Merge branches 'tracing/function-graph-tracer' and 'linus' into tracing/core
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         __iomem char *registers;
175         dma_addr_t self_id_bus;
176         __le32 *self_id_cpu;
177         struct tasklet_struct bus_reset_tasklet;
178         int node_id;
179         int generation;
180         int request_generation; /* for timestamping incoming requests */
181         u32 bus_seconds;
182
183         bool use_dualbuffer;
184         bool old_uninorth;
185         bool bus_reset_packet_quirk;
186
187         /*
188          * Spinlock for accessing fw_ohci data.  Never call out of
189          * this driver with this lock held.
190          */
191         spinlock_t lock;
192         u32 self_id_buffer[512];
193
194         /* Config rom buffers */
195         __be32 *config_rom;
196         dma_addr_t config_rom_bus;
197         __be32 *next_config_rom;
198         dma_addr_t next_config_rom_bus;
199         u32 next_header;
200
201         struct ar_context ar_request_ctx;
202         struct ar_context ar_response_ctx;
203         struct context at_request_ctx;
204         struct context at_response_ctx;
205
206         u32 it_context_mask;
207         struct iso_context *it_context_list;
208         u32 ir_context_mask;
209         struct iso_context *ir_context_list;
210 };
211
212 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 {
214         return container_of(card, struct fw_ohci, card);
215 }
216
217 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
218 #define IR_CONTEXT_BUFFER_FILL          0x80000000
219 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
220 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
221 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
222 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
223
224 #define CONTEXT_RUN     0x8000
225 #define CONTEXT_WAKE    0x1000
226 #define CONTEXT_DEAD    0x0800
227 #define CONTEXT_ACTIVE  0x0400
228
229 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
230 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
231 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
232
233 #define FW_OHCI_MAJOR                   240
234 #define OHCI1394_REGISTER_SIZE          0x800
235 #define OHCI_LOOP_COUNT                 500
236 #define OHCI1394_PCI_HCI_Control        0x40
237 #define SELF_ID_BUF_SIZE                0x800
238 #define OHCI_TCODE_PHY_PACKET           0x0e
239 #define OHCI_VERSION_1_1                0x010010
240
241 static char ohci_driver_name[] = KBUILD_MODNAME;
242
243 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
244
245 #define OHCI_PARAM_DEBUG_AT_AR          1
246 #define OHCI_PARAM_DEBUG_SELFIDS        2
247 #define OHCI_PARAM_DEBUG_IRQS           4
248 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
249
250 static int param_debug;
251 module_param_named(debug, param_debug, int, 0644);
252 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
253         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
254         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
255         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
256         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
257         ", or a combination, or all = -1)");
258
259 static void log_irqs(u32 evt)
260 {
261         if (likely(!(param_debug &
262                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
263                 return;
264
265         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
266             !(evt & OHCI1394_busReset))
267                 return;
268
269         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
270             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
271             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
272             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
273             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
274             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
275             evt & OHCI1394_isochRx              ? " IR"                 : "",
276             evt & OHCI1394_isochTx              ? " IT"                 : "",
277             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
278             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
279             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
280             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
281             evt & OHCI1394_busReset             ? " busReset"           : "",
282             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
283                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
284                     OHCI1394_respTxComplete | OHCI1394_isochRx |
285                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
286                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
287                     OHCI1394_regAccessFail | OHCI1394_busReset)
288                                                 ? " ?"                  : "");
289 }
290
291 static const char *speed[] = {
292         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
293 };
294 static const char *power[] = {
295         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
296         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
297 };
298 static const char port[] = { '.', '-', 'p', 'c', };
299
300 static char _p(u32 *s, int shift)
301 {
302         return port[*s >> shift & 3];
303 }
304
305 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
306 {
307         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
308                 return;
309
310         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
311                   self_id_count, generation, node_id);
312
313         for (; self_id_count--; ++s)
314                 if ((*s & 1 << 23) == 0)
315                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
316                             "%s gc=%d %s %s%s%s\n",
317                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
318                             speed[*s >> 14 & 3], *s >> 16 & 63,
319                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
320                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
321                 else
322                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
323                             *s, *s >> 24 & 63,
324                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
325                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
326 }
327
328 static const char *evts[] = {
329         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
330         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
331         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
332         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
333         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
334         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
335         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
336         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
337         [0x10] = "-reserved-",          [0x11] = "ack_complete",
338         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
339         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
340         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
341         [0x18] = "-reserved-",          [0x19] = "-reserved-",
342         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
343         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
344         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
345         [0x20] = "pending/cancelled",
346 };
347 static const char *tcodes[] = {
348         [0x0] = "QW req",               [0x1] = "BW req",
349         [0x2] = "W resp",               [0x3] = "-reserved-",
350         [0x4] = "QR req",               [0x5] = "BR req",
351         [0x6] = "QR resp",              [0x7] = "BR resp",
352         [0x8] = "cycle start",          [0x9] = "Lk req",
353         [0xa] = "async stream packet",  [0xb] = "Lk resp",
354         [0xc] = "-reserved-",           [0xd] = "-reserved-",
355         [0xe] = "link internal",        [0xf] = "-reserved-",
356 };
357 static const char *phys[] = {
358         [0x0] = "phy config packet",    [0x1] = "link-on packet",
359         [0x2] = "self-id packet",       [0x3] = "-reserved-",
360 };
361
362 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
363 {
364         int tcode = header[0] >> 4 & 0xf;
365         char specific[12];
366
367         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
368                 return;
369
370         if (unlikely(evt >= ARRAY_SIZE(evts)))
371                         evt = 0x1f;
372
373         if (evt == OHCI1394_evt_bus_reset) {
374                 fw_notify("A%c evt_bus_reset, generation %d\n",
375                     dir, (header[2] >> 16) & 0xff);
376                 return;
377         }
378
379         if (header[0] == ~header[1]) {
380                 fw_notify("A%c %s, %s, %08x\n",
381                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
382                 return;
383         }
384
385         switch (tcode) {
386         case 0x0: case 0x6: case 0x8:
387                 snprintf(specific, sizeof(specific), " = %08x",
388                          be32_to_cpu((__force __be32)header[3]));
389                 break;
390         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
391                 snprintf(specific, sizeof(specific), " %x,%x",
392                          header[3] >> 16, header[3] & 0xffff);
393                 break;
394         default:
395                 specific[0] = '\0';
396         }
397
398         switch (tcode) {
399         case 0xe: case 0xa:
400                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
401                 break;
402         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
403                 fw_notify("A%c spd %x tl %02x, "
404                     "%04x -> %04x, %s, "
405                     "%s, %04x%08x%s\n",
406                     dir, speed, header[0] >> 10 & 0x3f,
407                     header[1] >> 16, header[0] >> 16, evts[evt],
408                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
409                 break;
410         default:
411                 fw_notify("A%c spd %x tl %02x, "
412                     "%04x -> %04x, %s, "
413                     "%s%s\n",
414                     dir, speed, header[0] >> 10 & 0x3f,
415                     header[1] >> 16, header[0] >> 16, evts[evt],
416                     tcodes[tcode], specific);
417         }
418 }
419
420 #else
421
422 #define log_irqs(evt)
423 #define log_selfids(node_id, generation, self_id_count, sid)
424 #define log_ar_at_event(dir, speed, header, evt)
425
426 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
427
428 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
429 {
430         writel(data, ohci->registers + offset);
431 }
432
433 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
434 {
435         return readl(ohci->registers + offset);
436 }
437
438 static inline void flush_writes(const struct fw_ohci *ohci)
439 {
440         /* Do a dummy read to flush writes. */
441         reg_read(ohci, OHCI1394_Version);
442 }
443
444 static int
445 ohci_update_phy_reg(struct fw_card *card, int addr,
446                     int clear_bits, int set_bits)
447 {
448         struct fw_ohci *ohci = fw_ohci(card);
449         u32 val, old;
450
451         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
452         flush_writes(ohci);
453         msleep(2);
454         val = reg_read(ohci, OHCI1394_PhyControl);
455         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
456                 fw_error("failed to set phy reg bits.\n");
457                 return -EBUSY;
458         }
459
460         old = OHCI1394_PhyControl_ReadData(val);
461         old = (old & ~clear_bits) | set_bits;
462         reg_write(ohci, OHCI1394_PhyControl,
463                   OHCI1394_PhyControl_Write(addr, old));
464
465         return 0;
466 }
467
468 static int ar_context_add_page(struct ar_context *ctx)
469 {
470         struct device *dev = ctx->ohci->card.device;
471         struct ar_buffer *ab;
472         dma_addr_t uninitialized_var(ab_bus);
473         size_t offset;
474
475         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
476         if (ab == NULL)
477                 return -ENOMEM;
478
479         ab->next = NULL;
480         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
481         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
482                                                     DESCRIPTOR_STATUS |
483                                                     DESCRIPTOR_BRANCH_ALWAYS);
484         offset = offsetof(struct ar_buffer, data);
485         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
486         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
487         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
488         ab->descriptor.branch_address = 0;
489
490         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
491         ctx->last_buffer->next = ab;
492         ctx->last_buffer = ab;
493
494         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
495         flush_writes(ctx->ohci);
496
497         return 0;
498 }
499
500 static void ar_context_release(struct ar_context *ctx)
501 {
502         struct ar_buffer *ab, *ab_next;
503         size_t offset;
504         dma_addr_t ab_bus;
505
506         for (ab = ctx->current_buffer; ab; ab = ab_next) {
507                 ab_next = ab->next;
508                 offset = offsetof(struct ar_buffer, data);
509                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
510                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
511                                   ab, ab_bus);
512         }
513 }
514
515 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
516 #define cond_le32_to_cpu(v) \
517         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
518 #else
519 #define cond_le32_to_cpu(v) le32_to_cpu(v)
520 #endif
521
522 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
523 {
524         struct fw_ohci *ohci = ctx->ohci;
525         struct fw_packet p;
526         u32 status, length, tcode;
527         int evt;
528
529         p.header[0] = cond_le32_to_cpu(buffer[0]);
530         p.header[1] = cond_le32_to_cpu(buffer[1]);
531         p.header[2] = cond_le32_to_cpu(buffer[2]);
532
533         tcode = (p.header[0] >> 4) & 0x0f;
534         switch (tcode) {
535         case TCODE_WRITE_QUADLET_REQUEST:
536         case TCODE_READ_QUADLET_RESPONSE:
537                 p.header[3] = (__force __u32) buffer[3];
538                 p.header_length = 16;
539                 p.payload_length = 0;
540                 break;
541
542         case TCODE_READ_BLOCK_REQUEST :
543                 p.header[3] = cond_le32_to_cpu(buffer[3]);
544                 p.header_length = 16;
545                 p.payload_length = 0;
546                 break;
547
548         case TCODE_WRITE_BLOCK_REQUEST:
549         case TCODE_READ_BLOCK_RESPONSE:
550         case TCODE_LOCK_REQUEST:
551         case TCODE_LOCK_RESPONSE:
552                 p.header[3] = cond_le32_to_cpu(buffer[3]);
553                 p.header_length = 16;
554                 p.payload_length = p.header[3] >> 16;
555                 break;
556
557         case TCODE_WRITE_RESPONSE:
558         case TCODE_READ_QUADLET_REQUEST:
559         case OHCI_TCODE_PHY_PACKET:
560                 p.header_length = 12;
561                 p.payload_length = 0;
562                 break;
563
564         default:
565                 /* FIXME: Stop context, discard everything, and restart? */
566                 p.header_length = 0;
567                 p.payload_length = 0;
568         }
569
570         p.payload = (void *) buffer + p.header_length;
571
572         /* FIXME: What to do about evt_* errors? */
573         length = (p.header_length + p.payload_length + 3) / 4;
574         status = cond_le32_to_cpu(buffer[length]);
575         evt    = (status >> 16) & 0x1f;
576
577         p.ack        = evt - 16;
578         p.speed      = (status >> 21) & 0x7;
579         p.timestamp  = status & 0xffff;
580         p.generation = ohci->request_generation;
581
582         log_ar_at_event('R', p.speed, p.header, evt);
583
584         /*
585          * The OHCI bus reset handler synthesizes a phy packet with
586          * the new generation number when a bus reset happens (see
587          * section 8.4.2.3).  This helps us determine when a request
588          * was received and make sure we send the response in the same
589          * generation.  We only need this for requests; for responses
590          * we use the unique tlabel for finding the matching
591          * request.
592          *
593          * Alas some chips sometimes emit bus reset packets with a
594          * wrong generation.  We set the correct generation for these
595          * at a slightly incorrect time (in bus_reset_tasklet).
596          */
597         if (evt == OHCI1394_evt_bus_reset) {
598                 if (!ohci->bus_reset_packet_quirk)
599                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
600         } else if (ctx == &ohci->ar_request_ctx) {
601                 fw_core_handle_request(&ohci->card, &p);
602         } else {
603                 fw_core_handle_response(&ohci->card, &p);
604         }
605
606         return buffer + length + 1;
607 }
608
609 static void ar_context_tasklet(unsigned long data)
610 {
611         struct ar_context *ctx = (struct ar_context *)data;
612         struct fw_ohci *ohci = ctx->ohci;
613         struct ar_buffer *ab;
614         struct descriptor *d;
615         void *buffer, *end;
616
617         ab = ctx->current_buffer;
618         d = &ab->descriptor;
619
620         if (d->res_count == 0) {
621                 size_t size, rest, offset;
622                 dma_addr_t start_bus;
623                 void *start;
624
625                 /*
626                  * This descriptor is finished and we may have a
627                  * packet split across this and the next buffer. We
628                  * reuse the page for reassembling the split packet.
629                  */
630
631                 offset = offsetof(struct ar_buffer, data);
632                 start = buffer = ab;
633                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
634
635                 ab = ab->next;
636                 d = &ab->descriptor;
637                 size = buffer + PAGE_SIZE - ctx->pointer;
638                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
639                 memmove(buffer, ctx->pointer, size);
640                 memcpy(buffer + size, ab->data, rest);
641                 ctx->current_buffer = ab;
642                 ctx->pointer = (void *) ab->data + rest;
643                 end = buffer + size + rest;
644
645                 while (buffer < end)
646                         buffer = handle_ar_packet(ctx, buffer);
647
648                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
649                                   start, start_bus);
650                 ar_context_add_page(ctx);
651         } else {
652                 buffer = ctx->pointer;
653                 ctx->pointer = end =
654                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
655
656                 while (buffer < end)
657                         buffer = handle_ar_packet(ctx, buffer);
658         }
659 }
660
661 static int
662 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
663 {
664         struct ar_buffer ab;
665
666         ctx->regs        = regs;
667         ctx->ohci        = ohci;
668         ctx->last_buffer = &ab;
669         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
670
671         ar_context_add_page(ctx);
672         ar_context_add_page(ctx);
673         ctx->current_buffer = ab.next;
674         ctx->pointer = ctx->current_buffer->data;
675
676         return 0;
677 }
678
679 static void ar_context_run(struct ar_context *ctx)
680 {
681         struct ar_buffer *ab = ctx->current_buffer;
682         dma_addr_t ab_bus;
683         size_t offset;
684
685         offset = offsetof(struct ar_buffer, data);
686         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
687
688         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
689         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
690         flush_writes(ctx->ohci);
691 }
692
693 static struct descriptor *
694 find_branch_descriptor(struct descriptor *d, int z)
695 {
696         int b, key;
697
698         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
699         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
700
701         /* figure out which descriptor the branch address goes in */
702         if (z == 2 && (b == 3 || key == 2))
703                 return d;
704         else
705                 return d + z - 1;
706 }
707
708 static void context_tasklet(unsigned long data)
709 {
710         struct context *ctx = (struct context *) data;
711         struct descriptor *d, *last;
712         u32 address;
713         int z;
714         struct descriptor_buffer *desc;
715
716         desc = list_entry(ctx->buffer_list.next,
717                         struct descriptor_buffer, list);
718         last = ctx->last;
719         while (last->branch_address != 0) {
720                 struct descriptor_buffer *old_desc = desc;
721                 address = le32_to_cpu(last->branch_address);
722                 z = address & 0xf;
723                 address &= ~0xf;
724
725                 /* If the branch address points to a buffer outside of the
726                  * current buffer, advance to the next buffer. */
727                 if (address < desc->buffer_bus ||
728                                 address >= desc->buffer_bus + desc->used)
729                         desc = list_entry(desc->list.next,
730                                         struct descriptor_buffer, list);
731                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
732                 last = find_branch_descriptor(d, z);
733
734                 if (!ctx->callback(ctx, d, last))
735                         break;
736
737                 if (old_desc != desc) {
738                         /* If we've advanced to the next buffer, move the
739                          * previous buffer to the free list. */
740                         unsigned long flags;
741                         old_desc->used = 0;
742                         spin_lock_irqsave(&ctx->ohci->lock, flags);
743                         list_move_tail(&old_desc->list, &ctx->buffer_list);
744                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
745                 }
746                 ctx->last = last;
747         }
748 }
749
750 /*
751  * Allocate a new buffer and add it to the list of free buffers for this
752  * context.  Must be called with ohci->lock held.
753  */
754 static int
755 context_add_buffer(struct context *ctx)
756 {
757         struct descriptor_buffer *desc;
758         dma_addr_t uninitialized_var(bus_addr);
759         int offset;
760
761         /*
762          * 16MB of descriptors should be far more than enough for any DMA
763          * program.  This will catch run-away userspace or DoS attacks.
764          */
765         if (ctx->total_allocation >= 16*1024*1024)
766                 return -ENOMEM;
767
768         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
769                         &bus_addr, GFP_ATOMIC);
770         if (!desc)
771                 return -ENOMEM;
772
773         offset = (void *)&desc->buffer - (void *)desc;
774         desc->buffer_size = PAGE_SIZE - offset;
775         desc->buffer_bus = bus_addr + offset;
776         desc->used = 0;
777
778         list_add_tail(&desc->list, &ctx->buffer_list);
779         ctx->total_allocation += PAGE_SIZE;
780
781         return 0;
782 }
783
784 static int
785 context_init(struct context *ctx, struct fw_ohci *ohci,
786              u32 regs, descriptor_callback_t callback)
787 {
788         ctx->ohci = ohci;
789         ctx->regs = regs;
790         ctx->total_allocation = 0;
791
792         INIT_LIST_HEAD(&ctx->buffer_list);
793         if (context_add_buffer(ctx) < 0)
794                 return -ENOMEM;
795
796         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
797                         struct descriptor_buffer, list);
798
799         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
800         ctx->callback = callback;
801
802         /*
803          * We put a dummy descriptor in the buffer that has a NULL
804          * branch address and looks like it's been sent.  That way we
805          * have a descriptor to append DMA programs to.
806          */
807         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
808         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
809         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
810         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
811         ctx->last = ctx->buffer_tail->buffer;
812         ctx->prev = ctx->buffer_tail->buffer;
813
814         return 0;
815 }
816
817 static void
818 context_release(struct context *ctx)
819 {
820         struct fw_card *card = &ctx->ohci->card;
821         struct descriptor_buffer *desc, *tmp;
822
823         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
824                 dma_free_coherent(card->device, PAGE_SIZE, desc,
825                         desc->buffer_bus -
826                         ((void *)&desc->buffer - (void *)desc));
827 }
828
829 /* Must be called with ohci->lock held */
830 static struct descriptor *
831 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
832 {
833         struct descriptor *d = NULL;
834         struct descriptor_buffer *desc = ctx->buffer_tail;
835
836         if (z * sizeof(*d) > desc->buffer_size)
837                 return NULL;
838
839         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
840                 /* No room for the descriptor in this buffer, so advance to the
841                  * next one. */
842
843                 if (desc->list.next == &ctx->buffer_list) {
844                         /* If there is no free buffer next in the list,
845                          * allocate one. */
846                         if (context_add_buffer(ctx) < 0)
847                                 return NULL;
848                 }
849                 desc = list_entry(desc->list.next,
850                                 struct descriptor_buffer, list);
851                 ctx->buffer_tail = desc;
852         }
853
854         d = desc->buffer + desc->used / sizeof(*d);
855         memset(d, 0, z * sizeof(*d));
856         *d_bus = desc->buffer_bus + desc->used;
857
858         return d;
859 }
860
861 static void context_run(struct context *ctx, u32 extra)
862 {
863         struct fw_ohci *ohci = ctx->ohci;
864
865         reg_write(ohci, COMMAND_PTR(ctx->regs),
866                   le32_to_cpu(ctx->last->branch_address));
867         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
868         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
869         flush_writes(ohci);
870 }
871
872 static void context_append(struct context *ctx,
873                            struct descriptor *d, int z, int extra)
874 {
875         dma_addr_t d_bus;
876         struct descriptor_buffer *desc = ctx->buffer_tail;
877
878         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
879
880         desc->used += (z + extra) * sizeof(*d);
881         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
882         ctx->prev = find_branch_descriptor(d, z);
883
884         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
885         flush_writes(ctx->ohci);
886 }
887
888 static void context_stop(struct context *ctx)
889 {
890         u32 reg;
891         int i;
892
893         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
894         flush_writes(ctx->ohci);
895
896         for (i = 0; i < 10; i++) {
897                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
898                 if ((reg & CONTEXT_ACTIVE) == 0)
899                         return;
900
901                 mdelay(1);
902         }
903         fw_error("Error: DMA context still active (0x%08x)\n", reg);
904 }
905
906 struct driver_data {
907         struct fw_packet *packet;
908 };
909
910 /*
911  * This function apppends a packet to the DMA queue for transmission.
912  * Must always be called with the ochi->lock held to ensure proper
913  * generation handling and locking around packet queue manipulation.
914  */
915 static int
916 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
917 {
918         struct fw_ohci *ohci = ctx->ohci;
919         dma_addr_t d_bus, uninitialized_var(payload_bus);
920         struct driver_data *driver_data;
921         struct descriptor *d, *last;
922         __le32 *header;
923         int z, tcode;
924         u32 reg;
925
926         d = context_get_descriptors(ctx, 4, &d_bus);
927         if (d == NULL) {
928                 packet->ack = RCODE_SEND_ERROR;
929                 return -1;
930         }
931
932         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
933         d[0].res_count = cpu_to_le16(packet->timestamp);
934
935         /*
936          * The DMA format for asyncronous link packets is different
937          * from the IEEE1394 layout, so shift the fields around
938          * accordingly.  If header_length is 8, it's a PHY packet, to
939          * which we need to prepend an extra quadlet.
940          */
941
942         header = (__le32 *) &d[1];
943         if (packet->header_length > 8) {
944                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
945                                         (packet->speed << 16));
946                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
947                                         (packet->header[0] & 0xffff0000));
948                 header[2] = cpu_to_le32(packet->header[2]);
949
950                 tcode = (packet->header[0] >> 4) & 0x0f;
951                 if (TCODE_IS_BLOCK_PACKET(tcode))
952                         header[3] = cpu_to_le32(packet->header[3]);
953                 else
954                         header[3] = (__force __le32) packet->header[3];
955
956                 d[0].req_count = cpu_to_le16(packet->header_length);
957         } else {
958                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
959                                         (packet->speed << 16));
960                 header[1] = cpu_to_le32(packet->header[0]);
961                 header[2] = cpu_to_le32(packet->header[1]);
962                 d[0].req_count = cpu_to_le16(12);
963         }
964
965         driver_data = (struct driver_data *) &d[3];
966         driver_data->packet = packet;
967         packet->driver_data = driver_data;
968
969         if (packet->payload_length > 0) {
970                 payload_bus =
971                         dma_map_single(ohci->card.device, packet->payload,
972                                        packet->payload_length, DMA_TO_DEVICE);
973                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
974                         packet->ack = RCODE_SEND_ERROR;
975                         return -1;
976                 }
977                 packet->payload_bus = payload_bus;
978
979                 d[2].req_count    = cpu_to_le16(packet->payload_length);
980                 d[2].data_address = cpu_to_le32(payload_bus);
981                 last = &d[2];
982                 z = 3;
983         } else {
984                 last = &d[0];
985                 z = 2;
986         }
987
988         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
989                                      DESCRIPTOR_IRQ_ALWAYS |
990                                      DESCRIPTOR_BRANCH_ALWAYS);
991
992         /*
993          * If the controller and packet generations don't match, we need to
994          * bail out and try again.  If IntEvent.busReset is set, the AT context
995          * is halted, so appending to the context and trying to run it is
996          * futile.  Most controllers do the right thing and just flush the AT
997          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
998          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
999          * up stalling out.  So we just bail out in software and try again
1000          * later, and everyone is happy.
1001          * FIXME: Document how the locking works.
1002          */
1003         if (ohci->generation != packet->generation ||
1004             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1005                 if (packet->payload_length > 0)
1006                         dma_unmap_single(ohci->card.device, payload_bus,
1007                                          packet->payload_length, DMA_TO_DEVICE);
1008                 packet->ack = RCODE_GENERATION;
1009                 return -1;
1010         }
1011
1012         context_append(ctx, d, z, 4 - z);
1013
1014         /* If the context isn't already running, start it up. */
1015         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1016         if ((reg & CONTEXT_RUN) == 0)
1017                 context_run(ctx, 0);
1018
1019         return 0;
1020 }
1021
1022 static int handle_at_packet(struct context *context,
1023                             struct descriptor *d,
1024                             struct descriptor *last)
1025 {
1026         struct driver_data *driver_data;
1027         struct fw_packet *packet;
1028         struct fw_ohci *ohci = context->ohci;
1029         int evt;
1030
1031         if (last->transfer_status == 0)
1032                 /* This descriptor isn't done yet, stop iteration. */
1033                 return 0;
1034
1035         driver_data = (struct driver_data *) &d[3];
1036         packet = driver_data->packet;
1037         if (packet == NULL)
1038                 /* This packet was cancelled, just continue. */
1039                 return 1;
1040
1041         if (packet->payload_bus)
1042                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1043                                  packet->payload_length, DMA_TO_DEVICE);
1044
1045         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1046         packet->timestamp = le16_to_cpu(last->res_count);
1047
1048         log_ar_at_event('T', packet->speed, packet->header, evt);
1049
1050         switch (evt) {
1051         case OHCI1394_evt_timeout:
1052                 /* Async response transmit timed out. */
1053                 packet->ack = RCODE_CANCELLED;
1054                 break;
1055
1056         case OHCI1394_evt_flushed:
1057                 /*
1058                  * The packet was flushed should give same error as
1059                  * when we try to use a stale generation count.
1060                  */
1061                 packet->ack = RCODE_GENERATION;
1062                 break;
1063
1064         case OHCI1394_evt_missing_ack:
1065                 /*
1066                  * Using a valid (current) generation count, but the
1067                  * node is not on the bus or not sending acks.
1068                  */
1069                 packet->ack = RCODE_NO_ACK;
1070                 break;
1071
1072         case ACK_COMPLETE + 0x10:
1073         case ACK_PENDING + 0x10:
1074         case ACK_BUSY_X + 0x10:
1075         case ACK_BUSY_A + 0x10:
1076         case ACK_BUSY_B + 0x10:
1077         case ACK_DATA_ERROR + 0x10:
1078         case ACK_TYPE_ERROR + 0x10:
1079                 packet->ack = evt - 0x10;
1080                 break;
1081
1082         default:
1083                 packet->ack = RCODE_SEND_ERROR;
1084                 break;
1085         }
1086
1087         packet->callback(packet, &ohci->card, packet->ack);
1088
1089         return 1;
1090 }
1091
1092 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1093 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1094 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1095 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1096 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1097
1098 static void
1099 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1100 {
1101         struct fw_packet response;
1102         int tcode, length, i;
1103
1104         tcode = HEADER_GET_TCODE(packet->header[0]);
1105         if (TCODE_IS_BLOCK_PACKET(tcode))
1106                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1107         else
1108                 length = 4;
1109
1110         i = csr - CSR_CONFIG_ROM;
1111         if (i + length > CONFIG_ROM_SIZE) {
1112                 fw_fill_response(&response, packet->header,
1113                                  RCODE_ADDRESS_ERROR, NULL, 0);
1114         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1115                 fw_fill_response(&response, packet->header,
1116                                  RCODE_TYPE_ERROR, NULL, 0);
1117         } else {
1118                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1119                                  (void *) ohci->config_rom + i, length);
1120         }
1121
1122         fw_core_handle_response(&ohci->card, &response);
1123 }
1124
1125 static void
1126 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1127 {
1128         struct fw_packet response;
1129         int tcode, length, ext_tcode, sel;
1130         __be32 *payload, lock_old;
1131         u32 lock_arg, lock_data;
1132
1133         tcode = HEADER_GET_TCODE(packet->header[0]);
1134         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1135         payload = packet->payload;
1136         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1137
1138         if (tcode == TCODE_LOCK_REQUEST &&
1139             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1140                 lock_arg = be32_to_cpu(payload[0]);
1141                 lock_data = be32_to_cpu(payload[1]);
1142         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1143                 lock_arg = 0;
1144                 lock_data = 0;
1145         } else {
1146                 fw_fill_response(&response, packet->header,
1147                                  RCODE_TYPE_ERROR, NULL, 0);
1148                 goto out;
1149         }
1150
1151         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1152         reg_write(ohci, OHCI1394_CSRData, lock_data);
1153         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1154         reg_write(ohci, OHCI1394_CSRControl, sel);
1155
1156         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1157                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1158         else
1159                 fw_notify("swap not done yet\n");
1160
1161         fw_fill_response(&response, packet->header,
1162                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1163  out:
1164         fw_core_handle_response(&ohci->card, &response);
1165 }
1166
1167 static void
1168 handle_local_request(struct context *ctx, struct fw_packet *packet)
1169 {
1170         u64 offset;
1171         u32 csr;
1172
1173         if (ctx == &ctx->ohci->at_request_ctx) {
1174                 packet->ack = ACK_PENDING;
1175                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1176         }
1177
1178         offset =
1179                 ((unsigned long long)
1180                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1181                 packet->header[2];
1182         csr = offset - CSR_REGISTER_BASE;
1183
1184         /* Handle config rom reads. */
1185         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1186                 handle_local_rom(ctx->ohci, packet, csr);
1187         else switch (csr) {
1188         case CSR_BUS_MANAGER_ID:
1189         case CSR_BANDWIDTH_AVAILABLE:
1190         case CSR_CHANNELS_AVAILABLE_HI:
1191         case CSR_CHANNELS_AVAILABLE_LO:
1192                 handle_local_lock(ctx->ohci, packet, csr);
1193                 break;
1194         default:
1195                 if (ctx == &ctx->ohci->at_request_ctx)
1196                         fw_core_handle_request(&ctx->ohci->card, packet);
1197                 else
1198                         fw_core_handle_response(&ctx->ohci->card, packet);
1199                 break;
1200         }
1201
1202         if (ctx == &ctx->ohci->at_response_ctx) {
1203                 packet->ack = ACK_COMPLETE;
1204                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1205         }
1206 }
1207
1208 static void
1209 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1210 {
1211         unsigned long flags;
1212         int retval;
1213
1214         spin_lock_irqsave(&ctx->ohci->lock, flags);
1215
1216         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1217             ctx->ohci->generation == packet->generation) {
1218                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1219                 handle_local_request(ctx, packet);
1220                 return;
1221         }
1222
1223         retval = at_context_queue_packet(ctx, packet);
1224         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1225
1226         if (retval < 0)
1227                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1228
1229 }
1230
1231 static void bus_reset_tasklet(unsigned long data)
1232 {
1233         struct fw_ohci *ohci = (struct fw_ohci *)data;
1234         int self_id_count, i, j, reg;
1235         int generation, new_generation;
1236         unsigned long flags;
1237         void *free_rom = NULL;
1238         dma_addr_t free_rom_bus = 0;
1239
1240         reg = reg_read(ohci, OHCI1394_NodeID);
1241         if (!(reg & OHCI1394_NodeID_idValid)) {
1242                 fw_notify("node ID not valid, new bus reset in progress\n");
1243                 return;
1244         }
1245         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1246                 fw_notify("malconfigured bus\n");
1247                 return;
1248         }
1249         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1250                                OHCI1394_NodeID_nodeNumber);
1251
1252         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1253         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1254                 fw_notify("inconsistent self IDs\n");
1255                 return;
1256         }
1257         /*
1258          * The count in the SelfIDCount register is the number of
1259          * bytes in the self ID receive buffer.  Since we also receive
1260          * the inverted quadlets and a header quadlet, we shift one
1261          * bit extra to get the actual number of self IDs.
1262          */
1263         self_id_count = (reg >> 3) & 0x3ff;
1264         if (self_id_count == 0) {
1265                 fw_notify("inconsistent self IDs\n");
1266                 return;
1267         }
1268         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1269         rmb();
1270
1271         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1272                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1273                         fw_notify("inconsistent self IDs\n");
1274                         return;
1275                 }
1276                 ohci->self_id_buffer[j] =
1277                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1278         }
1279         rmb();
1280
1281         /*
1282          * Check the consistency of the self IDs we just read.  The
1283          * problem we face is that a new bus reset can start while we
1284          * read out the self IDs from the DMA buffer. If this happens,
1285          * the DMA buffer will be overwritten with new self IDs and we
1286          * will read out inconsistent data.  The OHCI specification
1287          * (section 11.2) recommends a technique similar to
1288          * linux/seqlock.h, where we remember the generation of the
1289          * self IDs in the buffer before reading them out and compare
1290          * it to the current generation after reading them out.  If
1291          * the two generations match we know we have a consistent set
1292          * of self IDs.
1293          */
1294
1295         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1296         if (new_generation != generation) {
1297                 fw_notify("recursive bus reset detected, "
1298                           "discarding self ids\n");
1299                 return;
1300         }
1301
1302         /* FIXME: Document how the locking works. */
1303         spin_lock_irqsave(&ohci->lock, flags);
1304
1305         ohci->generation = generation;
1306         context_stop(&ohci->at_request_ctx);
1307         context_stop(&ohci->at_response_ctx);
1308         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1309
1310         if (ohci->bus_reset_packet_quirk)
1311                 ohci->request_generation = generation;
1312
1313         /*
1314          * This next bit is unrelated to the AT context stuff but we
1315          * have to do it under the spinlock also.  If a new config rom
1316          * was set up before this reset, the old one is now no longer
1317          * in use and we can free it. Update the config rom pointers
1318          * to point to the current config rom and clear the
1319          * next_config_rom pointer so a new udpate can take place.
1320          */
1321
1322         if (ohci->next_config_rom != NULL) {
1323                 if (ohci->next_config_rom != ohci->config_rom) {
1324                         free_rom      = ohci->config_rom;
1325                         free_rom_bus  = ohci->config_rom_bus;
1326                 }
1327                 ohci->config_rom      = ohci->next_config_rom;
1328                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1329                 ohci->next_config_rom = NULL;
1330
1331                 /*
1332                  * Restore config_rom image and manually update
1333                  * config_rom registers.  Writing the header quadlet
1334                  * will indicate that the config rom is ready, so we
1335                  * do that last.
1336                  */
1337                 reg_write(ohci, OHCI1394_BusOptions,
1338                           be32_to_cpu(ohci->config_rom[2]));
1339                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1340                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1341         }
1342
1343 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1344         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1345         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1346 #endif
1347
1348         spin_unlock_irqrestore(&ohci->lock, flags);
1349
1350         if (free_rom)
1351                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1352                                   free_rom, free_rom_bus);
1353
1354         log_selfids(ohci->node_id, generation,
1355                     self_id_count, ohci->self_id_buffer);
1356
1357         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1358                                  self_id_count, ohci->self_id_buffer);
1359 }
1360
1361 static irqreturn_t irq_handler(int irq, void *data)
1362 {
1363         struct fw_ohci *ohci = data;
1364         u32 event, iso_event, cycle_time;
1365         int i;
1366
1367         event = reg_read(ohci, OHCI1394_IntEventClear);
1368
1369         if (!event || !~event)
1370                 return IRQ_NONE;
1371
1372         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1373         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1374         log_irqs(event);
1375
1376         if (event & OHCI1394_selfIDComplete)
1377                 tasklet_schedule(&ohci->bus_reset_tasklet);
1378
1379         if (event & OHCI1394_RQPkt)
1380                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1381
1382         if (event & OHCI1394_RSPkt)
1383                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1384
1385         if (event & OHCI1394_reqTxComplete)
1386                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1387
1388         if (event & OHCI1394_respTxComplete)
1389                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1390
1391         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1392         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1393
1394         while (iso_event) {
1395                 i = ffs(iso_event) - 1;
1396                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1397                 iso_event &= ~(1 << i);
1398         }
1399
1400         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1401         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1402
1403         while (iso_event) {
1404                 i = ffs(iso_event) - 1;
1405                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1406                 iso_event &= ~(1 << i);
1407         }
1408
1409         if (unlikely(event & OHCI1394_regAccessFail))
1410                 fw_error("Register access failure - "
1411                          "please notify linux1394-devel@lists.sf.net\n");
1412
1413         if (unlikely(event & OHCI1394_postedWriteErr))
1414                 fw_error("PCI posted write error\n");
1415
1416         if (unlikely(event & OHCI1394_cycleTooLong)) {
1417                 if (printk_ratelimit())
1418                         fw_notify("isochronous cycle too long\n");
1419                 reg_write(ohci, OHCI1394_LinkControlSet,
1420                           OHCI1394_LinkControl_cycleMaster);
1421         }
1422
1423         if (event & OHCI1394_cycle64Seconds) {
1424                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1425                 if ((cycle_time & 0x80000000) == 0)
1426                         ohci->bus_seconds++;
1427         }
1428
1429         return IRQ_HANDLED;
1430 }
1431
1432 static int software_reset(struct fw_ohci *ohci)
1433 {
1434         int i;
1435
1436         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1437
1438         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1439                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1440                      OHCI1394_HCControl_softReset) == 0)
1441                         return 0;
1442                 msleep(1);
1443         }
1444
1445         return -EBUSY;
1446 }
1447
1448 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1449 {
1450         struct fw_ohci *ohci = fw_ohci(card);
1451         struct pci_dev *dev = to_pci_dev(card->device);
1452         u32 lps;
1453         int i;
1454
1455         if (software_reset(ohci)) {
1456                 fw_error("Failed to reset ohci card.\n");
1457                 return -EBUSY;
1458         }
1459
1460         /*
1461          * Now enable LPS, which we need in order to start accessing
1462          * most of the registers.  In fact, on some cards (ALI M5251),
1463          * accessing registers in the SClk domain without LPS enabled
1464          * will lock up the machine.  Wait 50msec to make sure we have
1465          * full link enabled.  However, with some cards (well, at least
1466          * a JMicron PCIe card), we have to try again sometimes.
1467          */
1468         reg_write(ohci, OHCI1394_HCControlSet,
1469                   OHCI1394_HCControl_LPS |
1470                   OHCI1394_HCControl_postedWriteEnable);
1471         flush_writes(ohci);
1472
1473         for (lps = 0, i = 0; !lps && i < 3; i++) {
1474                 msleep(50);
1475                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1476                       OHCI1394_HCControl_LPS;
1477         }
1478
1479         if (!lps) {
1480                 fw_error("Failed to set Link Power Status\n");
1481                 return -EIO;
1482         }
1483
1484         reg_write(ohci, OHCI1394_HCControlClear,
1485                   OHCI1394_HCControl_noByteSwapData);
1486
1487         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1488         reg_write(ohci, OHCI1394_LinkControlClear,
1489                   OHCI1394_LinkControl_rcvPhyPkt);
1490         reg_write(ohci, OHCI1394_LinkControlSet,
1491                   OHCI1394_LinkControl_rcvSelfID |
1492                   OHCI1394_LinkControl_cycleTimerEnable |
1493                   OHCI1394_LinkControl_cycleMaster);
1494
1495         reg_write(ohci, OHCI1394_ATRetries,
1496                   OHCI1394_MAX_AT_REQ_RETRIES |
1497                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1498                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1499
1500         ar_context_run(&ohci->ar_request_ctx);
1501         ar_context_run(&ohci->ar_response_ctx);
1502
1503         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1504         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1505         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1506         reg_write(ohci, OHCI1394_IntMaskSet,
1507                   OHCI1394_selfIDComplete |
1508                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1509                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1510                   OHCI1394_isochRx | OHCI1394_isochTx |
1511                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1512                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1513                   OHCI1394_masterIntEnable);
1514         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1515                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1516
1517         /* Activate link_on bit and contender bit in our self ID packets.*/
1518         if (ohci_update_phy_reg(card, 4, 0,
1519                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1520                 return -EIO;
1521
1522         /*
1523          * When the link is not yet enabled, the atomic config rom
1524          * update mechanism described below in ohci_set_config_rom()
1525          * is not active.  We have to update ConfigRomHeader and
1526          * BusOptions manually, and the write to ConfigROMmap takes
1527          * effect immediately.  We tie this to the enabling of the
1528          * link, so we have a valid config rom before enabling - the
1529          * OHCI requires that ConfigROMhdr and BusOptions have valid
1530          * values before enabling.
1531          *
1532          * However, when the ConfigROMmap is written, some controllers
1533          * always read back quadlets 0 and 2 from the config rom to
1534          * the ConfigRomHeader and BusOptions registers on bus reset.
1535          * They shouldn't do that in this initial case where the link
1536          * isn't enabled.  This means we have to use the same
1537          * workaround here, setting the bus header to 0 and then write
1538          * the right values in the bus reset tasklet.
1539          */
1540
1541         if (config_rom) {
1542                 ohci->next_config_rom =
1543                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1544                                            &ohci->next_config_rom_bus,
1545                                            GFP_KERNEL);
1546                 if (ohci->next_config_rom == NULL)
1547                         return -ENOMEM;
1548
1549                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1550                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1551         } else {
1552                 /*
1553                  * In the suspend case, config_rom is NULL, which
1554                  * means that we just reuse the old config rom.
1555                  */
1556                 ohci->next_config_rom = ohci->config_rom;
1557                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1558         }
1559
1560         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1561         ohci->next_config_rom[0] = 0;
1562         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1563         reg_write(ohci, OHCI1394_BusOptions,
1564                   be32_to_cpu(ohci->next_config_rom[2]));
1565         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1566
1567         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1568
1569         if (request_irq(dev->irq, irq_handler,
1570                         IRQF_SHARED, ohci_driver_name, ohci)) {
1571                 fw_error("Failed to allocate shared interrupt %d.\n",
1572                          dev->irq);
1573                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1574                                   ohci->config_rom, ohci->config_rom_bus);
1575                 return -EIO;
1576         }
1577
1578         reg_write(ohci, OHCI1394_HCControlSet,
1579                   OHCI1394_HCControl_linkEnable |
1580                   OHCI1394_HCControl_BIBimageValid);
1581         flush_writes(ohci);
1582
1583         /*
1584          * We are ready to go, initiate bus reset to finish the
1585          * initialization.
1586          */
1587
1588         fw_core_initiate_bus_reset(&ohci->card, 1);
1589
1590         return 0;
1591 }
1592
1593 static int
1594 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1595 {
1596         struct fw_ohci *ohci;
1597         unsigned long flags;
1598         int retval = -EBUSY;
1599         __be32 *next_config_rom;
1600         dma_addr_t uninitialized_var(next_config_rom_bus);
1601
1602         ohci = fw_ohci(card);
1603
1604         /*
1605          * When the OHCI controller is enabled, the config rom update
1606          * mechanism is a bit tricky, but easy enough to use.  See
1607          * section 5.5.6 in the OHCI specification.
1608          *
1609          * The OHCI controller caches the new config rom address in a
1610          * shadow register (ConfigROMmapNext) and needs a bus reset
1611          * for the changes to take place.  When the bus reset is
1612          * detected, the controller loads the new values for the
1613          * ConfigRomHeader and BusOptions registers from the specified
1614          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1615          * shadow register. All automatically and atomically.
1616          *
1617          * Now, there's a twist to this story.  The automatic load of
1618          * ConfigRomHeader and BusOptions doesn't honor the
1619          * noByteSwapData bit, so with a be32 config rom, the
1620          * controller will load be32 values in to these registers
1621          * during the atomic update, even on litte endian
1622          * architectures.  The workaround we use is to put a 0 in the
1623          * header quadlet; 0 is endian agnostic and means that the
1624          * config rom isn't ready yet.  In the bus reset tasklet we
1625          * then set up the real values for the two registers.
1626          *
1627          * We use ohci->lock to avoid racing with the code that sets
1628          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1629          */
1630
1631         next_config_rom =
1632                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1633                                    &next_config_rom_bus, GFP_KERNEL);
1634         if (next_config_rom == NULL)
1635                 return -ENOMEM;
1636
1637         spin_lock_irqsave(&ohci->lock, flags);
1638
1639         if (ohci->next_config_rom == NULL) {
1640                 ohci->next_config_rom = next_config_rom;
1641                 ohci->next_config_rom_bus = next_config_rom_bus;
1642
1643                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1644                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1645                                   length * 4);
1646
1647                 ohci->next_header = config_rom[0];
1648                 ohci->next_config_rom[0] = 0;
1649
1650                 reg_write(ohci, OHCI1394_ConfigROMmap,
1651                           ohci->next_config_rom_bus);
1652                 retval = 0;
1653         }
1654
1655         spin_unlock_irqrestore(&ohci->lock, flags);
1656
1657         /*
1658          * Now initiate a bus reset to have the changes take
1659          * effect. We clean up the old config rom memory and DMA
1660          * mappings in the bus reset tasklet, since the OHCI
1661          * controller could need to access it before the bus reset
1662          * takes effect.
1663          */
1664         if (retval == 0)
1665                 fw_core_initiate_bus_reset(&ohci->card, 1);
1666         else
1667                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1668                                   next_config_rom, next_config_rom_bus);
1669
1670         return retval;
1671 }
1672
1673 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1674 {
1675         struct fw_ohci *ohci = fw_ohci(card);
1676
1677         at_context_transmit(&ohci->at_request_ctx, packet);
1678 }
1679
1680 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1681 {
1682         struct fw_ohci *ohci = fw_ohci(card);
1683
1684         at_context_transmit(&ohci->at_response_ctx, packet);
1685 }
1686
1687 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1688 {
1689         struct fw_ohci *ohci = fw_ohci(card);
1690         struct context *ctx = &ohci->at_request_ctx;
1691         struct driver_data *driver_data = packet->driver_data;
1692         int retval = -ENOENT;
1693
1694         tasklet_disable(&ctx->tasklet);
1695
1696         if (packet->ack != 0)
1697                 goto out;
1698
1699         if (packet->payload_bus)
1700                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1701                                  packet->payload_length, DMA_TO_DEVICE);
1702
1703         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1704         driver_data->packet = NULL;
1705         packet->ack = RCODE_CANCELLED;
1706         packet->callback(packet, &ohci->card, packet->ack);
1707         retval = 0;
1708
1709  out:
1710         tasklet_enable(&ctx->tasklet);
1711
1712         return retval;
1713 }
1714
1715 static int
1716 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1717 {
1718 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1719         return 0;
1720 #else
1721         struct fw_ohci *ohci = fw_ohci(card);
1722         unsigned long flags;
1723         int n, retval = 0;
1724
1725         /*
1726          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1727          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1728          */
1729
1730         spin_lock_irqsave(&ohci->lock, flags);
1731
1732         if (ohci->generation != generation) {
1733                 retval = -ESTALE;
1734                 goto out;
1735         }
1736
1737         /*
1738          * Note, if the node ID contains a non-local bus ID, physical DMA is
1739          * enabled for _all_ nodes on remote buses.
1740          */
1741
1742         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1743         if (n < 32)
1744                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1745         else
1746                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1747
1748         flush_writes(ohci);
1749  out:
1750         spin_unlock_irqrestore(&ohci->lock, flags);
1751         return retval;
1752 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1753 }
1754
1755 static u64
1756 ohci_get_bus_time(struct fw_card *card)
1757 {
1758         struct fw_ohci *ohci = fw_ohci(card);
1759         u32 cycle_time;
1760         u64 bus_time;
1761
1762         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1763         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1764
1765         return bus_time;
1766 }
1767
1768 static int handle_ir_dualbuffer_packet(struct context *context,
1769                                        struct descriptor *d,
1770                                        struct descriptor *last)
1771 {
1772         struct iso_context *ctx =
1773                 container_of(context, struct iso_context, context);
1774         struct db_descriptor *db = (struct db_descriptor *) d;
1775         __le32 *ir_header;
1776         size_t header_length;
1777         void *p, *end;
1778         int i;
1779
1780         if (db->first_res_count != 0 && db->second_res_count != 0) {
1781                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1782                         /* This descriptor isn't done yet, stop iteration. */
1783                         return 0;
1784                 }
1785                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1786         }
1787
1788         header_length = le16_to_cpu(db->first_req_count) -
1789                 le16_to_cpu(db->first_res_count);
1790
1791         i = ctx->header_length;
1792         p = db + 1;
1793         end = p + header_length;
1794         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1795                 /*
1796                  * The iso header is byteswapped to little endian by
1797                  * the controller, but the remaining header quadlets
1798                  * are big endian.  We want to present all the headers
1799                  * as big endian, so we have to swap the first
1800                  * quadlet.
1801                  */
1802                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1803                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1804                 i += ctx->base.header_size;
1805                 ctx->excess_bytes +=
1806                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1807                 p += ctx->base.header_size + 4;
1808         }
1809         ctx->header_length = i;
1810
1811         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1812                 le16_to_cpu(db->second_res_count);
1813
1814         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1815                 ir_header = (__le32 *) (db + 1);
1816                 ctx->base.callback(&ctx->base,
1817                                    le32_to_cpu(ir_header[0]) & 0xffff,
1818                                    ctx->header_length, ctx->header,
1819                                    ctx->base.callback_data);
1820                 ctx->header_length = 0;
1821         }
1822
1823         return 1;
1824 }
1825
1826 static int handle_ir_packet_per_buffer(struct context *context,
1827                                        struct descriptor *d,
1828                                        struct descriptor *last)
1829 {
1830         struct iso_context *ctx =
1831                 container_of(context, struct iso_context, context);
1832         struct descriptor *pd;
1833         __le32 *ir_header;
1834         void *p;
1835         int i;
1836
1837         for (pd = d; pd <= last; pd++) {
1838                 if (pd->transfer_status)
1839                         break;
1840         }
1841         if (pd > last)
1842                 /* Descriptor(s) not done yet, stop iteration */
1843                 return 0;
1844
1845         i   = ctx->header_length;
1846         p   = last + 1;
1847
1848         if (ctx->base.header_size > 0 &&
1849                         i + ctx->base.header_size <= PAGE_SIZE) {
1850                 /*
1851                  * The iso header is byteswapped to little endian by
1852                  * the controller, but the remaining header quadlets
1853                  * are big endian.  We want to present all the headers
1854                  * as big endian, so we have to swap the first quadlet.
1855                  */
1856                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1857                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1858                 ctx->header_length += ctx->base.header_size;
1859         }
1860
1861         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1862                 ir_header = (__le32 *) p;
1863                 ctx->base.callback(&ctx->base,
1864                                    le32_to_cpu(ir_header[0]) & 0xffff,
1865                                    ctx->header_length, ctx->header,
1866                                    ctx->base.callback_data);
1867                 ctx->header_length = 0;
1868         }
1869
1870         return 1;
1871 }
1872
1873 static int handle_it_packet(struct context *context,
1874                             struct descriptor *d,
1875                             struct descriptor *last)
1876 {
1877         struct iso_context *ctx =
1878                 container_of(context, struct iso_context, context);
1879
1880         if (last->transfer_status == 0)
1881                 /* This descriptor isn't done yet, stop iteration. */
1882                 return 0;
1883
1884         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1885                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1886                                    0, NULL, ctx->base.callback_data);
1887
1888         return 1;
1889 }
1890
1891 static struct fw_iso_context *
1892 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1893 {
1894         struct fw_ohci *ohci = fw_ohci(card);
1895         struct iso_context *ctx, *list;
1896         descriptor_callback_t callback;
1897         u32 *mask, regs;
1898         unsigned long flags;
1899         int index, retval = -ENOMEM;
1900
1901         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1902                 mask = &ohci->it_context_mask;
1903                 list = ohci->it_context_list;
1904                 callback = handle_it_packet;
1905         } else {
1906                 mask = &ohci->ir_context_mask;
1907                 list = ohci->ir_context_list;
1908                 if (ohci->use_dualbuffer)
1909                         callback = handle_ir_dualbuffer_packet;
1910                 else
1911                         callback = handle_ir_packet_per_buffer;
1912         }
1913
1914         spin_lock_irqsave(&ohci->lock, flags);
1915         index = ffs(*mask) - 1;
1916         if (index >= 0)
1917                 *mask &= ~(1 << index);
1918         spin_unlock_irqrestore(&ohci->lock, flags);
1919
1920         if (index < 0)
1921                 return ERR_PTR(-EBUSY);
1922
1923         if (type == FW_ISO_CONTEXT_TRANSMIT)
1924                 regs = OHCI1394_IsoXmitContextBase(index);
1925         else
1926                 regs = OHCI1394_IsoRcvContextBase(index);
1927
1928         ctx = &list[index];
1929         memset(ctx, 0, sizeof(*ctx));
1930         ctx->header_length = 0;
1931         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1932         if (ctx->header == NULL)
1933                 goto out;
1934
1935         retval = context_init(&ctx->context, ohci, regs, callback);
1936         if (retval < 0)
1937                 goto out_with_header;
1938
1939         return &ctx->base;
1940
1941  out_with_header:
1942         free_page((unsigned long)ctx->header);
1943  out:
1944         spin_lock_irqsave(&ohci->lock, flags);
1945         *mask |= 1 << index;
1946         spin_unlock_irqrestore(&ohci->lock, flags);
1947
1948         return ERR_PTR(retval);
1949 }
1950
1951 static int ohci_start_iso(struct fw_iso_context *base,
1952                           s32 cycle, u32 sync, u32 tags)
1953 {
1954         struct iso_context *ctx = container_of(base, struct iso_context, base);
1955         struct fw_ohci *ohci = ctx->context.ohci;
1956         u32 control, match;
1957         int index;
1958
1959         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1960                 index = ctx - ohci->it_context_list;
1961                 match = 0;
1962                 if (cycle >= 0)
1963                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1964                                 (cycle & 0x7fff) << 16;
1965
1966                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1967                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1968                 context_run(&ctx->context, match);
1969         } else {
1970                 index = ctx - ohci->ir_context_list;
1971                 control = IR_CONTEXT_ISOCH_HEADER;
1972                 if (ohci->use_dualbuffer)
1973                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1974                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1975                 if (cycle >= 0) {
1976                         match |= (cycle & 0x07fff) << 12;
1977                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1978                 }
1979
1980                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1981                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1982                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1983                 context_run(&ctx->context, control);
1984         }
1985
1986         return 0;
1987 }
1988
1989 static int ohci_stop_iso(struct fw_iso_context *base)
1990 {
1991         struct fw_ohci *ohci = fw_ohci(base->card);
1992         struct iso_context *ctx = container_of(base, struct iso_context, base);
1993         int index;
1994
1995         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1996                 index = ctx - ohci->it_context_list;
1997                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1998         } else {
1999                 index = ctx - ohci->ir_context_list;
2000                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2001         }
2002         flush_writes(ohci);
2003         context_stop(&ctx->context);
2004
2005         return 0;
2006 }
2007
2008 static void ohci_free_iso_context(struct fw_iso_context *base)
2009 {
2010         struct fw_ohci *ohci = fw_ohci(base->card);
2011         struct iso_context *ctx = container_of(base, struct iso_context, base);
2012         unsigned long flags;
2013         int index;
2014
2015         ohci_stop_iso(base);
2016         context_release(&ctx->context);
2017         free_page((unsigned long)ctx->header);
2018
2019         spin_lock_irqsave(&ohci->lock, flags);
2020
2021         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2022                 index = ctx - ohci->it_context_list;
2023                 ohci->it_context_mask |= 1 << index;
2024         } else {
2025                 index = ctx - ohci->ir_context_list;
2026                 ohci->ir_context_mask |= 1 << index;
2027         }
2028
2029         spin_unlock_irqrestore(&ohci->lock, flags);
2030 }
2031
2032 static int
2033 ohci_queue_iso_transmit(struct fw_iso_context *base,
2034                         struct fw_iso_packet *packet,
2035                         struct fw_iso_buffer *buffer,
2036                         unsigned long payload)
2037 {
2038         struct iso_context *ctx = container_of(base, struct iso_context, base);
2039         struct descriptor *d, *last, *pd;
2040         struct fw_iso_packet *p;
2041         __le32 *header;
2042         dma_addr_t d_bus, page_bus;
2043         u32 z, header_z, payload_z, irq;
2044         u32 payload_index, payload_end_index, next_page_index;
2045         int page, end_page, i, length, offset;
2046
2047         /*
2048          * FIXME: Cycle lost behavior should be configurable: lose
2049          * packet, retransmit or terminate..
2050          */
2051
2052         p = packet;
2053         payload_index = payload;
2054
2055         if (p->skip)
2056                 z = 1;
2057         else
2058                 z = 2;
2059         if (p->header_length > 0)
2060                 z++;
2061
2062         /* Determine the first page the payload isn't contained in. */
2063         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2064         if (p->payload_length > 0)
2065                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2066         else
2067                 payload_z = 0;
2068
2069         z += payload_z;
2070
2071         /* Get header size in number of descriptors. */
2072         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2073
2074         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2075         if (d == NULL)
2076                 return -ENOMEM;
2077
2078         if (!p->skip) {
2079                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2080                 d[0].req_count = cpu_to_le16(8);
2081
2082                 header = (__le32 *) &d[1];
2083                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2084                                         IT_HEADER_TAG(p->tag) |
2085                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2086                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2087                                         IT_HEADER_SPEED(ctx->base.speed));
2088                 header[1] =
2089                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2090                                                           p->payload_length));
2091         }
2092
2093         if (p->header_length > 0) {
2094                 d[2].req_count    = cpu_to_le16(p->header_length);
2095                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2096                 memcpy(&d[z], p->header, p->header_length);
2097         }
2098
2099         pd = d + z - payload_z;
2100         payload_end_index = payload_index + p->payload_length;
2101         for (i = 0; i < payload_z; i++) {
2102                 page               = payload_index >> PAGE_SHIFT;
2103                 offset             = payload_index & ~PAGE_MASK;
2104                 next_page_index    = (page + 1) << PAGE_SHIFT;
2105                 length             =
2106                         min(next_page_index, payload_end_index) - payload_index;
2107                 pd[i].req_count    = cpu_to_le16(length);
2108
2109                 page_bus = page_private(buffer->pages[page]);
2110                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2111
2112                 payload_index += length;
2113         }
2114
2115         if (p->interrupt)
2116                 irq = DESCRIPTOR_IRQ_ALWAYS;
2117         else
2118                 irq = DESCRIPTOR_NO_IRQ;
2119
2120         last = z == 2 ? d : d + z - 1;
2121         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2122                                      DESCRIPTOR_STATUS |
2123                                      DESCRIPTOR_BRANCH_ALWAYS |
2124                                      irq);
2125
2126         context_append(&ctx->context, d, z, header_z);
2127
2128         return 0;
2129 }
2130
2131 static int
2132 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2133                                   struct fw_iso_packet *packet,
2134                                   struct fw_iso_buffer *buffer,
2135                                   unsigned long payload)
2136 {
2137         struct iso_context *ctx = container_of(base, struct iso_context, base);
2138         struct db_descriptor *db = NULL;
2139         struct descriptor *d;
2140         struct fw_iso_packet *p;
2141         dma_addr_t d_bus, page_bus;
2142         u32 z, header_z, length, rest;
2143         int page, offset, packet_count, header_size;
2144
2145         /*
2146          * FIXME: Cycle lost behavior should be configurable: lose
2147          * packet, retransmit or terminate..
2148          */
2149
2150         p = packet;
2151         z = 2;
2152
2153         /*
2154          * The OHCI controller puts the status word in the header
2155          * buffer too, so we need 4 extra bytes per packet.
2156          */
2157         packet_count = p->header_length / ctx->base.header_size;
2158         header_size = packet_count * (ctx->base.header_size + 4);
2159
2160         /* Get header size in number of descriptors. */
2161         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2162         page     = payload >> PAGE_SHIFT;
2163         offset   = payload & ~PAGE_MASK;
2164         rest     = p->payload_length;
2165
2166         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2167         while (rest > 0) {
2168                 d = context_get_descriptors(&ctx->context,
2169                                             z + header_z, &d_bus);
2170                 if (d == NULL)
2171                         return -ENOMEM;
2172
2173                 db = (struct db_descriptor *) d;
2174                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2175                                           DESCRIPTOR_BRANCH_ALWAYS);
2176                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2177                 if (p->skip && rest == p->payload_length) {
2178                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2179                         db->first_req_count = db->first_size;
2180                 } else {
2181                         db->first_req_count = cpu_to_le16(header_size);
2182                 }
2183                 db->first_res_count = db->first_req_count;
2184                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2185
2186                 if (p->skip && rest == p->payload_length)
2187                         length = 4;
2188                 else if (offset + rest < PAGE_SIZE)
2189                         length = rest;
2190                 else
2191                         length = PAGE_SIZE - offset;
2192
2193                 db->second_req_count = cpu_to_le16(length);
2194                 db->second_res_count = db->second_req_count;
2195                 page_bus = page_private(buffer->pages[page]);
2196                 db->second_buffer = cpu_to_le32(page_bus + offset);
2197
2198                 if (p->interrupt && length == rest)
2199                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2200
2201                 context_append(&ctx->context, d, z, header_z);
2202                 offset = (offset + length) & ~PAGE_MASK;
2203                 rest -= length;
2204                 if (offset == 0)
2205                         page++;
2206         }
2207
2208         return 0;
2209 }
2210
2211 static int
2212 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2213                                          struct fw_iso_packet *packet,
2214                                          struct fw_iso_buffer *buffer,
2215                                          unsigned long payload)
2216 {
2217         struct iso_context *ctx = container_of(base, struct iso_context, base);
2218         struct descriptor *d = NULL, *pd = NULL;
2219         struct fw_iso_packet *p = packet;
2220         dma_addr_t d_bus, page_bus;
2221         u32 z, header_z, rest;
2222         int i, j, length;
2223         int page, offset, packet_count, header_size, payload_per_buffer;
2224
2225         /*
2226          * The OHCI controller puts the status word in the
2227          * buffer too, so we need 4 extra bytes per packet.
2228          */
2229         packet_count = p->header_length / ctx->base.header_size;
2230         header_size  = ctx->base.header_size + 4;
2231
2232         /* Get header size in number of descriptors. */
2233         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2234         page     = payload >> PAGE_SHIFT;
2235         offset   = payload & ~PAGE_MASK;
2236         payload_per_buffer = p->payload_length / packet_count;
2237
2238         for (i = 0; i < packet_count; i++) {
2239                 /* d points to the header descriptor */
2240                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2241                 d = context_get_descriptors(&ctx->context,
2242                                 z + header_z, &d_bus);
2243                 if (d == NULL)
2244                         return -ENOMEM;
2245
2246                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2247                                               DESCRIPTOR_INPUT_MORE);
2248                 if (p->skip && i == 0)
2249                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2250                 d->req_count    = cpu_to_le16(header_size);
2251                 d->res_count    = d->req_count;
2252                 d->transfer_status = 0;
2253                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2254
2255                 rest = payload_per_buffer;
2256                 for (j = 1; j < z; j++) {
2257                         pd = d + j;
2258                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2259                                                   DESCRIPTOR_INPUT_MORE);
2260
2261                         if (offset + rest < PAGE_SIZE)
2262                                 length = rest;
2263                         else
2264                                 length = PAGE_SIZE - offset;
2265                         pd->req_count = cpu_to_le16(length);
2266                         pd->res_count = pd->req_count;
2267                         pd->transfer_status = 0;
2268
2269                         page_bus = page_private(buffer->pages[page]);
2270                         pd->data_address = cpu_to_le32(page_bus + offset);
2271
2272                         offset = (offset + length) & ~PAGE_MASK;
2273                         rest -= length;
2274                         if (offset == 0)
2275                                 page++;
2276                 }
2277                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2278                                           DESCRIPTOR_INPUT_LAST |
2279                                           DESCRIPTOR_BRANCH_ALWAYS);
2280                 if (p->interrupt && i == packet_count - 1)
2281                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2282
2283                 context_append(&ctx->context, d, z, header_z);
2284         }
2285
2286         return 0;
2287 }
2288
2289 static int
2290 ohci_queue_iso(struct fw_iso_context *base,
2291                struct fw_iso_packet *packet,
2292                struct fw_iso_buffer *buffer,
2293                unsigned long payload)
2294 {
2295         struct iso_context *ctx = container_of(base, struct iso_context, base);
2296         unsigned long flags;
2297         int retval;
2298
2299         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2300         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2301                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2302         else if (ctx->context.ohci->use_dualbuffer)
2303                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2304                                                          buffer, payload);
2305         else
2306                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2307                                                                 buffer,
2308                                                                 payload);
2309         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2310
2311         return retval;
2312 }
2313
2314 static const struct fw_card_driver ohci_driver = {
2315         .enable                 = ohci_enable,
2316         .update_phy_reg         = ohci_update_phy_reg,
2317         .set_config_rom         = ohci_set_config_rom,
2318         .send_request           = ohci_send_request,
2319         .send_response          = ohci_send_response,
2320         .cancel_packet          = ohci_cancel_packet,
2321         .enable_phys_dma        = ohci_enable_phys_dma,
2322         .get_bus_time           = ohci_get_bus_time,
2323
2324         .allocate_iso_context   = ohci_allocate_iso_context,
2325         .free_iso_context       = ohci_free_iso_context,
2326         .queue_iso              = ohci_queue_iso,
2327         .start_iso              = ohci_start_iso,
2328         .stop_iso               = ohci_stop_iso,
2329 };
2330
2331 #ifdef CONFIG_PPC_PMAC
2332 static void ohci_pmac_on(struct pci_dev *dev)
2333 {
2334         if (machine_is(powermac)) {
2335                 struct device_node *ofn = pci_device_to_OF_node(dev);
2336
2337                 if (ofn) {
2338                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2339                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2340                 }
2341         }
2342 }
2343
2344 static void ohci_pmac_off(struct pci_dev *dev)
2345 {
2346         if (machine_is(powermac)) {
2347                 struct device_node *ofn = pci_device_to_OF_node(dev);
2348
2349                 if (ofn) {
2350                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2351                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2352                 }
2353         }
2354 }
2355 #else
2356 #define ohci_pmac_on(dev)
2357 #define ohci_pmac_off(dev)
2358 #endif /* CONFIG_PPC_PMAC */
2359
2360 static int __devinit
2361 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2362 {
2363         struct fw_ohci *ohci;
2364         u32 bus_options, max_receive, link_speed, version;
2365         u64 guid;
2366         int err;
2367         size_t size;
2368
2369         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2370         if (ohci == NULL) {
2371                 err = -ENOMEM;
2372                 goto fail;
2373         }
2374
2375         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2376
2377         ohci_pmac_on(dev);
2378
2379         err = pci_enable_device(dev);
2380         if (err) {
2381                 fw_error("Failed to enable OHCI hardware\n");
2382                 goto fail_free;
2383         }
2384
2385         pci_set_master(dev);
2386         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2387         pci_set_drvdata(dev, ohci);
2388
2389         spin_lock_init(&ohci->lock);
2390
2391         tasklet_init(&ohci->bus_reset_tasklet,
2392                      bus_reset_tasklet, (unsigned long)ohci);
2393
2394         err = pci_request_region(dev, 0, ohci_driver_name);
2395         if (err) {
2396                 fw_error("MMIO resource unavailable\n");
2397                 goto fail_disable;
2398         }
2399
2400         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2401         if (ohci->registers == NULL) {
2402                 fw_error("Failed to remap registers\n");
2403                 err = -ENXIO;
2404                 goto fail_iomem;
2405         }
2406
2407         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2408         ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2409
2410 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2411 #if !defined(CONFIG_X86_32)
2412         /* dual-buffer mode is broken with descriptor addresses above 2G */
2413         if (dev->vendor == PCI_VENDOR_ID_TI &&
2414             dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2415                 ohci->use_dualbuffer = false;
2416 #endif
2417
2418 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2419         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2420                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2421 #endif
2422         ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2423
2424         ar_context_init(&ohci->ar_request_ctx, ohci,
2425                         OHCI1394_AsReqRcvContextControlSet);
2426
2427         ar_context_init(&ohci->ar_response_ctx, ohci,
2428                         OHCI1394_AsRspRcvContextControlSet);
2429
2430         context_init(&ohci->at_request_ctx, ohci,
2431                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2432
2433         context_init(&ohci->at_response_ctx, ohci,
2434                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2435
2436         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2437         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2438         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2439         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2440         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2441
2442         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2443         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2444         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2445         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2446         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2447
2448         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2449                 err = -ENOMEM;
2450                 goto fail_contexts;
2451         }
2452
2453         /* self-id dma buffer allocation */
2454         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2455                                                SELF_ID_BUF_SIZE,
2456                                                &ohci->self_id_bus,
2457                                                GFP_KERNEL);
2458         if (ohci->self_id_cpu == NULL) {
2459                 err = -ENOMEM;
2460                 goto fail_contexts;
2461         }
2462
2463         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2464         max_receive = (bus_options >> 12) & 0xf;
2465         link_speed = bus_options & 0x7;
2466         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2467                 reg_read(ohci, OHCI1394_GUIDLo);
2468
2469         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2470         if (err < 0)
2471                 goto fail_self_id;
2472
2473         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2474                   dev_name(&dev->dev), version >> 16, version & 0xff);
2475         return 0;
2476
2477  fail_self_id:
2478         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2479                           ohci->self_id_cpu, ohci->self_id_bus);
2480  fail_contexts:
2481         kfree(ohci->ir_context_list);
2482         kfree(ohci->it_context_list);
2483         context_release(&ohci->at_response_ctx);
2484         context_release(&ohci->at_request_ctx);
2485         ar_context_release(&ohci->ar_response_ctx);
2486         ar_context_release(&ohci->ar_request_ctx);
2487         pci_iounmap(dev, ohci->registers);
2488  fail_iomem:
2489         pci_release_region(dev, 0);
2490  fail_disable:
2491         pci_disable_device(dev);
2492  fail_free:
2493         kfree(&ohci->card);
2494         ohci_pmac_off(dev);
2495  fail:
2496         if (err == -ENOMEM)
2497                 fw_error("Out of memory\n");
2498
2499         return err;
2500 }
2501
2502 static void pci_remove(struct pci_dev *dev)
2503 {
2504         struct fw_ohci *ohci;
2505
2506         ohci = pci_get_drvdata(dev);
2507         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2508         flush_writes(ohci);
2509         fw_core_remove_card(&ohci->card);
2510
2511         /*
2512          * FIXME: Fail all pending packets here, now that the upper
2513          * layers can't queue any more.
2514          */
2515
2516         software_reset(ohci);
2517         free_irq(dev->irq, ohci);
2518
2519         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2520                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2521                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2522         if (ohci->config_rom)
2523                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2524                                   ohci->config_rom, ohci->config_rom_bus);
2525         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2526                           ohci->self_id_cpu, ohci->self_id_bus);
2527         ar_context_release(&ohci->ar_request_ctx);
2528         ar_context_release(&ohci->ar_response_ctx);
2529         context_release(&ohci->at_request_ctx);
2530         context_release(&ohci->at_response_ctx);
2531         kfree(ohci->it_context_list);
2532         kfree(ohci->ir_context_list);
2533         pci_iounmap(dev, ohci->registers);
2534         pci_release_region(dev, 0);
2535         pci_disable_device(dev);
2536         kfree(&ohci->card);
2537         ohci_pmac_off(dev);
2538
2539         fw_notify("Removed fw-ohci device.\n");
2540 }
2541
2542 #ifdef CONFIG_PM
2543 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2544 {
2545         struct fw_ohci *ohci = pci_get_drvdata(dev);
2546         int err;
2547
2548         software_reset(ohci);
2549         free_irq(dev->irq, ohci);
2550         err = pci_save_state(dev);
2551         if (err) {
2552                 fw_error("pci_save_state failed\n");
2553                 return err;
2554         }
2555         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2556         if (err)
2557                 fw_error("pci_set_power_state failed with %d\n", err);
2558         ohci_pmac_off(dev);
2559
2560         return 0;
2561 }
2562
2563 static int pci_resume(struct pci_dev *dev)
2564 {
2565         struct fw_ohci *ohci = pci_get_drvdata(dev);
2566         int err;
2567
2568         ohci_pmac_on(dev);
2569         pci_set_power_state(dev, PCI_D0);
2570         pci_restore_state(dev);
2571         err = pci_enable_device(dev);
2572         if (err) {
2573                 fw_error("pci_enable_device failed\n");
2574                 return err;
2575         }
2576
2577         return ohci_enable(&ohci->card, NULL, 0);
2578 }
2579 #endif
2580
2581 static struct pci_device_id pci_table[] = {
2582         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2583         { }
2584 };
2585
2586 MODULE_DEVICE_TABLE(pci, pci_table);
2587
2588 static struct pci_driver fw_ohci_pci_driver = {
2589         .name           = ohci_driver_name,
2590         .id_table       = pci_table,
2591         .probe          = pci_probe,
2592         .remove         = pci_remove,
2593 #ifdef CONFIG_PM
2594         .resume         = pci_resume,
2595         .suspend        = pci_suspend,
2596 #endif
2597 };
2598
2599 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2600 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2601 MODULE_LICENSE("GPL");
2602
2603 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2604 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2605 MODULE_ALIAS("ohci1394");
2606 #endif
2607
2608 static int __init fw_ohci_init(void)
2609 {
2610         return pci_register_driver(&fw_ohci_pci_driver);
2611 }
2612
2613 static void __exit fw_ohci_cleanup(void)
2614 {
2615         pci_unregister_driver(&fw_ohci_pci_driver);
2616 }
2617
2618 module_init(fw_ohci_init);
2619 module_exit(fw_ohci_cleanup);