Pull misc-for-upstream into release branch
[linux-2.6] / arch / x86_64 / kernel / tsc_sync.c
1 /*
2  * arch/x86_64/kernel/tsc_sync.c: check TSC synchronization.
3  *
4  * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
5  *
6  * We check whether all boot CPUs have their TSC's synchronized,
7  * print a warning if not and turn off the TSC clock-source.
8  *
9  * The warp-check is point-to-point between two CPUs, the CPU
10  * initiating the bootup is the 'source CPU', the freshly booting
11  * CPU is the 'target CPU'.
12  *
13  * Only two CPUs may participate - they can enter in any order.
14  * ( The serial nature of the boot logic and the CPU hotplug lock
15  *   protects against more than 2 CPUs entering this code. )
16  */
17 #include <linux/spinlock.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/smp.h>
21 #include <linux/nmi.h>
22 #include <asm/tsc.h>
23
24 /*
25  * Entry/exit counters that make sure that both CPUs
26  * run the measurement code at once:
27  */
28 static __cpuinitdata atomic_t start_count;
29 static __cpuinitdata atomic_t stop_count;
30
31 /*
32  * We use a raw spinlock in this exceptional case, because
33  * we want to have the fastest, inlined, non-debug version
34  * of a critical section, to be able to prove TSC time-warps:
35  */
36 static __cpuinitdata raw_spinlock_t sync_lock = __RAW_SPIN_LOCK_UNLOCKED;
37 static __cpuinitdata cycles_t last_tsc;
38 static __cpuinitdata cycles_t max_warp;
39 static __cpuinitdata int nr_warps;
40
41 /*
42  * TSC-warp measurement loop running on both CPUs:
43  */
44 static __cpuinit void check_tsc_warp(void)
45 {
46         cycles_t start, now, prev, end;
47         int i;
48
49         start = get_cycles_sync();
50         /*
51          * The measurement runs for 20 msecs:
52          */
53         end = start + cpu_khz * 20ULL;
54         now = start;
55
56         for (i = 0; ; i++) {
57                 /*
58                  * We take the global lock, measure TSC, save the
59                  * previous TSC that was measured (possibly on
60                  * another CPU) and update the previous TSC timestamp.
61                  */
62                 __raw_spin_lock(&sync_lock);
63                 prev = last_tsc;
64                 now = get_cycles_sync();
65                 last_tsc = now;
66                 __raw_spin_unlock(&sync_lock);
67
68                 /*
69                  * Be nice every now and then (and also check whether
70                  * measurement is done [we also insert a 100 million
71                  * loops safety exit, so we dont lock up in case the
72                  * TSC readout is totally broken]):
73                  */
74                 if (unlikely(!(i & 7))) {
75                         if (now > end || i > 100000000)
76                                 break;
77                         cpu_relax();
78                         touch_nmi_watchdog();
79                 }
80                 /*
81                  * Outside the critical section we can now see whether
82                  * we saw a time-warp of the TSC going backwards:
83                  */
84                 if (unlikely(prev > now)) {
85                         __raw_spin_lock(&sync_lock);
86                         max_warp = max(max_warp, prev - now);
87                         nr_warps++;
88                         __raw_spin_unlock(&sync_lock);
89                 }
90
91         }
92 }
93
94 /*
95  * Source CPU calls into this - it waits for the freshly booted
96  * target CPU to arrive and then starts the measurement:
97  */
98 void __cpuinit check_tsc_sync_source(int cpu)
99 {
100         int cpus = 2;
101
102         /*
103          * No need to check if we already know that the TSC is not
104          * synchronized:
105          */
106         if (unsynchronized_tsc())
107                 return;
108
109         printk(KERN_INFO "checking TSC synchronization [CPU#%d -> CPU#%d]:",
110                           smp_processor_id(), cpu);
111
112         /*
113          * Reset it - in case this is a second bootup:
114          */
115         atomic_set(&stop_count, 0);
116
117         /*
118          * Wait for the target to arrive:
119          */
120         while (atomic_read(&start_count) != cpus-1)
121                 cpu_relax();
122         /*
123          * Trigger the target to continue into the measurement too:
124          */
125         atomic_inc(&start_count);
126
127         check_tsc_warp();
128
129         while (atomic_read(&stop_count) != cpus-1)
130                 cpu_relax();
131
132         /*
133          * Reset it - just in case we boot another CPU later:
134          */
135         atomic_set(&start_count, 0);
136
137         if (nr_warps) {
138                 printk("\n");
139                 printk(KERN_WARNING "Measured %Ld cycles TSC warp between CPUs,"
140                                     " turning off TSC clock.\n", max_warp);
141                 mark_tsc_unstable();
142                 nr_warps = 0;
143                 max_warp = 0;
144                 last_tsc = 0;
145         } else {
146                 printk(" passed.\n");
147         }
148
149         /*
150          * Let the target continue with the bootup:
151          */
152         atomic_inc(&stop_count);
153 }
154
155 /*
156  * Freshly booted CPUs call into this:
157  */
158 void __cpuinit check_tsc_sync_target(void)
159 {
160         int cpus = 2;
161
162         if (unsynchronized_tsc())
163                 return;
164
165         /*
166          * Register this CPU's participation and wait for the
167          * source CPU to start the measurement:
168          */
169         atomic_inc(&start_count);
170         while (atomic_read(&start_count) != cpus)
171                 cpu_relax();
172
173         check_tsc_warp();
174
175         /*
176          * Ok, we are done:
177          */
178         atomic_inc(&stop_count);
179
180         /*
181          * Wait for the source CPU to print stuff:
182          */
183         while (atomic_read(&stop_count) != cpus)
184                 cpu_relax();
185 }
186 #undef NR_LOOPS
187