[SCSI] libsas: correctly flush the LU queue on error recovery
[linux-2.6] / include / linux / slab.h
1 /*
2  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3  *
4  * (C) SGI 2006, Christoph Lameter <clameter@sgi.com>
5  *      Cleaned up and restructured to ease the addition of alternative
6  *      implementations of SLAB allocators.
7  */
8
9 #ifndef _LINUX_SLAB_H
10 #define _LINUX_SLAB_H
11
12 #ifdef __KERNEL__
13
14 #include <linux/gfp.h>
15 #include <linux/types.h>
16
17 /*
18  * Flags to pass to kmem_cache_create().
19  * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
20  */
21 #define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
22 #define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
23 #define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
24 #define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
25 #define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
26 #define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
27 #define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
28 #define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
29 #define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
30 #define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
31
32 /* The following flags affect the page allocator grouping pages by mobility */
33 #define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
34 #define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
35 /*
36  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
37  *
38  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
39  *
40  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
41  * Both make kfree a no-op.
42  */
43 #define ZERO_SIZE_PTR ((void *)16)
44
45 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
46                                 (unsigned long)ZERO_SIZE_PTR)
47
48 /*
49  * struct kmem_cache related prototypes
50  */
51 void __init kmem_cache_init(void);
52 int slab_is_available(void);
53
54 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
55                         unsigned long,
56                         void (*)(struct kmem_cache *, void *));
57 void kmem_cache_destroy(struct kmem_cache *);
58 int kmem_cache_shrink(struct kmem_cache *);
59 void kmem_cache_free(struct kmem_cache *, void *);
60 unsigned int kmem_cache_size(struct kmem_cache *);
61 const char *kmem_cache_name(struct kmem_cache *);
62 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
63
64 /*
65  * Please use this macro to create slab caches. Simply specify the
66  * name of the structure and maybe some flags that are listed above.
67  *
68  * The alignment of the struct determines object alignment. If you
69  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
70  * then the objects will be properly aligned in SMP configurations.
71  */
72 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
73                 sizeof(struct __struct), __alignof__(struct __struct),\
74                 (__flags), NULL)
75
76 /*
77  * The largest kmalloc size supported by the slab allocators is
78  * 32 megabyte (2^25) or the maximum allocatable page order if that is
79  * less than 32 MB.
80  *
81  * WARNING: Its not easy to increase this value since the allocators have
82  * to do various tricks to work around compiler limitations in order to
83  * ensure proper constant folding.
84  */
85 #define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
86                                 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
87
88 #define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_HIGH)
89 #define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
90
91 /*
92  * Common kmalloc functions provided by all allocators
93  */
94 void * __must_check krealloc(const void *, size_t, gfp_t);
95 void kfree(const void *);
96 size_t ksize(const void *);
97
98 /*
99  * Allocator specific definitions. These are mainly used to establish optimized
100  * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
101  * selecting the appropriate general cache at compile time.
102  *
103  * Allocators must define at least:
104  *
105  *      kmem_cache_alloc()
106  *      __kmalloc()
107  *      kmalloc()
108  *
109  * Those wishing to support NUMA must also define:
110  *
111  *      kmem_cache_alloc_node()
112  *      kmalloc_node()
113  *
114  * See each allocator definition file for additional comments and
115  * implementation notes.
116  */
117 #ifdef CONFIG_SLUB
118 #include <linux/slub_def.h>
119 #elif defined(CONFIG_SLOB)
120 #include <linux/slob_def.h>
121 #else
122 #include <linux/slab_def.h>
123 #endif
124
125 /**
126  * kcalloc - allocate memory for an array. The memory is set to zero.
127  * @n: number of elements.
128  * @size: element size.
129  * @flags: the type of memory to allocate.
130  *
131  * The @flags argument may be one of:
132  *
133  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
134  *
135  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
136  *
137  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
138  *   For example, use this inside interrupt handlers.
139  *
140  * %GFP_HIGHUSER - Allocate pages from high memory.
141  *
142  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
143  *
144  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
145  *
146  * %GFP_NOWAIT - Allocation will not sleep.
147  *
148  * %GFP_THISNODE - Allocate node-local memory only.
149  *
150  * %GFP_DMA - Allocation suitable for DMA.
151  *   Should only be used for kmalloc() caches. Otherwise, use a
152  *   slab created with SLAB_DMA.
153  *
154  * Also it is possible to set different flags by OR'ing
155  * in one or more of the following additional @flags:
156  *
157  * %__GFP_COLD - Request cache-cold pages instead of
158  *   trying to return cache-warm pages.
159  *
160  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
161  *
162  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
163  *   (think twice before using).
164  *
165  * %__GFP_NORETRY - If memory is not immediately available,
166  *   then give up at once.
167  *
168  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
169  *
170  * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
171  *
172  * There are other flags available as well, but these are not intended
173  * for general use, and so are not documented here. For a full list of
174  * potential flags, always refer to linux/gfp.h.
175  */
176 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
177 {
178         if (n != 0 && size > ULONG_MAX / n)
179                 return NULL;
180         return __kmalloc(n * size, flags | __GFP_ZERO);
181 }
182
183 #if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
184 /**
185  * kmalloc_node - allocate memory from a specific node
186  * @size: how many bytes of memory are required.
187  * @flags: the type of memory to allocate (see kcalloc).
188  * @node: node to allocate from.
189  *
190  * kmalloc() for non-local nodes, used to allocate from a specific node
191  * if available. Equivalent to kmalloc() in the non-NUMA single-node
192  * case.
193  */
194 static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
195 {
196         return kmalloc(size, flags);
197 }
198
199 static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
200 {
201         return __kmalloc(size, flags);
202 }
203
204 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
205
206 static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
207                                         gfp_t flags, int node)
208 {
209         return kmem_cache_alloc(cachep, flags);
210 }
211 #endif /* !CONFIG_NUMA && !CONFIG_SLOB */
212
213 /*
214  * kmalloc_track_caller is a special version of kmalloc that records the
215  * calling function of the routine calling it for slab leak tracking instead
216  * of just the calling function (confusing, eh?).
217  * It's useful when the call to kmalloc comes from a widely-used standard
218  * allocator where we care about the real place the memory allocation
219  * request comes from.
220  */
221 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
222 extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
223 #define kmalloc_track_caller(size, flags) \
224         __kmalloc_track_caller(size, flags, __builtin_return_address(0))
225 #else
226 #define kmalloc_track_caller(size, flags) \
227         __kmalloc(size, flags)
228 #endif /* DEBUG_SLAB */
229
230 #ifdef CONFIG_NUMA
231 /*
232  * kmalloc_node_track_caller is a special version of kmalloc_node that
233  * records the calling function of the routine calling it for slab leak
234  * tracking instead of just the calling function (confusing, eh?).
235  * It's useful when the call to kmalloc_node comes from a widely-used
236  * standard allocator where we care about the real place the memory
237  * allocation request comes from.
238  */
239 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
240 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
241 #define kmalloc_node_track_caller(size, flags, node) \
242         __kmalloc_node_track_caller(size, flags, node, \
243                         __builtin_return_address(0))
244 #else
245 #define kmalloc_node_track_caller(size, flags, node) \
246         __kmalloc_node(size, flags, node)
247 #endif
248
249 #else /* CONFIG_NUMA */
250
251 #define kmalloc_node_track_caller(size, flags, node) \
252         kmalloc_track_caller(size, flags)
253
254 #endif /* DEBUG_SLAB */
255
256 /*
257  * Shortcuts
258  */
259 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
260 {
261         return kmem_cache_alloc(k, flags | __GFP_ZERO);
262 }
263
264 /**
265  * kzalloc - allocate memory. The memory is set to zero.
266  * @size: how many bytes of memory are required.
267  * @flags: the type of memory to allocate (see kmalloc).
268  */
269 static inline void *kzalloc(size_t size, gfp_t flags)
270 {
271         return kmalloc(size, flags | __GFP_ZERO);
272 }
273
274 #ifdef CONFIG_SLABINFO
275 extern const struct seq_operations slabinfo_op;
276 ssize_t slabinfo_write(struct file *, const char __user *, size_t, loff_t *);
277 #endif
278
279 #endif  /* __KERNEL__ */
280 #endif  /* _LINUX_SLAB_H */