ioctl_check_extension(long ext)
872 {
873         int r;
874
875         switch (ext) {
876         case KVM_CAP_IRQCHIP:
877         case KVM_CAP_HLT:
878         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
879         case KVM_CAP_USER_MEMORY:
880         case KVM_CAP_SET_TSS_ADDR:
881         case KVM_CAP_EXT_CPUID:
882         case KVM_CAP_CLOCKSOURCE:
883         case KVM_CAP_PIT:
884         case KVM_CAP_NOP_IO_DELAY:
885         case KVM_CAP_MP_STATE:
886         case KVM_CAP_SYNC_MMU:
887                 r = 1;
888                 break;
889         case KVM_CAP_COALESCED_MMIO:
890                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
891                 break;
892         case KVM_CAP_VAPIC:
893                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
894                 break;
895         case KVM_CAP_NR_VCPUS:
896                 r = KVM_MAX_VCPUS;
897                 break;
898         case KVM_CAP_NR_MEMSLOTS:
899                 r = KVM_MEMORY_SLOTS;
900                 break;
901         case KVM_CAP_PV_MMU:
902                 r = !tdp_enabled;
903                 break;
904         default:
905                 r = 0;
906                 break;
907         }
908         return r;
909
910 }
911
912 long kvm_arch_dev_ioctl(struct file *filp,
913                         unsigned int ioctl, unsigned long arg)
914 {
915         void __user *argp = (void __user *)arg;
916         long r;
917
918         switch (ioctl) {
919         case KVM_GET_MSR_INDEX_LIST: {
920                 struct kvm_msr_list __user *user_msr_list = argp;
921                 struct kvm_msr_list msr_list;
922                 unsigned n;
923
924                 r = -EFAULT;
925                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
926                         goto out;
927                 n = msr_list.nmsrs;
928                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
929                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
930                         goto out;
931                 r = -E2BIG;
932                 if (n < num_msrs_to_save)
933                         goto out;
934                 r = -EFAULT;
935                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
936                                  num_msrs_to_save * sizeof(u32)))
937                         goto out;
938                 if (copy_to_user(user_msr_list->indices
939                                  + num_msrs_to_save * sizeof(u32),
940                                  &emulated_msrs,
941                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
942                         goto out;
943                 r = 0;
944                 break;
945         }
946         case KVM_GET_SUPPORTED_CPUID: {
947                 struct kvm_cpuid2 __user *cpuid_arg = argp;
948                 struct kvm_cpuid2 cpuid;
949
950                 r = -EFAULT;
951                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
952                         goto out;
953                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
954                         cpuid_arg->entries);
955                 if (r)
956                         goto out;
957
958                 r = -EFAULT;
959                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
960                         goto out;
961                 r = 0;
962                 break;
963         }
964         default:
965                 r = -EINVAL;
966         }
967 out:
968         return r;
969 }
970
971 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
972 {
973         kvm_x86_ops->vcpu_load(vcpu, cpu);
974         kvm_write_guest_time(vcpu);
975 }
976
977 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
978 {
979         kvm_x86_ops->vcpu_put(vcpu);
980         kvm_put_guest_fpu(vcpu);
981 }
982
983 static int is_efer_nx(void)
984 {
985         u64 efer;
986
987         rdmsrl(MSR_EFER, efer);
988         return efer & EFER_NX;
989 }
990
991 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
992 {
993         int i;
994         struct kvm_cpuid_entry2 *e, *entry;
995
996         entry = NULL;
997         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
998                 e = &vcpu->arch.cpuid_entries[i];
999                 if (e->function == 0x80000001) {
1000                         entry = e;
1001                         break;
1002                 }
1003         }
1004         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1005                 entry->edx &= ~(1 << 20);
1006                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1007         }
1008 }
1009
1010 /* when an old userspace process fills a new kernel module */
1011 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1012                                     struct kvm_cpuid *cpuid,
1013                                     struct kvm_cpuid_entry __user *entries)
1014 {
1015         int r, i;
1016         struct kvm_cpuid_entry *cpuid_entries;
1017
1018         r = -E2BIG;
1019         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1020                 goto out;
1021         r = -ENOMEM;
1022         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1023         if (!cpuid_entries)
1024                 goto out;
1025         r = -EFAULT;
1026         if (copy_from_user(cpuid_entries, entries,
1027                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1028                 goto out_free;
1029         for (i = 0; i < cpuid->nent; i++) {
1030                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1031                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1032                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1033                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1034                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1035                 vcpu->arch.cpuid_entries[i].index = 0;
1036                 vcpu->arch.cpuid_entries[i].flags = 0;
1037                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1038                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1039                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1040         }
1041         vcpu->arch.cpuid_nent = cpuid->nent;
1042         cpuid_fix_nx_cap(vcpu);
1043         r = 0;
1044
1045 out_free:
1046         vfree(cpuid_entries);
1047 out:
1048         return r;
1049 }
1050
1051 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1052                                     struct kvm_cpuid2 *cpuid,
1053                                     struct kvm_cpuid_entry2 __user *entries)
1054 {
1055         int r;
1056
1057         r = -E2BIG;
1058         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1059                 goto out;
1060         r = -EFAULT;
1061         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1062                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1063                 goto out;
1064         vcpu->arch.cpuid_nent = cpuid->nent;
1065         return 0;
1066
1067 out:
1068         return r;
1069 }
1070
1071 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1072                                     struct kvm_cpuid2 *cpuid,
1073                                     struct kvm_cpuid_entry2 __user *entries)
1074 {
1075         int r;
1076
1077         r = -E2BIG;
1078         if (cpuid->nent < vcpu->arch.cpuid_nent)
1079                 goto out;
1080         r = -EFAULT;
1081         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1082                            vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1083                 goto out;
1084         return 0;
1085
1086 out:
1087         cpuid->nent = vcpu->arch.cpuid_nent;
1088         return r;
1089 }
1090
1091 static inline u32 bit(int bitno)
1092 {
1093         return 1 << (bitno & 31);
1094 }
1095
1096 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1097                           u32 index)
1098 {
1099         entry->function = function;
1100         entry->index = index;
1101         cpuid_count(entry->function, entry->index,
1102                 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1103         entry->flags = 0;
1104 }
1105
1106 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1107                          u32 index, int *nent, int maxnent)
1108 {
1109         const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1110                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1111                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1112                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1113                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1114                 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1115                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1116                 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1117                 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1118                 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1119         const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1120                 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1121                 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1122                 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1123                 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1124                 bit(X86_FEATURE_PGE) |
1125                 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1126                 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1127                 bit(X86_FEATURE_SYSCALL) |
1128                 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1129 #ifdef CONFIG_X86_64
1130                 bit(X86_FEATURE_LM) |
1131 #endif
1132                 bit(X86_FEATURE_MMXEXT) |
1133                 bit(X86_FEATURE_3DNOWEXT) |
1134                 bit(X86_FEATURE_3DNOW);
1135         const u32 kvm_supported_word3_x86_features =
1136                 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1137         const u32 kvm_supported_word6_x86_features =
1138                 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1139
1140         /* all func 2 cpuid_count() should be called on the same cpu */
1141         get_cpu();
1142         do_cpuid_1_ent(entry, function, index);
1143         ++*nent;
1144
1145         switch (function) {
1146         case 0:
1147                 entry->eax = min(entry->eax, (u32)0xb);
1148                 break;
1149         case 1:
1150                 entry->edx &= kvm_supported_word0_x86_features;
1151                 entry->ecx &= kvm_supported_word3_x86_features;
1152                 break;
1153         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1154          * may return different values. This forces us to get_cpu() before
1155          * issuing the first command, and also to emulate this annoying behavior
1156          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1157         case 2: {
1158                 int t, times = entry->eax & 0xff;
1159
1160                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1161                 for (t = 1; t < times && *nent < maxnent; ++t) {
1162                         do_cpuid_1_ent(&entry[t], function, 0);
1163                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1164                         ++*nent;
1165                 }
1166                 break;
1167         }
1168         /* function 4 and 0xb have additional index. */
1169         case 4: {
1170                 int i, cache_type;
1171
1172                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1173                 /* read more entries until cache_type is zero */
1174                 for (i = 1; *nent < maxnent; ++i) {
1175                         cache_type = entry[i - 1].eax & 0x1f;
1176                         if (!cache_type)
1177                                 break;
1178                         do_cpuid_1_ent(&entry[i], function, i);
1179                         entry[i].flags |=
1180                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1181                         ++*nent;
1182                 }
1183                 break;
1184         }
1185         case 0xb: {
1186                 int i, level_type;
1187
1188                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1189                 /* read more entries until level_type is zero */
1190                 for (i = 1; *nent < maxnent; ++i) {
1191                         level_type = entry[i - 1].ecx & 0xff;
1192                         if (!level_type)
1193                                 break;
1194                         do_cpuid_1_ent(&entry[i], function, i);
1195                         entry[i].flags |=
1196                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1197                         ++*nent;
1198                 }
1199                 break;
1200         }
1201         case 0x80000000:
1202                 entry->eax = min(entry->eax, 0x8000001a);
1203                 break;
1204         case 0x80000001:
1205                 entry->edx &= kvm_supported_word1_x86_features;
1206                 entry->ecx &= kvm_supported_word6_x86_features;
1207                 break;
1208         }
1209         put_cpu();
1210 }
1211
1212 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1213                                     struct kvm_cpuid_entry2 __user *entries)
1214 {
1215         struct kvm_cpuid_entry2 *cpuid_entries;
1216         int limit, nent = 0, r = -E2BIG;
1217         u32 func;
1218
1219         if (cpuid->nent < 1)
1220                 goto out;
1221         r = -ENOMEM;
1222         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1223         if (!cpuid_entries)
1224                 goto out;
1225
1226         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1227         limit = cpuid_entries[0].eax;
1228         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1229                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1230                                 &nent, cpuid->nent);
1231         r = -E2BIG;
1232         if (nent >= cpuid->nent)
1233                 goto out_free;
1234
1235         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1236         limit = cpuid_entries[nent - 1].eax;
1237         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1238                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1239                                &nent, cpuid->nent);
1240         r = -EFAULT;
1241         if (copy_to_user(entries, cpuid_entries,
1242                         nent * sizeof(struct kvm_cpuid_entry2)))
1243                 goto out_free;
1244         cpuid->nent = nent;
1245         r = 0;
1246
1247 out_free:
1248         vfree(cpuid_entries);
1249 out:
1250         return r;
1251 }
1252
1253 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1254                                     struct kvm_lapic_state *s)
1255 {
1256         vcpu_load(vcpu);
1257         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1258         vcpu_put(vcpu);
1259
1260         return 0;
1261 }
1262
1263 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1264                                     struct kvm_lapic_state *s)
1265 {
1266         vcpu_load(vcpu);
1267         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1268         kvm_apic_post_state_restore(vcpu);
1269         vcpu_put(vcpu);
1270
1271         return 0;
1272 }
1273
1274 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1275                                     struct kvm_interrupt *irq)
1276 {
1277         if (irq->irq < 0 || irq->irq >= 256)
1278                 return -EINVAL;
1279         if (irqchip_in_kernel(vcpu->kvm))
1280                 return -ENXIO;
1281         vcpu_load(vcpu);
1282
1283         set_bit(irq->irq, vcpu->arch.irq_pending);
1284         set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1285
1286         vcpu_put(vcpu);
1287
1288         return 0;
1289 }
1290
1291 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1292                                            struct kvm_tpr_access_ctl *tac)
1293 {
1294         if (tac->flags)
1295                 return -EINVAL;
1296         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1297         return 0;
1298 }
1299
1300 long kvm_arch_vcpu_ioctl(struct file *filp,
1301                          unsigned int ioctl, unsigned long arg)
1302 {
1303         struct kvm_vcpu *vcpu = filp->private_data;
1304         void __user *argp = (void __user *)arg;
1305         int r;
1306
1307         switch (ioctl) {
1308         case KVM_GET_LAPIC: {
1309                 struct kvm_lapic_state lapic;
1310
1311                 memset(&lapic, 0, sizeof lapic);
1312                 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
1313                 if (r)
1314                         goto out;
1315                 r = -EFAULT;
1316                 if (copy_to_user(argp, &lapic, sizeof lapic))
1317                         goto out;
1318                 r = 0;
1319                 break;
1320         }
1321         case KVM_SET_LAPIC: {
1322                 struct kvm_lapic_state lapic;
1323
1324                 r = -EFAULT;
1325                 if (copy_from_user(&lapic, argp, sizeof lapic))
1326                         goto out;
1327                 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
1328                 if (r)
1329                         goto out;
1330                 r = 0;
1331                 break;
1332         }
1333         case KVM_INTERRUPT: {
1334                 struct kvm_interrupt irq;
1335
1336                 r = -EFAULT;
1337                 if (copy_from_user(&irq, argp, sizeof irq))
1338                         goto out;
1339                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1340                 if (r)
1341                         goto out;
1342                 r = 0;
1343                 break;
1344         }
1345         case KVM_SET_CPUID: {
1346                 struct kvm_cpuid __user *cpuid_arg = argp;
1347                 struct kvm_cpuid cpuid;
1348
1349                 r = -EFAULT;
1350                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1351                         goto out;
1352                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1353                 if (r)
1354                         goto out;
1355                 break;
1356         }
1357         case KVM_SET_CPUID2: {
1358                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1359                 struct kvm_cpuid2 cpuid;
1360
1361                 r = -EFAULT;
1362                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1363                         goto out;
1364                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1365                                 cpuid_arg->entries);
1366                 if (r)
1367                         goto out;
1368                 break;
1369         }
1370         case KVM_GET_CPUID2: {
1371                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1372                 struct kvm_cpuid2 cpuid;
1373
1374                 r = -EFAULT;
1375                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1376                         goto out;
1377                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1378                                 cpuid_arg->entries);
1379                 if (r)
1380                         goto out;
1381                 r = -EFAULT;
1382                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1383                         goto out;
1384                 r = 0;
1385                 break;
1386         }
1387         case KVM_GET_MSRS:
1388                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1389                 break;
1390         case KVM_SET_MSRS:
1391                 r = msr_io(vcpu, argp, do_set_msr, 0);
1392                 break;
1393         case KVM_TPR_ACCESS_REPORTING: {
1394                 struct kvm_tpr_access_ctl tac;
1395
1396                 r = -EFAULT;
1397                 if (copy_from_user(&tac, argp, sizeof tac))
1398                         goto out;
1399                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1400                 if (r)
1401                         goto out;
1402                 r = -EFAULT;
1403                 if (copy_to_user(argp, &tac, sizeof tac))
1404                         goto out;
1405                 r = 0;
1406                 break;
1407         };
1408         case KVM_SET_VAPIC_ADDR: {
1409                 struct kvm_vapic_addr va;
1410
1411                 r = -EINVAL;
1412                 if (!irqchip_in_kernel(vcpu->kvm))
1413                         goto out;
1414                 r = -EFAULT;
1415                 if (copy_from_user(&va, argp, sizeof va))
1416                         goto out;
1417                 r = 0;
1418                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1419                 break;
1420         }
1421         default:
1422                 r = -EINVAL;
1423         }
1424 out:
1425         return r;
1426 }
1427
1428 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1429 {
1430         int ret;
1431
1432         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1433                 return -1;
1434         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1435         return ret;
1436 }
1437
1438 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1439                                           u32 kvm_nr_mmu_pages)
1440 {
1441         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1442                 return -EINVAL;
1443
1444         down_write(&kvm->slots_lock);
1445
1446         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1447         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1448
1449         up_write(&kvm->slots_lock);
1450         return 0;
1451 }
1452
1453 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1454 {
1455         return kvm->arch.n_alloc_mmu_pages;
1456 }
1457
1458 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1459 {
1460         int i;
1461         struct kvm_mem_alias *alias;
1462
1463         for (i = 0; i < kvm->arch.naliases; ++i) {
1464                 alias = &kvm->arch.aliases[i];
1465                 if (gfn >= alias->base_gfn
1466                     && gfn < alias->base_gfn + alias->npages)
1467                         return alias->target_gfn + gfn - alias->base_gfn;
1468         }
1469         return gfn;
1470 }
1471
1472 /*
1473  * Set a new alias region.  Aliases map a portion of physical memory into
1474  * another portion.  This is useful for memory windows, for example the PC
1475  * VGA region.
1476  */
1477 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1478                                          struct kvm_memory_alias *alias)
1479 {
1480         int r, n;
1481         struct kvm_mem_alias *p;
1482
1483         r = -EINVAL;
1484         /* General sanity checks */
1485         if (alias->memory_size & (PAGE_SIZE - 1))
1486                 goto out;
1487         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1488                 goto out;
1489         if (alias->slot >= KVM_ALIAS_SLOTS)
1490                 goto out;
1491         if (alias->guest_phys_addr + alias->memory_size
1492             < alias->guest_phys_addr)
1493                 goto out;
1494         if (alias->target_phys_addr + alias->memory_size
1495             < alias->target_phys_addr)
1496                 goto out;
1497
1498         down_write(&kvm->slots_lock);
1499         spin_lock(&kvm->mmu_lock);
1500
1501         p = &kvm->arch.aliases[alias->slot];
1502         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1503         p->npages = alias->memory_size >> PAGE_SHIFT;
1504         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1505
1506         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1507                 if (kvm->arch.aliases[n - 1].npages)
1508                         break;
1509         kvm->arch.naliases = n;
1510
1511         spin_unlock(&kvm->mmu_lock);
1512         kvm_mmu_zap_all(kvm);
1513
1514         up_write(&kvm->slots_lock);
1515
1516         return 0;
1517
1518 out:
1519         return r;
1520 }
1521
1522 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1523 {
1524         int r;
1525
1526         r = 0;
1527         switch (chip->chip_id) {
1528         case KVM_IRQCHIP_PIC_MASTER:
1529                 memcpy(&chip->chip.pic,
1530                         &pic_irqchip(kvm)->pics[0],
1531                         sizeof(struct kvm_pic_state));
1532                 break;
1533         case KVM_IRQCHIP_PIC_SLAVE:
1534                 memcpy(&chip->chip.pic,
1535                         &pic_irqchip(kvm)->pics[1],
1536                         sizeof(struct kvm_pic_state));
1537                 break;
1538         case KVM_IRQCHIP_IOAPIC:
1539                 memcpy(&chip->chip.ioapic,
1540                         ioapic_irqchip(kvm),
1541                         sizeof(struct kvm_ioapic_state));
1542                 break;
1543         default:
1544                 r = -EINVAL;
1545                 break;
1546         }
1547         return r;
1548 }
1549
1550 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1551 {
1552         int r;
1553
1554         r = 0;
1555         switch (chip->chip_id) {
1556         case KVM_IRQCHIP_PIC_MASTER:
1557                 memcpy(&pic_irqchip(kvm)->pics[0],
1558                         &chip->chip.pic,
1559                         sizeof(struct kvm_pic_state));
1560                 break;
1561         case KVM_IRQCHIP_PIC_SLAVE:
1562                 memcpy(&pic_irqchip(kvm)->pics[1],
1563                         &chip->chip.pic,
1564                         sizeof(struct kvm_pic_state));
1565                 break;
1566         case KVM_IRQCHIP_IOAPIC:
1567                 memcpy(ioapic_irqchip(kvm),
1568                         &chip->chip.ioapic,
1569                         sizeof(struct kvm_ioapic_state));
1570                 break;
1571         default:
1572                 r = -EINVAL;
1573                 break;
1574         }
1575         kvm_pic_update_irq(pic_irqchip(kvm));
1576         return r;
1577 }
1578
1579 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1580 {
1581         int r = 0;
1582
1583         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1584         return r;
1585 }
1586
1587 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1588 {
1589         int r = 0;
1590
1591         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1592         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1593         return r;
1594 }
1595
1596 /*
1597  * Get (and clear) the dirty memory log for a memory slot.
1598  */
1599 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1600                                       struct kvm_dirty_log *log)
1601 {
1602         int r;
1603         int n;
1604         struct kvm_memory_slot *memslot;
1605         int is_dirty = 0;
1606
1607         down_write(&kvm->slots_lock);
1608
1609         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1610         if (r)
1611                 goto out;
1612
1613         /* If nothing is dirty, don't bother messing with page tables. */
1614         if (is_dirty) {
1615                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1616                 kvm_flush_remote_tlbs(kvm);
1617                 memslot = &kvm->memslots[log->slot];
1618                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1619                 memset(memslot->dirty_bitmap, 0, n);
1620         }
1621         r = 0;
1622 out:
1623         up_write(&kvm->slots_lock);
1624         return r;
1625 }
1626
1627 long kvm_arch_vm_ioctl(struct file *filp,
1628                        unsigned int ioctl, unsigned long arg)
1629 {
1630         struct kvm *kvm = filp->private_data;
1631         void __user *argp = (void __user *)arg;
1632         int r = -EINVAL;
1633
1634         switch (ioctl) {
1635         case KVM_SET_TSS_ADDR:
1636                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1637                 if (r < 0)
1638                         goto out;
1639                 break;
1640         case KVM_SET_MEMORY_REGION: {
1641                 struct kvm_memory_region kvm_mem;
1642                 struct kvm_userspace_memory_region kvm_userspace_mem;
1643
1644                 r = -EFAULT;
1645                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1646                         goto out;
1647                 kvm_userspace_mem.slot = kvm_mem.slot;
1648                 kvm_userspace_mem.flags = kvm_mem.flags;
1649                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1650                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1651                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1652                 if (r)
1653                         goto out;
1654                 break;
1655         }
1656         case KVM_SET_NR_MMU_PAGES:
1657                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1658                 if (r)
1659                         goto out;
1660                 break;
1661         case KVM_GET_NR_MMU_PAGES:
1662                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1663                 break;
1664         case KVM_SET_MEMORY_ALIAS: {
1665                 struct kvm_memory_alias alias;
1666
1667                 r = -EFAULT;
1668                 if (copy_from_user(&alias, argp, sizeof alias))
1669                         goto out;
1670                 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
1671                 if (r)
1672                         goto out;
1673                 break;
1674         }
1675         case KVM_CREATE_IRQCHIP:
1676                 r = -ENOMEM;
1677                 kvm->arch.vpic = kvm_create_pic(kvm);
1678                 if (kvm->arch.vpic) {
1679                         r = kvm_ioapic_init(kvm);
1680                         if (r) {
1681                                 kfree(kvm->arch.vpic);
1682                                 kvm->arch.vpic = NULL;
1683                                 goto out;
1684                         }
1685                 } else
1686                         goto out;
1687                 break;
1688         case KVM_CREATE_PIT:
1689                 r = -ENOMEM;
1690                 kvm->arch.vpit = kvm_create_pit(kvm);
1691                 if (kvm->arch.vpit)
1692                         r = 0;
1693                 break;
1694         case KVM_IRQ_LINE: {
1695                 struct kvm_irq_level irq_event;
1696
1697                 r = -EFAULT;
1698                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1699                         goto out;
1700                 if (irqchip_in_kernel(kvm)) {
1701                         mutex_lock(&kvm->lock);
1702                         if (irq_event.irq < 16)
1703                                 kvm_pic_set_irq(pic_irqchip(kvm),
1704                                         irq_event.irq,
1705                                         irq_event.level);
1706                         kvm_ioapic_set_irq(kvm->arch.vioapic,
1707                                         irq_event.irq,
1708                                         irq_event.level);
1709                         mutex_unlock(&kvm->lock);
1710                         r = 0;
1711                 }
1712                 break;
1713         }
1714         case KVM_GET_IRQCHIP: {
1715                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1716                 struct kvm_irqchip chip;
1717
1718                 r = -EFAULT;
1719                 if (copy_from_user(&chip, argp, sizeof chip))
1720                         goto out;
1721                 r = -ENXIO;
1722                 if (!irqchip_in_kernel(kvm))
1723                         goto out;
1724                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1725                 if (r)
1726                         goto out;
1727                 r = -EFAULT;
1728                 if (copy_to_user(argp, &chip, sizeof chip))
1729                         goto out;
1730                 r = 0;
1731                 break;
1732         }
1733         case KVM_SET_IRQCHIP: {
1734                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1735                 struct kvm_irqchip chip;
1736
1737                 r = -EFAULT;
1738                 if (copy_from_user(&chip, argp, sizeof chip))
1739                         goto out;
1740                 r = -ENXIO;
1741                 if (!irqchip_in_kernel(kvm))
1742                         goto out;
1743                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1744                 if (r)
1745                         goto out;
1746                 r = 0;
1747                 break;
1748         }
1749         case KVM_GET_PIT: {
1750                 struct kvm_pit_state ps;
1751                 r = -EFAULT;
1752                 if (copy_from_user(&ps, argp, sizeof ps))
1753                         goto out;
1754                 r = -ENXIO;
1755                 if (!kvm->arch.vpit)
1756                         goto out;
1757                 r = kvm_vm_ioctl_get_pit(kvm, &ps);
1758                 if (r)
1759                         goto out;
1760                 r = -EFAULT;
1761                 if (copy_to_user(argp, &ps, sizeof ps))
1762                         goto out;
1763                 r = 0;
1764                 break;
1765         }
1766         case KVM_SET_PIT: {
1767                 struct kvm_pit_state ps;
1768                 r = -EFAULT;
1769                 if (copy_from_user(&ps, argp, sizeof ps))
1770                         goto out;
1771                 r = -ENXIO;
1772                 if (!kvm->arch.vpit)
1773                         goto out;
1774                 r = kvm_vm_ioctl_set_pit(kvm, &ps);
1775                 if (r)
1776                         goto out;
1777                 r = 0;
1778                 break;
1779         }
1780         default:
1781                 ;
1782         }
1783 out:
1784         return r;
1785 }
1786
1787 static void kvm_init_msr_list(void)
1788 {
1789         u32 dummy[2];
1790         unsigned i, j;
1791
1792         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1793                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1794                         continue;
1795                 if (j < i)
1796                         msrs_to_save[j] = msrs_to_save[i];
1797                 j++;
1798         }
1799         num_msrs_to_save = j;
1800 }
1801
1802 /*
1803  * Only apic need an MMIO device hook, so shortcut now..
1804  */
1805 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1806                                                 gpa_t addr, int len,
1807                                                 int is_write)
1808 {
1809         struct kvm_io_device *dev;
1810
1811         if (vcpu->arch.apic) {
1812                 dev = &vcpu->arch.apic->dev;
1813                 if (dev->in_range(dev, addr, len, is_write))
1814                         return dev;
1815         }
1816         return NULL;
1817 }
1818
1819
1820 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1821                                                 gpa_t addr, int len,
1822                                                 int is_write)
1823 {
1824         struct kvm_io_device *dev;
1825
1826         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1827         if (dev == NULL)
1828                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1829                                           is_write);
1830         return dev;
1831 }
1832
1833 int emulator_read_std(unsigned long addr,
1834                              void *val,
1835                              unsigned int bytes,
1836                              struct kvm_vcpu *vcpu)
1837 {
1838         void *data = val;
1839         int r = X86EMUL_CONTINUE;
1840
1841         while (bytes) {
1842                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1843                 unsigned offset = addr & (PAGE_SIZE-1);
1844                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1845                 int ret;
1846
1847                 if (gpa == UNMAPPED_GVA) {
1848                         r = X86EMUL_PROPAGATE_FAULT;
1849                         goto out;
1850                 }
1851                 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1852                 if (ret < 0) {
1853                         r = X86EMUL_UNHANDLEABLE;
1854                         goto out;
1855                 }
1856
1857                 bytes -= tocopy;
1858                 data += tocopy;
1859                 addr += tocopy;
1860         }
1861 out:
1862         return r;
1863 }
1864 EXPORT_SYMBOL_GPL(emulator_read_std);
1865
1866 static int emulator_read_emulated(unsigned long addr,
1867                                   void *val,
1868                                   unsigned int bytes,
1869                                   struct kvm_vcpu *vcpu)
1870 {
1871         struct kvm_io_device *mmio_dev;
1872         gpa_t                 gpa;
1873
1874         if (vcpu->mmio_read_completed) {
1875                 memcpy(val, vcpu->mmio_data, bytes);
1876                 vcpu->mmio_read_completed = 0;
1877                 return X86EMUL_CONTINUE;
1878         }
1879
1880         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1881
1882         /* For APIC access vmexit */
1883         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1884                 goto mmio;
1885
1886         if (emulator_read_std(addr, val, bytes, vcpu)
1887                         == X86EMUL_CONTINUE)
1888                 return X86EMUL_CONTINUE;
1889         if (gpa == UNMAPPED_GVA)
1890                 return X86EMUL_PROPAGATE_FAULT;
1891
1892 mmio:
1893         /*
1894          * Is this MMIO handled locally?
1895          */
1896         mutex_lock(&vcpu->kvm->lock);
1897         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1898         if (mmio_dev) {
1899                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1900                 mutex_unlock(&vcpu->kvm->lock);
1901                 return X86EMUL_CONTINUE;
1902         }
1903         mutex_unlock(&vcpu->kvm->lock);
1904
1905         vcpu->mmio_needed = 1;
1906         vcpu->mmio_phys_addr = gpa;
1907         vcpu->mmio_size = bytes;
1908         vcpu->mmio_is_write = 0;
1909
1910         return X86EMUL_UNHANDLEABLE;
1911 }
1912
1913 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1914                           const void *val, int bytes)
1915 {
1916         int ret;
1917
1918         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1919         if (ret < 0)
1920                 return 0;
1921         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1922         return 1;
1923 }
1924
1925 static int emulator_write_emulated_onepage(unsigned long addr,
1926                                            const void *val,
1927                                            unsigned int bytes,
1928                                            struct kvm_vcpu *vcpu)
1929 {
1930         struct kvm_io_device *mmio_dev;
1931         gpa_t                 gpa;
1932
1933         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1934
1935         if (gpa == UNMAPPED_GVA) {
1936                 kvm_inject_page_fault(vcpu, addr, 2);
1937                 return X86EMUL_PROPAGATE_FAULT;
1938         }
1939
1940         /* For APIC access vmexit */
1941         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1942                 goto mmio;
1943
1944         if (emulator_write_phys(vcpu, gpa, val, bytes))
1945                 return X86EMUL_CONTINUE;
1946
1947 mmio:
1948         /*
1949          * Is this MMIO handled locally?
1950          */
1951         mutex_lock(&vcpu->kvm->lock);
1952         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
1953         if (mmio_dev) {
1954                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1955                 mutex_unlock(&vcpu->kvm->lock);
1956                 return X86EMUL_CONTINUE;
1957         }
1958         mutex_unlock(&vcpu->kvm->lock);
1959
1960         vcpu->mmio_needed = 1;
1961         vcpu->mmio_phys_addr = gpa;
1962         vcpu->mmio_size = bytes;
1963         vcpu->mmio_is_write = 1;
1964         memcpy(vcpu->mmio_data, val, bytes);
1965
1966         return X86EMUL_CONTINUE;
1967 }
1968
1969 int emulator_write_emulated(unsigned long addr,
1970                                    const void *val,
1971                                    unsigned int bytes,
1972                                    struct kvm_vcpu *vcpu)
1973 {
1974         /* Crossing a page boundary? */
1975         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1976                 int rc, now;
1977
1978                 now = -addr & ~PAGE_MASK;
1979                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1980                 if (rc != X86EMUL_CONTINUE)
1981                         return rc;
1982                 addr += now;
1983                 val += now;
1984                 bytes -= now;
1985         }
1986         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1987 }
1988 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1989
1990 static int emulator_cmpxchg_emulated(unsigned long addr,
1991                                      const void *old,
1992                                      const void *new,
1993                                      unsigned int bytes,
1994                                      struct kvm_vcpu *vcpu)
1995 {
1996         static int reported;
1997
1998         if (!reported) {
1999                 reported = 1;
2000                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2001         }
2002 #ifndef CONFIG_X86_64
2003         /* guests cmpxchg8b have to be emulated atomically */
2004         if (bytes == 8) {
2005                 gpa_t gpa;
2006                 struct page *page;
2007                 char *kaddr;
2008                 u64 val;
2009
2010                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2011
2012                 if (gpa == UNMAPPED_GVA ||
2013                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2014                         goto emul_write;
2015
2016                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2017                         goto emul_write;
2018
2019                 val = *(u64 *)new;
2020
2021                 down_read(&current->mm->mmap_sem);
2022                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2023                 up_read(&current->mm->mmap_sem);
2024
2025                 kaddr = kmap_atomic(page, KM_USER0);
2026                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2027                 kunmap_atomic(kaddr, KM_USER0);
2028                 kvm_release_page_dirty(page);
2029         }
2030 emul_write:
2031 #endif
2032
2033         return emulator_write_emulated(addr, new, bytes, vcpu);
2034 }
2035
2036 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2037 {
2038         return kvm_x86_ops->get_segment_base(vcpu, seg);
2039 }
2040
2041 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2042 {
2043         return X86EMUL_CONTINUE;
2044 }
2045
2046 int emulate_clts(struct kvm_vcpu *vcpu)
2047 {
2048         KVMTRACE_0D(CLTS, vcpu, handler);
2049         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2050         return X86EMUL_CONTINUE;
2051 }
2052
2053 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2054 {
2055         struct kvm_vcpu *vcpu = ctxt->vcpu;
2056
2057         switch (dr) {
2058         case 0 ... 3:
2059                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2060                 return X86EMUL_CONTINUE;
2061         default:
2062                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2063                 return X86EMUL_UNHANDLEABLE;
2064         }
2065 }
2066
2067 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2068 {
2069         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2070         int exception;
2071
2072         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2073         if (exception) {
2074                 /* FIXME: better handling */
2075                 return X86EMUL_UNHANDLEABLE;
2076         }
2077         return X86EMUL_CONTINUE;
2078 }
2079
2080 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2081 {
2082         u8 opcodes[4];
2083         unsigned long rip = vcpu->arch.rip;
2084         unsigned long rip_linear;
2085
2086         if (!printk_ratelimit())
2087                 return;
2088
2089         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2090
2091         emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2092
2093         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2094                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2097
2098 static struct x86_emulate_ops emulate_ops = {
2099         .read_std            = emulator_read_std,
2100         .read_emulated       = emulator_read_emulated,
2101         .write_emulated      = emulator_write_emulated,
2102         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2103 };
2104
2105 int emulate_instruction(struct kvm_vcpu *vcpu,
2106                         struct kvm_run *run,
2107                         unsigned long cr2,
2108                         u16 error_code,
2109                         int emulation_type)
2110 {
2111         int r;
2112         struct decode_cache *c;
2113
2114         vcpu->arch.mmio_fault_cr2 = cr2;
2115         kvm_x86_ops->cache_regs(vcpu);
2116
2117         vcpu->mmio_is_write = 0;
2118         vcpu->arch.pio.string = 0;
2119
2120         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2121                 int cs_db, cs_l;
2122                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2123
2124                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2125                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2126                 vcpu->arch.emulate_ctxt.mode =
2127                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2128                         ? X86EMUL_MODE_REAL : cs_l
2129                         ? X86EMUL_MODE_PROT64 : cs_db
2130                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2131
2132                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2133
2134                 /* Reject the instructions other than VMCALL/VMMCALL when
2135                  * try to emulate invalid opcode */
2136                 c = &vcpu->arch.emulate_ctxt.decode;
2137                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2138                     (!(c->twobyte && c->b == 0x01 &&
2139                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2140                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2141                         return EMULATE_FAIL;
2142
2143                 ++vcpu->stat.insn_emulation;
2144                 if (r)  {
2145                         ++vcpu->stat.insn_emulation_fail;
2146                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2147                                 return EMULATE_DONE;
2148                         return EMULATE_FAIL;
2149                 }
2150         }
2151
2152         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2153
2154         if (vcpu->arch.pio.string)
2155                 return EMULATE_DO_MMIO;
2156
2157         if ((r || vcpu->mmio_is_write) && run) {
2158                 run->exit_reason = KVM_EXIT_MMIO;
2159                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2160                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2161                 run->mmio.len = vcpu->mmio_size;
2162                 run->mmio.is_write = vcpu->mmio_is_write;
2163         }
2164
2165         if (r) {
2166                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2167                         return EMULATE_DONE;
2168                 if (!vcpu->mmio_needed) {
2169                         kvm_report_emulation_failure(vcpu, "mmio");
2170                         return EMULATE_FAIL;
2171                 }
2172                 return EMULATE_DO_MMIO;
2173         }
2174
2175         kvm_x86_ops->decache_regs(vcpu);
2176         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2177
2178         if (vcpu->mmio_is_write) {
2179                 vcpu->mmio_needed = 0;
2180                 return EMULATE_DO_MMIO;
2181         }
2182
2183         return EMULATE_DONE;
2184 }
2185 EXPORT_SYMBOL_GPL(emulate_instruction);
2186
2187 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2188 {
2189         int i;
2190
2191         for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2192                 if (vcpu->arch.pio.guest_pages[i]) {
2193                         kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2194                         vcpu->arch.pio.guest_pages[i] = NULL;
2195                 }
2196 }
2197
2198 static int pio_copy_data(struct kvm_vcpu *vcpu)
2199 {
2200         void *p = vcpu->arch.pio_data;
2201         void *q;
2202         unsigned bytes;
2203         int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2204
2205         q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2206                  PAGE_KERNEL);
2207         if (!q) {
2208                 free_pio_guest_pages(vcpu);
2209                 return -ENOMEM;
2210         }
2211         q += vcpu->arch.pio.guest_page_offset;
2212         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2213         if (vcpu->arch.pio.in)
2214                 memcpy(q, p, bytes);
2215         else
2216                 memcpy(p, q, bytes);
2217         q -= vcpu->arch.pio.guest_page_offset;
2218         vunmap(q);
2219         free_pio_guest_pages(vcpu);
2220         return 0;
2221 }
2222
2223 int complete_pio(struct kvm_vcpu *vcpu)
2224 {
2225         struct kvm_pio_request *io = &vcpu->arch.pio;
2226         long delta;
2227         int r;
2228
2229         kvm_x86_ops->cache_regs(vcpu);
2230
2231         if (!io->string) {
2232                 if (io->in)
2233                         memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
2234                                io->size);
2235         } else {
2236                 if (io->in) {
2237                         r = pio_copy_data(vcpu);
2238                         if (r) {
2239                                 kvm_x86_ops->cache_regs(vcpu);
2240                                 return r;
2241                         }
2242                 }
2243
2244                 delta = 1;
2245                 if (io->rep) {
2246                         delta *= io->cur_count;
2247                         /*
2248                          * The size of the register should really depend on
2249                          * current address size.
2250                          */
2251                         vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
2252                 }
2253                 if (io->down)
2254                         delta = -delta;
2255                 delta *= io->size;
2256                 if (io->in)
2257                         vcpu->arch.regs[VCPU_REGS_RDI] += delta;
2258                 else
2259                         vcpu->arch.regs[VCPU_REGS_RSI] += delta;
2260         }
2261
2262         kvm_x86_ops->decache_regs(vcpu);
2263
2264         io->count -= io->cur_count;
2265         io->cur_count = 0;
2266
2267         return 0;
2268 }
2269
2270 static void kernel_pio(struct kvm_io_device *pio_dev,
2271                        struct kvm_vcpu *vcpu,
2272                        void *pd)
2273 {
2274         /* TODO: String I/O for in kernel device */
2275
2276         mutex_lock(&vcpu->kvm->lock);
2277         if (vcpu->arch.pio.in)
2278                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2279                                   vcpu->arch.pio.size,
2280                                   pd);
2281         else
2282                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2283                                    vcpu->arch.pio.size,
2284                                    pd);
2285         mutex_unlock(&vcpu->kvm->lock);
2286 }
2287
2288 static void pio_string_write(struct kvm_io_device *pio_dev,
2289                              struct kvm_vcpu *vcpu)
2290 {
2291         struct kvm_pio_request *io = &vcpu->arch.pio;
2292         void *pd = vcpu->arch.pio_data;
2293         int i;
2294
2295         mutex_lock(&vcpu->kvm->lock);
2296         for (i = 0; i < io->cur_count; i++) {
2297                 kvm_iodevice_write(pio_dev, io->port,
2298                                    io->size,
2299                                    pd);
2300                 pd += io->size;
2301         }
2302         mutex_unlock(&vcpu->kvm->lock);
2303 }
2304
2305 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2306                                                gpa_t addr, int len,
2307                                                int is_write)
2308 {
2309         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2310 }
2311
2312 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2313                   int size, unsigned port)
2314 {
2315         struct kvm_io_device *pio_dev;
2316
2317         vcpu->run->exit_reason = KVM_EXIT_IO;
2318         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2319         vcpu->run->io.size = vcpu->arch.pio.size = size;
2320         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2321         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2322         vcpu->run->io.port = vcpu->arch.pio.port = port;
2323         vcpu->arch.pio.in = in;
2324         vcpu->arch.pio.string = 0;
2325         vcpu->arch.pio.down = 0;
2326         vcpu->arch.pio.guest_page_offset = 0;
2327         vcpu->arch.pio.rep = 0;
2328
2329         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2330                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2331                             handler);
2332         else
2333                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2334                             handler);
2335
2336         kvm_x86_ops->cache_regs(vcpu);
2337         memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
2338
2339         kvm_x86_ops->skip_emulated_instruction(vcpu);
2340
2341         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2342         if (pio_dev) {
2343                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2344                 complete_pio(vcpu);
2345                 return 1;
2346         }
2347         return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2350
2351 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2352                   int size, unsigned long count, int down,
2353                   gva_t address, int rep, unsigned port)
2354 {
2355         unsigned now, in_page;
2356         int i, ret = 0;
2357         int nr_pages = 1;
2358         struct page *page;
2359         struct kvm_io_device *pio_dev;
2360
2361         vcpu->run->exit_reason = KVM_EXIT_IO;
2362         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2363         vcpu->run->io.size = vcpu->arch.pio.size = size;
2364         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2365         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2366         vcpu->run->io.port = vcpu->arch.pio.port = port;
2367         vcpu->arch.pio.in = in;
2368         vcpu->arch.pio.string = 1;
2369         vcpu->arch.pio.down = down;
2370         vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2371         vcpu->arch.pio.rep = rep;
2372
2373         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2374                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2375                             handler);
2376         else
2377                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2378                             handler);
2379
2380         if (!count) {
2381                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2382                 return 1;
2383         }
2384
2385         if (!down)
2386                 in_page = PAGE_SIZE - offset_in_page(address);
2387         else
2388                 in_page = offset_in_page(address) + size;
2389         now = min(count, (unsigned long)in_page / size);
2390         if (!now) {
2391                 /*
2392                  * String I/O straddles page boundary.  Pin two guest pages
2393                  * so that we satisfy atomicity constraints.  Do just one
2394                  * transaction to avoid complexity.
2395                  */
2396                 nr_pages = 2;
2397                 now = 1;
2398         }
2399         if (down) {
2400                 /*
2401                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2402                  */
2403                 pr_unimpl(vcpu, "guest string pio down\n");
2404                 kvm_inject_gp(vcpu, 0);
2405                 return 1;
2406         }
2407         vcpu->run->io.count = now;
2408         vcpu->arch.pio.cur_count = now;
2409
2410         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2411                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2412
2413         for (i = 0; i < nr_pages; ++i) {
2414                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2415                 vcpu->arch.pio.guest_pages[i] = page;
2416                 if (!page) {
2417                         kvm_inject_gp(vcpu, 0);
2418                         free_pio_guest_pages(vcpu);
2419                         return 1;
2420                 }
2421         }
2422
2423         pio_dev = vcpu_find_pio_dev(vcpu, port,
2424                                     vcpu->arch.pio.cur_count,
2425                                     !vcpu->arch.pio.in);
2426         if (!vcpu->arch.pio.in) {
2427                 /* string PIO write */
2428                 ret = pio_copy_data(vcpu);
2429                 if (ret >= 0 && pio_dev) {
2430                         pio_string_write(pio_dev, vcpu);
2431                         complete_pio(vcpu);
2432                         if (vcpu->arch.pio.count == 0)
2433                                 ret = 1;
2434                 }
2435         } else if (pio_dev)
2436                 pr_unimpl(vcpu, "no string pio read support yet, "
2437                        "port %x size %d count %ld\n",
2438                         port, size, count);
2439
2440         return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2443
2444 int kvm_arch_init(void *opaque)
2445 {
2446         int r;
2447         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2448
2449         if (kvm_x86_ops) {
2450                 printk(KERN_ERR "kvm: already loaded the other module\n");
2451                 r = -EEXIST;
2452                 goto out;
2453         }
2454
2455         if (!ops->cpu_has_kvm_support()) {
2456                 printk(KERN_ERR "kvm: no hardware support\n");
2457                 r = -EOPNOTSUPP;
2458                 goto out;
2459         }
2460         if (ops->disabled_by_bios()) {
2461                 printk(KERN_ERR "kvm: disabled by bios\n");
2462                 r = -EOPNOTSUPP;
2463                 goto out;
2464         }
2465
2466         r = kvm_mmu_module_init();
2467         if (r)
2468                 goto out;
2469
2470         kvm_init_msr_list();
2471
2472         kvm_x86_ops = ops;
2473         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2474         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2475         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2476                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
2477         return 0;
2478
2479 out:
2480         return r;
2481 }
2482
2483 void kvm_arch_exit(void)
2484 {
2485         kvm_x86_ops = NULL;
2486         kvm_mmu_module_exit();
2487 }
2488
2489 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2490 {
2491         ++vcpu->stat.halt_exits;
2492         KVMTRACE_0D(HLT, vcpu, handler);
2493         if (irqchip_in_kernel(vcpu->kvm)) {
2494                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2495                 up_read(&vcpu->kvm->slots_lock);
2496                 kvm_vcpu_block(vcpu);
2497                 down_read(&vcpu->kvm->slots_lock);
2498                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
2499                         return -EINTR;
2500                 return 1;
2501         } else {
2502                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2503                 return 0;
2504         }
2505 }
2506 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2507
2508 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2509                            unsigned long a1)
2510 {
2511         if (is_long_mode(vcpu))
2512                 return a0;
2513         else
2514                 return a0 | ((gpa_t)a1 << 32);
2515 }
2516
2517 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2518 {
2519         unsigned long nr, a0, a1, a2, a3, ret;
2520         int r = 1;
2521
2522         kvm_x86_ops->cache_regs(vcpu);
2523
2524         nr = vcpu->arch.regs[VCPU_REGS_RAX];
2525         a0 = vcpu->arch.regs[VCPU_REGS_RBX];
2526         a1 = vcpu->arch.regs[VCPU_REGS_RCX];
2527         a2 = vcpu->arch.regs[VCPU_REGS_RDX];
2528         a3 = vcpu->arch.regs[VCPU_REGS_RSI];
2529
2530         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2531
2532         if (!is_long_mode(vcpu)) {
2533                 nr &= 0xFFFFFFFF;
2534                 a0 &= 0xFFFFFFFF;
2535                 a1 &= 0xFFFFFFFF;
2536                 a2 &= 0xFFFFFFFF;
2537                 a3 &= 0xFFFFFFFF;
2538         }
2539
2540         switch (nr) {
2541         case KVM_HC_VAPIC_POLL_IRQ:
2542                 ret = 0;
2543                 break;
2544         case KVM_HC_MMU_OP:
2545                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2546                 break;
2547         default:
2548                 ret = -KVM_ENOSYS;
2549                 break;
2550         }
2551         vcpu->arch.regs[VCPU_REGS_RAX] = ret;
2552         kvm_x86_ops->decache_regs(vcpu);
2553         ++vcpu->stat.hypercalls;
2554         return r;
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2557
2558 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2559 {
2560         char instruction[3];
2561         int ret = 0;
2562
2563
2564         /*
2565          * Blow out the MMU to ensure that no other VCPU has an active mapping
2566          * to ensure that the updated hypercall appears atomically across all
2567          * VCPUs.
2568          */
2569         kvm_mmu_zap_all(vcpu->kvm);
2570
2571         kvm_x86_ops->cache_regs(vcpu);
2572         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2573         if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
2574             != X86EMUL_CONTINUE)
2575                 ret = -EFAULT;
2576
2577         return ret;
2578 }
2579
2580 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2581 {
2582         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2583 }
2584
2585 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2586 {
2587         struct descriptor_table dt = { limit, base };
2588
2589         kvm_x86_ops->set_gdt(vcpu, &dt);
2590 }
2591
2592 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2593 {
2594         struct descriptor_table dt = { limit, base };
2595
2596         kvm_x86_ops->set_idt(vcpu, &dt);
2597 }
2598
2599 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2600                    unsigned long *rflags)
2601 {
2602         kvm_lmsw(vcpu, msw);
2603         *rflags = kvm_x86_ops->get_rflags(vcpu);
2604 }
2605
2606 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2607 {
2608         unsigned long value;
2609
2610         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2611         switch (cr) {
2612         case 0:
2613                 value = vcpu->arch.cr0;
2614                 break;
2615         case 2:
2616                 value = vcpu->arch.cr2;
2617                 break;
2618         case 3:
2619                 value = vcpu->arch.cr3;
2620                 break;
2621         case 4:
2622                 value = vcpu->arch.cr4;
2623                 break;
2624         case 8:
2625                 value = kvm_get_cr8(vcpu);
2626                 break;
2627         default:
2628                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2629                 return 0;
2630         }
2631         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2632                     (u32)((u64)value >> 32), handler);
2633
2634         return value;
2635 }
2636
2637 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2638                      unsigned long *rflags)
2639 {
2640         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2641                     (u32)((u64)val >> 32), handler);
2642
2643         switch (cr) {
2644         case 0:
2645                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2646                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2647                 break;
2648         case 2:
2649                 vcpu->arch.cr2 = val;
2650                 break;
2651         case 3:
2652                 kvm_set_cr3(vcpu, val);
2653                 break;
2654         case 4:
2655                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2656                 break;
2657         case 8:
2658                 kvm_set_cr8(vcpu, val & 0xfUL);
2659                 break;
2660         default:
2661                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2662         }
2663 }
2664
2665 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2666 {
2667         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2668         int j, nent = vcpu->arch.cpuid_nent;
2669
2670         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2671         /* when no next entry is found, the current entry[i] is reselected */
2672         for (j = i + 1; j == i; j = (j + 1) % nent) {
2673                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2674                 if (ej->function == e->function) {
2675                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2676                         return j;
2677                 }
2678         }
2679         return 0; /* silence gcc, even though control never reaches here */
2680 }
2681
2682 /* find an entry with matching function, matching index (if needed), and that
2683  * should be read next (if it's stateful) */
2684 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2685         u32 function, u32 index)
2686 {
2687         if (e->function != function)
2688                 return 0;
2689         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2690                 return 0;
2691         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2692                 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2693                 return 0;
2694         return 1;
2695 }
2696
2697 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2698 {
2699         int i;
2700         u32 function, index;
2701         struct kvm_cpuid_entry2 *e, *best;
2702
2703         kvm_x86_ops->cache_regs(vcpu);
2704         function = vcpu->arch.regs[VCPU_REGS_RAX];
2705         index = vcpu->arch.regs[VCPU_REGS_RCX];
2706         vcpu->arch.regs[VCPU_REGS_RAX] = 0;
2707         vcpu->arch.regs[VCPU_REGS_RBX] = 0;
2708         vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2709         vcpu->arch.regs[VCPU_REGS_RDX] = 0;
2710         best = NULL;
2711         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2712                 e = &vcpu->arch.cpuid_entries[i];
2713                 if (is_matching_cpuid_entry(e, function, index)) {
2714                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2715                                 move_to_next_stateful_cpuid_entry(vcpu, i);
2716                         best = e;
2717                         break;
2718                 }
2719                 /*
2720                  * Both basic or both extended?
2721                  */
2722                 if (((e->function ^ function) & 0x80000000) == 0)
2723                         if (!best || e->function > best->function)
2724                                 best = e;
2725         }
2726         if (best) {
2727                 vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
2728                 vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
2729                 vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
2730                 vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
2731         }
2732         kvm_x86_ops->decache_regs(vcpu);
2733         kvm_x86_ops->skip_emulated_instruction(vcpu);
2734         KVMTRACE_5D(CPUID, vcpu, function,
2735                     (u32)vcpu->arch.regs[VCPU_REGS_RAX],
2736                     (u32)vcpu->arch.regs[VCPU_REGS_RBX],
2737                     (u32)vcpu->arch.regs[VCPU_REGS_RCX],
2738                     (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
2739 }
2740 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2741
2742 /*
2743  * Check if userspace requested an interrupt window, and that the
2744  * interrupt window is open.
2745  *
2746  * No need to exit to userspace if we already have an interrupt queued.
2747  */
2748 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2749                                           struct kvm_run *kvm_run)
2750 {
2751         return (!vcpu->arch.irq_summary &&
2752                 kvm_run->request_interrupt_window &&
2753                 vcpu->arch.interrupt_window_open &&
2754                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2755 }
2756
2757 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2758                               struct kvm_run *kvm_run)
2759 {
2760         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2761         kvm_run->cr8 = kvm_get_cr8(vcpu);
2762         kvm_run->apic_base = kvm_get_apic_base(vcpu);
2763         if (irqchip_in_kernel(vcpu->kvm))
2764                 kvm_run->ready_for_interrupt_injection = 1;
2765         else
2766                 kvm_run->ready_for_interrupt_injection =
2767                                         (vcpu->arch.interrupt_window_open &&
2768                                          vcpu->arch.irq_summary == 0);
2769 }
2770
2771 static void vapic_enter(struct kvm_vcpu *vcpu)
2772 {
2773         struct kvm_lapic *apic = vcpu->arch.apic;
2774         struct page *page;
2775
2776         if (!apic || !apic->vapic_addr)
2777                 return;
2778
2779         down_read(&current->mm->mmap_sem);
2780         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2781         up_read(&current->mm->mmap_sem);
2782
2783         vcpu->arch.apic->vapic_page = page;
2784 }
2785
2786 static void vapic_exit(struct kvm_vcpu *vcpu)
2787 {
2788         struct kvm_lapic *apic = vcpu->arch.apic;
2789
2790         if (!apic || !apic->vapic_addr)
2791                 return;
2792
2793         down_read(&vcpu->kvm->slots_lock);
2794         kvm_release_page_dirty(apic->vapic_page);
2795         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2796         up_read(&vcpu->kvm->slots_lock);
2797 }
2798
2799 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2800 {
2801         int r;
2802
2803         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2804                 pr_debug("vcpu %d received sipi with vector # %x\n",
2805                        vcpu->vcpu_id, vcpu->arch.sipi_vector);
2806                 kvm_lapic_reset(vcpu);
2807                 r = kvm_x86_ops->vcpu_reset(vcpu);
2808                 if (r)
2809                         return r;
2810                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2811         }
2812
2813         down_read(&vcpu->kvm->slots_lock);
2814         vapic_enter(vcpu);
2815
2816 preempted:
2817         if (vcpu->guest_debug.enabled)
2818                 kvm_x86_ops->guest_debug_pre(vcpu);
2819
2820 again:
2821         if (vcpu->requests)
2822                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2823                         kvm_mmu_unload(vcpu);
2824
2825         r = kvm_mmu_reload(vcpu);
2826         if (unlikely(r))
2827                 goto out;
2828
2829         if (vcpu->requests) {
2830                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2831                         __kvm_migrate_timers(vcpu);
2832                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2833                         kvm_x86_ops->tlb_flush(vcpu);
2834                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2835                                        &vcpu->requests)) {
2836                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2837                         r = 0;
2838                         goto out;
2839                 }
2840                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2841                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2842                         r = 0;
2843                         goto out;
2844                 }
2845         }
2846
2847         clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2848         kvm_inject_pending_timer_irqs(vcpu);
2849
2850         preempt_disable();
2851
2852         kvm_x86_ops->prepare_guest_switch(vcpu);
2853         kvm_load_guest_fpu(vcpu);
2854
2855         local_irq_disable();
2856
2857         if (vcpu->requests || need_resched()) {
2858                 local_irq_enable();
2859                 preempt_enable();
2860                 r = 1;
2861                 goto out;
2862         }
2863
2864         if (signal_pending(current)) {
2865                 local_irq_enable();
2866                 preempt_enable();
2867                 r = -EINTR;
2868                 kvm_run->exit_reason = KVM_EXIT_INTR;
2869                 ++vcpu->stat.signal_exits;
2870                 goto out;
2871         }
2872
2873         vcpu->guest_mode = 1;
2874         /*
2875          * Make sure that guest_mode assignment won't happen after
2876          * testing the pending IRQ vector bitmap.
2877          */
2878         smp_wmb();
2879
2880         if (vcpu->arch.exception.pending)
2881                 __queue_exception(vcpu);
2882         else if (irqchip_in_kernel(vcpu->kvm))
2883                 kvm_x86_ops->inject_pending_irq(vcpu);
2884         else
2885                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2886
2887         kvm_lapic_sync_to_vapic(vcpu);
2888
2889         up_read(&vcpu->kvm->slots_lock);
2890
2891         kvm_guest_enter();
2892
2893
2894         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2895         kvm_x86_ops->run(vcpu, kvm_run);
2896
2897         vcpu->guest_mode = 0;
2898         local_irq_enable();
2899
2900         ++vcpu->stat.exits;
2901
2902         /*
2903          * We must have an instruction between local_irq_enable() and
2904          * kvm_guest_exit(), so the timer interrupt isn't delayed by
2905          * the interrupt shadow.  The stat.exits increment will do nicely.
2906          * But we need to prevent reordering, hence this barrier():
2907          */
2908         barrier();
2909
2910         kvm_guest_exit();
2911
2912         preempt_enable();
2913
2914         down_read(&vcpu->kvm->slots_lock);
2915
2916         /*
2917          * Profile KVM exit RIPs:
2918          */
2919         if (unlikely(prof_on == KVM_PROFILING)) {
2920                 kvm_x86_ops->cache_regs(vcpu);
2921                 profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
2922         }
2923
2924         if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2925                 vcpu->arch.exception.pending = false;
2926
2927         kvm_lapic_sync_from_vapic(vcpu);
2928
2929         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2930
2931         if (r > 0) {
2932                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2933                         r = -EINTR;
2934                         kvm_run->exit_reason = KVM_EXIT_INTR;
2935                         ++vcpu->stat.request_irq_exits;
2936                         goto out;
2937                 }
2938                 if (!need_resched())
2939                         goto again;
2940         }
2941
2942 out:
2943         up_read(&vcpu->kvm->slots_lock);
2944         if (r > 0) {
2945                 kvm_resched(vcpu);
2946                 down_read(&vcpu->kvm->slots_lock);
2947                 goto preempted;
2948         }
2949
2950         post_kvm_run_save(vcpu, kvm_run);
2951
2952         vapic_exit(vcpu);
2953
2954         return r;
2955 }
2956
2957 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2958 {
2959         int r;
2960         sigset_t sigsaved;
2961
2962         vcpu_load(vcpu);
2963
2964         if (vcpu->sigset_active)
2965                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2966
2967         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2968                 kvm_vcpu_block(vcpu);
2969                 r = -EAGAIN;
2970                 goto out;
2971         }
2972
2973         /* re-sync apic's tpr */
2974         if (!irqchip_in_kernel(vcpu->kvm))
2975                 kvm_set_cr8(vcpu, kvm_run->cr8);
2976
2977         if (vcpu->arch.pio.cur_count) {
2978                 r = complete_pio(vcpu);
2979                 if (r)
2980                         goto out;
2981         }
2982 #if CONFIG_HAS_IOMEM
2983         if (vcpu->mmio_needed) {
2984                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2985                 vcpu->mmio_read_completed = 1;
2986                 vcpu->mmio_needed = 0;
2987
2988                 down_read(&vcpu->kvm->slots_lock);
2989                 r = emulate_instruction(vcpu, kvm_run,
2990                                         vcpu->arch.mmio_fault_cr2, 0,
2991                                         EMULTYPE_NO_DECODE);
2992                 up_read(&vcpu->kvm->slots_lock);
2993                 if (r == EMULATE_DO_MMIO) {
2994                         /*
2995                          * Read-modify-write.  Back to userspace.
2996                          */
2997                         r = 0;
2998                         goto out;
2999                 }
3000         }
3001 #endif
3002         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
3003                 kvm_x86_ops->cache_regs(vcpu);
3004                 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
3005                 kvm_x86_ops->decache_regs(vcpu);
3006         }
3007
3008         r = __vcpu_run(vcpu, kvm_run);
3009
3010 out:
3011         if (vcpu->sigset_active)
3012                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3013
3014         vcpu_put(vcpu);
3015         return r;
3016 }
3017
3018 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3019 {
3020         vcpu_load(vcpu);
3021
3022         kvm_x86_ops->cache_regs(vcpu);
3023
3024         regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
3025         regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
3026         regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
3027         regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
3028         regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
3029         regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
3030         regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3031         regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
3032 #ifdef CONFIG_X86_64
3033         regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
3034         regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
3035         regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
3036         regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
3037         regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
3038         regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
3039         regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
3040         regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
3041 #endif
3042
3043         regs->rip = vcpu->arch.rip;
3044         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3045
3046         /*
3047          * Don't leak debug flags in case they were set for guest debugging
3048          */
3049         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3050                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3051
3052         vcpu_put(vcpu);
3053
3054         return 0;
3055 }
3056
3057 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3058 {
3059         vcpu_load(vcpu);
3060
3061         vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
3062         vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
3063         vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
3064         vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
3065         vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
3066         vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
3067         vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
3068         vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
3069 #ifdef CONFIG_X86_64
3070         vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
3071         vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
3072         vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
3073         vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
3074         vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
3075         vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
3076         vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
3077         vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
3078 #endif
3079
3080         vcpu->arch.rip = regs->rip;
3081         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3082
3083         kvm_x86_ops->decache_regs(vcpu);
3084
3085         vcpu->arch.exception.pending = false;
3086
3087         vcpu_put(vcpu);
3088
3089         return 0;
3090 }
3091
3092 void kvm_get_segment(struct kvm_vcpu *vcpu,
3093                      struct kvm_segment *var, int seg)
3094 {
3095         kvm_x86_ops->get_segment(vcpu, var, seg);
3096 }
3097
3098 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3099 {
3100         struct kvm_segment cs;
3101
3102         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3103         *db = cs.db;
3104         *l = cs.l;
3105 }
3106 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3107
3108 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3109                                   struct kvm_sregs *sregs)
3110 {
3111         struct descriptor_table dt;
3112         int pending_vec;
3113
3114         vcpu_load(vcpu);
3115
3116         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3117         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3118         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3119         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3120         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3121         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3122
3123         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3124         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3125
3126         kvm_x86_ops->get_idt(vcpu, &dt);
3127         sregs->idt.limit = dt.limit;
3128         sregs->idt.base = dt.base;
3129         kvm_x86_ops->get_gdt(vcpu, &dt);
3130         sregs->gdt.limit = dt.limit;
3131         sregs->gdt.base = dt.base;
3132
3133         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3134         sregs->cr0 = vcpu->arch.cr0;
3135         sregs->cr2 = vcpu->arch.cr2;
3136         sregs->cr3 = vcpu->arch.cr3;
3137         sregs->cr4 = vcpu->arch.cr4;
3138         sregs->cr8 = kvm_get_cr8(vcpu);
3139         sregs->efer = vcpu->arch.shadow_efer;
3140         sregs->apic_base = kvm_get_apic_base(vcpu);
3141
3142         if (irqchip_in_kernel(vcpu->kvm)) {
3143                 memset(sregs->interrupt_bitmap, 0,
3144                        sizeof sregs->interrupt_bitmap);
3145                 pending_vec = kvm_x86_ops->get_irq(vcpu);
3146                 if (pending_vec >= 0)
3147                         set_bit(pending_vec,
3148                                 (unsigned long *)sregs->interrupt_bitmap);
3149         } else
3150                 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3151                        sizeof sregs->interrupt_bitmap);
3152
3153         vcpu_put(vcpu);
3154
3155         return 0;
3156 }
3157
3158 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3159                                     struct kvm_mp_state *mp_state)
3160 {
3161         vcpu_load(vcpu);
3162         mp_state->mp_state = vcpu->arch.mp_state;
3163         vcpu_put(vcpu);
3164         return 0;
3165 }
3166
3167 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3168                                     struct kvm_mp_state *mp_state)
3169 {
3170         vcpu_load(vcpu);
3171         vcpu->arch.mp_state = mp_state->mp_state;
3172         vcpu_put(vcpu);
3173         return 0;
3174 }
3175
3176 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3177                         struct kvm_segment *var, int seg)
3178 {
3179         kvm_x86_ops->set_segment(vcpu, var, seg);
3180 }
3181
3182 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3183                                    struct kvm_segment *kvm_desct)
3184 {
3185         kvm_desct->base = seg_desc->base0;
3186         kvm_desct->base |= seg_desc->base1 << 16;
3187         kvm_desct->base |= seg_desc->base2 << 24;
3188         kvm_desct->limit = seg_desc->limit0;
3189         kvm_desct->limit |= seg_desc->limit << 16;
3190         if (seg_desc->g) {
3191                 kvm_desct->limit <<= 12;
3192                 kvm_desct->limit |= 0xfff;
3193         }
3194         kvm_desct->selector = selector;
3195         kvm_desct->type = seg_desc->type;
3196         kvm_desct->present = seg_desc->p;
3197         kvm_desct->dpl = seg_desc->dpl;
3198         kvm_desct->db = seg_desc->d;
3199         kvm_desct->s = seg_desc->s;
3200         kvm_desct->l = seg_desc->l;
3201         kvm_desct->g = seg_desc->g;
3202         kvm_desct->avl = seg_desc->avl;
3203         if (!selector)
3204                 kvm_desct->unusable = 1;
3205         else
3206                 kvm_desct->unusable = 0;
3207         kvm_desct->padding = 0;
3208 }
3209
3210 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3211                                            u16 selector,
3212                                            struct descriptor_table *dtable)
3213 {
3214         if (selector & 1 << 2) {
3215                 struct kvm_segment kvm_seg;
3216
3217                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3218
3219                 if (kvm_seg.unusable)
3220                         dtable->limit = 0;
3221                 else
3222                         dtable->limit = kvm_seg.limit;
3223                 dtable->base = kvm_seg.base;
3224         }
3225         else
3226                 kvm_x86_ops->get_gdt(vcpu, dtable);
3227 }
3228
3229 /* allowed just for 8 bytes segments */
3230 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3231                                          struct desc_struct *seg_desc)
3232 {
3233         gpa_t gpa;
3234         struct descriptor_table dtable;
3235         u16 index = selector >> 3;
3236
3237         get_segment_descritptor_dtable(vcpu, selector, &dtable);
3238
3239         if (dtable.limit < index * 8 + 7) {
3240                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3241                 return 1;
3242         }
3243         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3244         gpa += index * 8;
3245         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3246 }
3247
3248 /* allowed just for 8 bytes segments */
3249 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3250                                          struct desc_struct *seg_desc)
3251 {
3252         gpa_t gpa;
3253         struct descriptor_table dtable;
3254         u16 index = selector >> 3;
3255
3256         get_segment_descritptor_dtable(vcpu, selector, &dtable);
3257
3258         if (dtable.limit < index * 8 + 7)
3259                 return 1;
3260         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3261         gpa += index * 8;
3262         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3263 }
3264
3265 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3266                              struct desc_struct *seg_desc)
3267 {
3268         u32 base_addr;
3269
3270         base_addr = seg_desc->base0;
3271         base_addr |= (seg_desc->base1 << 16);
3272         base_addr |= (seg_desc->base2 << 24);
3273
3274         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3275 }
3276
3277 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3278 {
3279         struct kvm_segment kvm_seg;
3280
3281         kvm_get_segment(vcpu, &kvm_seg, seg);
3282         return kvm_seg.selector;
3283 }
3284
3285 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3286                                                 u16 selector,
3287                                                 struct kvm_segment *kvm_seg)
3288 {
3289         struct desc_struct seg_desc;
3290
3291         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3292                 return 1;
3293         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3294         return 0;
3295 }
3296
3297 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3298                                 int type_bits, int seg)
3299 {
3300         struct kvm_segment kvm_seg;
3301
3302         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3303                 return 1;
3304         kvm_seg.type |= type_bits;
3305
3306         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3307             seg != VCPU_SREG_LDTR)
3308                 if (!kvm_seg.s)
3309                         kvm_seg.unusable = 1;
3310
3311         kvm_set_segment(vcpu, &kvm_seg, seg);
3312         return 0;
3313 }
3314
3315 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3316                                 struct tss_segment_32 *tss)
3317 {
3318         tss->cr3 = vcpu->arch.cr3;
3319         tss->eip = vcpu->arch.rip;
3320         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3321         tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
3322         tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3323         tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
3324         tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
3325         tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
3326         tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
3327         tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
3328         tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
3329
3330         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3331         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3332         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3333         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3334         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3335         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3336         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3337         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3338 }
3339
3340 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3341                                   struct tss_segment_32 *tss)
3342 {
3343         kvm_set_cr3(vcpu, tss->cr3);
3344
3345         vcpu->arch.rip = tss->eip;
3346         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3347
3348         vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
3349         vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
3350         vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
3351         vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
3352         vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
3353         vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
3354         vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
3355         vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
3356
3357         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3358                 return 1;
3359
3360         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3361                 return 1;
3362
3363         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3364                 return 1;
3365
3366         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3367                 return 1;
3368
3369         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3370                 return 1;
3371
3372         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3373                 return 1;
3374
3375         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3376                 return 1;
3377         return 0;
3378 }
3379
3380 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3381                                 struct tss_segment_16 *tss)
3382 {
3383         tss->ip = vcpu->arch.rip;
3384         tss->flag = kvm_x86_ops->get_rflags(vcpu);
3385         tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
3386         tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
3387         tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
3388         tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
3389         tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
3390         tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
3391         tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
3392         tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
3393
3394         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3395         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3396         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3397         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3398         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3399         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3400 }
3401
3402 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3403                                  struct tss_segment_16 *tss)
3404 {
3405         vcpu->arch.rip = tss->ip;
3406         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3407         vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
3408         vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
3409         vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
3410         vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
3411         vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
3412         vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
3413         vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
3414         vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
3415
3416         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3417                 return 1;
3418
3419         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3420                 return 1;
3421
3422         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3423                 return 1;
3424
3425         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3426                 return 1;
3427
3428         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3429                 return 1;
3430         return 0;
3431 }
3432
3433 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3434                        u32 old_tss_base,
3435                        struct desc_struct *nseg_desc)
3436 {
3437         struct tss_segment_16 tss_segment_16;
3438         int ret = 0;
3439
3440         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3441                            sizeof tss_segment_16))
3442                 goto out;
3443
3444         save_state_to_tss16(vcpu, &tss_segment_16);
3445
3446         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3447                             sizeof tss_segment_16))
3448                 goto out;
3449
3450         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3451                            &tss_segment_16, sizeof tss_segment_16))
3452                 goto out;
3453
3454         if (load_state_from_tss16(vcpu, &tss_segment_16))
3455                 goto out;
3456
3457         ret = 1;
3458 out:
3459         return ret;
3460 }
3461
3462 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3463                        u32 old_tss_base,
3464                        struct desc_struct *nseg_desc)
3465 {
3466         struct tss_segment_32 tss_segment_32;
3467         int ret = 0;
3468
3469         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3470                            sizeof tss_segment_32))
3471                 goto out;
3472
3473         save_state_to_tss32(vcpu, &tss_segment_32);
3474
3475         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3476                             sizeof tss_segment_32))
3477                 goto out;
3478
3479         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3480                            &tss_segment_32, sizeof tss_segment_32))
3481                 goto out;
3482
3483         if (load_state_from_tss32(vcpu, &tss_segment_32))
3484                 goto out;
3485
3486         ret = 1;
3487 out:
3488         return ret;
3489 }
3490
3491 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3492 {
3493         struct kvm_segment tr_seg;
3494         struct desc_struct cseg_desc;
3495         struct desc_struct nseg_desc;
3496         int ret = 0;
3497         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3498         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3499
3500         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3501
3502         /* FIXME: Handle errors. Failure to read either TSS or their
3503          * descriptors should generate a pagefault.
3504          */
3505         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3506                 goto out;
3507
3508         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3509                 goto out;
3510
3511         if (reason != TASK_SWITCH_IRET) {
3512                 int cpl;
3513
3514                 cpl = kvm_x86_ops->get_cpl(vcpu);
3515                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3516                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3517                         return 1;
3518                 }
3519         }
3520
3521         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3522                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3523                 return 1;
3524         }
3525
3526         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3527                 cseg_desc.type &= ~(1 << 1); //clear the B flag
3528                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3529         }
3530
3531         if (reason == TASK_SWITCH_IRET) {
3532                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3533                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3534         }
3535
3536         kvm_x86_ops->skip_emulated_instruction(vcpu);
3537         kvm_x86_ops->cache_regs(vcpu);
3538
3539         if (nseg_desc.type & 8)
3540                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3541                                          &nseg_desc);
3542         else
3543                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3544                                          &nseg_desc);
3545
3546         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3547                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3548                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3549         }
3550
3551         if (reason != TASK_SWITCH_IRET) {
3552                 nseg_desc.type |= (1 << 1);
3553                 save_guest_segment_descriptor(vcpu, tss_selector,
3554                                               &nseg_desc);
3555         }
3556
3557         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3558         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3559         tr_seg.type = 11;
3560         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3561 out:
3562         kvm_x86_ops->decache_regs(vcpu);
3563         return ret;
3564 }
3565 EXPORT_SYMBOL_GPL(kvm_task_switch);
3566
3567 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3568                                   struct kvm_sregs *sregs)
3569 {
3570         int mmu_reset_needed = 0;
3571         int i, pending_vec, max_bits;
3572         struct descriptor_table dt;
3573
3574         vcpu_load(vcpu);
3575
3576         dt.limit = sregs->idt.limit;
3577         dt.base = sregs->idt.base;
3578         kvm_x86_ops->set_idt(vcpu, &dt);
3579         dt.limit = sregs->gdt.limit;
3580         dt.base = sregs->gdt.base;
3581         kvm_x86_ops->set_gdt(vcpu, &dt);
3582
3583         vcpu->arch.cr2 = sregs->cr2;
3584         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3585         vcpu->arch.cr3 = sregs->cr3;
3586
3587         kvm_set_cr8(vcpu, sregs->cr8);
3588
3589         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3590         kvm_x86_ops->set_efer(vcpu, sregs->efer);
3591         kvm_set_apic_base(vcpu, sregs->apic_base);
3592
3593         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3594
3595         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3596         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3597         vcpu->arch.cr0 = sregs->cr0;
3598
3599         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3600         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3601         if (!is_long_mode(vcpu) && is_pae(vcpu))
3602                 load_pdptrs(vcpu, vcpu->arch.cr3);
3603
3604         if (mmu_reset_needed)
3605                 kvm_mmu_reset_context(vcpu);
3606
3607         if (!irqchip_in_kernel(vcpu->kvm)) {
3608                 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3609                        sizeof vcpu->arch.irq_pending);
3610                 vcpu->arch.irq_summary = 0;
3611                 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3612                         if (vcpu->arch.irq_pending[i])
3613                                 __set_bit(i, &vcpu->arch.irq_summary);
3614         } else {
3615                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3616                 pending_vec = find_first_bit(
3617                         (const unsigned long *)sregs->interrupt_bitmap,
3618                         max_bits);
3619                 /* Only pending external irq is handled here */
3620                 if (pending_vec < max_bits) {
3621                         kvm_x86_ops->set_irq(vcpu, pending_vec);
3622                         pr_debug("Set back pending irq %d\n",
3623                                  pending_vec);
3624                 }
3625         }
3626
3627         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3628         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3629         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3630         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3631         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3632         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3633
3634         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3635         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3636
3637         vcpu_put(vcpu);
3638
3639         return 0;
3640 }
3641
3642 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3643                                     struct kvm_debug_guest *dbg)
3644 {
3645         int r;
3646
3647         vcpu_load(vcpu);
3648
3649         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3650
3651         vcpu_put(vcpu);
3652
3653         return r;
3654 }
3655
3656 /*
3657  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
3658  * we have asm/x86/processor.h
3659  */
3660 struct fxsave {
3661         u16     cwd;
3662         u16     swd;
3663         u16     twd;
3664         u16     fop;
3665         u64     rip;
3666         u64     rdp;
3667         u32     mxcsr;
3668         u32     mxcsr_mask;
3669         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
3670 #ifdef CONFIG_X86_64
3671         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
3672 #else
3673         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
3674 #endif
3675 };
3676
3677 /*
3678  * Translate a guest virtual address to a guest physical address.
3679  */
3680 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3681                                     struct kvm_translation *tr)
3682 {
3683         unsigned long vaddr = tr->linear_address;
3684         gpa_t gpa;
3685
3686         vcpu_load(vcpu);
3687         down_read(&vcpu->kvm->slots_lock);
3688         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3689         up_read(&vcpu->kvm->slots_lock);
3690         tr->physical_address = gpa;
3691         tr->valid = gpa != UNMAPPED_GVA;
3692         tr->writeable = 1;
3693         tr->usermode = 0;
3694         vcpu_put(vcpu);
3695
3696         return 0;
3697 }
3698
3699 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3700 {
3701         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3702
3703         vcpu_load(vcpu);
3704
3705         memcpy(fpu->fpr, fxsave->st_space, 128);
3706         fpu->fcw = fxsave->cwd;
3707         fpu->fsw = fxsave->swd;
3708         fpu->ftwx = fxsave->twd;
3709         fpu->last_opcode = fxsave->fop;
3710         fpu->last_ip = fxsave->rip;
3711         fpu->last_dp = fxsave->rdp;
3712         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3713
3714         vcpu_put(vcpu);
3715
3716         return 0;
3717 }
3718
3719 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3720 {
3721         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3722
3723         vcpu_load(vcpu);
3724
3725         memcpy(fxsave->st_space, fpu->fpr, 128);
3726         fxsave->cwd = fpu->fcw;
3727         fxsave->swd = fpu->fsw;
3728         fxsave->twd = fpu->ftwx;
3729         fxsave->fop = fpu->last_opcode;
3730         fxsave->rip = fpu->last_ip;
3731         fxsave->rdp = fpu->last_dp;
3732         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3733
3734         vcpu_put(vcpu);
3735
3736         return 0;
3737 }
3738
3739 void fx_init(struct kvm_vcpu *vcpu)
3740 {
3741         unsigned after_mxcsr_mask;
3742
3743         /*
3744          * Touch the fpu the first time in non atomic context as if
3745          * this is the first fpu instruction the exception handler
3746          * will fire before the instruction returns and it'll have to
3747          * allocate ram with GFP_KERNEL.
3748          */
3749         if (!used_math())
3750                 kvm_fx_save(&vcpu->arch.host_fx_image);
3751
3752         /* Initialize guest FPU by resetting ours and saving into guest's */
3753         preempt_disable();
3754         kvm_fx_save(&vcpu->arch.host_fx_image);
3755         kvm_fx_finit();
3756         kvm_fx_save(&vcpu->arch.guest_fx_image);
3757         kvm_fx_restore(&vcpu->arch.host_fx_image);
3758         preempt_enable();
3759
3760         vcpu->arch.cr0 |= X86_CR0_ET;
3761         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3762         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3763         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3764                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3765 }
3766 EXPORT_SYMBOL_GPL(fx_init);
3767
3768 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3769 {
3770         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3771                 return;
3772
3773         vcpu->guest_fpu_loaded = 1;
3774         kvm_fx_save(&vcpu->arch.host_fx_image);
3775         kvm_fx_restore(&vcpu->arch.guest_fx_image);
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3778
3779 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3780 {
3781         if (!vcpu->guest_fpu_loaded)
3782                 return;
3783
3784         vcpu->guest_fpu_loaded = 0;
3785         kvm_fx_save(&vcpu->arch.guest_fx_image);
3786         kvm_fx_restore(&vcpu->arch.host_fx_image);
3787         ++vcpu->stat.fpu_reload;
3788 }
3789 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3790
3791 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3792 {
3793         kvm_x86_ops->vcpu_free(vcpu);
3794 }
3795
3796 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3797                                                 unsigned int id)
3798 {
3799         return kvm_x86_ops->vcpu_create(kvm, id);
3800 }
3801
3802 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3803 {
3804         int r;
3805
3806         /* We do fxsave: this must be aligned. */
3807         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3808
3809         vcpu_load(vcpu);
3810         r = kvm_arch_vcpu_reset(vcpu);
3811         if (r == 0)
3812                 r = kvm_mmu_setup(vcpu);
3813         vcpu_put(vcpu);
3814         if (r < 0)
3815                 goto free_vcpu;
3816
3817         return 0;
3818 free_vcpu:
3819         kvm_x86_ops->vcpu_free(vcpu);
3820         return r;
3821 }
3822
3823 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3824 {
3825         vcpu_load(vcpu);
3826         kvm_mmu_unload(vcpu);
3827         vcpu_put(vcpu);
3828
3829         kvm_x86_ops->vcpu_free(vcpu);
3830 }
3831
3832 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3833 {
3834         return kvm_x86_ops->vcpu_reset(vcpu);
3835 }
3836
3837 void kvm_arch_hardware_enable(void *garbage)
3838 {
3839         kvm_x86_ops->hardware_enable(garbage);
3840 }
3841
3842 void kvm_arch_hardware_disable(void *garbage)
3843 {
3844         kvm_x86_ops->hardware_disable(garbage);
3845 }
3846
3847 int kvm_arch_hardware_setup(void)
3848 {
3849         return kvm_x86_ops->hardware_setup();
3850 }
3851
3852 void kvm_arch_hardware_unsetup(void)
3853 {
3854         kvm_x86_ops->hardware_unsetup();
3855 }
3856
3857 void kvm_arch_check_processor_compat(void *rtn)
3858 {
3859         kvm_x86_ops->check_processor_compatibility(rtn);
3860 }
3861
3862 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3863 {
3864         struct page *page;
3865         struct kvm *kvm;
3866         int r;
3867
3868         BUG_ON(vcpu->kvm == NULL);
3869         kvm = vcpu->kvm;
3870
3871         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3872         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3873                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3874         else
3875                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3876
3877         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3878         if (!page) {
3879                 r = -ENOMEM;
3880                 goto fail;
3881         }
3882         vcpu->arch.pio_data = page_address(page);
3883
3884         r = kvm_mmu_create(vcpu);
3885         if (r < 0)
3886                 goto fail_free_pio_data;
3887
3888         if (irqchip_in_kernel(kvm)) {
3889                 r = kvm_create_lapic(vcpu);
3890                 if (r < 0)
3891                         goto fail_mmu_destroy;
3892         }
3893
3894         return 0;
3895
3896 fail_mmu_destroy:
3897         kvm_mmu_destroy(vcpu);
3898 fail_free_pio_data:
3899         free_page((unsigned long)vcpu->arch.pio_data);
3900 fail:
3901         return r;
3902 }
3903
3904 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
3905 {
3906         kvm_free_lapic(vcpu);
3907         down_read(&vcpu->kvm->slots_lock);
3908         kvm_mmu_destroy(vcpu);
3909         up_read(&vcpu->kvm->slots_lock);
3910         free_page((unsigned long)vcpu->arch.pio_data);
3911 }
3912
3913 struct  kvm *kvm_arch_create_vm(void)
3914 {
3915         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
3916
3917         if (!kvm)
3918                 return ERR_PTR(-ENOMEM);
3919
3920         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
3921
3922         return kvm;
3923 }
3924
3925 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
3926 {
3927         vcpu_load(vcpu);
3928         kvm_mmu_unload(vcpu);
3929         vcpu_put(vcpu);
3930 }
3931
3932 static void kvm_free_vcpus(struct kvm *kvm)
3933 {
3934         unsigned int i;
3935
3936         /*
3937          * Unpin any mmu pages first.
3938          */
3939         for (i = 0; i < KVM_MAX_VCPUS; ++i)
3940                 if (kvm->vcpus[i])
3941                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
3942         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3943                 if (kvm->vcpus[i]) {
3944                         kvm_arch_vcpu_free(kvm->vcpus[i]);
3945                         kvm->vcpus[i] = NULL;
3946                 }
3947         }
3948
3949 }
3950
3951 void kvm_arch_destroy_vm(struct kvm *kvm)
3952 {
3953         kvm_free_pit(kvm);
3954         kfree(kvm->arch.vpic);
3955         kfree(kvm->arch.vioapic);
3956         kvm_free_vcpus(kvm);
3957         kvm_free_physmem(kvm);
3958         if (kvm->arch.apic_access_page)
3959                 put_page(kvm->arch.apic_access_page);
3960         if (kvm->arch.ept_identity_pagetable)
3961                 put_page(kvm->arch.ept_identity_pagetable);
3962         kfree(kvm);
3963 }
3964
3965 int kvm_arch_set_memory_region(struct kvm *kvm,
3966                                 struct kvm_userspace_memory_region *mem,
3967                                 struct kvm_memory_slot old,
3968                                 int user_alloc)
3969 {
3970         int npages = mem->memory_size >> PAGE_SHIFT;
3971         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
3972
3973         /*To keep backward compatibility with older userspace,
3974          *x86 needs to hanlde !user_alloc case.
3975          */
3976         if (!user_alloc) {
3977                 if (npages && !old.rmap) {
3978                         unsigned long userspace_addr;
3979
3980                         down_write(&current->mm->mmap_sem);
3981                         userspace_addr = do_mmap(NULL, 0,
3982                                                  npages * PAGE_SIZE,
3983                                                  PROT_READ | PROT_WRITE,
3984                                                  MAP_SHARED | MAP_ANONYMOUS,
3985                                                  0);
3986                         up_write(&current->mm->mmap_sem);
3987
3988                         if (IS_ERR((void *)userspace_addr))
3989                                 return PTR_ERR((void *)userspace_addr);
3990
3991                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
3992                         spin_lock(&kvm->mmu_lock);
3993                         memslot->userspace_addr = userspace_addr;
3994                         spin_unlock(&kvm->mmu_lock);
3995                 } else {
3996                         if (!old.user_alloc && old.rmap) {
3997                                 int ret;
3998
3999                                 down_write(&current->mm->mmap_sem);
4000                                 ret = do_munmap(current->mm, old.userspace_addr,
4001                                                 old.npages * PAGE_SIZE);
4002                                 up_write(&current->mm->mmap_sem);
4003                                 if (ret < 0)
4004                                         printk(KERN_WARNING
4005                                        "kvm_vm_ioctl_set_memory_region: "
4006                                        "failed to munmap memory\n");
4007                         }
4008                 }
4009         }
4010
4011         if (!kvm->arch.n_requested_mmu_pages) {
4012                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4013                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4014         }
4015
4016         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4017         kvm_flush_remote_tlbs(kvm);
4018
4019         return 0;
4020 }
4021
4022 void kvm_arch_flush_shadow(struct kvm *kvm)
4023 {
4024         kvm_mmu_zap_all(kvm);
4025 }
4026
4027 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4028 {
4029         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4030                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4031 }
4032
4033 static void vcpu_kick_intr(void *info)
4034 {
4035 #ifdef DEBUG
4036         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4037         printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4038 #endif
4039 }
4040
4041 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4042 {
4043         int ipi_pcpu = vcpu->cpu;
4044         int cpu = get_cpu();
4045
4046         if (waitqueue_active(&vcpu->wq)) {
4047                 wake_up_interruptible(&vcpu->wq);
4048                 ++vcpu->stat.halt_wakeup;
4049         }
4050         /*
4051          * We may be called synchronously with irqs disabled in guest mode,
4052          * So need not to call smp_call_function_single() in that case.
4053          */
4054         if (vcpu->guest_mode && vcpu->cpu != cpu)
4055                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4056         put_cpu();
4057 }