ide-scsi: use print_hex_dump from <linux/kernel.h>
[linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35 static int hugetlb_next_nid;
36
37 /*
38  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39  */
40 static DEFINE_SPINLOCK(hugetlb_lock);
41
42 static void clear_huge_page(struct page *page, unsigned long addr)
43 {
44         int i;
45
46         might_sleep();
47         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48                 cond_resched();
49                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50         }
51 }
52
53 static void copy_huge_page(struct page *dst, struct page *src,
54                            unsigned long addr, struct vm_area_struct *vma)
55 {
56         int i;
57
58         might_sleep();
59         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60                 cond_resched();
61                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62         }
63 }
64
65 static void enqueue_huge_page(struct page *page)
66 {
67         int nid = page_to_nid(page);
68         list_add(&page->lru, &hugepage_freelists[nid]);
69         free_huge_pages++;
70         free_huge_pages_node[nid]++;
71 }
72
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74                                 unsigned long address)
75 {
76         int nid;
77         struct page *page = NULL;
78         struct mempolicy *mpol;
79         struct zonelist *zonelist = huge_zonelist(vma, address,
80                                         htlb_alloc_mask, &mpol);
81         struct zone **z;
82
83         for (z = zonelist->zones; *z; z++) {
84                 nid = zone_to_nid(*z);
85                 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86                     !list_empty(&hugepage_freelists[nid])) {
87                         page = list_entry(hugepage_freelists[nid].next,
88                                           struct page, lru);
89                         list_del(&page->lru);
90                         free_huge_pages--;
91                         free_huge_pages_node[nid]--;
92                         if (vma && vma->vm_flags & VM_MAYSHARE)
93                                 resv_huge_pages--;
94                         break;
95                 }
96         }
97         mpol_free(mpol);        /* unref if mpol !NULL */
98         return page;
99 }
100
101 static void update_and_free_page(struct page *page)
102 {
103         int i;
104         nr_huge_pages--;
105         nr_huge_pages_node[page_to_nid(page)]--;
106         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109                                 1 << PG_private | 1<< PG_writeback);
110         }
111         set_compound_page_dtor(page, NULL);
112         set_page_refcounted(page);
113         __free_pages(page, HUGETLB_PAGE_ORDER);
114 }
115
116 static void free_huge_page(struct page *page)
117 {
118         int nid = page_to_nid(page);
119         struct address_space *mapping;
120
121         mapping = (struct address_space *) page_private(page);
122         BUG_ON(page_count(page));
123         INIT_LIST_HEAD(&page->lru);
124
125         spin_lock(&hugetlb_lock);
126         if (surplus_huge_pages_node[nid]) {
127                 update_and_free_page(page);
128                 surplus_huge_pages--;
129                 surplus_huge_pages_node[nid]--;
130         } else {
131                 enqueue_huge_page(page);
132         }
133         spin_unlock(&hugetlb_lock);
134         if (mapping)
135                 hugetlb_put_quota(mapping, 1);
136         set_page_private(page, 0);
137 }
138
139 /*
140  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
141  * balanced by operating on them in a round-robin fashion.
142  * Returns 1 if an adjustment was made.
143  */
144 static int adjust_pool_surplus(int delta)
145 {
146         static int prev_nid;
147         int nid = prev_nid;
148         int ret = 0;
149
150         VM_BUG_ON(delta != -1 && delta != 1);
151         do {
152                 nid = next_node(nid, node_online_map);
153                 if (nid == MAX_NUMNODES)
154                         nid = first_node(node_online_map);
155
156                 /* To shrink on this node, there must be a surplus page */
157                 if (delta < 0 && !surplus_huge_pages_node[nid])
158                         continue;
159                 /* Surplus cannot exceed the total number of pages */
160                 if (delta > 0 && surplus_huge_pages_node[nid] >=
161                                                 nr_huge_pages_node[nid])
162                         continue;
163
164                 surplus_huge_pages += delta;
165                 surplus_huge_pages_node[nid] += delta;
166                 ret = 1;
167                 break;
168         } while (nid != prev_nid);
169
170         prev_nid = nid;
171         return ret;
172 }
173
174 static struct page *alloc_fresh_huge_page_node(int nid)
175 {
176         struct page *page;
177
178         page = alloc_pages_node(nid,
179                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
180                 HUGETLB_PAGE_ORDER);
181         if (page) {
182                 set_compound_page_dtor(page, free_huge_page);
183                 spin_lock(&hugetlb_lock);
184                 nr_huge_pages++;
185                 nr_huge_pages_node[nid]++;
186                 spin_unlock(&hugetlb_lock);
187                 put_page(page); /* free it into the hugepage allocator */
188         }
189
190         return page;
191 }
192
193 static int alloc_fresh_huge_page(void)
194 {
195         struct page *page;
196         int start_nid;
197         int next_nid;
198         int ret = 0;
199
200         start_nid = hugetlb_next_nid;
201
202         do {
203                 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
204                 if (page)
205                         ret = 1;
206                 /*
207                  * Use a helper variable to find the next node and then
208                  * copy it back to hugetlb_next_nid afterwards:
209                  * otherwise there's a window in which a racer might
210                  * pass invalid nid MAX_NUMNODES to alloc_pages_node.
211                  * But we don't need to use a spin_lock here: it really
212                  * doesn't matter if occasionally a racer chooses the
213                  * same nid as we do.  Move nid forward in the mask even
214                  * if we just successfully allocated a hugepage so that
215                  * the next caller gets hugepages on the next node.
216                  */
217                 next_nid = next_node(hugetlb_next_nid, node_online_map);
218                 if (next_nid == MAX_NUMNODES)
219                         next_nid = first_node(node_online_map);
220                 hugetlb_next_nid = next_nid;
221         } while (!page && hugetlb_next_nid != start_nid);
222
223         return ret;
224 }
225
226 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
227                                                 unsigned long address)
228 {
229         struct page *page;
230
231         /* Check if the dynamic pool is enabled */
232         if (!hugetlb_dynamic_pool)
233                 return NULL;
234
235         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
236                                         HUGETLB_PAGE_ORDER);
237         if (page) {
238                 set_compound_page_dtor(page, free_huge_page);
239                 spin_lock(&hugetlb_lock);
240                 nr_huge_pages++;
241                 nr_huge_pages_node[page_to_nid(page)]++;
242                 surplus_huge_pages++;
243                 surplus_huge_pages_node[page_to_nid(page)]++;
244                 spin_unlock(&hugetlb_lock);
245         }
246
247         return page;
248 }
249
250 /*
251  * Increase the hugetlb pool such that it can accomodate a reservation
252  * of size 'delta'.
253  */
254 static int gather_surplus_pages(int delta)
255 {
256         struct list_head surplus_list;
257         struct page *page, *tmp;
258         int ret, i;
259         int needed, allocated;
260
261         needed = (resv_huge_pages + delta) - free_huge_pages;
262         if (needed <= 0)
263                 return 0;
264
265         allocated = 0;
266         INIT_LIST_HEAD(&surplus_list);
267
268         ret = -ENOMEM;
269 retry:
270         spin_unlock(&hugetlb_lock);
271         for (i = 0; i < needed; i++) {
272                 page = alloc_buddy_huge_page(NULL, 0);
273                 if (!page) {
274                         /*
275                          * We were not able to allocate enough pages to
276                          * satisfy the entire reservation so we free what
277                          * we've allocated so far.
278                          */
279                         spin_lock(&hugetlb_lock);
280                         needed = 0;
281                         goto free;
282                 }
283
284                 list_add(&page->lru, &surplus_list);
285         }
286         allocated += needed;
287
288         /*
289          * After retaking hugetlb_lock, we need to recalculate 'needed'
290          * because either resv_huge_pages or free_huge_pages may have changed.
291          */
292         spin_lock(&hugetlb_lock);
293         needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
294         if (needed > 0)
295                 goto retry;
296
297         /*
298          * The surplus_list now contains _at_least_ the number of extra pages
299          * needed to accomodate the reservation.  Add the appropriate number
300          * of pages to the hugetlb pool and free the extras back to the buddy
301          * allocator.
302          */
303         needed += allocated;
304         ret = 0;
305 free:
306         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
307                 list_del(&page->lru);
308                 if ((--needed) >= 0)
309                         enqueue_huge_page(page);
310                 else {
311                         /*
312                          * Decrement the refcount and free the page using its
313                          * destructor.  This must be done with hugetlb_lock
314                          * unlocked which is safe because free_huge_page takes
315                          * hugetlb_lock before deciding how to free the page.
316                          */
317                         spin_unlock(&hugetlb_lock);
318                         put_page(page);
319                         spin_lock(&hugetlb_lock);
320                 }
321         }
322
323         return ret;
324 }
325
326 /*
327  * When releasing a hugetlb pool reservation, any surplus pages that were
328  * allocated to satisfy the reservation must be explicitly freed if they were
329  * never used.
330  */
331 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
332 {
333         static int nid = -1;
334         struct page *page;
335         unsigned long nr_pages;
336
337         nr_pages = min(unused_resv_pages, surplus_huge_pages);
338
339         while (nr_pages) {
340                 nid = next_node(nid, node_online_map);
341                 if (nid == MAX_NUMNODES)
342                         nid = first_node(node_online_map);
343
344                 if (!surplus_huge_pages_node[nid])
345                         continue;
346
347                 if (!list_empty(&hugepage_freelists[nid])) {
348                         page = list_entry(hugepage_freelists[nid].next,
349                                           struct page, lru);
350                         list_del(&page->lru);
351                         update_and_free_page(page);
352                         free_huge_pages--;
353                         free_huge_pages_node[nid]--;
354                         surplus_huge_pages--;
355                         surplus_huge_pages_node[nid]--;
356                         nr_pages--;
357                 }
358         }
359 }
360
361
362 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
363                                                 unsigned long addr)
364 {
365         struct page *page;
366
367         spin_lock(&hugetlb_lock);
368         page = dequeue_huge_page(vma, addr);
369         spin_unlock(&hugetlb_lock);
370         return page ? page : ERR_PTR(-VM_FAULT_OOM);
371 }
372
373 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
374                                                 unsigned long addr)
375 {
376         struct page *page = NULL;
377
378         if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
379                 return ERR_PTR(-VM_FAULT_SIGBUS);
380
381         spin_lock(&hugetlb_lock);
382         if (free_huge_pages > resv_huge_pages)
383                 page = dequeue_huge_page(vma, addr);
384         spin_unlock(&hugetlb_lock);
385         if (!page)
386                 page = alloc_buddy_huge_page(vma, addr);
387         return page ? page : ERR_PTR(-VM_FAULT_OOM);
388 }
389
390 static struct page *alloc_huge_page(struct vm_area_struct *vma,
391                                     unsigned long addr)
392 {
393         struct page *page;
394         struct address_space *mapping = vma->vm_file->f_mapping;
395
396         if (vma->vm_flags & VM_MAYSHARE)
397                 page = alloc_huge_page_shared(vma, addr);
398         else
399                 page = alloc_huge_page_private(vma, addr);
400
401         if (!IS_ERR(page)) {
402                 set_page_refcounted(page);
403                 set_page_private(page, (unsigned long) mapping);
404         }
405         return page;
406 }
407
408 static int __init hugetlb_init(void)
409 {
410         unsigned long i;
411
412         if (HPAGE_SHIFT == 0)
413                 return 0;
414
415         for (i = 0; i < MAX_NUMNODES; ++i)
416                 INIT_LIST_HEAD(&hugepage_freelists[i]);
417
418         hugetlb_next_nid = first_node(node_online_map);
419
420         for (i = 0; i < max_huge_pages; ++i) {
421                 if (!alloc_fresh_huge_page())
422                         break;
423         }
424         max_huge_pages = free_huge_pages = nr_huge_pages = i;
425         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
426         return 0;
427 }
428 module_init(hugetlb_init);
429
430 static int __init hugetlb_setup(char *s)
431 {
432         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
433                 max_huge_pages = 0;
434         return 1;
435 }
436 __setup("hugepages=", hugetlb_setup);
437
438 static unsigned int cpuset_mems_nr(unsigned int *array)
439 {
440         int node;
441         unsigned int nr = 0;
442
443         for_each_node_mask(node, cpuset_current_mems_allowed)
444                 nr += array[node];
445
446         return nr;
447 }
448
449 #ifdef CONFIG_SYSCTL
450 #ifdef CONFIG_HIGHMEM
451 static void try_to_free_low(unsigned long count)
452 {
453         int i;
454
455         for (i = 0; i < MAX_NUMNODES; ++i) {
456                 struct page *page, *next;
457                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
458                         if (count >= nr_huge_pages)
459                                 return;
460                         if (PageHighMem(page))
461                                 continue;
462                         list_del(&page->lru);
463                         update_and_free_page(page);
464                         free_huge_pages--;
465                         free_huge_pages_node[page_to_nid(page)]--;
466                 }
467         }
468 }
469 #else
470 static inline void try_to_free_low(unsigned long count)
471 {
472 }
473 #endif
474
475 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
476 static unsigned long set_max_huge_pages(unsigned long count)
477 {
478         unsigned long min_count, ret;
479
480         /*
481          * Increase the pool size
482          * First take pages out of surplus state.  Then make up the
483          * remaining difference by allocating fresh huge pages.
484          */
485         spin_lock(&hugetlb_lock);
486         while (surplus_huge_pages && count > persistent_huge_pages) {
487                 if (!adjust_pool_surplus(-1))
488                         break;
489         }
490
491         while (count > persistent_huge_pages) {
492                 int ret;
493                 /*
494                  * If this allocation races such that we no longer need the
495                  * page, free_huge_page will handle it by freeing the page
496                  * and reducing the surplus.
497                  */
498                 spin_unlock(&hugetlb_lock);
499                 ret = alloc_fresh_huge_page();
500                 spin_lock(&hugetlb_lock);
501                 if (!ret)
502                         goto out;
503
504         }
505
506         /*
507          * Decrease the pool size
508          * First return free pages to the buddy allocator (being careful
509          * to keep enough around to satisfy reservations).  Then place
510          * pages into surplus state as needed so the pool will shrink
511          * to the desired size as pages become free.
512          */
513         min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
514         min_count = max(count, min_count);
515         try_to_free_low(min_count);
516         while (min_count < persistent_huge_pages) {
517                 struct page *page = dequeue_huge_page(NULL, 0);
518                 if (!page)
519                         break;
520                 update_and_free_page(page);
521         }
522         while (count < persistent_huge_pages) {
523                 if (!adjust_pool_surplus(1))
524                         break;
525         }
526 out:
527         ret = persistent_huge_pages;
528         spin_unlock(&hugetlb_lock);
529         return ret;
530 }
531
532 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
533                            struct file *file, void __user *buffer,
534                            size_t *length, loff_t *ppos)
535 {
536         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
537         max_huge_pages = set_max_huge_pages(max_huge_pages);
538         return 0;
539 }
540
541 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
542                         struct file *file, void __user *buffer,
543                         size_t *length, loff_t *ppos)
544 {
545         proc_dointvec(table, write, file, buffer, length, ppos);
546         if (hugepages_treat_as_movable)
547                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
548         else
549                 htlb_alloc_mask = GFP_HIGHUSER;
550         return 0;
551 }
552
553 #endif /* CONFIG_SYSCTL */
554
555 int hugetlb_report_meminfo(char *buf)
556 {
557         return sprintf(buf,
558                         "HugePages_Total: %5lu\n"
559                         "HugePages_Free:  %5lu\n"
560                         "HugePages_Rsvd:  %5lu\n"
561                         "HugePages_Surp:  %5lu\n"
562                         "Hugepagesize:    %5lu kB\n",
563                         nr_huge_pages,
564                         free_huge_pages,
565                         resv_huge_pages,
566                         surplus_huge_pages,
567                         HPAGE_SIZE/1024);
568 }
569
570 int hugetlb_report_node_meminfo(int nid, char *buf)
571 {
572         return sprintf(buf,
573                 "Node %d HugePages_Total: %5u\n"
574                 "Node %d HugePages_Free:  %5u\n",
575                 nid, nr_huge_pages_node[nid],
576                 nid, free_huge_pages_node[nid]);
577 }
578
579 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
580 unsigned long hugetlb_total_pages(void)
581 {
582         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
583 }
584
585 /*
586  * We cannot handle pagefaults against hugetlb pages at all.  They cause
587  * handle_mm_fault() to try to instantiate regular-sized pages in the
588  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
589  * this far.
590  */
591 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
592 {
593         BUG();
594         return 0;
595 }
596
597 struct vm_operations_struct hugetlb_vm_ops = {
598         .fault = hugetlb_vm_op_fault,
599 };
600
601 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
602                                 int writable)
603 {
604         pte_t entry;
605
606         if (writable) {
607                 entry =
608                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
609         } else {
610                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
611         }
612         entry = pte_mkyoung(entry);
613         entry = pte_mkhuge(entry);
614
615         return entry;
616 }
617
618 static void set_huge_ptep_writable(struct vm_area_struct *vma,
619                                    unsigned long address, pte_t *ptep)
620 {
621         pte_t entry;
622
623         entry = pte_mkwrite(pte_mkdirty(*ptep));
624         if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
625                 update_mmu_cache(vma, address, entry);
626         }
627 }
628
629
630 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
631                             struct vm_area_struct *vma)
632 {
633         pte_t *src_pte, *dst_pte, entry;
634         struct page *ptepage;
635         unsigned long addr;
636         int cow;
637
638         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
639
640         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
641                 src_pte = huge_pte_offset(src, addr);
642                 if (!src_pte)
643                         continue;
644                 dst_pte = huge_pte_alloc(dst, addr);
645                 if (!dst_pte)
646                         goto nomem;
647                 spin_lock(&dst->page_table_lock);
648                 spin_lock(&src->page_table_lock);
649                 if (!pte_none(*src_pte)) {
650                         if (cow)
651                                 ptep_set_wrprotect(src, addr, src_pte);
652                         entry = *src_pte;
653                         ptepage = pte_page(entry);
654                         get_page(ptepage);
655                         set_huge_pte_at(dst, addr, dst_pte, entry);
656                 }
657                 spin_unlock(&src->page_table_lock);
658                 spin_unlock(&dst->page_table_lock);
659         }
660         return 0;
661
662 nomem:
663         return -ENOMEM;
664 }
665
666 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
667                             unsigned long end)
668 {
669         struct mm_struct *mm = vma->vm_mm;
670         unsigned long address;
671         pte_t *ptep;
672         pte_t pte;
673         struct page *page;
674         struct page *tmp;
675         /*
676          * A page gathering list, protected by per file i_mmap_lock. The
677          * lock is used to avoid list corruption from multiple unmapping
678          * of the same page since we are using page->lru.
679          */
680         LIST_HEAD(page_list);
681
682         WARN_ON(!is_vm_hugetlb_page(vma));
683         BUG_ON(start & ~HPAGE_MASK);
684         BUG_ON(end & ~HPAGE_MASK);
685
686         spin_lock(&mm->page_table_lock);
687         for (address = start; address < end; address += HPAGE_SIZE) {
688                 ptep = huge_pte_offset(mm, address);
689                 if (!ptep)
690                         continue;
691
692                 if (huge_pmd_unshare(mm, &address, ptep))
693                         continue;
694
695                 pte = huge_ptep_get_and_clear(mm, address, ptep);
696                 if (pte_none(pte))
697                         continue;
698
699                 page = pte_page(pte);
700                 if (pte_dirty(pte))
701                         set_page_dirty(page);
702                 list_add(&page->lru, &page_list);
703         }
704         spin_unlock(&mm->page_table_lock);
705         flush_tlb_range(vma, start, end);
706         list_for_each_entry_safe(page, tmp, &page_list, lru) {
707                 list_del(&page->lru);
708                 put_page(page);
709         }
710 }
711
712 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
713                           unsigned long end)
714 {
715         /*
716          * It is undesirable to test vma->vm_file as it should be non-null
717          * for valid hugetlb area. However, vm_file will be NULL in the error
718          * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
719          * do_mmap_pgoff() nullifies vma->vm_file before calling this function
720          * to clean up. Since no pte has actually been setup, it is safe to
721          * do nothing in this case.
722          */
723         if (vma->vm_file) {
724                 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
725                 __unmap_hugepage_range(vma, start, end);
726                 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
727         }
728 }
729
730 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
731                         unsigned long address, pte_t *ptep, pte_t pte)
732 {
733         struct page *old_page, *new_page;
734         int avoidcopy;
735
736         old_page = pte_page(pte);
737
738         /* If no-one else is actually using this page, avoid the copy
739          * and just make the page writable */
740         avoidcopy = (page_count(old_page) == 1);
741         if (avoidcopy) {
742                 set_huge_ptep_writable(vma, address, ptep);
743                 return 0;
744         }
745
746         page_cache_get(old_page);
747         new_page = alloc_huge_page(vma, address);
748
749         if (IS_ERR(new_page)) {
750                 page_cache_release(old_page);
751                 return -PTR_ERR(new_page);
752         }
753
754         spin_unlock(&mm->page_table_lock);
755         copy_huge_page(new_page, old_page, address, vma);
756         spin_lock(&mm->page_table_lock);
757
758         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
759         if (likely(pte_same(*ptep, pte))) {
760                 /* Break COW */
761                 set_huge_pte_at(mm, address, ptep,
762                                 make_huge_pte(vma, new_page, 1));
763                 /* Make the old page be freed below */
764                 new_page = old_page;
765         }
766         page_cache_release(new_page);
767         page_cache_release(old_page);
768         return 0;
769 }
770
771 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
772                         unsigned long address, pte_t *ptep, int write_access)
773 {
774         int ret = VM_FAULT_SIGBUS;
775         unsigned long idx;
776         unsigned long size;
777         struct page *page;
778         struct address_space *mapping;
779         pte_t new_pte;
780
781         mapping = vma->vm_file->f_mapping;
782         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
783                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
784
785         /*
786          * Use page lock to guard against racing truncation
787          * before we get page_table_lock.
788          */
789 retry:
790         page = find_lock_page(mapping, idx);
791         if (!page) {
792                 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
793                 if (idx >= size)
794                         goto out;
795                 page = alloc_huge_page(vma, address);
796                 if (IS_ERR(page)) {
797                         ret = -PTR_ERR(page);
798                         goto out;
799                 }
800                 clear_huge_page(page, address);
801
802                 if (vma->vm_flags & VM_SHARED) {
803                         int err;
804                         struct inode *inode = mapping->host;
805
806                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
807                         if (err) {
808                                 put_page(page);
809                                 if (err == -EEXIST)
810                                         goto retry;
811                                 goto out;
812                         }
813
814                         spin_lock(&inode->i_lock);
815                         inode->i_blocks += BLOCKS_PER_HUGEPAGE;
816                         spin_unlock(&inode->i_lock);
817                 } else
818                         lock_page(page);
819         }
820
821         spin_lock(&mm->page_table_lock);
822         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
823         if (idx >= size)
824                 goto backout;
825
826         ret = 0;
827         if (!pte_none(*ptep))
828                 goto backout;
829
830         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
831                                 && (vma->vm_flags & VM_SHARED)));
832         set_huge_pte_at(mm, address, ptep, new_pte);
833
834         if (write_access && !(vma->vm_flags & VM_SHARED)) {
835                 /* Optimization, do the COW without a second fault */
836                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
837         }
838
839         spin_unlock(&mm->page_table_lock);
840         unlock_page(page);
841 out:
842         return ret;
843
844 backout:
845         spin_unlock(&mm->page_table_lock);
846         unlock_page(page);
847         put_page(page);
848         goto out;
849 }
850
851 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
852                         unsigned long address, int write_access)
853 {
854         pte_t *ptep;
855         pte_t entry;
856         int ret;
857         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
858
859         ptep = huge_pte_alloc(mm, address);
860         if (!ptep)
861                 return VM_FAULT_OOM;
862
863         /*
864          * Serialize hugepage allocation and instantiation, so that we don't
865          * get spurious allocation failures if two CPUs race to instantiate
866          * the same page in the page cache.
867          */
868         mutex_lock(&hugetlb_instantiation_mutex);
869         entry = *ptep;
870         if (pte_none(entry)) {
871                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
872                 mutex_unlock(&hugetlb_instantiation_mutex);
873                 return ret;
874         }
875
876         ret = 0;
877
878         spin_lock(&mm->page_table_lock);
879         /* Check for a racing update before calling hugetlb_cow */
880         if (likely(pte_same(entry, *ptep)))
881                 if (write_access && !pte_write(entry))
882                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
883         spin_unlock(&mm->page_table_lock);
884         mutex_unlock(&hugetlb_instantiation_mutex);
885
886         return ret;
887 }
888
889 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
890                         struct page **pages, struct vm_area_struct **vmas,
891                         unsigned long *position, int *length, int i,
892                         int write)
893 {
894         unsigned long pfn_offset;
895         unsigned long vaddr = *position;
896         int remainder = *length;
897
898         spin_lock(&mm->page_table_lock);
899         while (vaddr < vma->vm_end && remainder) {
900                 pte_t *pte;
901                 struct page *page;
902
903                 /*
904                  * Some archs (sparc64, sh*) have multiple pte_ts to
905                  * each hugepage.  We have to make * sure we get the
906                  * first, for the page indexing below to work.
907                  */
908                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
909
910                 if (!pte || pte_none(*pte)) {
911                         int ret;
912
913                         spin_unlock(&mm->page_table_lock);
914                         ret = hugetlb_fault(mm, vma, vaddr, write);
915                         spin_lock(&mm->page_table_lock);
916                         if (!(ret & VM_FAULT_ERROR))
917                                 continue;
918
919                         remainder = 0;
920                         if (!i)
921                                 i = -EFAULT;
922                         break;
923                 }
924
925                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
926                 page = pte_page(*pte);
927 same_page:
928                 if (pages) {
929                         get_page(page);
930                         pages[i] = page + pfn_offset;
931                 }
932
933                 if (vmas)
934                         vmas[i] = vma;
935
936                 vaddr += PAGE_SIZE;
937                 ++pfn_offset;
938                 --remainder;
939                 ++i;
940                 if (vaddr < vma->vm_end && remainder &&
941                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
942                         /*
943                          * We use pfn_offset to avoid touching the pageframes
944                          * of this compound page.
945                          */
946                         goto same_page;
947                 }
948         }
949         spin_unlock(&mm->page_table_lock);
950         *length = remainder;
951         *position = vaddr;
952
953         return i;
954 }
955
956 void hugetlb_change_protection(struct vm_area_struct *vma,
957                 unsigned long address, unsigned long end, pgprot_t newprot)
958 {
959         struct mm_struct *mm = vma->vm_mm;
960         unsigned long start = address;
961         pte_t *ptep;
962         pte_t pte;
963
964         BUG_ON(address >= end);
965         flush_cache_range(vma, address, end);
966
967         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
968         spin_lock(&mm->page_table_lock);
969         for (; address < end; address += HPAGE_SIZE) {
970                 ptep = huge_pte_offset(mm, address);
971                 if (!ptep)
972                         continue;
973                 if (huge_pmd_unshare(mm, &address, ptep))
974                         continue;
975                 if (!pte_none(*ptep)) {
976                         pte = huge_ptep_get_and_clear(mm, address, ptep);
977                         pte = pte_mkhuge(pte_modify(pte, newprot));
978                         set_huge_pte_at(mm, address, ptep, pte);
979                 }
980         }
981         spin_unlock(&mm->page_table_lock);
982         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
983
984         flush_tlb_range(vma, start, end);
985 }
986
987 struct file_region {
988         struct list_head link;
989         long from;
990         long to;
991 };
992
993 static long region_add(struct list_head *head, long f, long t)
994 {
995         struct file_region *rg, *nrg, *trg;
996
997         /* Locate the region we are either in or before. */
998         list_for_each_entry(rg, head, link)
999                 if (f <= rg->to)
1000                         break;
1001
1002         /* Round our left edge to the current segment if it encloses us. */
1003         if (f > rg->from)
1004                 f = rg->from;
1005
1006         /* Check for and consume any regions we now overlap with. */
1007         nrg = rg;
1008         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1009                 if (&rg->link == head)
1010                         break;
1011                 if (rg->from > t)
1012                         break;
1013
1014                 /* If this area reaches higher then extend our area to
1015                  * include it completely.  If this is not the first area
1016                  * which we intend to reuse, free it. */
1017                 if (rg->to > t)
1018                         t = rg->to;
1019                 if (rg != nrg) {
1020                         list_del(&rg->link);
1021                         kfree(rg);
1022                 }
1023         }
1024         nrg->from = f;
1025         nrg->to = t;
1026         return 0;
1027 }
1028
1029 static long region_chg(struct list_head *head, long f, long t)
1030 {
1031         struct file_region *rg, *nrg;
1032         long chg = 0;
1033
1034         /* Locate the region we are before or in. */
1035         list_for_each_entry(rg, head, link)
1036                 if (f <= rg->to)
1037                         break;
1038
1039         /* If we are below the current region then a new region is required.
1040          * Subtle, allocate a new region at the position but make it zero
1041          * size such that we can guarantee to record the reservation. */
1042         if (&rg->link == head || t < rg->from) {
1043                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1044                 if (!nrg)
1045                         return -ENOMEM;
1046                 nrg->from = f;
1047                 nrg->to   = f;
1048                 INIT_LIST_HEAD(&nrg->link);
1049                 list_add(&nrg->link, rg->link.prev);
1050
1051                 return t - f;
1052         }
1053
1054         /* Round our left edge to the current segment if it encloses us. */
1055         if (f > rg->from)
1056                 f = rg->from;
1057         chg = t - f;
1058
1059         /* Check for and consume any regions we now overlap with. */
1060         list_for_each_entry(rg, rg->link.prev, link) {
1061                 if (&rg->link == head)
1062                         break;
1063                 if (rg->from > t)
1064                         return chg;
1065
1066                 /* We overlap with this area, if it extends futher than
1067                  * us then we must extend ourselves.  Account for its
1068                  * existing reservation. */
1069                 if (rg->to > t) {
1070                         chg += rg->to - t;
1071                         t = rg->to;
1072                 }
1073                 chg -= rg->to - rg->from;
1074         }
1075         return chg;
1076 }
1077
1078 static long region_truncate(struct list_head *head, long end)
1079 {
1080         struct file_region *rg, *trg;
1081         long chg = 0;
1082
1083         /* Locate the region we are either in or before. */
1084         list_for_each_entry(rg, head, link)
1085                 if (end <= rg->to)
1086                         break;
1087         if (&rg->link == head)
1088                 return 0;
1089
1090         /* If we are in the middle of a region then adjust it. */
1091         if (end > rg->from) {
1092                 chg = rg->to - end;
1093                 rg->to = end;
1094                 rg = list_entry(rg->link.next, typeof(*rg), link);
1095         }
1096
1097         /* Drop any remaining regions. */
1098         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1099                 if (&rg->link == head)
1100                         break;
1101                 chg += rg->to - rg->from;
1102                 list_del(&rg->link);
1103                 kfree(rg);
1104         }
1105         return chg;
1106 }
1107
1108 static int hugetlb_acct_memory(long delta)
1109 {
1110         int ret = -ENOMEM;
1111
1112         spin_lock(&hugetlb_lock);
1113         /*
1114          * When cpuset is configured, it breaks the strict hugetlb page
1115          * reservation as the accounting is done on a global variable. Such
1116          * reservation is completely rubbish in the presence of cpuset because
1117          * the reservation is not checked against page availability for the
1118          * current cpuset. Application can still potentially OOM'ed by kernel
1119          * with lack of free htlb page in cpuset that the task is in.
1120          * Attempt to enforce strict accounting with cpuset is almost
1121          * impossible (or too ugly) because cpuset is too fluid that
1122          * task or memory node can be dynamically moved between cpusets.
1123          *
1124          * The change of semantics for shared hugetlb mapping with cpuset is
1125          * undesirable. However, in order to preserve some of the semantics,
1126          * we fall back to check against current free page availability as
1127          * a best attempt and hopefully to minimize the impact of changing
1128          * semantics that cpuset has.
1129          */
1130         if (delta > 0) {
1131                 if (gather_surplus_pages(delta) < 0)
1132                         goto out;
1133
1134                 if (delta > cpuset_mems_nr(free_huge_pages_node))
1135                         goto out;
1136         }
1137
1138         ret = 0;
1139         resv_huge_pages += delta;
1140         if (delta < 0)
1141                 return_unused_surplus_pages((unsigned long) -delta);
1142
1143 out:
1144         spin_unlock(&hugetlb_lock);
1145         return ret;
1146 }
1147
1148 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1149 {
1150         long ret, chg;
1151
1152         chg = region_chg(&inode->i_mapping->private_list, from, to);
1153         if (chg < 0)
1154                 return chg;
1155
1156         if (hugetlb_get_quota(inode->i_mapping, chg))
1157                 return -ENOSPC;
1158         ret = hugetlb_acct_memory(chg);
1159         if (ret < 0)
1160                 return ret;
1161         region_add(&inode->i_mapping->private_list, from, to);
1162         return 0;
1163 }
1164
1165 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1166 {
1167         long chg = region_truncate(&inode->i_mapping->private_list, offset);
1168
1169         spin_lock(&inode->i_lock);
1170         inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1171         spin_unlock(&inode->i_lock);
1172
1173         hugetlb_put_quota(inode->i_mapping, (chg - freed));
1174         hugetlb_acct_memory(-(chg - freed));
1175 }