2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
126 .unlocked_ioctl = sock_ioctl,
128 .compat_ioctl = compat_sock_ioctl,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
183 if (copy_from_user(kaddr, uaddr, ulen))
185 return audit_sockaddr(ulen, kaddr);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
211 err = get_user(len, ulen);
216 if (len < 0 || len > MAX_SOCK_ADDR)
219 if (audit_sockaddr(klen, kaddr))
221 if (copy_to_user(uaddr, kaddr, len))
225 * "fromlen shall refer to the value before truncation.."
228 return __put_user(klen, ulen);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
235 static struct inode *sock_alloc_inode(struct super_block *sb)
237 struct socket_alloc *ei;
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
242 init_waitqueue_head(&ei->socket.wait);
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
251 return &ei->vfs_inode;
254 static void sock_destroy_inode(struct inode *inode)
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
264 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
265 == SLAB_CTOR_CONSTRUCTOR)
266 inode_init_once(&ei->vfs_inode);
269 static int init_inodecache(void)
271 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
272 sizeof(struct socket_alloc),
274 (SLAB_HWCACHE_ALIGN |
275 SLAB_RECLAIM_ACCOUNT |
279 if (sock_inode_cachep == NULL)
284 static struct super_operations sockfs_ops = {
285 .alloc_inode = sock_alloc_inode,
286 .destroy_inode =sock_destroy_inode,
287 .statfs = simple_statfs,
290 static int sockfs_get_sb(struct file_system_type *fs_type,
291 int flags, const char *dev_name, void *data,
292 struct vfsmount *mnt)
294 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
298 static struct vfsmount *sock_mnt __read_mostly;
300 static struct file_system_type sock_fs_type = {
302 .get_sb = sockfs_get_sb,
303 .kill_sb = kill_anon_super,
306 static int sockfs_delete_dentry(struct dentry *dentry)
309 * At creation time, we pretended this dentry was hashed
310 * (by clearing DCACHE_UNHASHED bit in d_flags)
311 * At delete time, we restore the truth : not hashed.
312 * (so that dput() can proceed correctly)
314 dentry->d_flags |= DCACHE_UNHASHED;
317 static struct dentry_operations sockfs_dentry_operations = {
318 .d_delete = sockfs_delete_dentry,
322 * Obtains the first available file descriptor and sets it up for use.
324 * These functions create file structures and maps them to fd space
325 * of the current process. On success it returns file descriptor
326 * and file struct implicitly stored in sock->file.
327 * Note that another thread may close file descriptor before we return
328 * from this function. We use the fact that now we do not refer
329 * to socket after mapping. If one day we will need it, this
330 * function will increment ref. count on file by 1.
332 * In any case returned fd MAY BE not valid!
333 * This race condition is unavoidable
334 * with shared fd spaces, we cannot solve it inside kernel,
335 * but we take care of internal coherence yet.
338 static int sock_alloc_fd(struct file **filep)
342 fd = get_unused_fd();
343 if (likely(fd >= 0)) {
344 struct file *file = get_empty_filp();
347 if (unlikely(!file)) {
356 static int sock_attach_fd(struct socket *sock, struct file *file)
361 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
365 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
366 if (unlikely(!file->f_path.dentry))
369 file->f_path.dentry->d_op = &sockfs_dentry_operations;
371 * We dont want to push this dentry into global dentry hash table.
372 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
373 * This permits a working /proc/$pid/fd/XXX on sockets
375 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
376 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
377 file->f_path.mnt = mntget(sock_mnt);
378 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
381 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
382 file->f_mode = FMODE_READ | FMODE_WRITE;
383 file->f_flags = O_RDWR;
385 file->private_data = sock;
390 int sock_map_fd(struct socket *sock)
392 struct file *newfile;
393 int fd = sock_alloc_fd(&newfile);
395 if (likely(fd >= 0)) {
396 int err = sock_attach_fd(sock, newfile);
398 if (unlikely(err < 0)) {
403 fd_install(fd, newfile);
408 static struct socket *sock_from_file(struct file *file, int *err)
410 if (file->f_op == &socket_file_ops)
411 return file->private_data; /* set in sock_map_fd */
418 * sockfd_lookup - Go from a file number to its socket slot
420 * @err: pointer to an error code return
422 * The file handle passed in is locked and the socket it is bound
423 * too is returned. If an error occurs the err pointer is overwritten
424 * with a negative errno code and NULL is returned. The function checks
425 * for both invalid handles and passing a handle which is not a socket.
427 * On a success the socket object pointer is returned.
430 struct socket *sockfd_lookup(int fd, int *err)
441 sock = sock_from_file(file, err);
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 file = fget_light(fd, fput_needed);
455 sock = sock_from_file(file, err);
458 fput_light(file, *fput_needed);
464 * sock_alloc - allocate a socket
466 * Allocate a new inode and socket object. The two are bound together
467 * and initialised. The socket is then returned. If we are out of inodes
471 static struct socket *sock_alloc(void)
476 inode = new_inode(sock_mnt->mnt_sb);
480 sock = SOCKET_I(inode);
482 inode->i_mode = S_IFSOCK | S_IRWXUGO;
483 inode->i_uid = current->fsuid;
484 inode->i_gid = current->fsgid;
486 get_cpu_var(sockets_in_use)++;
487 put_cpu_var(sockets_in_use);
492 * In theory you can't get an open on this inode, but /proc provides
493 * a back door. Remember to keep it shut otherwise you'll let the
494 * creepy crawlies in.
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
502 const struct file_operations bad_sock_fops = {
503 .owner = THIS_MODULE,
504 .open = sock_no_open,
508 * sock_release - close a socket
509 * @sock: socket to close
511 * The socket is released from the protocol stack if it has a release
512 * callback, and the inode is then released if the socket is bound to
513 * an inode not a file.
516 void sock_release(struct socket *sock)
519 struct module *owner = sock->ops->owner;
521 sock->ops->release(sock);
526 if (sock->fasync_list)
527 printk(KERN_ERR "sock_release: fasync list not empty!\n");
529 get_cpu_var(sockets_in_use)--;
530 put_cpu_var(sockets_in_use);
532 iput(SOCK_INODE(sock));
538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
539 struct msghdr *msg, size_t size)
541 struct sock_iocb *si = kiocb_to_siocb(iocb);
549 err = security_socket_sendmsg(sock, msg, size);
553 return sock->ops->sendmsg(iocb, sock, msg, size);
556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
559 struct sock_iocb siocb;
562 init_sync_kiocb(&iocb, NULL);
563 iocb.private = &siocb;
564 ret = __sock_sendmsg(&iocb, sock, msg, size);
565 if (-EIOCBQUEUED == ret)
566 ret = wait_on_sync_kiocb(&iocb);
570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
571 struct kvec *vec, size_t num, size_t size)
573 mm_segment_t oldfs = get_fs();
578 * the following is safe, since for compiler definitions of kvec and
579 * iovec are identical, yielding the same in-core layout and alignment
581 msg->msg_iov = (struct iovec *)vec;
582 msg->msg_iovlen = num;
583 result = sock_sendmsg(sock, msg, size);
588 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
589 struct msghdr *msg, size_t size, int flags)
592 struct sock_iocb *si = kiocb_to_siocb(iocb);
600 err = security_socket_recvmsg(sock, msg, size, flags);
604 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
607 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
608 size_t size, int flags)
611 struct sock_iocb siocb;
614 init_sync_kiocb(&iocb, NULL);
615 iocb.private = &siocb;
616 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
617 if (-EIOCBQUEUED == ret)
618 ret = wait_on_sync_kiocb(&iocb);
622 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
623 struct kvec *vec, size_t num, size_t size, int flags)
625 mm_segment_t oldfs = get_fs();
630 * the following is safe, since for compiler definitions of kvec and
631 * iovec are identical, yielding the same in-core layout and alignment
633 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
634 result = sock_recvmsg(sock, msg, size, flags);
639 static void sock_aio_dtor(struct kiocb *iocb)
641 kfree(iocb->private);
644 static ssize_t sock_sendpage(struct file *file, struct page *page,
645 int offset, size_t size, loff_t *ppos, int more)
650 sock = file->private_data;
652 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
656 return sock->ops->sendpage(sock, page, offset, size, flags);
659 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
660 struct sock_iocb *siocb)
662 if (!is_sync_kiocb(iocb)) {
663 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
666 iocb->ki_dtor = sock_aio_dtor;
670 iocb->private = siocb;
674 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
675 struct file *file, const struct iovec *iov,
676 unsigned long nr_segs)
678 struct socket *sock = file->private_data;
682 for (i = 0; i < nr_segs; i++)
683 size += iov[i].iov_len;
685 msg->msg_name = NULL;
686 msg->msg_namelen = 0;
687 msg->msg_control = NULL;
688 msg->msg_controllen = 0;
689 msg->msg_iov = (struct iovec *)iov;
690 msg->msg_iovlen = nr_segs;
691 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
693 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
696 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
697 unsigned long nr_segs, loff_t pos)
699 struct sock_iocb siocb, *x;
704 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
708 x = alloc_sock_iocb(iocb, &siocb);
711 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
714 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
715 struct file *file, const struct iovec *iov,
716 unsigned long nr_segs)
718 struct socket *sock = file->private_data;
722 for (i = 0; i < nr_segs; i++)
723 size += iov[i].iov_len;
725 msg->msg_name = NULL;
726 msg->msg_namelen = 0;
727 msg->msg_control = NULL;
728 msg->msg_controllen = 0;
729 msg->msg_iov = (struct iovec *)iov;
730 msg->msg_iovlen = nr_segs;
731 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
732 if (sock->type == SOCK_SEQPACKET)
733 msg->msg_flags |= MSG_EOR;
735 return __sock_sendmsg(iocb, sock, msg, size);
738 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
739 unsigned long nr_segs, loff_t pos)
741 struct sock_iocb siocb, *x;
746 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
749 x = alloc_sock_iocb(iocb, &siocb);
753 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
757 * Atomic setting of ioctl hooks to avoid race
758 * with module unload.
761 static DEFINE_MUTEX(br_ioctl_mutex);
762 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
764 void brioctl_set(int (*hook) (unsigned int, void __user *))
766 mutex_lock(&br_ioctl_mutex);
767 br_ioctl_hook = hook;
768 mutex_unlock(&br_ioctl_mutex);
771 EXPORT_SYMBOL(brioctl_set);
773 static DEFINE_MUTEX(vlan_ioctl_mutex);
774 static int (*vlan_ioctl_hook) (void __user *arg);
776 void vlan_ioctl_set(int (*hook) (void __user *))
778 mutex_lock(&vlan_ioctl_mutex);
779 vlan_ioctl_hook = hook;
780 mutex_unlock(&vlan_ioctl_mutex);
783 EXPORT_SYMBOL(vlan_ioctl_set);
785 static DEFINE_MUTEX(dlci_ioctl_mutex);
786 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
788 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
790 mutex_lock(&dlci_ioctl_mutex);
791 dlci_ioctl_hook = hook;
792 mutex_unlock(&dlci_ioctl_mutex);
795 EXPORT_SYMBOL(dlci_ioctl_set);
798 * With an ioctl, arg may well be a user mode pointer, but we don't know
799 * what to do with it - that's up to the protocol still.
802 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
805 void __user *argp = (void __user *)arg;
808 sock = file->private_data;
809 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
810 err = dev_ioctl(cmd, argp);
812 #ifdef CONFIG_WIRELESS_EXT
813 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
814 err = dev_ioctl(cmd, argp);
816 #endif /* CONFIG_WIRELESS_EXT */
821 if (get_user(pid, (int __user *)argp))
823 err = f_setown(sock->file, pid, 1);
827 err = put_user(f_getown(sock->file),
836 request_module("bridge");
838 mutex_lock(&br_ioctl_mutex);
840 err = br_ioctl_hook(cmd, argp);
841 mutex_unlock(&br_ioctl_mutex);
846 if (!vlan_ioctl_hook)
847 request_module("8021q");
849 mutex_lock(&vlan_ioctl_mutex);
851 err = vlan_ioctl_hook(argp);
852 mutex_unlock(&vlan_ioctl_mutex);
857 if (!dlci_ioctl_hook)
858 request_module("dlci");
860 if (dlci_ioctl_hook) {
861 mutex_lock(&dlci_ioctl_mutex);
862 err = dlci_ioctl_hook(cmd, argp);
863 mutex_unlock(&dlci_ioctl_mutex);
867 err = sock->ops->ioctl(sock, cmd, arg);
870 * If this ioctl is unknown try to hand it down
873 if (err == -ENOIOCTLCMD)
874 err = dev_ioctl(cmd, argp);
880 int sock_create_lite(int family, int type, int protocol, struct socket **res)
883 struct socket *sock = NULL;
885 err = security_socket_create(family, type, protocol, 1);
896 err = security_socket_post_create(sock, family, type, protocol, 1);
909 /* No kernel lock held - perfect */
910 static unsigned int sock_poll(struct file *file, poll_table *wait)
915 * We can't return errors to poll, so it's either yes or no.
917 sock = file->private_data;
918 return sock->ops->poll(file, sock, wait);
921 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
923 struct socket *sock = file->private_data;
925 return sock->ops->mmap(file, sock, vma);
928 static int sock_close(struct inode *inode, struct file *filp)
931 * It was possible the inode is NULL we were
932 * closing an unfinished socket.
936 printk(KERN_DEBUG "sock_close: NULL inode\n");
939 sock_fasync(-1, filp, 0);
940 sock_release(SOCKET_I(inode));
945 * Update the socket async list
947 * Fasync_list locking strategy.
949 * 1. fasync_list is modified only under process context socket lock
950 * i.e. under semaphore.
951 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
952 * or under socket lock.
953 * 3. fasync_list can be used from softirq context, so that
954 * modification under socket lock have to be enhanced with
955 * write_lock_bh(&sk->sk_callback_lock).
959 static int sock_fasync(int fd, struct file *filp, int on)
961 struct fasync_struct *fa, *fna = NULL, **prev;
966 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
971 sock = filp->private_data;
981 prev = &(sock->fasync_list);
983 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
984 if (fa->fa_file == filp)
989 write_lock_bh(&sk->sk_callback_lock);
991 write_unlock_bh(&sk->sk_callback_lock);
998 fna->magic = FASYNC_MAGIC;
999 fna->fa_next = sock->fasync_list;
1000 write_lock_bh(&sk->sk_callback_lock);
1001 sock->fasync_list = fna;
1002 write_unlock_bh(&sk->sk_callback_lock);
1005 write_lock_bh(&sk->sk_callback_lock);
1006 *prev = fa->fa_next;
1007 write_unlock_bh(&sk->sk_callback_lock);
1013 release_sock(sock->sk);
1017 /* This function may be called only under socket lock or callback_lock */
1019 int sock_wake_async(struct socket *sock, int how, int band)
1021 if (!sock || !sock->fasync_list)
1026 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1030 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1035 __kill_fasync(sock->fasync_list, SIGIO, band);
1038 __kill_fasync(sock->fasync_list, SIGURG, band);
1043 static int __sock_create(int family, int type, int protocol,
1044 struct socket **res, int kern)
1047 struct socket *sock;
1048 const struct net_proto_family *pf;
1051 * Check protocol is in range
1053 if (family < 0 || family >= NPROTO)
1054 return -EAFNOSUPPORT;
1055 if (type < 0 || type >= SOCK_MAX)
1060 This uglymoron is moved from INET layer to here to avoid
1061 deadlock in module load.
1063 if (family == PF_INET && type == SOCK_PACKET) {
1067 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1073 err = security_socket_create(family, type, protocol, kern);
1078 * Allocate the socket and allow the family to set things up. if
1079 * the protocol is 0, the family is instructed to select an appropriate
1082 sock = sock_alloc();
1084 if (net_ratelimit())
1085 printk(KERN_WARNING "socket: no more sockets\n");
1086 return -ENFILE; /* Not exactly a match, but its the
1087 closest posix thing */
1092 #if defined(CONFIG_KMOD)
1093 /* Attempt to load a protocol module if the find failed.
1095 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1096 * requested real, full-featured networking support upon configuration.
1097 * Otherwise module support will break!
1099 if (net_families[family] == NULL)
1100 request_module("net-pf-%d", family);
1104 pf = rcu_dereference(net_families[family]);
1105 err = -EAFNOSUPPORT;
1110 * We will call the ->create function, that possibly is in a loadable
1111 * module, so we have to bump that loadable module refcnt first.
1113 if (!try_module_get(pf->owner))
1116 /* Now protected by module ref count */
1119 err = pf->create(sock, protocol);
1121 goto out_module_put;
1124 * Now to bump the refcnt of the [loadable] module that owns this
1125 * socket at sock_release time we decrement its refcnt.
1127 if (!try_module_get(sock->ops->owner))
1128 goto out_module_busy;
1131 * Now that we're done with the ->create function, the [loadable]
1132 * module can have its refcnt decremented
1134 module_put(pf->owner);
1135 err = security_socket_post_create(sock, family, type, protocol, kern);
1143 err = -EAFNOSUPPORT;
1146 module_put(pf->owner);
1153 goto out_sock_release;
1156 int sock_create(int family, int type, int protocol, struct socket **res)
1158 return __sock_create(family, type, protocol, res, 0);
1161 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1163 return __sock_create(family, type, protocol, res, 1);
1166 asmlinkage long sys_socket(int family, int type, int protocol)
1169 struct socket *sock;
1171 retval = sock_create(family, type, protocol, &sock);
1175 retval = sock_map_fd(sock);
1180 /* It may be already another descriptor 8) Not kernel problem. */
1189 * Create a pair of connected sockets.
1192 asmlinkage long sys_socketpair(int family, int type, int protocol,
1193 int __user *usockvec)
1195 struct socket *sock1, *sock2;
1199 * Obtain the first socket and check if the underlying protocol
1200 * supports the socketpair call.
1203 err = sock_create(family, type, protocol, &sock1);
1207 err = sock_create(family, type, protocol, &sock2);
1211 err = sock1->ops->socketpair(sock1, sock2);
1213 goto out_release_both;
1217 err = sock_map_fd(sock1);
1219 goto out_release_both;
1222 err = sock_map_fd(sock2);
1227 /* fd1 and fd2 may be already another descriptors.
1228 * Not kernel problem.
1231 err = put_user(fd1, &usockvec[0]);
1233 err = put_user(fd2, &usockvec[1]);
1242 sock_release(sock2);
1247 sock_release(sock2);
1249 sock_release(sock1);
1255 * Bind a name to a socket. Nothing much to do here since it's
1256 * the protocol's responsibility to handle the local address.
1258 * We move the socket address to kernel space before we call
1259 * the protocol layer (having also checked the address is ok).
1262 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1264 struct socket *sock;
1265 char address[MAX_SOCK_ADDR];
1266 int err, fput_needed;
1268 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1270 err = move_addr_to_kernel(umyaddr, addrlen, address);
1272 err = security_socket_bind(sock,
1273 (struct sockaddr *)address,
1276 err = sock->ops->bind(sock,
1280 fput_light(sock->file, fput_needed);
1286 * Perform a listen. Basically, we allow the protocol to do anything
1287 * necessary for a listen, and if that works, we mark the socket as
1288 * ready for listening.
1291 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1293 asmlinkage long sys_listen(int fd, int backlog)
1295 struct socket *sock;
1296 int err, fput_needed;
1298 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1300 if ((unsigned)backlog > sysctl_somaxconn)
1301 backlog = sysctl_somaxconn;
1303 err = security_socket_listen(sock, backlog);
1305 err = sock->ops->listen(sock, backlog);
1307 fput_light(sock->file, fput_needed);
1313 * For accept, we attempt to create a new socket, set up the link
1314 * with the client, wake up the client, then return the new
1315 * connected fd. We collect the address of the connector in kernel
1316 * space and move it to user at the very end. This is unclean because
1317 * we open the socket then return an error.
1319 * 1003.1g adds the ability to recvmsg() to query connection pending
1320 * status to recvmsg. We need to add that support in a way thats
1321 * clean when we restucture accept also.
1324 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1325 int __user *upeer_addrlen)
1327 struct socket *sock, *newsock;
1328 struct file *newfile;
1329 int err, len, newfd, fput_needed;
1330 char address[MAX_SOCK_ADDR];
1332 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1337 if (!(newsock = sock_alloc()))
1340 newsock->type = sock->type;
1341 newsock->ops = sock->ops;
1344 * We don't need try_module_get here, as the listening socket (sock)
1345 * has the protocol module (sock->ops->owner) held.
1347 __module_get(newsock->ops->owner);
1349 newfd = sock_alloc_fd(&newfile);
1350 if (unlikely(newfd < 0)) {
1352 sock_release(newsock);
1356 err = sock_attach_fd(newsock, newfile);
1360 err = security_socket_accept(sock, newsock);
1364 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1368 if (upeer_sockaddr) {
1369 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1371 err = -ECONNABORTED;
1374 err = move_addr_to_user(address, len, upeer_sockaddr,
1380 /* File flags are not inherited via accept() unlike another OSes. */
1382 fd_install(newfd, newfile);
1385 security_socket_post_accept(sock, newsock);
1388 fput_light(sock->file, fput_needed);
1393 put_unused_fd(newfd);
1398 * Attempt to connect to a socket with the server address. The address
1399 * is in user space so we verify it is OK and move it to kernel space.
1401 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1404 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1405 * other SEQPACKET protocols that take time to connect() as it doesn't
1406 * include the -EINPROGRESS status for such sockets.
1409 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1412 struct socket *sock;
1413 char address[MAX_SOCK_ADDR];
1414 int err, fput_needed;
1416 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1419 err = move_addr_to_kernel(uservaddr, addrlen, address);
1424 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1428 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1429 sock->file->f_flags);
1431 fput_light(sock->file, fput_needed);
1437 * Get the local address ('name') of a socket object. Move the obtained
1438 * name to user space.
1441 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1442 int __user *usockaddr_len)
1444 struct socket *sock;
1445 char address[MAX_SOCK_ADDR];
1446 int len, err, fput_needed;
1448 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1452 err = security_socket_getsockname(sock);
1456 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1459 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1462 fput_light(sock->file, fput_needed);
1468 * Get the remote address ('name') of a socket object. Move the obtained
1469 * name to user space.
1472 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1473 int __user *usockaddr_len)
1475 struct socket *sock;
1476 char address[MAX_SOCK_ADDR];
1477 int len, err, fput_needed;
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481 err = security_socket_getpeername(sock);
1483 fput_light(sock->file, fput_needed);
1488 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1491 err = move_addr_to_user(address, len, usockaddr,
1493 fput_light(sock->file, fput_needed);
1499 * Send a datagram to a given address. We move the address into kernel
1500 * space and check the user space data area is readable before invoking
1504 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1505 unsigned flags, struct sockaddr __user *addr,
1508 struct socket *sock;
1509 char address[MAX_SOCK_ADDR];
1514 struct file *sock_file;
1516 sock_file = fget_light(fd, &fput_needed);
1521 sock = sock_from_file(sock_file, &err);
1524 iov.iov_base = buff;
1526 msg.msg_name = NULL;
1529 msg.msg_control = NULL;
1530 msg.msg_controllen = 0;
1531 msg.msg_namelen = 0;
1533 err = move_addr_to_kernel(addr, addr_len, address);
1536 msg.msg_name = address;
1537 msg.msg_namelen = addr_len;
1539 if (sock->file->f_flags & O_NONBLOCK)
1540 flags |= MSG_DONTWAIT;
1541 msg.msg_flags = flags;
1542 err = sock_sendmsg(sock, &msg, len);
1545 fput_light(sock_file, fput_needed);
1551 * Send a datagram down a socket.
1554 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1556 return sys_sendto(fd, buff, len, flags, NULL, 0);
1560 * Receive a frame from the socket and optionally record the address of the
1561 * sender. We verify the buffers are writable and if needed move the
1562 * sender address from kernel to user space.
1565 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1566 unsigned flags, struct sockaddr __user *addr,
1567 int __user *addr_len)
1569 struct socket *sock;
1572 char address[MAX_SOCK_ADDR];
1574 struct file *sock_file;
1577 sock_file = fget_light(fd, &fput_needed);
1582 sock = sock_from_file(sock_file, &err);
1586 msg.msg_control = NULL;
1587 msg.msg_controllen = 0;
1591 iov.iov_base = ubuf;
1592 msg.msg_name = address;
1593 msg.msg_namelen = MAX_SOCK_ADDR;
1594 if (sock->file->f_flags & O_NONBLOCK)
1595 flags |= MSG_DONTWAIT;
1596 err = sock_recvmsg(sock, &msg, size, flags);
1598 if (err >= 0 && addr != NULL) {
1599 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1604 fput_light(sock_file, fput_needed);
1610 * Receive a datagram from a socket.
1613 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1616 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1620 * Set a socket option. Because we don't know the option lengths we have
1621 * to pass the user mode parameter for the protocols to sort out.
1624 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1625 char __user *optval, int optlen)
1627 int err, fput_needed;
1628 struct socket *sock;
1633 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1635 err = security_socket_setsockopt(sock, level, optname);
1639 if (level == SOL_SOCKET)
1641 sock_setsockopt(sock, level, optname, optval,
1645 sock->ops->setsockopt(sock, level, optname, optval,
1648 fput_light(sock->file, fput_needed);
1654 * Get a socket option. Because we don't know the option lengths we have
1655 * to pass a user mode parameter for the protocols to sort out.
1658 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1659 char __user *optval, int __user *optlen)
1661 int err, fput_needed;
1662 struct socket *sock;
1664 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1666 err = security_socket_getsockopt(sock, level, optname);
1670 if (level == SOL_SOCKET)
1672 sock_getsockopt(sock, level, optname, optval,
1676 sock->ops->getsockopt(sock, level, optname, optval,
1679 fput_light(sock->file, fput_needed);
1685 * Shutdown a socket.
1688 asmlinkage long sys_shutdown(int fd, int how)
1690 int err, fput_needed;
1691 struct socket *sock;
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 err = security_socket_shutdown(sock, how);
1697 err = sock->ops->shutdown(sock, how);
1698 fput_light(sock->file, fput_needed);
1703 /* A couple of helpful macros for getting the address of the 32/64 bit
1704 * fields which are the same type (int / unsigned) on our platforms.
1706 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1707 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1708 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1711 * BSD sendmsg interface
1714 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1716 struct compat_msghdr __user *msg_compat =
1717 (struct compat_msghdr __user *)msg;
1718 struct socket *sock;
1719 char address[MAX_SOCK_ADDR];
1720 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1721 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1722 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1723 /* 20 is size of ipv6_pktinfo */
1724 unsigned char *ctl_buf = ctl;
1725 struct msghdr msg_sys;
1726 int err, ctl_len, iov_size, total_len;
1730 if (MSG_CMSG_COMPAT & flags) {
1731 if (get_compat_msghdr(&msg_sys, msg_compat))
1734 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1737 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1741 /* do not move before msg_sys is valid */
1743 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1746 /* Check whether to allocate the iovec area */
1748 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1749 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1750 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1755 /* This will also move the address data into kernel space */
1756 if (MSG_CMSG_COMPAT & flags) {
1757 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1759 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1766 if (msg_sys.msg_controllen > INT_MAX)
1768 ctl_len = msg_sys.msg_controllen;
1769 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1771 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1775 ctl_buf = msg_sys.msg_control;
1776 ctl_len = msg_sys.msg_controllen;
1777 } else if (ctl_len) {
1778 if (ctl_len > sizeof(ctl)) {
1779 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1780 if (ctl_buf == NULL)
1785 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1786 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1787 * checking falls down on this.
1789 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1792 msg_sys.msg_control = ctl_buf;
1794 msg_sys.msg_flags = flags;
1796 if (sock->file->f_flags & O_NONBLOCK)
1797 msg_sys.msg_flags |= MSG_DONTWAIT;
1798 err = sock_sendmsg(sock, &msg_sys, total_len);
1802 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1804 if (iov != iovstack)
1805 sock_kfree_s(sock->sk, iov, iov_size);
1807 fput_light(sock->file, fput_needed);
1813 * BSD recvmsg interface
1816 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1819 struct compat_msghdr __user *msg_compat =
1820 (struct compat_msghdr __user *)msg;
1821 struct socket *sock;
1822 struct iovec iovstack[UIO_FASTIOV];
1823 struct iovec *iov = iovstack;
1824 struct msghdr msg_sys;
1825 unsigned long cmsg_ptr;
1826 int err, iov_size, total_len, len;
1829 /* kernel mode address */
1830 char addr[MAX_SOCK_ADDR];
1832 /* user mode address pointers */
1833 struct sockaddr __user *uaddr;
1834 int __user *uaddr_len;
1836 if (MSG_CMSG_COMPAT & flags) {
1837 if (get_compat_msghdr(&msg_sys, msg_compat))
1840 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1843 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1848 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1851 /* Check whether to allocate the iovec area */
1853 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1854 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1855 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1861 * Save the user-mode address (verify_iovec will change the
1862 * kernel msghdr to use the kernel address space)
1865 uaddr = (void __user *)msg_sys.msg_name;
1866 uaddr_len = COMPAT_NAMELEN(msg);
1867 if (MSG_CMSG_COMPAT & flags) {
1868 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1870 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1875 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1876 msg_sys.msg_flags = 0;
1877 if (MSG_CMSG_COMPAT & flags)
1878 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1880 if (sock->file->f_flags & O_NONBLOCK)
1881 flags |= MSG_DONTWAIT;
1882 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1887 if (uaddr != NULL) {
1888 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1893 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1897 if (MSG_CMSG_COMPAT & flags)
1898 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1899 &msg_compat->msg_controllen);
1901 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1902 &msg->msg_controllen);
1908 if (iov != iovstack)
1909 sock_kfree_s(sock->sk, iov, iov_size);
1911 fput_light(sock->file, fput_needed);
1916 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1918 /* Argument list sizes for sys_socketcall */
1919 #define AL(x) ((x) * sizeof(unsigned long))
1920 static const unsigned char nargs[18]={
1921 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1922 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1923 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1929 * System call vectors.
1931 * Argument checking cleaned up. Saved 20% in size.
1932 * This function doesn't need to set the kernel lock because
1933 * it is set by the callees.
1936 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1939 unsigned long a0, a1;
1942 if (call < 1 || call > SYS_RECVMSG)
1945 /* copy_from_user should be SMP safe. */
1946 if (copy_from_user(a, args, nargs[call]))
1949 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
1958 err = sys_socket(a0, a1, a[2]);
1961 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
1964 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1967 err = sys_listen(a0, a1);
1971 sys_accept(a0, (struct sockaddr __user *)a1,
1972 (int __user *)a[2]);
1974 case SYS_GETSOCKNAME:
1976 sys_getsockname(a0, (struct sockaddr __user *)a1,
1977 (int __user *)a[2]);
1979 case SYS_GETPEERNAME:
1981 sys_getpeername(a0, (struct sockaddr __user *)a1,
1982 (int __user *)a[2]);
1984 case SYS_SOCKETPAIR:
1985 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
1988 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1991 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
1992 (struct sockaddr __user *)a[4], a[5]);
1995 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1998 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1999 (struct sockaddr __user *)a[4],
2000 (int __user *)a[5]);
2003 err = sys_shutdown(a0, a1);
2005 case SYS_SETSOCKOPT:
2006 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2008 case SYS_GETSOCKOPT:
2010 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2011 (int __user *)a[4]);
2014 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2017 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2026 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2029 * sock_register - add a socket protocol handler
2030 * @ops: description of protocol
2032 * This function is called by a protocol handler that wants to
2033 * advertise its address family, and have it linked into the
2034 * socket interface. The value ops->family coresponds to the
2035 * socket system call protocol family.
2037 int sock_register(const struct net_proto_family *ops)
2041 if (ops->family >= NPROTO) {
2042 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2047 spin_lock(&net_family_lock);
2048 if (net_families[ops->family])
2051 net_families[ops->family] = ops;
2054 spin_unlock(&net_family_lock);
2056 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2061 * sock_unregister - remove a protocol handler
2062 * @family: protocol family to remove
2064 * This function is called by a protocol handler that wants to
2065 * remove its address family, and have it unlinked from the
2066 * new socket creation.
2068 * If protocol handler is a module, then it can use module reference
2069 * counts to protect against new references. If protocol handler is not
2070 * a module then it needs to provide its own protection in
2071 * the ops->create routine.
2073 void sock_unregister(int family)
2075 BUG_ON(family < 0 || family >= NPROTO);
2077 spin_lock(&net_family_lock);
2078 net_families[family] = NULL;
2079 spin_unlock(&net_family_lock);
2083 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2086 static int __init sock_init(void)
2089 * Initialize sock SLAB cache.
2095 * Initialize skbuff SLAB cache
2100 * Initialize the protocols module.
2104 register_filesystem(&sock_fs_type);
2105 sock_mnt = kern_mount(&sock_fs_type);
2107 /* The real protocol initialization is performed in later initcalls.
2110 #ifdef CONFIG_NETFILTER
2117 core_initcall(sock_init); /* early initcall */
2119 #ifdef CONFIG_PROC_FS
2120 void socket_seq_show(struct seq_file *seq)
2125 for_each_possible_cpu(cpu)
2126 counter += per_cpu(sockets_in_use, cpu);
2128 /* It can be negative, by the way. 8) */
2132 seq_printf(seq, "sockets: used %d\n", counter);
2134 #endif /* CONFIG_PROC_FS */
2136 #ifdef CONFIG_COMPAT
2137 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2140 struct socket *sock = file->private_data;
2141 int ret = -ENOIOCTLCMD;
2143 if (sock->ops->compat_ioctl)
2144 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2150 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2152 return sock->ops->bind(sock, addr, addrlen);
2155 int kernel_listen(struct socket *sock, int backlog)
2157 return sock->ops->listen(sock, backlog);
2160 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2162 struct sock *sk = sock->sk;
2165 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2170 err = sock->ops->accept(sock, *newsock, flags);
2172 sock_release(*newsock);
2176 (*newsock)->ops = sock->ops;
2182 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2185 return sock->ops->connect(sock, addr, addrlen, flags);
2188 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2191 return sock->ops->getname(sock, addr, addrlen, 0);
2194 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2197 return sock->ops->getname(sock, addr, addrlen, 1);
2200 int kernel_getsockopt(struct socket *sock, int level, int optname,
2201 char *optval, int *optlen)
2203 mm_segment_t oldfs = get_fs();
2207 if (level == SOL_SOCKET)
2208 err = sock_getsockopt(sock, level, optname, optval, optlen);
2210 err = sock->ops->getsockopt(sock, level, optname, optval,
2216 int kernel_setsockopt(struct socket *sock, int level, int optname,
2217 char *optval, int optlen)
2219 mm_segment_t oldfs = get_fs();
2223 if (level == SOL_SOCKET)
2224 err = sock_setsockopt(sock, level, optname, optval, optlen);
2226 err = sock->ops->setsockopt(sock, level, optname, optval,
2232 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2233 size_t size, int flags)
2235 if (sock->ops->sendpage)
2236 return sock->ops->sendpage(sock, page, offset, size, flags);
2238 return sock_no_sendpage(sock, page, offset, size, flags);
2241 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2243 mm_segment_t oldfs = get_fs();
2247 err = sock->ops->ioctl(sock, cmd, arg);
2253 /* ABI emulation layers need these two */
2254 EXPORT_SYMBOL(move_addr_to_kernel);
2255 EXPORT_SYMBOL(move_addr_to_user);
2256 EXPORT_SYMBOL(sock_create);
2257 EXPORT_SYMBOL(sock_create_kern);
2258 EXPORT_SYMBOL(sock_create_lite);
2259 EXPORT_SYMBOL(sock_map_fd);
2260 EXPORT_SYMBOL(sock_recvmsg);
2261 EXPORT_SYMBOL(sock_register);
2262 EXPORT_SYMBOL(sock_release);
2263 EXPORT_SYMBOL(sock_sendmsg);
2264 EXPORT_SYMBOL(sock_unregister);
2265 EXPORT_SYMBOL(sock_wake_async);
2266 EXPORT_SYMBOL(sockfd_lookup);
2267 EXPORT_SYMBOL(kernel_sendmsg);
2268 EXPORT_SYMBOL(kernel_recvmsg);
2269 EXPORT_SYMBOL(kernel_bind);
2270 EXPORT_SYMBOL(kernel_listen);
2271 EXPORT_SYMBOL(kernel_accept);
2272 EXPORT_SYMBOL(kernel_connect);
2273 EXPORT_SYMBOL(kernel_getsockname);
2274 EXPORT_SYMBOL(kernel_getpeername);
2275 EXPORT_SYMBOL(kernel_getsockopt);
2276 EXPORT_SYMBOL(kernel_setsockopt);
2277 EXPORT_SYMBOL(kernel_sendpage);
2278 EXPORT_SYMBOL(kernel_sock_ioctl);