4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/threads.h>
26 #include <linux/spinlock.h>
27 #include <linux/types.h>
28 #include <linux/pci.h>
29 #include <linux/proc_fs.h>
30 #include <linux/stringify.h>
31 #include <linux/delay.h>
32 #include <linux/initrd.h>
33 #include <linux/bitops.h>
36 #include <asm/abs_addr.h>
38 #include <asm/processor.h>
42 #include <asm/system.h>
44 #include <asm/pgtable.h>
46 #include <asm/iommu.h>
47 #include <asm/ppcdebug.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
52 #ifdef CONFIG_LOGO_LINUX_CLUT224
53 #include <linux/linux_logo.h>
54 extern const struct linux_logo logo_linux_clut224;
58 * Properties whose value is longer than this get excluded from our
59 * copy of the device tree. This value does need to be big enough to
60 * ensure that we don't lose things like the interrupt-map property
61 * on a PCI-PCI bridge.
63 #define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
66 * Eventually bump that one up
68 #define DEVTREE_CHUNK_SIZE 0x100000
71 * This is the size of the local memory reserve map that gets copied
72 * into the boot params passed to the kernel. That size is totally
73 * flexible as the kernel just reads the list until it encounters an
74 * entry with size 0, so it can be changed without breaking binary
77 #define MEM_RESERVE_MAP_SIZE 8
80 * prom_init() is called very early on, before the kernel text
81 * and data have been mapped to KERNELBASE. At this point the code
82 * is running at whatever address it has been loaded at, so
83 * references to extern and static variables must be relocated
84 * explicitly. The procedure reloc_offset() returns the address
85 * we're currently running at minus the address we were linked at.
86 * (Note that strings count as static variables.)
88 * Because OF may have mapped I/O devices into the area starting at
89 * KERNELBASE, particularly on CHRP machines, we can't safely call
90 * OF once the kernel has been mapped to KERNELBASE. Therefore all
91 * OF calls should be done within prom_init(), and prom_init()
92 * and all routines called within it must be careful to relocate
93 * references as necessary.
95 * Note that the bss is cleared *after* prom_init runs, so we have
96 * to make sure that any static or extern variables it accesses
97 * are put in the data segment.
101 #define PROM_BUG() do { \
102 prom_printf("kernel BUG at %s line 0x%x!\n", \
103 RELOC(__FILE__), __LINE__); \
104 __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
108 #define prom_debug(x...) prom_printf(x)
110 #define prom_debug(x...)
114 typedef u32 prom_arg_t;
121 prom_arg_t *rets; /* Pointer to return values in args[16]. */
131 struct prom_args args;
132 unsigned long version;
133 unsigned long root_size_cells;
134 unsigned long root_addr_cells;
137 struct pci_reg_property {
138 struct pci_address addr;
143 struct mem_map_entry {
150 extern void __start(unsigned long r3, unsigned long r4, unsigned long r5);
152 extern void enter_prom(struct prom_args *args, unsigned long entry);
153 extern void copy_and_flush(unsigned long dest, unsigned long src,
154 unsigned long size, unsigned long offset);
156 extern unsigned long klimit;
159 static struct prom_t __initdata prom;
161 #define PROM_SCRATCH_SIZE 256
163 static char __initdata of_stdout_device[256];
164 static char __initdata prom_scratch[PROM_SCRATCH_SIZE];
166 static unsigned long __initdata dt_header_start;
167 static unsigned long __initdata dt_struct_start, dt_struct_end;
168 static unsigned long __initdata dt_string_start, dt_string_end;
170 static unsigned long __initdata prom_initrd_start, prom_initrd_end;
172 static int __initdata iommu_force_on;
173 static int __initdata ppc64_iommu_off;
174 static int __initdata of_platform;
176 static char __initdata prom_cmd_line[COMMAND_LINE_SIZE];
178 static unsigned long __initdata prom_memory_limit;
179 static unsigned long __initdata prom_tce_alloc_start;
180 static unsigned long __initdata prom_tce_alloc_end;
182 static unsigned long __initdata alloc_top;
183 static unsigned long __initdata alloc_top_high;
184 static unsigned long __initdata alloc_bottom;
185 static unsigned long __initdata rmo_top;
186 static unsigned long __initdata ram_top;
188 static struct mem_map_entry __initdata mem_reserve_map[MEM_RESERVE_MAP_SIZE];
189 static int __initdata mem_reserve_cnt;
191 static cell_t __initdata regbuf[1024];
194 #define MAX_CPU_THREADS 2
200 unsigned int threadid;
201 } hmt_thread_data[NR_CPUS];
202 #endif /* CONFIG_HMT */
205 * This are used in calls to call_prom. The 4th and following
206 * arguments to call_prom should be 32-bit values. 64 bit values
207 * are truncated to 32 bits (and fortunately don't get interpreted
210 #define ADDR(x) (u32) ((unsigned long)(x) - offset)
213 * Error results ... some OF calls will return "-1" on error, some
214 * will return 0, some will return either. To simplify, here are
215 * macros to use with any ihandle or phandle return value to check if
219 #define PROM_ERROR (-1u)
220 #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
221 #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
224 /* This is the one and *ONLY* place where we actually call open
225 * firmware from, since we need to make sure we're running in 32b
226 * mode when we do. We switch back to 64b mode upon return.
229 static int __init call_prom(const char *service, int nargs, int nret, ...)
232 unsigned long offset = reloc_offset();
233 struct prom_t *_prom = PTRRELOC(&prom);
236 _prom->args.service = ADDR(service);
237 _prom->args.nargs = nargs;
238 _prom->args.nret = nret;
239 _prom->args.rets = (prom_arg_t *)&(_prom->args.args[nargs]);
241 va_start(list, nret);
242 for (i=0; i < nargs; i++)
243 _prom->args.args[i] = va_arg(list, prom_arg_t);
246 for (i=0; i < nret ;i++)
247 _prom->args.rets[i] = 0;
249 enter_prom(&_prom->args, _prom->entry);
251 return (nret > 0) ? _prom->args.rets[0] : 0;
255 static unsigned int __init prom_claim(unsigned long virt, unsigned long size,
258 return (unsigned int)call_prom("claim", 3, 1,
259 (prom_arg_t)virt, (prom_arg_t)size,
263 static void __init prom_print(const char *msg)
266 unsigned long offset = reloc_offset();
267 struct prom_t *_prom = PTRRELOC(&prom);
269 if (_prom->stdout == 0)
272 for (p = msg; *p != 0; p = q) {
273 for (q = p; *q != 0 && *q != '\n'; ++q)
276 call_prom("write", 3, 1, _prom->stdout, p, q - p);
280 call_prom("write", 3, 1, _prom->stdout, ADDR("\r\n"), 2);
285 static void __init prom_print_hex(unsigned long val)
287 unsigned long offset = reloc_offset();
288 int i, nibbles = sizeof(val)*2;
289 char buf[sizeof(val)*2+1];
290 struct prom_t *_prom = PTRRELOC(&prom);
292 for (i = nibbles-1; i >= 0; i--) {
293 buf[i] = (val & 0xf) + '0';
295 buf[i] += ('a'-'0'-10);
299 call_prom("write", 3, 1, _prom->stdout, buf, nibbles);
303 static void __init prom_printf(const char *format, ...)
305 unsigned long offset = reloc_offset();
306 const char *p, *q, *s;
309 struct prom_t *_prom = PTRRELOC(&prom);
311 va_start(args, format);
312 for (p = PTRRELOC(format); *p != 0; p = q) {
313 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q)
316 call_prom("write", 3, 1, _prom->stdout, p, q - p);
321 call_prom("write", 3, 1, _prom->stdout,
331 s = va_arg(args, const char *);
336 v = va_arg(args, unsigned long);
344 static void __init __attribute__((noreturn)) prom_panic(const char *reason)
346 unsigned long offset = reloc_offset();
348 prom_print(PTRRELOC(reason));
349 /* ToDo: should put up an SRC here */
350 call_prom("exit", 0, 0);
352 for (;;) /* should never get here */
357 static int __init prom_next_node(phandle *nodep)
361 if ((node = *nodep) != 0
362 && (*nodep = call_prom("child", 1, 1, node)) != 0)
364 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
367 if ((node = call_prom("parent", 1, 1, node)) == 0)
369 if ((*nodep = call_prom("peer", 1, 1, node)) != 0)
374 static int __init prom_getprop(phandle node, const char *pname,
375 void *value, size_t valuelen)
377 unsigned long offset = reloc_offset();
379 return call_prom("getprop", 4, 1, node, ADDR(pname),
380 (u32)(unsigned long) value, (u32) valuelen);
383 static int __init prom_getproplen(phandle node, const char *pname)
385 unsigned long offset = reloc_offset();
387 return call_prom("getproplen", 2, 1, node, ADDR(pname));
390 static int __init prom_setprop(phandle node, const char *pname,
391 void *value, size_t valuelen)
393 unsigned long offset = reloc_offset();
395 return call_prom("setprop", 4, 1, node, ADDR(pname),
396 (u32)(unsigned long) value, (u32) valuelen);
399 /* We can't use the standard versions because of RELOC headaches. */
400 #define isxdigit(c) (('0' <= (c) && (c) <= '9') \
401 || ('a' <= (c) && (c) <= 'f') \
402 || ('A' <= (c) && (c) <= 'F'))
404 #define isdigit(c) ('0' <= (c) && (c) <= '9')
405 #define islower(c) ('a' <= (c) && (c) <= 'z')
406 #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
408 unsigned long prom_strtoul(const char *cp, const char **endp)
410 unsigned long result = 0, base = 10, value;
415 if (toupper(*cp) == 'X') {
421 while (isxdigit(*cp) &&
422 (value = isdigit(*cp) ? *cp - '0' : toupper(*cp) - 'A' + 10) < base) {
423 result = result * base + value;
433 unsigned long prom_memparse(const char *ptr, const char **retptr)
435 unsigned long ret = prom_strtoul(ptr, retptr);
439 * We can't use a switch here because GCC *may* generate a
440 * jump table which won't work, because we're not running at
441 * the address we're linked at.
443 if ('G' == **retptr || 'g' == **retptr)
446 if ('M' == **retptr || 'm' == **retptr)
449 if ('K' == **retptr || 'k' == **retptr)
461 * Early parsing of the command line passed to the kernel, used for
462 * "mem=x" and the options that affect the iommu
464 static void __init early_cmdline_parse(void)
466 unsigned long offset = reloc_offset();
467 struct prom_t *_prom = PTRRELOC(&prom);
471 RELOC(prom_cmd_line[0]) = 0;
472 p = RELOC(prom_cmd_line);
473 if ((long)_prom->chosen > 0)
474 l = prom_getprop(_prom->chosen, "bootargs", p, COMMAND_LINE_SIZE-1);
475 #ifdef CONFIG_CMDLINE
476 if (l == 0) /* dbl check */
477 strlcpy(RELOC(prom_cmd_line),
478 RELOC(CONFIG_CMDLINE), sizeof(prom_cmd_line));
479 #endif /* CONFIG_CMDLINE */
480 prom_printf("command line: %s\n", RELOC(prom_cmd_line));
482 opt = strstr(RELOC(prom_cmd_line), RELOC("iommu="));
484 prom_printf("iommu opt is: %s\n", opt);
486 while (*opt && *opt == ' ')
488 if (!strncmp(opt, RELOC("off"), 3))
489 RELOC(ppc64_iommu_off) = 1;
490 else if (!strncmp(opt, RELOC("force"), 5))
491 RELOC(iommu_force_on) = 1;
494 opt = strstr(RELOC(prom_cmd_line), RELOC("mem="));
497 RELOC(prom_memory_limit) = prom_memparse(opt, (const char **)&opt);
498 /* Align to 16 MB == size of large page */
499 RELOC(prom_memory_limit) = ALIGN(RELOC(prom_memory_limit), 0x1000000);
504 * To tell the firmware what our capabilities are, we have to pass
505 * it a fake 32-bit ELF header containing a couple of PT_NOTE sections
506 * that contain structures that contain the actual values.
508 static struct fake_elf {
515 char name[8]; /* "PowerPC" */
529 char name[24]; /* "IBM,RPA-Client-Config" */
543 .e_ident = { 0x7f, 'E', 'L', 'F',
544 ELFCLASS32, ELFDATA2MSB, EV_CURRENT },
545 .e_type = ET_EXEC, /* yeah right */
547 .e_version = EV_CURRENT,
548 .e_phoff = offsetof(struct fake_elf, phdr),
549 .e_phentsize = sizeof(Elf32_Phdr),
555 .p_offset = offsetof(struct fake_elf, chrpnote),
556 .p_filesz = sizeof(struct chrpnote)
559 .p_offset = offsetof(struct fake_elf, rpanote),
560 .p_filesz = sizeof(struct rpanote)
564 .namesz = sizeof("PowerPC"),
565 .descsz = sizeof(struct chrpdesc),
569 .real_mode = ~0U, /* ~0 means "don't care" */
578 .namesz = sizeof("IBM,RPA-Client-Config"),
579 .descsz = sizeof(struct rpadesc),
581 .name = "IBM,RPA-Client-Config",
584 .min_rmo_size = 64, /* in megabytes */
585 .min_rmo_percent = 0,
586 .max_pft_size = 48, /* 2^48 bytes max PFT size */
594 static void __init prom_send_capabilities(void)
596 unsigned long offset = reloc_offset();
599 elfloader = call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
600 if (elfloader == 0) {
601 prom_printf("couldn't open /packages/elf-loader\n");
604 call_prom("call-method", 3, 1, ADDR("process-elf-header"),
605 elfloader, ADDR(&fake_elf));
606 call_prom("close", 1, 0, elfloader);
610 * Memory allocation strategy... our layout is normally:
612 * at 14Mb or more we vmlinux, then a gap and initrd. In some rare cases, initrd
613 * might end up beeing before the kernel though. We assume this won't override
614 * the final kernel at 0, we have no provision to handle that in this version,
615 * but it should hopefully never happen.
617 * alloc_top is set to the top of RMO, eventually shrink down if the TCEs overlap
618 * alloc_bottom is set to the top of kernel/initrd
620 * from there, allocations are done that way : rtas is allocated topmost, and
621 * the device-tree is allocated from the bottom. We try to grow the device-tree
622 * allocation as we progress. If we can't, then we fail, we don't currently have
623 * a facility to restart elsewhere, but that shouldn't be necessary neither
625 * Note that calls to reserve_mem have to be done explicitely, memory allocated
626 * with either alloc_up or alloc_down isn't automatically reserved.
631 * Allocates memory in the RMO upward from the kernel/initrd
633 * When align is 0, this is a special case, it means to allocate in place
634 * at the current location of alloc_bottom or fail (that is basically
635 * extending the previous allocation). Used for the device-tree flattening
637 static unsigned long __init alloc_up(unsigned long size, unsigned long align)
639 unsigned long offset = reloc_offset();
640 unsigned long base = _ALIGN_UP(RELOC(alloc_bottom), align);
641 unsigned long addr = 0;
643 prom_debug("alloc_up(%x, %x)\n", size, align);
644 if (RELOC(ram_top) == 0)
645 prom_panic("alloc_up() called with mem not initialized\n");
648 base = _ALIGN_UP(RELOC(alloc_bottom), align);
650 base = RELOC(alloc_bottom);
652 for(; (base + size) <= RELOC(alloc_top);
653 base = _ALIGN_UP(base + 0x100000, align)) {
654 prom_debug(" trying: 0x%x\n\r", base);
655 addr = (unsigned long)prom_claim(base, size, 0);
656 if (addr != PROM_ERROR)
664 RELOC(alloc_bottom) = addr;
666 prom_debug(" -> %x\n", addr);
667 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
668 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
669 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
670 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
671 prom_debug(" ram_top : %x\n", RELOC(ram_top));
677 * Allocates memory downard, either from top of RMO, or if highmem
678 * is set, from the top of RAM. Note that this one doesn't handle
679 * failures. In does claim memory if highmem is not set.
681 static unsigned long __init alloc_down(unsigned long size, unsigned long align,
684 unsigned long offset = reloc_offset();
685 unsigned long base, addr = 0;
687 prom_debug("alloc_down(%x, %x, %s)\n", size, align,
688 highmem ? RELOC("(high)") : RELOC("(low)"));
689 if (RELOC(ram_top) == 0)
690 prom_panic("alloc_down() called with mem not initialized\n");
693 /* Carve out storage for the TCE table. */
694 addr = _ALIGN_DOWN(RELOC(alloc_top_high) - size, align);
695 if (addr <= RELOC(alloc_bottom))
698 /* Will we bump into the RMO ? If yes, check out that we
699 * didn't overlap existing allocations there, if we did,
700 * we are dead, we must be the first in town !
702 if (addr < RELOC(rmo_top)) {
703 /* Good, we are first */
704 if (RELOC(alloc_top) == RELOC(rmo_top))
705 RELOC(alloc_top) = RELOC(rmo_top) = addr;
709 RELOC(alloc_top_high) = addr;
714 base = _ALIGN_DOWN(RELOC(alloc_top) - size, align);
715 for(; base > RELOC(alloc_bottom); base = _ALIGN_DOWN(base - 0x100000, align)) {
716 prom_debug(" trying: 0x%x\n\r", base);
717 addr = (unsigned long)prom_claim(base, size, 0);
718 if (addr != PROM_ERROR)
724 RELOC(alloc_top) = addr;
727 prom_debug(" -> %x\n", addr);
728 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom));
729 prom_debug(" alloc_top : %x\n", RELOC(alloc_top));
730 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
731 prom_debug(" rmo_top : %x\n", RELOC(rmo_top));
732 prom_debug(" ram_top : %x\n", RELOC(ram_top));
740 static unsigned long __init prom_next_cell(int s, cell_t **cellp)
745 /* Ignore more than 2 cells */
761 * Very dumb function for adding to the memory reserve list, but
762 * we don't need anything smarter at this point
764 * XXX Eventually check for collisions. They should NEVER happen
765 * if problems seem to show up, it would be a good start to track
768 static void reserve_mem(unsigned long base, unsigned long size)
770 unsigned long offset = reloc_offset();
771 unsigned long top = base + size;
772 unsigned long cnt = RELOC(mem_reserve_cnt);
777 /* We need to always keep one empty entry so that we
778 * have our terminator with "size" set to 0 since we are
779 * dumb and just copy this entire array to the boot params
781 base = _ALIGN_DOWN(base, PAGE_SIZE);
782 top = _ALIGN_UP(top, PAGE_SIZE);
785 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1))
786 prom_panic("Memory reserve map exhausted !\n");
787 RELOC(mem_reserve_map)[cnt].base = base;
788 RELOC(mem_reserve_map)[cnt].size = size;
789 RELOC(mem_reserve_cnt) = cnt + 1;
793 * Initialize memory allocation mecanism, parse "memory" nodes and
794 * obtain that way the top of memory and RMO to setup out local allocator
796 static void __init prom_init_mem(void)
799 char *path, type[64];
802 unsigned long offset = reloc_offset();
803 struct prom_t *_prom = PTRRELOC(&prom);
806 * We iterate the memory nodes to find
807 * 1) top of RMO (first node)
810 prom_debug("root_addr_cells: %x\n", (long)_prom->root_addr_cells);
811 prom_debug("root_size_cells: %x\n", (long)_prom->root_size_cells);
813 prom_debug("scanning memory:\n");
814 path = RELOC(prom_scratch);
816 for (node = 0; prom_next_node(&node); ) {
818 prom_getprop(node, "device_type", type, sizeof(type));
820 if (strcmp(type, RELOC("memory")))
823 plen = prom_getprop(node, "reg", RELOC(regbuf), sizeof(regbuf));
824 if (plen > sizeof(regbuf)) {
825 prom_printf("memory node too large for buffer !\n");
826 plen = sizeof(regbuf);
829 endp = p + (plen / sizeof(cell_t));
832 memset(path, 0, PROM_SCRATCH_SIZE);
833 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
834 prom_debug(" node %s :\n", path);
835 #endif /* DEBUG_PROM */
837 while ((endp - p) >= (_prom->root_addr_cells + _prom->root_size_cells)) {
838 unsigned long base, size;
840 base = prom_next_cell(_prom->root_addr_cells, &p);
841 size = prom_next_cell(_prom->root_size_cells, &p);
845 prom_debug(" %x %x\n", base, size);
847 RELOC(rmo_top) = size;
848 if ((base + size) > RELOC(ram_top))
849 RELOC(ram_top) = base + size;
853 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(klimit) - offset + 0x4000);
855 /* Check if we have an initrd after the kernel, if we do move our bottom
858 if (RELOC(prom_initrd_start)) {
859 if (RELOC(prom_initrd_end) > RELOC(alloc_bottom))
860 RELOC(alloc_bottom) = PAGE_ALIGN(RELOC(prom_initrd_end));
864 * If prom_memory_limit is set we reduce the upper limits *except* for
865 * alloc_top_high. This must be the real top of RAM so we can put
869 RELOC(alloc_top_high) = RELOC(ram_top);
871 if (RELOC(prom_memory_limit)) {
872 if (RELOC(prom_memory_limit) <= RELOC(alloc_bottom)) {
873 prom_printf("Ignoring mem=%x <= alloc_bottom.\n",
874 RELOC(prom_memory_limit));
875 RELOC(prom_memory_limit) = 0;
876 } else if (RELOC(prom_memory_limit) >= RELOC(ram_top)) {
877 prom_printf("Ignoring mem=%x >= ram_top.\n",
878 RELOC(prom_memory_limit));
879 RELOC(prom_memory_limit) = 0;
881 RELOC(ram_top) = RELOC(prom_memory_limit);
882 RELOC(rmo_top) = min(RELOC(rmo_top), RELOC(prom_memory_limit));
887 * Setup our top alloc point, that is top of RMO or top of
888 * segment 0 when running non-LPAR.
890 if ( RELOC(of_platform) == PLATFORM_PSERIES_LPAR )
891 RELOC(alloc_top) = RELOC(rmo_top);
893 /* Some RS64 machines have buggy firmware where claims up at 1GB
894 * fails. Cap at 768MB as a workaround. Still plenty of room.
896 RELOC(alloc_top) = RELOC(rmo_top) = min(0x30000000ul, RELOC(ram_top));
898 prom_printf("memory layout at init:\n");
899 prom_printf(" memory_limit : %x (16 MB aligned)\n", RELOC(prom_memory_limit));
900 prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom));
901 prom_printf(" alloc_top : %x\n", RELOC(alloc_top));
902 prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high));
903 prom_printf(" rmo_top : %x\n", RELOC(rmo_top));
904 prom_printf(" ram_top : %x\n", RELOC(ram_top));
909 * Allocate room for and instanciate RTAS
911 static void __init prom_instantiate_rtas(void)
913 unsigned long offset = reloc_offset();
914 struct prom_t *_prom = PTRRELOC(&prom);
920 prom_debug("prom_instantiate_rtas: start...\n");
922 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas"));
923 prom_debug("rtas_node: %x\n", rtas_node);
924 if (!PHANDLE_VALID(rtas_node))
927 prom_getprop(rtas_node, "rtas-size", &size, sizeof(size));
931 base = alloc_down(size, PAGE_SIZE, 0);
933 prom_printf("RTAS allocation failed !\n");
937 rtas_inst = call_prom("open", 1, 1, ADDR("/rtas"));
938 if (!IHANDLE_VALID(rtas_inst)) {
939 prom_printf("opening rtas package failed");
943 prom_printf("instantiating rtas at 0x%x ...", base);
945 if (call_prom("call-method", 3, 2,
946 ADDR("instantiate-rtas"),
947 rtas_inst, base) != PROM_ERROR) {
948 entry = (long)_prom->args.rets[1];
951 prom_printf(" failed\n");
954 prom_printf(" done\n");
956 reserve_mem(base, size);
958 prom_setprop(rtas_node, "linux,rtas-base", &base, sizeof(base));
959 prom_setprop(rtas_node, "linux,rtas-entry", &entry, sizeof(entry));
961 prom_debug("rtas base = 0x%x\n", base);
962 prom_debug("rtas entry = 0x%x\n", entry);
963 prom_debug("rtas size = 0x%x\n", (long)size);
965 prom_debug("prom_instantiate_rtas: end...\n");
970 * Allocate room for and initialize TCE tables
972 static void __init prom_initialize_tce_table(void)
976 unsigned long offset = reloc_offset();
977 char compatible[64], type[64], model[64];
978 char *path = RELOC(prom_scratch);
980 u32 minalign, minsize;
981 u64 tce_entry, *tce_entryp;
982 u64 local_alloc_top, local_alloc_bottom;
985 if (RELOC(ppc64_iommu_off))
988 prom_debug("starting prom_initialize_tce_table\n");
990 /* Cache current top of allocs so we reserve a single block */
991 local_alloc_top = RELOC(alloc_top_high);
992 local_alloc_bottom = local_alloc_top;
994 /* Search all nodes looking for PHBs. */
995 for (node = 0; prom_next_node(&node); ) {
999 prom_getprop(node, "compatible",
1000 compatible, sizeof(compatible));
1001 prom_getprop(node, "device_type", type, sizeof(type));
1002 prom_getprop(node, "model", model, sizeof(model));
1004 if ((type[0] == 0) || (strstr(type, RELOC("pci")) == NULL))
1007 /* Keep the old logic in tack to avoid regression. */
1008 if (compatible[0] != 0) {
1009 if ((strstr(compatible, RELOC("python")) == NULL) &&
1010 (strstr(compatible, RELOC("Speedwagon")) == NULL) &&
1011 (strstr(compatible, RELOC("Winnipeg")) == NULL))
1013 } else if (model[0] != 0) {
1014 if ((strstr(model, RELOC("ython")) == NULL) &&
1015 (strstr(model, RELOC("peedwagon")) == NULL) &&
1016 (strstr(model, RELOC("innipeg")) == NULL))
1020 if (prom_getprop(node, "tce-table-minalign", &minalign,
1021 sizeof(minalign)) == PROM_ERROR)
1023 if (prom_getprop(node, "tce-table-minsize", &minsize,
1024 sizeof(minsize)) == PROM_ERROR)
1025 minsize = 4UL << 20;
1028 * Even though we read what OF wants, we just set the table
1029 * size to 4 MB. This is enough to map 2GB of PCI DMA space.
1030 * By doing this, we avoid the pitfalls of trying to DMA to
1031 * MMIO space and the DMA alias hole.
1033 * On POWER4, firmware sets the TCE region by assuming
1034 * each TCE table is 8MB. Using this memory for anything
1035 * else will impact performance, so we always allocate 8MB.
1038 if (__is_processor(PV_POWER4) || __is_processor(PV_POWER4p))
1039 minsize = 8UL << 20;
1041 minsize = 4UL << 20;
1043 /* Align to the greater of the align or size */
1044 align = max(minalign, minsize);
1045 base = alloc_down(minsize, align, 1);
1047 prom_panic("ERROR, cannot find space for TCE table.\n");
1048 if (base < local_alloc_bottom)
1049 local_alloc_bottom = base;
1051 /* Save away the TCE table attributes for later use. */
1052 prom_setprop(node, "linux,tce-base", &base, sizeof(base));
1053 prom_setprop(node, "linux,tce-size", &minsize, sizeof(minsize));
1055 /* It seems OF doesn't null-terminate the path :-( */
1056 memset(path, 0, sizeof(path));
1057 /* Call OF to setup the TCE hardware */
1058 if (call_prom("package-to-path", 3, 1, node,
1059 path, PROM_SCRATCH_SIZE-1) == PROM_ERROR) {
1060 prom_printf("package-to-path failed\n");
1063 prom_debug("TCE table: %s\n", path);
1064 prom_debug("\tnode = 0x%x\n", node);
1065 prom_debug("\tbase = 0x%x\n", base);
1066 prom_debug("\tsize = 0x%x\n", minsize);
1068 /* Initialize the table to have a one-to-one mapping
1069 * over the allocated size.
1071 tce_entryp = (unsigned long *)base;
1072 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) {
1073 tce_entry = (i << PAGE_SHIFT);
1075 *tce_entryp = tce_entry;
1078 prom_printf("opening PHB %s", path);
1079 phb_node = call_prom("open", 1, 1, path);
1081 prom_printf("... failed\n");
1083 prom_printf("... done\n");
1085 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
1086 phb_node, -1, minsize,
1087 (u32) base, (u32) (base >> 32));
1088 call_prom("close", 1, 0, phb_node);
1091 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom);
1093 if (RELOC(prom_memory_limit)) {
1095 * We align the start to a 16MB boundary so we can map the TCE area
1096 * using large pages if possible. The end should be the top of RAM
1097 * so no need to align it.
1099 RELOC(prom_tce_alloc_start) = _ALIGN_DOWN(local_alloc_bottom, 0x1000000);
1100 RELOC(prom_tce_alloc_end) = local_alloc_top;
1103 /* Flag the first invalid entry */
1104 prom_debug("ending prom_initialize_tce_table\n");
1108 * With CHRP SMP we need to use the OF to start the other
1109 * processors so we can't wait until smp_boot_cpus (the OF is
1110 * trashed by then) so we have to put the processors into
1111 * a holding pattern controlled by the kernel (not OF) before
1112 * we destroy the OF.
1114 * This uses a chunk of low memory, puts some holding pattern
1115 * code there and sends the other processors off to there until
1116 * smp_boot_cpus tells them to do something. The holding pattern
1117 * checks that address until its cpu # is there, when it is that
1118 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care
1119 * of setting those values.
1121 * We also use physical address 0x4 here to tell when a cpu
1122 * is in its holding pattern code.
1124 * Fixup comment... DRENG / PPPBBB - Peter
1128 static void __init prom_hold_cpus(void)
1133 unsigned long offset = reloc_offset();
1136 unsigned int interrupt_server[MAX_CPU_THREADS];
1137 unsigned int cpu_threads, hw_cpu_num;
1139 extern void __secondary_hold(void);
1140 extern unsigned long __secondary_hold_spinloop;
1141 extern unsigned long __secondary_hold_acknowledge;
1142 unsigned long *spinloop
1143 = (void *)virt_to_abs(&__secondary_hold_spinloop);
1144 unsigned long *acknowledge
1145 = (void *)virt_to_abs(&__secondary_hold_acknowledge);
1146 unsigned long secondary_hold
1147 = virt_to_abs(*PTRRELOC((unsigned long *)__secondary_hold));
1148 struct prom_t *_prom = PTRRELOC(&prom);
1150 prom_debug("prom_hold_cpus: start...\n");
1151 prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop);
1152 prom_debug(" 1) *spinloop = 0x%x\n", *spinloop);
1153 prom_debug(" 1) acknowledge = 0x%x\n",
1154 (unsigned long)acknowledge);
1155 prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge);
1156 prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold);
1158 /* Set the common spinloop variable, so all of the secondary cpus
1159 * will block when they are awakened from their OF spinloop.
1160 * This must occur for both SMP and non SMP kernels, since OF will
1161 * be trashed when we move the kernel.
1166 for (i=0; i < NR_CPUS; i++) {
1167 RELOC(hmt_thread_data)[i].pir = 0xdeadbeef;
1171 for (node = 0; prom_next_node(&node); ) {
1173 prom_getprop(node, "device_type", type, sizeof(type));
1174 if (strcmp(type, RELOC("cpu")) != 0)
1177 /* Skip non-configured cpus. */
1178 if (prom_getprop(node, "status", type, sizeof(type)) > 0)
1179 if (strcmp(type, RELOC("okay")) != 0)
1183 prom_getprop(node, "reg", ®, sizeof(reg));
1185 prom_debug("\ncpuid = 0x%x\n", cpuid);
1186 prom_debug("cpu hw idx = 0x%x\n", reg);
1188 /* Init the acknowledge var which will be reset by
1189 * the secondary cpu when it awakens from its OF
1192 *acknowledge = (unsigned long)-1;
1194 propsize = prom_getprop(node, "ibm,ppc-interrupt-server#s",
1196 sizeof(interrupt_server));
1198 /* no property. old hardware has no SMT */
1200 interrupt_server[0] = reg; /* fake it with phys id */
1202 /* We have a threaded processor */
1203 cpu_threads = propsize / sizeof(u32);
1204 if (cpu_threads > MAX_CPU_THREADS) {
1205 prom_printf("SMT: too many threads!\n"
1206 "SMT: found %x, max is %x\n",
1207 cpu_threads, MAX_CPU_THREADS);
1208 cpu_threads = 1; /* ToDo: panic? */
1212 hw_cpu_num = interrupt_server[0];
1213 if (hw_cpu_num != _prom->cpu) {
1214 /* Primary Thread of non-boot cpu */
1215 prom_printf("%x : starting cpu hw idx %x... ", cpuid, reg);
1216 call_prom("start-cpu", 3, 0, node,
1217 secondary_hold, reg);
1219 for ( i = 0 ; (i < 100000000) &&
1220 (*acknowledge == ((unsigned long)-1)); i++ )
1223 if (*acknowledge == reg) {
1224 prom_printf("done\n");
1225 /* We have to get every CPU out of OF,
1226 * even if we never start it. */
1227 if (cpuid >= NR_CPUS)
1230 prom_printf("failed: %x\n", *acknowledge);
1235 prom_printf("%x : boot cpu %x\n", cpuid, reg);
1239 /* Init paca for secondary threads. They start later. */
1240 for (i=1; i < cpu_threads; i++) {
1242 if (cpuid >= NR_CPUS)
1245 #endif /* CONFIG_SMP */
1249 /* Only enable HMT on processors that provide support. */
1250 if (__is_processor(PV_PULSAR) ||
1251 __is_processor(PV_ICESTAR) ||
1252 __is_processor(PV_SSTAR)) {
1253 prom_printf(" starting secondary threads\n");
1255 for (i = 0; i < NR_CPUS; i += 2) {
1260 unsigned long pir = mfspr(SPRN_PIR);
1261 if (__is_processor(PV_PULSAR)) {
1262 RELOC(hmt_thread_data)[i].pir =
1265 RELOC(hmt_thread_data)[i].pir =
1271 prom_printf("Processor is not HMT capable\n");
1275 if (cpuid > NR_CPUS)
1276 prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS)
1277 ") exceeded: ignoring extras\n");
1279 prom_debug("prom_hold_cpus: end...\n");
1283 static void __init prom_init_client_services(unsigned long pp)
1285 unsigned long offset = reloc_offset();
1286 struct prom_t *_prom = PTRRELOC(&prom);
1288 /* Get a handle to the prom entry point before anything else */
1291 /* Init default value for phys size */
1292 _prom->root_size_cells = 1;
1293 _prom->root_addr_cells = 2;
1295 /* get a handle for the stdout device */
1296 _prom->chosen = call_prom("finddevice", 1, 1, ADDR("/chosen"));
1297 if (!PHANDLE_VALID(_prom->chosen))
1298 prom_panic("cannot find chosen"); /* msg won't be printed :( */
1300 /* get device tree root */
1301 _prom->root = call_prom("finddevice", 1, 1, ADDR("/"));
1302 if (!PHANDLE_VALID(_prom->root))
1303 prom_panic("cannot find device tree root"); /* msg won't be printed :( */
1306 static void __init prom_init_stdout(void)
1308 unsigned long offset = reloc_offset();
1309 struct prom_t *_prom = PTRRELOC(&prom);
1310 char *path = RELOC(of_stdout_device);
1314 if (prom_getprop(_prom->chosen, "stdout", &val, sizeof(val)) <= 0)
1315 prom_panic("cannot find stdout");
1317 _prom->stdout = val;
1319 /* Get the full OF pathname of the stdout device */
1320 memset(path, 0, 256);
1321 call_prom("instance-to-path", 3, 1, _prom->stdout, path, 255);
1322 val = call_prom("instance-to-package", 1, 1, _prom->stdout);
1323 prom_setprop(_prom->chosen, "linux,stdout-package", &val, sizeof(val));
1324 prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device));
1325 prom_setprop(_prom->chosen, "linux,stdout-path",
1326 RELOC(of_stdout_device), strlen(RELOC(of_stdout_device))+1);
1328 /* If it's a display, note it */
1329 memset(type, 0, sizeof(type));
1330 prom_getprop(val, "device_type", type, sizeof(type));
1331 if (strcmp(type, RELOC("display")) == 0) {
1332 _prom->disp_node = val;
1333 prom_setprop(val, "linux,boot-display", NULL, 0);
1337 static void __init prom_close_stdin(void)
1339 unsigned long offset = reloc_offset();
1340 struct prom_t *_prom = PTRRELOC(&prom);
1343 if (prom_getprop(_prom->chosen, "stdin", &val, sizeof(val)) > 0)
1344 call_prom("close", 1, 0, val);
1347 static int __init prom_find_machine_type(void)
1349 unsigned long offset = reloc_offset();
1350 struct prom_t *_prom = PTRRELOC(&prom);
1355 len = prom_getprop(_prom->root, "compatible",
1356 compat, sizeof(compat)-1);
1360 char *p = &compat[i];
1364 if (strstr(p, RELOC("Power Macintosh")) ||
1365 strstr(p, RELOC("MacRISC4")))
1366 return PLATFORM_POWERMAC;
1367 if (strstr(p, RELOC("Momentum,Maple")))
1368 return PLATFORM_MAPLE;
1372 /* Default to pSeries. We need to know if we are running LPAR */
1373 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas"));
1374 if (PHANDLE_VALID(rtas)) {
1375 int x = prom_getproplen(rtas, "ibm,hypertas-functions");
1376 if (x != PROM_ERROR) {
1377 prom_printf("Hypertas detected, assuming LPAR !\n");
1378 return PLATFORM_PSERIES_LPAR;
1381 return PLATFORM_PSERIES;
1384 static int __init prom_set_color(ihandle ih, int i, int r, int g, int b)
1386 unsigned long offset = reloc_offset();
1388 return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r);
1392 * If we have a display that we don't know how to drive,
1393 * we will want to try to execute OF's open method for it
1394 * later. However, OF will probably fall over if we do that
1395 * we've taken over the MMU.
1396 * So we check whether we will need to open the display,
1397 * and if so, open it now.
1399 static void __init prom_check_displays(void)
1401 unsigned long offset = reloc_offset();
1402 struct prom_t *_prom = PTRRELOC(&prom);
1403 char type[16], *path;
1408 static unsigned char default_colors[] = {
1426 const unsigned char *clut;
1428 prom_printf("Looking for displays\n");
1429 for (node = 0; prom_next_node(&node); ) {
1430 memset(type, 0, sizeof(type));
1431 prom_getprop(node, "device_type", type, sizeof(type));
1432 if (strcmp(type, RELOC("display")) != 0)
1435 /* It seems OF doesn't null-terminate the path :-( */
1436 path = RELOC(prom_scratch);
1437 memset(path, 0, PROM_SCRATCH_SIZE);
1440 * leave some room at the end of the path for appending extra
1443 if (call_prom("package-to-path", 3, 1, node, path,
1444 PROM_SCRATCH_SIZE-10) == PROM_ERROR)
1446 prom_printf("found display : %s, opening ... ", path);
1448 ih = call_prom("open", 1, 1, path);
1450 prom_printf("failed\n");
1455 prom_printf("done\n");
1456 prom_setprop(node, "linux,opened", NULL, 0);
1459 * stdout wasn't a display node, pick the first we can find
1462 if (_prom->disp_node == 0)
1463 _prom->disp_node = node;
1465 /* Setup a useable color table when the appropriate
1466 * method is available. Should update this to set-colors */
1467 clut = RELOC(default_colors);
1468 for (i = 0; i < 32; i++, clut += 3)
1469 if (prom_set_color(ih, i, clut[0], clut[1],
1473 #ifdef CONFIG_LOGO_LINUX_CLUT224
1474 clut = PTRRELOC(RELOC(logo_linux_clut224.clut));
1475 for (i = 0; i < RELOC(logo_linux_clut224.clutsize); i++, clut += 3)
1476 if (prom_set_color(ih, i + 32, clut[0], clut[1],
1479 #endif /* CONFIG_LOGO_LINUX_CLUT224 */
1484 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */
1485 static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end,
1486 unsigned long needed, unsigned long align)
1488 unsigned long offset = reloc_offset();
1491 *mem_start = _ALIGN(*mem_start, align);
1492 while ((*mem_start + needed) > *mem_end) {
1493 unsigned long room, chunk;
1495 prom_debug("Chunk exhausted, claiming more at %x...\n",
1496 RELOC(alloc_bottom));
1497 room = RELOC(alloc_top) - RELOC(alloc_bottom);
1498 if (room > DEVTREE_CHUNK_SIZE)
1499 room = DEVTREE_CHUNK_SIZE;
1500 if (room < PAGE_SIZE)
1501 prom_panic("No memory for flatten_device_tree (no room)");
1502 chunk = alloc_up(room, 0);
1504 prom_panic("No memory for flatten_device_tree (claim failed)");
1505 *mem_end = RELOC(alloc_top);
1508 ret = (void *)*mem_start;
1509 *mem_start += needed;
1514 #define dt_push_token(token, mem_start, mem_end) \
1515 do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
1517 static unsigned long __init dt_find_string(char *str)
1519 unsigned long offset = reloc_offset();
1522 s = os = (char *)RELOC(dt_string_start);
1524 while (s < (char *)RELOC(dt_string_end)) {
1525 if (strcmp(s, str) == 0)
1533 * The Open Firmware 1275 specification states properties must be 31 bytes or
1534 * less, however not all firmwares obey this. Make it 64 bytes to be safe.
1536 #define MAX_PROPERTY_NAME 64
1538 static void __init scan_dt_build_strings(phandle node,
1539 unsigned long *mem_start,
1540 unsigned long *mem_end)
1542 unsigned long offset = reloc_offset();
1543 char *prev_name, *namep, *sstart;
1547 sstart = (char *)RELOC(dt_string_start);
1549 /* get and store all property names */
1550 prev_name = RELOC("");
1552 /* 64 is max len of name including nul. */
1553 namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1);
1554 if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) {
1555 /* No more nodes: unwind alloc */
1556 *mem_start = (unsigned long)namep;
1561 if (strcmp(namep, RELOC("name")) == 0) {
1562 *mem_start = (unsigned long)namep;
1563 prev_name = RELOC("name");
1566 /* get/create string entry */
1567 soff = dt_find_string(namep);
1569 *mem_start = (unsigned long)namep;
1570 namep = sstart + soff;
1572 /* Trim off some if we can */
1573 *mem_start = (unsigned long)namep + strlen(namep) + 1;
1574 RELOC(dt_string_end) = *mem_start;
1579 /* do all our children */
1580 child = call_prom("child", 1, 1, node);
1581 while (child != 0) {
1582 scan_dt_build_strings(child, mem_start, mem_end);
1583 child = call_prom("peer", 1, 1, child);
1587 static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start,
1588 unsigned long *mem_end)
1591 char *namep, *prev_name, *sstart, *p, *ep, *lp, *path;
1593 unsigned char *valp;
1594 unsigned long offset = reloc_offset();
1595 static char pname[MAX_PROPERTY_NAME];
1598 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end);
1600 /* get the node's full name */
1601 namep = (char *)*mem_start;
1602 l = call_prom("package-to-path", 3, 1, node,
1603 namep, *mem_end - *mem_start);
1605 /* Didn't fit? Get more room. */
1606 if ((l+1) > (*mem_end - *mem_start)) {
1607 namep = make_room(mem_start, mem_end, l+1, 1);
1608 call_prom("package-to-path", 3, 1, node, namep, l);
1612 /* Fixup an Apple bug where they have bogus \0 chars in the
1613 * middle of the path in some properties
1615 for (p = namep, ep = namep + l; p < ep; p++)
1617 memmove(p, p+1, ep - p);
1621 /* now try to extract the unit name in that mess */
1622 for (p = namep, lp = NULL; *p; p++)
1626 memmove(namep, lp, strlen(lp) + 1);
1627 *mem_start = _ALIGN(((unsigned long) namep) +
1628 strlen(namep) + 1, 4);
1631 /* get it again for debugging */
1632 path = RELOC(prom_scratch);
1633 memset(path, 0, PROM_SCRATCH_SIZE);
1634 call_prom("package-to-path", 3, 1, node, path, PROM_SCRATCH_SIZE-1);
1636 /* get and store all properties */
1637 prev_name = RELOC("");
1638 sstart = (char *)RELOC(dt_string_start);
1640 if (call_prom("nextprop", 3, 1, node, prev_name,
1645 if (strcmp(RELOC(pname), RELOC("name")) == 0) {
1646 prev_name = RELOC("name");
1650 /* find string offset */
1651 soff = dt_find_string(RELOC(pname));
1653 prom_printf("WARNING: Can't find string index for"
1654 " <%s>, node %s\n", RELOC(pname), path);
1657 prev_name = sstart + soff;
1660 l = call_prom("getproplen", 2, 1, node, RELOC(pname));
1663 if (l == PROM_ERROR)
1665 if (l > MAX_PROPERTY_LENGTH) {
1666 prom_printf("WARNING: ignoring large property ");
1667 /* It seems OF doesn't null-terminate the path :-( */
1668 prom_printf("[%s] ", path);
1669 prom_printf("%s length 0x%x\n", RELOC(pname), l);
1673 /* push property head */
1674 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1675 dt_push_token(l, mem_start, mem_end);
1676 dt_push_token(soff, mem_start, mem_end);
1678 /* push property content */
1679 valp = make_room(mem_start, mem_end, l, 4);
1680 call_prom("getprop", 4, 1, node, RELOC(pname), valp, l);
1681 *mem_start = _ALIGN(*mem_start, 4);
1684 /* Add a "linux,phandle" property. */
1685 soff = dt_find_string(RELOC("linux,phandle"));
1687 prom_printf("WARNING: Can't find string index for"
1688 " <linux-phandle> node %s\n", path);
1690 dt_push_token(OF_DT_PROP, mem_start, mem_end);
1691 dt_push_token(4, mem_start, mem_end);
1692 dt_push_token(soff, mem_start, mem_end);
1693 valp = make_room(mem_start, mem_end, 4, 4);
1694 *(u32 *)valp = node;
1697 /* do all our children */
1698 child = call_prom("child", 1, 1, node);
1699 while (child != 0) {
1700 scan_dt_build_struct(child, mem_start, mem_end);
1701 child = call_prom("peer", 1, 1, child);
1704 dt_push_token(OF_DT_END_NODE, mem_start, mem_end);
1707 static void __init flatten_device_tree(void)
1710 unsigned long offset = reloc_offset();
1711 unsigned long mem_start, mem_end, room;
1712 struct boot_param_header *hdr;
1713 struct prom_t *_prom = PTRRELOC(&prom);
1718 * Check how much room we have between alloc top & bottom (+/- a
1719 * few pages), crop to 4Mb, as this is our "chuck" size
1721 room = RELOC(alloc_top) - RELOC(alloc_bottom) - 0x4000;
1722 if (room > DEVTREE_CHUNK_SIZE)
1723 room = DEVTREE_CHUNK_SIZE;
1724 prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom));
1726 /* Now try to claim that */
1727 mem_start = (unsigned long)alloc_up(room, PAGE_SIZE);
1729 prom_panic("Can't allocate initial device-tree chunk\n");
1730 mem_end = RELOC(alloc_top);
1732 /* Get root of tree */
1733 root = call_prom("peer", 1, 1, (phandle)0);
1734 if (root == (phandle)0)
1735 prom_panic ("couldn't get device tree root\n");
1737 /* Build header and make room for mem rsv map */
1738 mem_start = _ALIGN(mem_start, 4);
1739 hdr = make_room(&mem_start, &mem_end,
1740 sizeof(struct boot_param_header), 4);
1741 RELOC(dt_header_start) = (unsigned long)hdr;
1742 rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8);
1744 /* Start of strings */
1745 mem_start = PAGE_ALIGN(mem_start);
1746 RELOC(dt_string_start) = mem_start;
1747 mem_start += 4; /* hole */
1749 /* Add "linux,phandle" in there, we'll need it */
1750 namep = make_room(&mem_start, &mem_end, 16, 1);
1751 strcpy(namep, RELOC("linux,phandle"));
1752 mem_start = (unsigned long)namep + strlen(namep) + 1;
1754 /* Build string array */
1755 prom_printf("Building dt strings...\n");
1756 scan_dt_build_strings(root, &mem_start, &mem_end);
1757 RELOC(dt_string_end) = mem_start;
1759 /* Build structure */
1760 mem_start = PAGE_ALIGN(mem_start);
1761 RELOC(dt_struct_start) = mem_start;
1762 prom_printf("Building dt structure...\n");
1763 scan_dt_build_struct(root, &mem_start, &mem_end);
1764 dt_push_token(OF_DT_END, &mem_start, &mem_end);
1765 RELOC(dt_struct_end) = PAGE_ALIGN(mem_start);
1768 hdr->boot_cpuid_phys = _prom->cpu;
1769 hdr->magic = OF_DT_HEADER;
1770 hdr->totalsize = RELOC(dt_struct_end) - RELOC(dt_header_start);
1771 hdr->off_dt_struct = RELOC(dt_struct_start) - RELOC(dt_header_start);
1772 hdr->off_dt_strings = RELOC(dt_string_start) - RELOC(dt_header_start);
1773 hdr->dt_strings_size = RELOC(dt_string_end) - RELOC(dt_string_start);
1774 hdr->off_mem_rsvmap = ((unsigned long)rsvmap) - RELOC(dt_header_start);
1775 hdr->version = OF_DT_VERSION;
1776 /* Version 16 is not backward compatible */
1777 hdr->last_comp_version = 0x10;
1779 /* Reserve the whole thing and copy the reserve map in, we
1780 * also bump mem_reserve_cnt to cause further reservations to
1781 * fail since it's too late.
1783 reserve_mem(RELOC(dt_header_start), hdr->totalsize);
1784 memcpy(rsvmap, RELOC(mem_reserve_map), sizeof(mem_reserve_map));
1789 prom_printf("reserved memory map:\n");
1790 for (i = 0; i < RELOC(mem_reserve_cnt); i++)
1791 prom_printf(" %x - %x\n", RELOC(mem_reserve_map)[i].base,
1792 RELOC(mem_reserve_map)[i].size);
1795 RELOC(mem_reserve_cnt) = MEM_RESERVE_MAP_SIZE;
1797 prom_printf("Device tree strings 0x%x -> 0x%x\n",
1798 RELOC(dt_string_start), RELOC(dt_string_end));
1799 prom_printf("Device tree struct 0x%x -> 0x%x\n",
1800 RELOC(dt_struct_start), RELOC(dt_struct_end));
1805 static void __init fixup_device_tree(void)
1807 unsigned long offset = reloc_offset();
1808 phandle u3, i2c, mpic;
1813 /* Some G5s have a missing interrupt definition, fix it up here */
1814 u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
1815 if (!PHANDLE_VALID(u3))
1817 i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
1818 if (!PHANDLE_VALID(i2c))
1820 mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
1821 if (!PHANDLE_VALID(mpic))
1824 /* check if proper rev of u3 */
1825 if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev))
1828 if (u3_rev != 0x35 && u3_rev != 0x37)
1830 /* does it need fixup ? */
1831 if (prom_getproplen(i2c, "interrupts") > 0)
1834 prom_printf("fixing up bogus interrupts for u3 i2c...\n");
1836 /* interrupt on this revision of u3 is number 0 and level */
1839 prom_setprop(i2c, "interrupts", &interrupts, sizeof(interrupts));
1841 prom_setprop(i2c, "interrupt-parent", &parent, sizeof(parent));
1845 static void __init prom_find_boot_cpu(void)
1847 unsigned long offset = reloc_offset();
1848 struct prom_t *_prom = PTRRELOC(&prom);
1853 if (prom_getprop(_prom->chosen, "cpu", &prom_cpu, sizeof(prom_cpu)) <= 0)
1854 prom_panic("cannot find boot cpu");
1856 cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu);
1858 prom_getprop(cpu_pkg, "reg", &getprop_rval, sizeof(getprop_rval));
1859 _prom->cpu = getprop_rval;
1861 prom_debug("Booting CPU hw index = 0x%x\n", _prom->cpu);
1864 static void __init prom_check_initrd(unsigned long r3, unsigned long r4)
1866 #ifdef CONFIG_BLK_DEV_INITRD
1867 unsigned long offset = reloc_offset();
1868 struct prom_t *_prom = PTRRELOC(&prom);
1870 if ( r3 && r4 && r4 != 0xdeadbeef) {
1873 RELOC(prom_initrd_start) = (r3 >= KERNELBASE) ? __pa(r3) : r3;
1874 RELOC(prom_initrd_end) = RELOC(prom_initrd_start) + r4;
1876 val = (u64)RELOC(prom_initrd_start);
1877 prom_setprop(_prom->chosen, "linux,initrd-start", &val, sizeof(val));
1878 val = (u64)RELOC(prom_initrd_end);
1879 prom_setprop(_prom->chosen, "linux,initrd-end", &val, sizeof(val));
1881 reserve_mem(RELOC(prom_initrd_start),
1882 RELOC(prom_initrd_end) - RELOC(prom_initrd_start));
1884 prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start));
1885 prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end));
1887 #endif /* CONFIG_BLK_DEV_INITRD */
1891 * We enter here early on, when the Open Firmware prom is still
1892 * handling exceptions and the MMU hash table for us.
1895 unsigned long __init prom_init(unsigned long r3, unsigned long r4, unsigned long pp,
1896 unsigned long r6, unsigned long r7)
1898 unsigned long offset = reloc_offset();
1899 struct prom_t *_prom = PTRRELOC(&prom);
1900 unsigned long phys = KERNELBASE - offset;
1904 * First zero the BSS
1906 memset(PTRRELOC(&__bss_start), 0, __bss_stop - __bss_start);
1909 * Init interface to Open Firmware, get some node references,
1912 prom_init_client_services(pp);
1915 * Init prom stdout device
1918 prom_debug("klimit=0x%x\n", RELOC(klimit));
1919 prom_debug("offset=0x%x\n", offset);
1922 * Check for an initrd
1924 prom_check_initrd(r3, r4);
1927 * Get default machine type. At this point, we do not differenciate
1928 * between pSeries SMP and pSeries LPAR
1930 RELOC(of_platform) = prom_find_machine_type();
1931 getprop_rval = RELOC(of_platform);
1932 prom_setprop(_prom->chosen, "linux,platform",
1933 &getprop_rval, sizeof(getprop_rval));
1936 * On pSeries, inform the firmware about our capabilities
1938 if (RELOC(of_platform) & PLATFORM_PSERIES)
1939 prom_send_capabilities();
1942 * On pSeries and BPA, copy the CPU hold code
1944 if (RELOC(of_platform) & (PLATFORM_PSERIES | PLATFORM_BPA))
1945 copy_and_flush(0, KERNELBASE - offset, 0x100, 0);
1948 * Get memory cells format
1951 prom_getprop(_prom->root, "#size-cells",
1952 &getprop_rval, sizeof(getprop_rval));
1953 _prom->root_size_cells = getprop_rval;
1955 prom_getprop(_prom->root, "#address-cells",
1956 &getprop_rval, sizeof(getprop_rval));
1957 _prom->root_addr_cells = getprop_rval;
1960 * Do early parsing of command line
1962 early_cmdline_parse();
1965 * Initialize memory management within prom_init
1970 * Determine which cpu is actually running right _now_
1972 prom_find_boot_cpu();
1975 * Initialize display devices
1977 prom_check_displays();
1980 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
1981 * that uses the allocator, we need to make sure we get the top of memory
1982 * available for us here...
1984 if (RELOC(of_platform) == PLATFORM_PSERIES)
1985 prom_initialize_tce_table();
1988 * On non-powermacs, try to instantiate RTAS and puts all CPUs
1989 * in spin-loops. PowerMacs don't have a working RTAS and use
1990 * a different way to spin CPUs
1992 if (RELOC(of_platform) != PLATFORM_POWERMAC) {
1993 prom_instantiate_rtas();
1998 * Fill in some infos for use by the kernel later on
2000 if (RELOC(ppc64_iommu_off))
2001 prom_setprop(_prom->chosen, "linux,iommu-off", NULL, 0);
2003 if (RELOC(iommu_force_on))
2004 prom_setprop(_prom->chosen, "linux,iommu-force-on", NULL, 0);
2006 if (RELOC(prom_memory_limit))
2007 prom_setprop(_prom->chosen, "linux,memory-limit",
2008 PTRRELOC(&prom_memory_limit), sizeof(RELOC(prom_memory_limit)));
2010 if (RELOC(prom_tce_alloc_start)) {
2011 prom_setprop(_prom->chosen, "linux,tce-alloc-start",
2012 PTRRELOC(&prom_tce_alloc_start), sizeof(RELOC(prom_tce_alloc_start)));
2013 prom_setprop(_prom->chosen, "linux,tce-alloc-end",
2014 PTRRELOC(&prom_tce_alloc_end), sizeof(RELOC(prom_tce_alloc_end)));
2018 * Fixup any known bugs in the device-tree
2020 fixup_device_tree();
2023 * Now finally create the flattened device-tree
2025 prom_printf("copying OF device tree ...\n");
2026 flatten_device_tree();
2028 /* in case stdin is USB and still active on IBM machines... */
2032 * Call OF "quiesce" method to shut down pending DMA's from
2035 prom_printf("Calling quiesce ...\n");
2036 call_prom("quiesce", 0, 0);
2039 * And finally, call the kernel passing it the flattened device
2040 * tree and NULL as r5, thus triggering the new entry point which
2041 * is common to us and kexec
2043 prom_printf("returning from prom_init\n");
2044 prom_debug("->dt_header_start=0x%x\n", RELOC(dt_header_start));
2045 prom_debug("->phys=0x%x\n", phys);
2047 __start(RELOC(dt_header_start), phys, 0);