2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
50 * Array of node states.
52 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
60 [N_CPU] = { { [0] = 1UL } },
63 EXPORT_SYMBOL(node_states);
65 unsigned long totalram_pages __read_mostly;
66 unsigned long totalreserve_pages __read_mostly;
68 int percpu_pagelist_fraction;
70 static void __free_pages_ok(struct page *page, unsigned int order);
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
83 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
84 #ifdef CONFIG_ZONE_DMA
87 #ifdef CONFIG_ZONE_DMA32
96 EXPORT_SYMBOL(totalram_pages);
98 static char * const zone_names[MAX_NR_ZONES] = {
99 #ifdef CONFIG_ZONE_DMA
102 #ifdef CONFIG_ZONE_DMA32
106 #ifdef CONFIG_HIGHMEM
112 int min_free_kbytes = 1024;
114 unsigned long __meminitdata nr_kernel_pages;
115 unsigned long __meminitdata nr_all_pages;
116 static unsigned long __meminitdata dma_reserve;
118 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
143 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
146 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
147 unsigned long __initdata required_kernelcore;
148 unsigned long __initdata required_movablecore;
149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
153 EXPORT_SYMBOL(movable_zone);
154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
157 int nr_node_ids __read_mostly = MAX_NUMNODES;
158 EXPORT_SYMBOL(nr_node_ids);
161 int page_group_by_mobility_disabled __read_mostly;
163 static inline int get_pageblock_migratetype(struct page *page)
165 if (unlikely(page_group_by_mobility_disabled))
166 return MIGRATE_UNMOVABLE;
168 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
171 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 set_pageblock_flags_group(page, (unsigned long)migratetype,
174 PB_migrate, PB_migrate_end);
177 static inline int allocflags_to_migratetype(gfp_t gfp_flags)
179 WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
181 if (unlikely(page_group_by_mobility_disabled))
182 return MIGRATE_UNMOVABLE;
184 /* Cluster based on mobility */
185 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
186 ((gfp_flags & __GFP_RECLAIMABLE) != 0);
189 #ifdef CONFIG_DEBUG_VM
190 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
194 unsigned long pfn = page_to_pfn(page);
197 seq = zone_span_seqbegin(zone);
198 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
200 else if (pfn < zone->zone_start_pfn)
202 } while (zone_span_seqretry(zone, seq));
207 static int page_is_consistent(struct zone *zone, struct page *page)
209 if (!pfn_valid_within(page_to_pfn(page)))
211 if (zone != page_zone(page))
217 * Temporary debugging check for pages not lying within a given zone.
219 static int bad_range(struct zone *zone, struct page *page)
221 if (page_outside_zone_boundaries(zone, page))
223 if (!page_is_consistent(zone, page))
229 static inline int bad_range(struct zone *zone, struct page *page)
235 static void bad_page(struct page *page)
237 printk(KERN_EMERG "Bad page state in process '%s'\n"
238 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
239 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
240 KERN_EMERG "Backtrace:\n",
241 current->comm, page, (int)(2*sizeof(unsigned long)),
242 (unsigned long)page->flags, page->mapping,
243 page_mapcount(page), page_count(page));
245 page->flags &= ~(1 << PG_lru |
255 set_page_count(page, 0);
256 reset_page_mapcount(page);
257 page->mapping = NULL;
258 add_taint(TAINT_BAD_PAGE);
262 * Higher-order pages are called "compound pages". They are structured thusly:
264 * The first PAGE_SIZE page is called the "head page".
266 * The remaining PAGE_SIZE pages are called "tail pages".
268 * All pages have PG_compound set. All pages have their ->private pointing at
269 * the head page (even the head page has this).
271 * The first tail page's ->lru.next holds the address of the compound page's
272 * put_page() function. Its ->lru.prev holds the order of allocation.
273 * This usage means that zero-order pages may not be compound.
276 static void free_compound_page(struct page *page)
278 __free_pages_ok(page, compound_order(page));
281 static void prep_compound_page(struct page *page, unsigned long order)
284 int nr_pages = 1 << order;
286 set_compound_page_dtor(page, free_compound_page);
287 set_compound_order(page, order);
289 for (i = 1; i < nr_pages; i++) {
290 struct page *p = page + i;
293 p->first_page = page;
297 static void destroy_compound_page(struct page *page, unsigned long order)
300 int nr_pages = 1 << order;
302 if (unlikely(compound_order(page) != order))
305 if (unlikely(!PageHead(page)))
307 __ClearPageHead(page);
308 for (i = 1; i < nr_pages; i++) {
309 struct page *p = page + i;
311 if (unlikely(!PageTail(p) |
312 (p->first_page != page)))
318 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
322 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
324 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
325 * and __GFP_HIGHMEM from hard or soft interrupt context.
327 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
328 for (i = 0; i < (1 << order); i++)
329 clear_highpage(page + i);
333 * function for dealing with page's order in buddy system.
334 * zone->lock is already acquired when we use these.
335 * So, we don't need atomic page->flags operations here.
337 static inline unsigned long page_order(struct page *page)
339 return page_private(page);
342 static inline void set_page_order(struct page *page, int order)
344 set_page_private(page, order);
345 __SetPageBuddy(page);
348 static inline void rmv_page_order(struct page *page)
350 __ClearPageBuddy(page);
351 set_page_private(page, 0);
355 * Locate the struct page for both the matching buddy in our
356 * pair (buddy1) and the combined O(n+1) page they form (page).
358 * 1) Any buddy B1 will have an order O twin B2 which satisfies
359 * the following equation:
361 * For example, if the starting buddy (buddy2) is #8 its order
363 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
365 * 2) Any buddy B will have an order O+1 parent P which
366 * satisfies the following equation:
369 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
371 static inline struct page *
372 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
374 unsigned long buddy_idx = page_idx ^ (1 << order);
376 return page + (buddy_idx - page_idx);
379 static inline unsigned long
380 __find_combined_index(unsigned long page_idx, unsigned int order)
382 return (page_idx & ~(1 << order));
386 * This function checks whether a page is free && is the buddy
387 * we can do coalesce a page and its buddy if
388 * (a) the buddy is not in a hole &&
389 * (b) the buddy is in the buddy system &&
390 * (c) a page and its buddy have the same order &&
391 * (d) a page and its buddy are in the same zone.
393 * For recording whether a page is in the buddy system, we use PG_buddy.
394 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
396 * For recording page's order, we use page_private(page).
398 static inline int page_is_buddy(struct page *page, struct page *buddy,
401 if (!pfn_valid_within(page_to_pfn(buddy)))
404 if (page_zone_id(page) != page_zone_id(buddy))
407 if (PageBuddy(buddy) && page_order(buddy) == order) {
408 BUG_ON(page_count(buddy) != 0);
415 * Freeing function for a buddy system allocator.
417 * The concept of a buddy system is to maintain direct-mapped table
418 * (containing bit values) for memory blocks of various "orders".
419 * The bottom level table contains the map for the smallest allocatable
420 * units of memory (here, pages), and each level above it describes
421 * pairs of units from the levels below, hence, "buddies".
422 * At a high level, all that happens here is marking the table entry
423 * at the bottom level available, and propagating the changes upward
424 * as necessary, plus some accounting needed to play nicely with other
425 * parts of the VM system.
426 * At each level, we keep a list of pages, which are heads of continuous
427 * free pages of length of (1 << order) and marked with PG_buddy. Page's
428 * order is recorded in page_private(page) field.
429 * So when we are allocating or freeing one, we can derive the state of the
430 * other. That is, if we allocate a small block, and both were
431 * free, the remainder of the region must be split into blocks.
432 * If a block is freed, and its buddy is also free, then this
433 * triggers coalescing into a block of larger size.
438 static inline void __free_one_page(struct page *page,
439 struct zone *zone, unsigned int order)
441 unsigned long page_idx;
442 int order_size = 1 << order;
443 int migratetype = get_pageblock_migratetype(page);
445 if (unlikely(PageCompound(page)))
446 destroy_compound_page(page, order);
448 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
450 VM_BUG_ON(page_idx & (order_size - 1));
451 VM_BUG_ON(bad_range(zone, page));
453 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
454 while (order < MAX_ORDER-1) {
455 unsigned long combined_idx;
458 buddy = __page_find_buddy(page, page_idx, order);
459 if (!page_is_buddy(page, buddy, order))
460 break; /* Move the buddy up one level. */
462 list_del(&buddy->lru);
463 zone->free_area[order].nr_free--;
464 rmv_page_order(buddy);
465 combined_idx = __find_combined_index(page_idx, order);
466 page = page + (combined_idx - page_idx);
467 page_idx = combined_idx;
470 set_page_order(page, order);
472 &zone->free_area[order].free_list[migratetype]);
473 zone->free_area[order].nr_free++;
476 static inline int free_pages_check(struct page *page)
478 if (unlikely(page_mapcount(page) |
479 (page->mapping != NULL) |
480 (page_count(page) != 0) |
493 __ClearPageDirty(page);
495 * For now, we report if PG_reserved was found set, but do not
496 * clear it, and do not free the page. But we shall soon need
497 * to do more, for when the ZERO_PAGE count wraps negative.
499 return PageReserved(page);
503 * Frees a list of pages.
504 * Assumes all pages on list are in same zone, and of same order.
505 * count is the number of pages to free.
507 * If the zone was previously in an "all pages pinned" state then look to
508 * see if this freeing clears that state.
510 * And clear the zone's pages_scanned counter, to hold off the "all pages are
511 * pinned" detection logic.
513 static void free_pages_bulk(struct zone *zone, int count,
514 struct list_head *list, int order)
516 spin_lock(&zone->lock);
517 zone->all_unreclaimable = 0;
518 zone->pages_scanned = 0;
522 VM_BUG_ON(list_empty(list));
523 page = list_entry(list->prev, struct page, lru);
524 /* have to delete it as __free_one_page list manipulates */
525 list_del(&page->lru);
526 __free_one_page(page, zone, order);
528 spin_unlock(&zone->lock);
531 static void free_one_page(struct zone *zone, struct page *page, int order)
533 spin_lock(&zone->lock);
534 zone->all_unreclaimable = 0;
535 zone->pages_scanned = 0;
536 __free_one_page(page, zone, order);
537 spin_unlock(&zone->lock);
540 static void __free_pages_ok(struct page *page, unsigned int order)
546 for (i = 0 ; i < (1 << order) ; ++i)
547 reserved += free_pages_check(page + i);
551 if (!PageHighMem(page))
552 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
553 arch_free_page(page, order);
554 kernel_map_pages(page, 1 << order, 0);
556 local_irq_save(flags);
557 __count_vm_events(PGFREE, 1 << order);
558 free_one_page(page_zone(page), page, order);
559 local_irq_restore(flags);
563 * permit the bootmem allocator to evade page validation on high-order frees
565 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
568 __ClearPageReserved(page);
569 set_page_count(page, 0);
570 set_page_refcounted(page);
576 for (loop = 0; loop < BITS_PER_LONG; loop++) {
577 struct page *p = &page[loop];
579 if (loop + 1 < BITS_PER_LONG)
581 __ClearPageReserved(p);
582 set_page_count(p, 0);
585 set_page_refcounted(page);
586 __free_pages(page, order);
592 * The order of subdivision here is critical for the IO subsystem.
593 * Please do not alter this order without good reasons and regression
594 * testing. Specifically, as large blocks of memory are subdivided,
595 * the order in which smaller blocks are delivered depends on the order
596 * they're subdivided in this function. This is the primary factor
597 * influencing the order in which pages are delivered to the IO
598 * subsystem according to empirical testing, and this is also justified
599 * by considering the behavior of a buddy system containing a single
600 * large block of memory acted on by a series of small allocations.
601 * This behavior is a critical factor in sglist merging's success.
605 static inline void expand(struct zone *zone, struct page *page,
606 int low, int high, struct free_area *area,
609 unsigned long size = 1 << high;
615 VM_BUG_ON(bad_range(zone, &page[size]));
616 list_add(&page[size].lru, &area->free_list[migratetype]);
618 set_page_order(&page[size], high);
623 * This page is about to be returned from the page allocator
625 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
627 if (unlikely(page_mapcount(page) |
628 (page->mapping != NULL) |
629 (page_count(page) != 0) |
644 * For now, we report if PG_reserved was found set, but do not
645 * clear it, and do not allocate the page: as a safety net.
647 if (PageReserved(page))
650 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
651 1 << PG_referenced | 1 << PG_arch_1 |
652 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
653 set_page_private(page, 0);
654 set_page_refcounted(page);
656 arch_alloc_page(page, order);
657 kernel_map_pages(page, 1 << order, 1);
659 if (gfp_flags & __GFP_ZERO)
660 prep_zero_page(page, order, gfp_flags);
662 if (order && (gfp_flags & __GFP_COMP))
663 prep_compound_page(page, order);
669 * Go through the free lists for the given migratetype and remove
670 * the smallest available page from the freelists
672 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
675 unsigned int current_order;
676 struct free_area * area;
679 /* Find a page of the appropriate size in the preferred list */
680 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
681 area = &(zone->free_area[current_order]);
682 if (list_empty(&area->free_list[migratetype]))
685 page = list_entry(area->free_list[migratetype].next,
687 list_del(&page->lru);
688 rmv_page_order(page);
690 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
691 expand(zone, page, order, current_order, area, migratetype);
700 * This array describes the order lists are fallen back to when
701 * the free lists for the desirable migrate type are depleted
703 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
704 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
705 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
706 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
707 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
711 * Move the free pages in a range to the free lists of the requested type.
712 * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES
713 * boundary. If alignment is required, use move_freepages_block()
715 int move_freepages(struct zone *zone,
716 struct page *start_page, struct page *end_page,
721 int blocks_moved = 0;
723 #ifndef CONFIG_HOLES_IN_ZONE
725 * page_zone is not safe to call in this context when
726 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
727 * anyway as we check zone boundaries in move_freepages_block().
728 * Remove at a later date when no bug reports exist related to
729 * grouping pages by mobility
731 BUG_ON(page_zone(start_page) != page_zone(end_page));
734 for (page = start_page; page <= end_page;) {
735 if (!pfn_valid_within(page_to_pfn(page))) {
740 if (!PageBuddy(page)) {
745 order = page_order(page);
746 list_del(&page->lru);
748 &zone->free_area[order].free_list[migratetype]);
756 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
758 unsigned long start_pfn, end_pfn;
759 struct page *start_page, *end_page;
761 start_pfn = page_to_pfn(page);
762 start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1);
763 start_page = pfn_to_page(start_pfn);
764 end_page = start_page + MAX_ORDER_NR_PAGES - 1;
765 end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1;
767 /* Do not cross zone boundaries */
768 if (start_pfn < zone->zone_start_pfn)
770 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
773 return move_freepages(zone, start_page, end_page, migratetype);
776 /* Return the page with the lowest PFN in the list */
777 static struct page *min_page(struct list_head *list)
779 unsigned long min_pfn = -1UL;
780 struct page *min_page = NULL, *page;;
782 list_for_each_entry(page, list, lru) {
783 unsigned long pfn = page_to_pfn(page);
793 /* Remove an element from the buddy allocator from the fallback list */
794 static struct page *__rmqueue_fallback(struct zone *zone, int order,
795 int start_migratetype)
797 struct free_area * area;
802 /* Find the largest possible block of pages in the other list */
803 for (current_order = MAX_ORDER-1; current_order >= order;
805 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
806 migratetype = fallbacks[start_migratetype][i];
808 /* MIGRATE_RESERVE handled later if necessary */
809 if (migratetype == MIGRATE_RESERVE)
812 area = &(zone->free_area[current_order]);
813 if (list_empty(&area->free_list[migratetype]))
816 /* Bias kernel allocations towards low pfns */
817 page = list_entry(area->free_list[migratetype].next,
819 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
820 page = min_page(&area->free_list[migratetype]);
824 * If breaking a large block of pages, move all free
825 * pages to the preferred allocation list. If falling
826 * back for a reclaimable kernel allocation, be more
827 * agressive about taking ownership of free pages
829 if (unlikely(current_order >= MAX_ORDER / 2) ||
830 start_migratetype == MIGRATE_RECLAIMABLE) {
832 pages = move_freepages_block(zone, page,
835 /* Claim the whole block if over half of it is free */
836 if ((pages << current_order) >= (1 << (MAX_ORDER-2)))
837 set_pageblock_migratetype(page,
840 migratetype = start_migratetype;
843 /* Remove the page from the freelists */
844 list_del(&page->lru);
845 rmv_page_order(page);
846 __mod_zone_page_state(zone, NR_FREE_PAGES,
849 if (current_order == MAX_ORDER - 1)
850 set_pageblock_migratetype(page,
853 expand(zone, page, order, current_order, area, migratetype);
858 /* Use MIGRATE_RESERVE rather than fail an allocation */
859 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
863 * Do the hard work of removing an element from the buddy allocator.
864 * Call me with the zone->lock already held.
866 static struct page *__rmqueue(struct zone *zone, unsigned int order,
871 page = __rmqueue_smallest(zone, order, migratetype);
874 page = __rmqueue_fallback(zone, order, migratetype);
880 * Obtain a specified number of elements from the buddy allocator, all under
881 * a single hold of the lock, for efficiency. Add them to the supplied list.
882 * Returns the number of new pages which were placed at *list.
884 static int rmqueue_bulk(struct zone *zone, unsigned int order,
885 unsigned long count, struct list_head *list,
890 spin_lock(&zone->lock);
891 for (i = 0; i < count; ++i) {
892 struct page *page = __rmqueue(zone, order, migratetype);
893 if (unlikely(page == NULL))
895 list_add(&page->lru, list);
896 set_page_private(page, migratetype);
898 spin_unlock(&zone->lock);
904 * Called from the vmstat counter updater to drain pagesets of this
905 * currently executing processor on remote nodes after they have
908 * Note that this function must be called with the thread pinned to
909 * a single processor.
911 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
916 local_irq_save(flags);
917 if (pcp->count >= pcp->batch)
918 to_drain = pcp->batch;
920 to_drain = pcp->count;
921 free_pages_bulk(zone, to_drain, &pcp->list, 0);
922 pcp->count -= to_drain;
923 local_irq_restore(flags);
927 static void __drain_pages(unsigned int cpu)
933 for_each_zone(zone) {
934 struct per_cpu_pageset *pset;
936 if (!populated_zone(zone))
939 pset = zone_pcp(zone, cpu);
940 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
941 struct per_cpu_pages *pcp;
944 local_irq_save(flags);
945 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
947 local_irq_restore(flags);
952 #ifdef CONFIG_HIBERNATION
954 void mark_free_pages(struct zone *zone)
956 unsigned long pfn, max_zone_pfn;
959 struct list_head *curr;
961 if (!zone->spanned_pages)
964 spin_lock_irqsave(&zone->lock, flags);
966 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
967 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
968 if (pfn_valid(pfn)) {
969 struct page *page = pfn_to_page(pfn);
971 if (!swsusp_page_is_forbidden(page))
972 swsusp_unset_page_free(page);
975 for_each_migratetype_order(order, t) {
976 list_for_each(curr, &zone->free_area[order].free_list[t]) {
979 pfn = page_to_pfn(list_entry(curr, struct page, lru));
980 for (i = 0; i < (1UL << order); i++)
981 swsusp_set_page_free(pfn_to_page(pfn + i));
984 spin_unlock_irqrestore(&zone->lock, flags);
986 #endif /* CONFIG_PM */
989 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
991 void drain_local_pages(void)
995 local_irq_save(flags);
996 __drain_pages(smp_processor_id());
997 local_irq_restore(flags);
1000 void smp_drain_local_pages(void *arg)
1002 drain_local_pages();
1006 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1008 void drain_all_local_pages(void)
1010 unsigned long flags;
1012 local_irq_save(flags);
1013 __drain_pages(smp_processor_id());
1014 local_irq_restore(flags);
1016 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
1020 * Free a 0-order page
1022 static void fastcall free_hot_cold_page(struct page *page, int cold)
1024 struct zone *zone = page_zone(page);
1025 struct per_cpu_pages *pcp;
1026 unsigned long flags;
1029 page->mapping = NULL;
1030 if (free_pages_check(page))
1033 if (!PageHighMem(page))
1034 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1035 arch_free_page(page, 0);
1036 kernel_map_pages(page, 1, 0);
1038 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1039 local_irq_save(flags);
1040 __count_vm_event(PGFREE);
1041 list_add(&page->lru, &pcp->list);
1042 set_page_private(page, get_pageblock_migratetype(page));
1044 if (pcp->count >= pcp->high) {
1045 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1046 pcp->count -= pcp->batch;
1048 local_irq_restore(flags);
1052 void fastcall free_hot_page(struct page *page)
1054 free_hot_cold_page(page, 0);
1057 void fastcall free_cold_page(struct page *page)
1059 free_hot_cold_page(page, 1);
1063 * split_page takes a non-compound higher-order page, and splits it into
1064 * n (1<<order) sub-pages: page[0..n]
1065 * Each sub-page must be freed individually.
1067 * Note: this is probably too low level an operation for use in drivers.
1068 * Please consult with lkml before using this in your driver.
1070 void split_page(struct page *page, unsigned int order)
1074 VM_BUG_ON(PageCompound(page));
1075 VM_BUG_ON(!page_count(page));
1076 for (i = 1; i < (1 << order); i++)
1077 set_page_refcounted(page + i);
1081 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1082 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1085 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1086 struct zone *zone, int order, gfp_t gfp_flags)
1088 unsigned long flags;
1090 int cold = !!(gfp_flags & __GFP_COLD);
1092 int migratetype = allocflags_to_migratetype(gfp_flags);
1096 if (likely(order == 0)) {
1097 struct per_cpu_pages *pcp;
1099 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1100 local_irq_save(flags);
1102 pcp->count = rmqueue_bulk(zone, 0,
1103 pcp->batch, &pcp->list, migratetype);
1104 if (unlikely(!pcp->count))
1108 /* Find a page of the appropriate migrate type */
1109 list_for_each_entry(page, &pcp->list, lru)
1110 if (page_private(page) == migratetype)
1113 /* Allocate more to the pcp list if necessary */
1114 if (unlikely(&page->lru == &pcp->list)) {
1115 pcp->count += rmqueue_bulk(zone, 0,
1116 pcp->batch, &pcp->list, migratetype);
1117 page = list_entry(pcp->list.next, struct page, lru);
1120 list_del(&page->lru);
1123 spin_lock_irqsave(&zone->lock, flags);
1124 page = __rmqueue(zone, order, migratetype);
1125 spin_unlock(&zone->lock);
1130 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1131 zone_statistics(zonelist, zone);
1132 local_irq_restore(flags);
1135 VM_BUG_ON(bad_range(zone, page));
1136 if (prep_new_page(page, order, gfp_flags))
1141 local_irq_restore(flags);
1146 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1147 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1148 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1149 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1150 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1151 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1152 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1154 #ifdef CONFIG_FAIL_PAGE_ALLOC
1156 static struct fail_page_alloc_attr {
1157 struct fault_attr attr;
1159 u32 ignore_gfp_highmem;
1160 u32 ignore_gfp_wait;
1163 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1165 struct dentry *ignore_gfp_highmem_file;
1166 struct dentry *ignore_gfp_wait_file;
1167 struct dentry *min_order_file;
1169 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1171 } fail_page_alloc = {
1172 .attr = FAULT_ATTR_INITIALIZER,
1173 .ignore_gfp_wait = 1,
1174 .ignore_gfp_highmem = 1,
1178 static int __init setup_fail_page_alloc(char *str)
1180 return setup_fault_attr(&fail_page_alloc.attr, str);
1182 __setup("fail_page_alloc=", setup_fail_page_alloc);
1184 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1186 if (order < fail_page_alloc.min_order)
1188 if (gfp_mask & __GFP_NOFAIL)
1190 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1192 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1195 return should_fail(&fail_page_alloc.attr, 1 << order);
1198 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1200 static int __init fail_page_alloc_debugfs(void)
1202 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1206 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1210 dir = fail_page_alloc.attr.dentries.dir;
1212 fail_page_alloc.ignore_gfp_wait_file =
1213 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1214 &fail_page_alloc.ignore_gfp_wait);
1216 fail_page_alloc.ignore_gfp_highmem_file =
1217 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1218 &fail_page_alloc.ignore_gfp_highmem);
1219 fail_page_alloc.min_order_file =
1220 debugfs_create_u32("min-order", mode, dir,
1221 &fail_page_alloc.min_order);
1223 if (!fail_page_alloc.ignore_gfp_wait_file ||
1224 !fail_page_alloc.ignore_gfp_highmem_file ||
1225 !fail_page_alloc.min_order_file) {
1227 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1228 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1229 debugfs_remove(fail_page_alloc.min_order_file);
1230 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1236 late_initcall(fail_page_alloc_debugfs);
1238 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1240 #else /* CONFIG_FAIL_PAGE_ALLOC */
1242 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1247 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1250 * Return 1 if free pages are above 'mark'. This takes into account the order
1251 * of the allocation.
1253 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1254 int classzone_idx, int alloc_flags)
1256 /* free_pages my go negative - that's OK */
1258 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1261 if (alloc_flags & ALLOC_HIGH)
1263 if (alloc_flags & ALLOC_HARDER)
1266 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1268 for (o = 0; o < order; o++) {
1269 /* At the next order, this order's pages become unavailable */
1270 free_pages -= z->free_area[o].nr_free << o;
1272 /* Require fewer higher order pages to be free */
1275 if (free_pages <= min)
1283 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1284 * skip over zones that are not allowed by the cpuset, or that have
1285 * been recently (in last second) found to be nearly full. See further
1286 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1287 * that have to skip over alot of full or unallowed zones.
1289 * If the zonelist cache is present in the passed in zonelist, then
1290 * returns a pointer to the allowed node mask (either the current
1291 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1293 * If the zonelist cache is not available for this zonelist, does
1294 * nothing and returns NULL.
1296 * If the fullzones BITMAP in the zonelist cache is stale (more than
1297 * a second since last zap'd) then we zap it out (clear its bits.)
1299 * We hold off even calling zlc_setup, until after we've checked the
1300 * first zone in the zonelist, on the theory that most allocations will
1301 * be satisfied from that first zone, so best to examine that zone as
1302 * quickly as we can.
1304 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1306 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1307 nodemask_t *allowednodes; /* zonelist_cache approximation */
1309 zlc = zonelist->zlcache_ptr;
1313 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1314 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1315 zlc->last_full_zap = jiffies;
1318 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1319 &cpuset_current_mems_allowed :
1320 &node_states[N_HIGH_MEMORY];
1321 return allowednodes;
1325 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1326 * if it is worth looking at further for free memory:
1327 * 1) Check that the zone isn't thought to be full (doesn't have its
1328 * bit set in the zonelist_cache fullzones BITMAP).
1329 * 2) Check that the zones node (obtained from the zonelist_cache
1330 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1331 * Return true (non-zero) if zone is worth looking at further, or
1332 * else return false (zero) if it is not.
1334 * This check -ignores- the distinction between various watermarks,
1335 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1336 * found to be full for any variation of these watermarks, it will
1337 * be considered full for up to one second by all requests, unless
1338 * we are so low on memory on all allowed nodes that we are forced
1339 * into the second scan of the zonelist.
1341 * In the second scan we ignore this zonelist cache and exactly
1342 * apply the watermarks to all zones, even it is slower to do so.
1343 * We are low on memory in the second scan, and should leave no stone
1344 * unturned looking for a free page.
1346 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1347 nodemask_t *allowednodes)
1349 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1350 int i; /* index of *z in zonelist zones */
1351 int n; /* node that zone *z is on */
1353 zlc = zonelist->zlcache_ptr;
1357 i = z - zonelist->zones;
1360 /* This zone is worth trying if it is allowed but not full */
1361 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1365 * Given 'z' scanning a zonelist, set the corresponding bit in
1366 * zlc->fullzones, so that subsequent attempts to allocate a page
1367 * from that zone don't waste time re-examining it.
1369 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1371 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1372 int i; /* index of *z in zonelist zones */
1374 zlc = zonelist->zlcache_ptr;
1378 i = z - zonelist->zones;
1380 set_bit(i, zlc->fullzones);
1383 #else /* CONFIG_NUMA */
1385 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1390 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1391 nodemask_t *allowednodes)
1396 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1399 #endif /* CONFIG_NUMA */
1402 * get_page_from_freelist goes through the zonelist trying to allocate
1405 static struct page *
1406 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1407 struct zonelist *zonelist, int alloc_flags)
1410 struct page *page = NULL;
1411 int classzone_idx = zone_idx(zonelist->zones[0]);
1413 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1414 int zlc_active = 0; /* set if using zonelist_cache */
1415 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1416 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1420 * Scan zonelist, looking for a zone with enough free.
1421 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1423 z = zonelist->zones;
1427 * In NUMA, this could be a policy zonelist which contains
1428 * zones that may not be allowed by the current gfp_mask.
1429 * Check the zone is allowed by the current flags
1431 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1432 if (highest_zoneidx == -1)
1433 highest_zoneidx = gfp_zone(gfp_mask);
1434 if (zone_idx(*z) > highest_zoneidx)
1438 if (NUMA_BUILD && zlc_active &&
1439 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1442 if ((alloc_flags & ALLOC_CPUSET) &&
1443 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1446 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1448 if (alloc_flags & ALLOC_WMARK_MIN)
1449 mark = zone->pages_min;
1450 else if (alloc_flags & ALLOC_WMARK_LOW)
1451 mark = zone->pages_low;
1453 mark = zone->pages_high;
1454 if (!zone_watermark_ok(zone, order, mark,
1455 classzone_idx, alloc_flags)) {
1456 if (!zone_reclaim_mode ||
1457 !zone_reclaim(zone, gfp_mask, order))
1458 goto this_zone_full;
1462 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1467 zlc_mark_zone_full(zonelist, z);
1469 if (NUMA_BUILD && !did_zlc_setup) {
1470 /* we do zlc_setup after the first zone is tried */
1471 allowednodes = zlc_setup(zonelist, alloc_flags);
1475 } while (*(++z) != NULL);
1477 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1478 /* Disable zlc cache for second zonelist scan */
1486 * This is the 'heart' of the zoned buddy allocator.
1488 struct page * fastcall
1489 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1490 struct zonelist *zonelist)
1492 const gfp_t wait = gfp_mask & __GFP_WAIT;
1495 struct reclaim_state reclaim_state;
1496 struct task_struct *p = current;
1499 int did_some_progress;
1501 might_sleep_if(wait);
1503 if (should_fail_alloc_page(gfp_mask, order))
1507 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1509 if (unlikely(*z == NULL)) {
1511 * Happens if we have an empty zonelist as a result of
1512 * GFP_THISNODE being used on a memoryless node
1517 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1518 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1523 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1524 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1525 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1526 * using a larger set of nodes after it has established that the
1527 * allowed per node queues are empty and that nodes are
1530 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1533 for (z = zonelist->zones; *z; z++)
1534 wakeup_kswapd(*z, order);
1537 * OK, we're below the kswapd watermark and have kicked background
1538 * reclaim. Now things get more complex, so set up alloc_flags according
1539 * to how we want to proceed.
1541 * The caller may dip into page reserves a bit more if the caller
1542 * cannot run direct reclaim, or if the caller has realtime scheduling
1543 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1544 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1546 alloc_flags = ALLOC_WMARK_MIN;
1547 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1548 alloc_flags |= ALLOC_HARDER;
1549 if (gfp_mask & __GFP_HIGH)
1550 alloc_flags |= ALLOC_HIGH;
1552 alloc_flags |= ALLOC_CPUSET;
1555 * Go through the zonelist again. Let __GFP_HIGH and allocations
1556 * coming from realtime tasks go deeper into reserves.
1558 * This is the last chance, in general, before the goto nopage.
1559 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1560 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1562 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1566 /* This allocation should allow future memory freeing. */
1569 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1570 && !in_interrupt()) {
1571 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1573 /* go through the zonelist yet again, ignoring mins */
1574 page = get_page_from_freelist(gfp_mask, order,
1575 zonelist, ALLOC_NO_WATERMARKS);
1578 if (gfp_mask & __GFP_NOFAIL) {
1579 congestion_wait(WRITE, HZ/50);
1586 /* Atomic allocations - we can't balance anything */
1592 /* We now go into synchronous reclaim */
1593 cpuset_memory_pressure_bump();
1594 p->flags |= PF_MEMALLOC;
1595 reclaim_state.reclaimed_slab = 0;
1596 p->reclaim_state = &reclaim_state;
1598 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1600 p->reclaim_state = NULL;
1601 p->flags &= ~PF_MEMALLOC;
1606 drain_all_local_pages();
1608 if (likely(did_some_progress)) {
1609 page = get_page_from_freelist(gfp_mask, order,
1610 zonelist, alloc_flags);
1613 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1615 * Go through the zonelist yet one more time, keep
1616 * very high watermark here, this is only to catch
1617 * a parallel oom killing, we must fail if we're still
1618 * under heavy pressure.
1620 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1621 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1625 /* The OOM killer will not help higher order allocs so fail */
1626 if (order > PAGE_ALLOC_COSTLY_ORDER)
1629 out_of_memory(zonelist, gfp_mask, order);
1634 * Don't let big-order allocations loop unless the caller explicitly
1635 * requests that. Wait for some write requests to complete then retry.
1637 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1638 * <= 3, but that may not be true in other implementations.
1641 if (!(gfp_mask & __GFP_NORETRY)) {
1642 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1643 (gfp_mask & __GFP_REPEAT))
1645 if (gfp_mask & __GFP_NOFAIL)
1649 congestion_wait(WRITE, HZ/50);
1654 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1655 printk(KERN_WARNING "%s: page allocation failure."
1656 " order:%d, mode:0x%x\n",
1657 p->comm, order, gfp_mask);
1665 EXPORT_SYMBOL(__alloc_pages);
1668 * Common helper functions.
1670 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1673 page = alloc_pages(gfp_mask, order);
1676 return (unsigned long) page_address(page);
1679 EXPORT_SYMBOL(__get_free_pages);
1681 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1686 * get_zeroed_page() returns a 32-bit address, which cannot represent
1689 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1691 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1693 return (unsigned long) page_address(page);
1697 EXPORT_SYMBOL(get_zeroed_page);
1699 void __pagevec_free(struct pagevec *pvec)
1701 int i = pagevec_count(pvec);
1704 free_hot_cold_page(pvec->pages[i], pvec->cold);
1707 fastcall void __free_pages(struct page *page, unsigned int order)
1709 if (put_page_testzero(page)) {
1711 free_hot_page(page);
1713 __free_pages_ok(page, order);
1717 EXPORT_SYMBOL(__free_pages);
1719 fastcall void free_pages(unsigned long addr, unsigned int order)
1722 VM_BUG_ON(!virt_addr_valid((void *)addr));
1723 __free_pages(virt_to_page((void *)addr), order);
1727 EXPORT_SYMBOL(free_pages);
1729 static unsigned int nr_free_zone_pages(int offset)
1731 /* Just pick one node, since fallback list is circular */
1732 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1733 unsigned int sum = 0;
1735 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1736 struct zone **zonep = zonelist->zones;
1739 for (zone = *zonep++; zone; zone = *zonep++) {
1740 unsigned long size = zone->present_pages;
1741 unsigned long high = zone->pages_high;
1750 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1752 unsigned int nr_free_buffer_pages(void)
1754 return nr_free_zone_pages(gfp_zone(GFP_USER));
1756 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1759 * Amount of free RAM allocatable within all zones
1761 unsigned int nr_free_pagecache_pages(void)
1763 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1766 static inline void show_node(struct zone *zone)
1769 printk("Node %d ", zone_to_nid(zone));
1772 void si_meminfo(struct sysinfo *val)
1774 val->totalram = totalram_pages;
1776 val->freeram = global_page_state(NR_FREE_PAGES);
1777 val->bufferram = nr_blockdev_pages();
1778 val->totalhigh = totalhigh_pages;
1779 val->freehigh = nr_free_highpages();
1780 val->mem_unit = PAGE_SIZE;
1783 EXPORT_SYMBOL(si_meminfo);
1786 void si_meminfo_node(struct sysinfo *val, int nid)
1788 pg_data_t *pgdat = NODE_DATA(nid);
1790 val->totalram = pgdat->node_present_pages;
1791 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1792 #ifdef CONFIG_HIGHMEM
1793 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1794 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1800 val->mem_unit = PAGE_SIZE;
1804 #define K(x) ((x) << (PAGE_SHIFT-10))
1807 * Show free area list (used inside shift_scroll-lock stuff)
1808 * We also calculate the percentage fragmentation. We do this by counting the
1809 * memory on each free list with the exception of the first item on the list.
1811 void show_free_areas(void)
1816 for_each_zone(zone) {
1817 if (!populated_zone(zone))
1821 printk("%s per-cpu:\n", zone->name);
1823 for_each_online_cpu(cpu) {
1824 struct per_cpu_pageset *pageset;
1826 pageset = zone_pcp(zone, cpu);
1828 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1829 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1830 cpu, pageset->pcp[0].high,
1831 pageset->pcp[0].batch, pageset->pcp[0].count,
1832 pageset->pcp[1].high, pageset->pcp[1].batch,
1833 pageset->pcp[1].count);
1837 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1838 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1839 global_page_state(NR_ACTIVE),
1840 global_page_state(NR_INACTIVE),
1841 global_page_state(NR_FILE_DIRTY),
1842 global_page_state(NR_WRITEBACK),
1843 global_page_state(NR_UNSTABLE_NFS),
1844 global_page_state(NR_FREE_PAGES),
1845 global_page_state(NR_SLAB_RECLAIMABLE) +
1846 global_page_state(NR_SLAB_UNRECLAIMABLE),
1847 global_page_state(NR_FILE_MAPPED),
1848 global_page_state(NR_PAGETABLE),
1849 global_page_state(NR_BOUNCE));
1851 for_each_zone(zone) {
1854 if (!populated_zone(zone))
1866 " pages_scanned:%lu"
1867 " all_unreclaimable? %s"
1870 K(zone_page_state(zone, NR_FREE_PAGES)),
1873 K(zone->pages_high),
1874 K(zone_page_state(zone, NR_ACTIVE)),
1875 K(zone_page_state(zone, NR_INACTIVE)),
1876 K(zone->present_pages),
1877 zone->pages_scanned,
1878 (zone->all_unreclaimable ? "yes" : "no")
1880 printk("lowmem_reserve[]:");
1881 for (i = 0; i < MAX_NR_ZONES; i++)
1882 printk(" %lu", zone->lowmem_reserve[i]);
1886 for_each_zone(zone) {
1887 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1889 if (!populated_zone(zone))
1893 printk("%s: ", zone->name);
1895 spin_lock_irqsave(&zone->lock, flags);
1896 for (order = 0; order < MAX_ORDER; order++) {
1897 nr[order] = zone->free_area[order].nr_free;
1898 total += nr[order] << order;
1900 spin_unlock_irqrestore(&zone->lock, flags);
1901 for (order = 0; order < MAX_ORDER; order++)
1902 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1903 printk("= %lukB\n", K(total));
1906 show_swap_cache_info();
1910 * Builds allocation fallback zone lists.
1912 * Add all populated zones of a node to the zonelist.
1914 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1915 int nr_zones, enum zone_type zone_type)
1919 BUG_ON(zone_type >= MAX_NR_ZONES);
1924 zone = pgdat->node_zones + zone_type;
1925 if (populated_zone(zone)) {
1926 zonelist->zones[nr_zones++] = zone;
1927 check_highest_zone(zone_type);
1930 } while (zone_type);
1937 * 0 = automatic detection of better ordering.
1938 * 1 = order by ([node] distance, -zonetype)
1939 * 2 = order by (-zonetype, [node] distance)
1941 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1942 * the same zonelist. So only NUMA can configure this param.
1944 #define ZONELIST_ORDER_DEFAULT 0
1945 #define ZONELIST_ORDER_NODE 1
1946 #define ZONELIST_ORDER_ZONE 2
1948 /* zonelist order in the kernel.
1949 * set_zonelist_order() will set this to NODE or ZONE.
1951 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1952 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1956 /* The value user specified ....changed by config */
1957 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1958 /* string for sysctl */
1959 #define NUMA_ZONELIST_ORDER_LEN 16
1960 char numa_zonelist_order[16] = "default";
1963 * interface for configure zonelist ordering.
1964 * command line option "numa_zonelist_order"
1965 * = "[dD]efault - default, automatic configuration.
1966 * = "[nN]ode - order by node locality, then by zone within node
1967 * = "[zZ]one - order by zone, then by locality within zone
1970 static int __parse_numa_zonelist_order(char *s)
1972 if (*s == 'd' || *s == 'D') {
1973 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1974 } else if (*s == 'n' || *s == 'N') {
1975 user_zonelist_order = ZONELIST_ORDER_NODE;
1976 } else if (*s == 'z' || *s == 'Z') {
1977 user_zonelist_order = ZONELIST_ORDER_ZONE;
1980 "Ignoring invalid numa_zonelist_order value: "
1987 static __init int setup_numa_zonelist_order(char *s)
1990 return __parse_numa_zonelist_order(s);
1993 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1996 * sysctl handler for numa_zonelist_order
1998 int numa_zonelist_order_handler(ctl_table *table, int write,
1999 struct file *file, void __user *buffer, size_t *length,
2002 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2006 strncpy(saved_string, (char*)table->data,
2007 NUMA_ZONELIST_ORDER_LEN);
2008 ret = proc_dostring(table, write, file, buffer, length, ppos);
2012 int oldval = user_zonelist_order;
2013 if (__parse_numa_zonelist_order((char*)table->data)) {
2015 * bogus value. restore saved string
2017 strncpy((char*)table->data, saved_string,
2018 NUMA_ZONELIST_ORDER_LEN);
2019 user_zonelist_order = oldval;
2020 } else if (oldval != user_zonelist_order)
2021 build_all_zonelists();
2027 #define MAX_NODE_LOAD (num_online_nodes())
2028 static int node_load[MAX_NUMNODES];
2031 * find_next_best_node - find the next node that should appear in a given node's fallback list
2032 * @node: node whose fallback list we're appending
2033 * @used_node_mask: nodemask_t of already used nodes
2035 * We use a number of factors to determine which is the next node that should
2036 * appear on a given node's fallback list. The node should not have appeared
2037 * already in @node's fallback list, and it should be the next closest node
2038 * according to the distance array (which contains arbitrary distance values
2039 * from each node to each node in the system), and should also prefer nodes
2040 * with no CPUs, since presumably they'll have very little allocation pressure
2041 * on them otherwise.
2042 * It returns -1 if no node is found.
2044 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2047 int min_val = INT_MAX;
2050 /* Use the local node if we haven't already */
2051 if (!node_isset(node, *used_node_mask)) {
2052 node_set(node, *used_node_mask);
2056 for_each_node_state(n, N_HIGH_MEMORY) {
2059 /* Don't want a node to appear more than once */
2060 if (node_isset(n, *used_node_mask))
2063 /* Use the distance array to find the distance */
2064 val = node_distance(node, n);
2066 /* Penalize nodes under us ("prefer the next node") */
2069 /* Give preference to headless and unused nodes */
2070 tmp = node_to_cpumask(n);
2071 if (!cpus_empty(tmp))
2072 val += PENALTY_FOR_NODE_WITH_CPUS;
2074 /* Slight preference for less loaded node */
2075 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2076 val += node_load[n];
2078 if (val < min_val) {
2085 node_set(best_node, *used_node_mask);
2092 * Build zonelists ordered by node and zones within node.
2093 * This results in maximum locality--normal zone overflows into local
2094 * DMA zone, if any--but risks exhausting DMA zone.
2096 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2100 struct zonelist *zonelist;
2102 for (i = 0; i < MAX_NR_ZONES; i++) {
2103 zonelist = pgdat->node_zonelists + i;
2104 for (j = 0; zonelist->zones[j] != NULL; j++)
2106 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2107 zonelist->zones[j] = NULL;
2112 * Build gfp_thisnode zonelists
2114 static void build_thisnode_zonelists(pg_data_t *pgdat)
2118 struct zonelist *zonelist;
2120 for (i = 0; i < MAX_NR_ZONES; i++) {
2121 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2122 j = build_zonelists_node(pgdat, zonelist, 0, i);
2123 zonelist->zones[j] = NULL;
2128 * Build zonelists ordered by zone and nodes within zones.
2129 * This results in conserving DMA zone[s] until all Normal memory is
2130 * exhausted, but results in overflowing to remote node while memory
2131 * may still exist in local DMA zone.
2133 static int node_order[MAX_NUMNODES];
2135 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2139 int zone_type; /* needs to be signed */
2141 struct zonelist *zonelist;
2143 for (i = 0; i < MAX_NR_ZONES; i++) {
2144 zonelist = pgdat->node_zonelists + i;
2146 for (zone_type = i; zone_type >= 0; zone_type--) {
2147 for (j = 0; j < nr_nodes; j++) {
2148 node = node_order[j];
2149 z = &NODE_DATA(node)->node_zones[zone_type];
2150 if (populated_zone(z)) {
2151 zonelist->zones[pos++] = z;
2152 check_highest_zone(zone_type);
2156 zonelist->zones[pos] = NULL;
2160 static int default_zonelist_order(void)
2163 unsigned long low_kmem_size,total_size;
2167 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2168 * If they are really small and used heavily, the system can fall
2169 * into OOM very easily.
2170 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2172 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2175 for_each_online_node(nid) {
2176 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2177 z = &NODE_DATA(nid)->node_zones[zone_type];
2178 if (populated_zone(z)) {
2179 if (zone_type < ZONE_NORMAL)
2180 low_kmem_size += z->present_pages;
2181 total_size += z->present_pages;
2185 if (!low_kmem_size || /* there are no DMA area. */
2186 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2187 return ZONELIST_ORDER_NODE;
2189 * look into each node's config.
2190 * If there is a node whose DMA/DMA32 memory is very big area on
2191 * local memory, NODE_ORDER may be suitable.
2193 average_size = total_size /
2194 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2195 for_each_online_node(nid) {
2198 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2199 z = &NODE_DATA(nid)->node_zones[zone_type];
2200 if (populated_zone(z)) {
2201 if (zone_type < ZONE_NORMAL)
2202 low_kmem_size += z->present_pages;
2203 total_size += z->present_pages;
2206 if (low_kmem_size &&
2207 total_size > average_size && /* ignore small node */
2208 low_kmem_size > total_size * 70/100)
2209 return ZONELIST_ORDER_NODE;
2211 return ZONELIST_ORDER_ZONE;
2214 static void set_zonelist_order(void)
2216 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2217 current_zonelist_order = default_zonelist_order();
2219 current_zonelist_order = user_zonelist_order;
2222 static void build_zonelists(pg_data_t *pgdat)
2226 nodemask_t used_mask;
2227 int local_node, prev_node;
2228 struct zonelist *zonelist;
2229 int order = current_zonelist_order;
2231 /* initialize zonelists */
2232 for (i = 0; i < MAX_ZONELISTS; i++) {
2233 zonelist = pgdat->node_zonelists + i;
2234 zonelist->zones[0] = NULL;
2237 /* NUMA-aware ordering of nodes */
2238 local_node = pgdat->node_id;
2239 load = num_online_nodes();
2240 prev_node = local_node;
2241 nodes_clear(used_mask);
2243 memset(node_load, 0, sizeof(node_load));
2244 memset(node_order, 0, sizeof(node_order));
2247 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2248 int distance = node_distance(local_node, node);
2251 * If another node is sufficiently far away then it is better
2252 * to reclaim pages in a zone before going off node.
2254 if (distance > RECLAIM_DISTANCE)
2255 zone_reclaim_mode = 1;
2258 * We don't want to pressure a particular node.
2259 * So adding penalty to the first node in same
2260 * distance group to make it round-robin.
2262 if (distance != node_distance(local_node, prev_node))
2263 node_load[node] = load;
2267 if (order == ZONELIST_ORDER_NODE)
2268 build_zonelists_in_node_order(pgdat, node);
2270 node_order[j++] = node; /* remember order */
2273 if (order == ZONELIST_ORDER_ZONE) {
2274 /* calculate node order -- i.e., DMA last! */
2275 build_zonelists_in_zone_order(pgdat, j);
2278 build_thisnode_zonelists(pgdat);
2281 /* Construct the zonelist performance cache - see further mmzone.h */
2282 static void build_zonelist_cache(pg_data_t *pgdat)
2286 for (i = 0; i < MAX_NR_ZONES; i++) {
2287 struct zonelist *zonelist;
2288 struct zonelist_cache *zlc;
2291 zonelist = pgdat->node_zonelists + i;
2292 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2293 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2294 for (z = zonelist->zones; *z; z++)
2295 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2300 #else /* CONFIG_NUMA */
2302 static void set_zonelist_order(void)
2304 current_zonelist_order = ZONELIST_ORDER_ZONE;
2307 static void build_zonelists(pg_data_t *pgdat)
2309 int node, local_node;
2312 local_node = pgdat->node_id;
2313 for (i = 0; i < MAX_NR_ZONES; i++) {
2314 struct zonelist *zonelist;
2316 zonelist = pgdat->node_zonelists + i;
2318 j = build_zonelists_node(pgdat, zonelist, 0, i);
2320 * Now we build the zonelist so that it contains the zones
2321 * of all the other nodes.
2322 * We don't want to pressure a particular node, so when
2323 * building the zones for node N, we make sure that the
2324 * zones coming right after the local ones are those from
2325 * node N+1 (modulo N)
2327 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2328 if (!node_online(node))
2330 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2332 for (node = 0; node < local_node; node++) {
2333 if (!node_online(node))
2335 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2338 zonelist->zones[j] = NULL;
2342 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2343 static void build_zonelist_cache(pg_data_t *pgdat)
2347 for (i = 0; i < MAX_NR_ZONES; i++)
2348 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2351 #endif /* CONFIG_NUMA */
2353 /* return values int ....just for stop_machine_run() */
2354 static int __build_all_zonelists(void *dummy)
2358 for_each_online_node(nid) {
2359 pg_data_t *pgdat = NODE_DATA(nid);
2361 build_zonelists(pgdat);
2362 build_zonelist_cache(pgdat);
2367 void build_all_zonelists(void)
2369 set_zonelist_order();
2371 if (system_state == SYSTEM_BOOTING) {
2372 __build_all_zonelists(NULL);
2373 cpuset_init_current_mems_allowed();
2375 /* we have to stop all cpus to guaranntee there is no user
2377 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2378 /* cpuset refresh routine should be here */
2380 vm_total_pages = nr_free_pagecache_pages();
2382 * Disable grouping by mobility if the number of pages in the
2383 * system is too low to allow the mechanism to work. It would be
2384 * more accurate, but expensive to check per-zone. This check is
2385 * made on memory-hotadd so a system can start with mobility
2386 * disabled and enable it later
2388 if (vm_total_pages < (MAX_ORDER_NR_PAGES * MIGRATE_TYPES))
2389 page_group_by_mobility_disabled = 1;
2391 page_group_by_mobility_disabled = 0;
2393 printk("Built %i zonelists in %s order, mobility grouping %s. "
2394 "Total pages: %ld\n",
2396 zonelist_order_name[current_zonelist_order],
2397 page_group_by_mobility_disabled ? "off" : "on",
2400 printk("Policy zone: %s\n", zone_names[policy_zone]);
2405 * Helper functions to size the waitqueue hash table.
2406 * Essentially these want to choose hash table sizes sufficiently
2407 * large so that collisions trying to wait on pages are rare.
2408 * But in fact, the number of active page waitqueues on typical
2409 * systems is ridiculously low, less than 200. So this is even
2410 * conservative, even though it seems large.
2412 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2413 * waitqueues, i.e. the size of the waitq table given the number of pages.
2415 #define PAGES_PER_WAITQUEUE 256
2417 #ifndef CONFIG_MEMORY_HOTPLUG
2418 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2420 unsigned long size = 1;
2422 pages /= PAGES_PER_WAITQUEUE;
2424 while (size < pages)
2428 * Once we have dozens or even hundreds of threads sleeping
2429 * on IO we've got bigger problems than wait queue collision.
2430 * Limit the size of the wait table to a reasonable size.
2432 size = min(size, 4096UL);
2434 return max(size, 4UL);
2438 * A zone's size might be changed by hot-add, so it is not possible to determine
2439 * a suitable size for its wait_table. So we use the maximum size now.
2441 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2443 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2444 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2445 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2447 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2448 * or more by the traditional way. (See above). It equals:
2450 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2451 * ia64(16K page size) : = ( 8G + 4M)byte.
2452 * powerpc (64K page size) : = (32G +16M)byte.
2454 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2461 * This is an integer logarithm so that shifts can be used later
2462 * to extract the more random high bits from the multiplicative
2463 * hash function before the remainder is taken.
2465 static inline unsigned long wait_table_bits(unsigned long size)
2470 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2473 * Mark a number of MAX_ORDER_NR_PAGES blocks as MIGRATE_RESERVE. The number
2474 * of blocks reserved is based on zone->pages_min. The memory within the
2475 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2476 * higher will lead to a bigger reserve which will get freed as contiguous
2477 * blocks as reclaim kicks in
2479 static void setup_zone_migrate_reserve(struct zone *zone)
2481 unsigned long start_pfn, pfn, end_pfn;
2483 unsigned long reserve, block_migratetype;
2485 /* Get the start pfn, end pfn and the number of blocks to reserve */
2486 start_pfn = zone->zone_start_pfn;
2487 end_pfn = start_pfn + zone->spanned_pages;
2488 reserve = roundup(zone->pages_min, MAX_ORDER_NR_PAGES) >> (MAX_ORDER-1);
2490 for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES) {
2491 if (!pfn_valid(pfn))
2493 page = pfn_to_page(pfn);
2495 /* Blocks with reserved pages will never free, skip them. */
2496 if (PageReserved(page))
2499 block_migratetype = get_pageblock_migratetype(page);
2501 /* If this block is reserved, account for it */
2502 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2507 /* Suitable for reserving if this block is movable */
2508 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2509 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2510 move_freepages_block(zone, page, MIGRATE_RESERVE);
2516 * If the reserve is met and this is a previous reserved block,
2519 if (block_migratetype == MIGRATE_RESERVE) {
2520 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2521 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2527 * Initially all pages are reserved - free ones are freed
2528 * up by free_all_bootmem() once the early boot process is
2529 * done. Non-atomic initialization, single-pass.
2531 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2532 unsigned long start_pfn, enum memmap_context context)
2535 unsigned long end_pfn = start_pfn + size;
2538 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2540 * There can be holes in boot-time mem_map[]s
2541 * handed to this function. They do not
2542 * exist on hotplugged memory.
2544 if (context == MEMMAP_EARLY) {
2545 if (!early_pfn_valid(pfn))
2547 if (!early_pfn_in_nid(pfn, nid))
2550 page = pfn_to_page(pfn);
2551 set_page_links(page, zone, nid, pfn);
2552 init_page_count(page);
2553 reset_page_mapcount(page);
2554 SetPageReserved(page);
2557 * Mark the block movable so that blocks are reserved for
2558 * movable at startup. This will force kernel allocations
2559 * to reserve their blocks rather than leaking throughout
2560 * the address space during boot when many long-lived
2561 * kernel allocations are made. Later some blocks near
2562 * the start are marked MIGRATE_RESERVE by
2563 * setup_zone_migrate_reserve()
2565 if ((pfn & (MAX_ORDER_NR_PAGES-1)))
2566 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2568 INIT_LIST_HEAD(&page->lru);
2569 #ifdef WANT_PAGE_VIRTUAL
2570 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2571 if (!is_highmem_idx(zone))
2572 set_page_address(page, __va(pfn << PAGE_SHIFT));
2577 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2578 struct zone *zone, unsigned long size)
2581 for_each_migratetype_order(order, t) {
2582 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2583 zone->free_area[order].nr_free = 0;
2587 #ifndef __HAVE_ARCH_MEMMAP_INIT
2588 #define memmap_init(size, nid, zone, start_pfn) \
2589 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2592 static int __devinit zone_batchsize(struct zone *zone)
2597 * The per-cpu-pages pools are set to around 1000th of the
2598 * size of the zone. But no more than 1/2 of a meg.
2600 * OK, so we don't know how big the cache is. So guess.
2602 batch = zone->present_pages / 1024;
2603 if (batch * PAGE_SIZE > 512 * 1024)
2604 batch = (512 * 1024) / PAGE_SIZE;
2605 batch /= 4; /* We effectively *= 4 below */
2610 * Clamp the batch to a 2^n - 1 value. Having a power
2611 * of 2 value was found to be more likely to have
2612 * suboptimal cache aliasing properties in some cases.
2614 * For example if 2 tasks are alternately allocating
2615 * batches of pages, one task can end up with a lot
2616 * of pages of one half of the possible page colors
2617 * and the other with pages of the other colors.
2619 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2624 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2626 struct per_cpu_pages *pcp;
2628 memset(p, 0, sizeof(*p));
2630 pcp = &p->pcp[0]; /* hot */
2632 pcp->high = 6 * batch;
2633 pcp->batch = max(1UL, 1 * batch);
2634 INIT_LIST_HEAD(&pcp->list);
2636 pcp = &p->pcp[1]; /* cold*/
2638 pcp->high = 2 * batch;
2639 pcp->batch = max(1UL, batch/2);
2640 INIT_LIST_HEAD(&pcp->list);
2644 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2645 * to the value high for the pageset p.
2648 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2651 struct per_cpu_pages *pcp;
2653 pcp = &p->pcp[0]; /* hot list */
2655 pcp->batch = max(1UL, high/4);
2656 if ((high/4) > (PAGE_SHIFT * 8))
2657 pcp->batch = PAGE_SHIFT * 8;
2663 * Boot pageset table. One per cpu which is going to be used for all
2664 * zones and all nodes. The parameters will be set in such a way
2665 * that an item put on a list will immediately be handed over to
2666 * the buddy list. This is safe since pageset manipulation is done
2667 * with interrupts disabled.
2669 * Some NUMA counter updates may also be caught by the boot pagesets.
2671 * The boot_pagesets must be kept even after bootup is complete for
2672 * unused processors and/or zones. They do play a role for bootstrapping
2673 * hotplugged processors.
2675 * zoneinfo_show() and maybe other functions do
2676 * not check if the processor is online before following the pageset pointer.
2677 * Other parts of the kernel may not check if the zone is available.
2679 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2682 * Dynamically allocate memory for the
2683 * per cpu pageset array in struct zone.
2685 static int __cpuinit process_zones(int cpu)
2687 struct zone *zone, *dzone;
2688 int node = cpu_to_node(cpu);
2690 node_set_state(node, N_CPU); /* this node has a cpu */
2692 for_each_zone(zone) {
2694 if (!populated_zone(zone))
2697 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2699 if (!zone_pcp(zone, cpu))
2702 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2704 if (percpu_pagelist_fraction)
2705 setup_pagelist_highmark(zone_pcp(zone, cpu),
2706 (zone->present_pages / percpu_pagelist_fraction));
2711 for_each_zone(dzone) {
2712 if (!populated_zone(dzone))
2716 kfree(zone_pcp(dzone, cpu));
2717 zone_pcp(dzone, cpu) = NULL;
2722 static inline void free_zone_pagesets(int cpu)
2726 for_each_zone(zone) {
2727 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2729 /* Free per_cpu_pageset if it is slab allocated */
2730 if (pset != &boot_pageset[cpu])
2732 zone_pcp(zone, cpu) = NULL;
2736 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2737 unsigned long action,
2740 int cpu = (long)hcpu;
2741 int ret = NOTIFY_OK;
2744 case CPU_UP_PREPARE:
2745 case CPU_UP_PREPARE_FROZEN:
2746 if (process_zones(cpu))
2749 case CPU_UP_CANCELED:
2750 case CPU_UP_CANCELED_FROZEN:
2752 case CPU_DEAD_FROZEN:
2753 free_zone_pagesets(cpu);
2761 static struct notifier_block __cpuinitdata pageset_notifier =
2762 { &pageset_cpuup_callback, NULL, 0 };
2764 void __init setup_per_cpu_pageset(void)
2768 /* Initialize per_cpu_pageset for cpu 0.
2769 * A cpuup callback will do this for every cpu
2770 * as it comes online
2772 err = process_zones(smp_processor_id());
2774 register_cpu_notifier(&pageset_notifier);
2779 static noinline __init_refok
2780 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2783 struct pglist_data *pgdat = zone->zone_pgdat;
2787 * The per-page waitqueue mechanism uses hashed waitqueues
2790 zone->wait_table_hash_nr_entries =
2791 wait_table_hash_nr_entries(zone_size_pages);
2792 zone->wait_table_bits =
2793 wait_table_bits(zone->wait_table_hash_nr_entries);
2794 alloc_size = zone->wait_table_hash_nr_entries
2795 * sizeof(wait_queue_head_t);
2797 if (system_state == SYSTEM_BOOTING) {
2798 zone->wait_table = (wait_queue_head_t *)
2799 alloc_bootmem_node(pgdat, alloc_size);
2802 * This case means that a zone whose size was 0 gets new memory
2803 * via memory hot-add.
2804 * But it may be the case that a new node was hot-added. In
2805 * this case vmalloc() will not be able to use this new node's
2806 * memory - this wait_table must be initialized to use this new
2807 * node itself as well.
2808 * To use this new node's memory, further consideration will be
2811 zone->wait_table = vmalloc(alloc_size);
2813 if (!zone->wait_table)
2816 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2817 init_waitqueue_head(zone->wait_table + i);
2822 static __meminit void zone_pcp_init(struct zone *zone)
2825 unsigned long batch = zone_batchsize(zone);
2827 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2829 /* Early boot. Slab allocator not functional yet */
2830 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2831 setup_pageset(&boot_pageset[cpu],0);
2833 setup_pageset(zone_pcp(zone,cpu), batch);
2836 if (zone->present_pages)
2837 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2838 zone->name, zone->present_pages, batch);
2841 __meminit int init_currently_empty_zone(struct zone *zone,
2842 unsigned long zone_start_pfn,
2844 enum memmap_context context)
2846 struct pglist_data *pgdat = zone->zone_pgdat;
2848 ret = zone_wait_table_init(zone, size);
2851 pgdat->nr_zones = zone_idx(zone) + 1;
2853 zone->zone_start_pfn = zone_start_pfn;
2855 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2857 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2862 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2864 * Basic iterator support. Return the first range of PFNs for a node
2865 * Note: nid == MAX_NUMNODES returns first region regardless of node
2867 static int __meminit first_active_region_index_in_nid(int nid)
2871 for (i = 0; i < nr_nodemap_entries; i++)
2872 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2879 * Basic iterator support. Return the next active range of PFNs for a node
2880 * Note: nid == MAX_NUMNODES returns next region regardles of node
2882 static int __meminit next_active_region_index_in_nid(int index, int nid)
2884 for (index = index + 1; index < nr_nodemap_entries; index++)
2885 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2891 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2893 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2894 * Architectures may implement their own version but if add_active_range()
2895 * was used and there are no special requirements, this is a convenient
2898 int __meminit early_pfn_to_nid(unsigned long pfn)
2902 for (i = 0; i < nr_nodemap_entries; i++) {
2903 unsigned long start_pfn = early_node_map[i].start_pfn;
2904 unsigned long end_pfn = early_node_map[i].end_pfn;
2906 if (start_pfn <= pfn && pfn < end_pfn)
2907 return early_node_map[i].nid;
2912 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2914 /* Basic iterator support to walk early_node_map[] */
2915 #define for_each_active_range_index_in_nid(i, nid) \
2916 for (i = first_active_region_index_in_nid(nid); i != -1; \
2917 i = next_active_region_index_in_nid(i, nid))
2920 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2921 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2922 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2924 * If an architecture guarantees that all ranges registered with
2925 * add_active_ranges() contain no holes and may be freed, this
2926 * this function may be used instead of calling free_bootmem() manually.
2928 void __init free_bootmem_with_active_regions(int nid,
2929 unsigned long max_low_pfn)
2933 for_each_active_range_index_in_nid(i, nid) {
2934 unsigned long size_pages = 0;
2935 unsigned long end_pfn = early_node_map[i].end_pfn;
2937 if (early_node_map[i].start_pfn >= max_low_pfn)
2940 if (end_pfn > max_low_pfn)
2941 end_pfn = max_low_pfn;
2943 size_pages = end_pfn - early_node_map[i].start_pfn;
2944 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2945 PFN_PHYS(early_node_map[i].start_pfn),
2946 size_pages << PAGE_SHIFT);
2951 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2952 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2954 * If an architecture guarantees that all ranges registered with
2955 * add_active_ranges() contain no holes and may be freed, this
2956 * function may be used instead of calling memory_present() manually.
2958 void __init sparse_memory_present_with_active_regions(int nid)
2962 for_each_active_range_index_in_nid(i, nid)
2963 memory_present(early_node_map[i].nid,
2964 early_node_map[i].start_pfn,
2965 early_node_map[i].end_pfn);
2969 * push_node_boundaries - Push node boundaries to at least the requested boundary
2970 * @nid: The nid of the node to push the boundary for
2971 * @start_pfn: The start pfn of the node
2972 * @end_pfn: The end pfn of the node
2974 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2975 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2976 * be hotplugged even though no physical memory exists. This function allows
2977 * an arch to push out the node boundaries so mem_map is allocated that can
2980 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2981 void __init push_node_boundaries(unsigned int nid,
2982 unsigned long start_pfn, unsigned long end_pfn)
2984 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2985 nid, start_pfn, end_pfn);
2987 /* Initialise the boundary for this node if necessary */
2988 if (node_boundary_end_pfn[nid] == 0)
2989 node_boundary_start_pfn[nid] = -1UL;
2991 /* Update the boundaries */
2992 if (node_boundary_start_pfn[nid] > start_pfn)
2993 node_boundary_start_pfn[nid] = start_pfn;
2994 if (node_boundary_end_pfn[nid] < end_pfn)
2995 node_boundary_end_pfn[nid] = end_pfn;
2998 /* If necessary, push the node boundary out for reserve hotadd */
2999 static void __meminit account_node_boundary(unsigned int nid,
3000 unsigned long *start_pfn, unsigned long *end_pfn)
3002 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3003 nid, *start_pfn, *end_pfn);
3005 /* Return if boundary information has not been provided */
3006 if (node_boundary_end_pfn[nid] == 0)
3009 /* Check the boundaries and update if necessary */
3010 if (node_boundary_start_pfn[nid] < *start_pfn)
3011 *start_pfn = node_boundary_start_pfn[nid];
3012 if (node_boundary_end_pfn[nid] > *end_pfn)
3013 *end_pfn = node_boundary_end_pfn[nid];
3016 void __init push_node_boundaries(unsigned int nid,
3017 unsigned long start_pfn, unsigned long end_pfn) {}
3019 static void __meminit account_node_boundary(unsigned int nid,
3020 unsigned long *start_pfn, unsigned long *end_pfn) {}
3025 * get_pfn_range_for_nid - Return the start and end page frames for a node
3026 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3027 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3028 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3030 * It returns the start and end page frame of a node based on information
3031 * provided by an arch calling add_active_range(). If called for a node
3032 * with no available memory, a warning is printed and the start and end
3035 void __meminit get_pfn_range_for_nid(unsigned int nid,
3036 unsigned long *start_pfn, unsigned long *end_pfn)
3042 for_each_active_range_index_in_nid(i, nid) {
3043 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3044 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3047 if (*start_pfn == -1UL)
3050 /* Push the node boundaries out if requested */
3051 account_node_boundary(nid, start_pfn, end_pfn);
3055 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3056 * assumption is made that zones within a node are ordered in monotonic
3057 * increasing memory addresses so that the "highest" populated zone is used
3059 void __init find_usable_zone_for_movable(void)
3062 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3063 if (zone_index == ZONE_MOVABLE)
3066 if (arch_zone_highest_possible_pfn[zone_index] >
3067 arch_zone_lowest_possible_pfn[zone_index])
3071 VM_BUG_ON(zone_index == -1);
3072 movable_zone = zone_index;
3076 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3077 * because it is sized independant of architecture. Unlike the other zones,
3078 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3079 * in each node depending on the size of each node and how evenly kernelcore
3080 * is distributed. This helper function adjusts the zone ranges
3081 * provided by the architecture for a given node by using the end of the
3082 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3083 * zones within a node are in order of monotonic increases memory addresses
3085 void __meminit adjust_zone_range_for_zone_movable(int nid,
3086 unsigned long zone_type,
3087 unsigned long node_start_pfn,
3088 unsigned long node_end_pfn,
3089 unsigned long *zone_start_pfn,
3090 unsigned long *zone_end_pfn)
3092 /* Only adjust if ZONE_MOVABLE is on this node */
3093 if (zone_movable_pfn[nid]) {
3094 /* Size ZONE_MOVABLE */
3095 if (zone_type == ZONE_MOVABLE) {
3096 *zone_start_pfn = zone_movable_pfn[nid];
3097 *zone_end_pfn = min(node_end_pfn,
3098 arch_zone_highest_possible_pfn[movable_zone]);
3100 /* Adjust for ZONE_MOVABLE starting within this range */
3101 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3102 *zone_end_pfn > zone_movable_pfn[nid]) {
3103 *zone_end_pfn = zone_movable_pfn[nid];
3105 /* Check if this whole range is within ZONE_MOVABLE */
3106 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3107 *zone_start_pfn = *zone_end_pfn;
3112 * Return the number of pages a zone spans in a node, including holes
3113 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3115 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3116 unsigned long zone_type,
3117 unsigned long *ignored)
3119 unsigned long node_start_pfn, node_end_pfn;
3120 unsigned long zone_start_pfn, zone_end_pfn;
3122 /* Get the start and end of the node and zone */
3123 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3124 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3125 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3126 adjust_zone_range_for_zone_movable(nid, zone_type,
3127 node_start_pfn, node_end_pfn,
3128 &zone_start_pfn, &zone_end_pfn);
3130 /* Check that this node has pages within the zone's required range */
3131 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3134 /* Move the zone boundaries inside the node if necessary */
3135 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3136 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3138 /* Return the spanned pages */
3139 return zone_end_pfn - zone_start_pfn;
3143 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3144 * then all holes in the requested range will be accounted for.
3146 unsigned long __meminit __absent_pages_in_range(int nid,
3147 unsigned long range_start_pfn,
3148 unsigned long range_end_pfn)
3151 unsigned long prev_end_pfn = 0, hole_pages = 0;
3152 unsigned long start_pfn;
3154 /* Find the end_pfn of the first active range of pfns in the node */
3155 i = first_active_region_index_in_nid(nid);
3159 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3161 /* Account for ranges before physical memory on this node */
3162 if (early_node_map[i].start_pfn > range_start_pfn)
3163 hole_pages = prev_end_pfn - range_start_pfn;
3165 /* Find all holes for the zone within the node */
3166 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3168 /* No need to continue if prev_end_pfn is outside the zone */
3169 if (prev_end_pfn >= range_end_pfn)
3172 /* Make sure the end of the zone is not within the hole */
3173 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3174 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3176 /* Update the hole size cound and move on */
3177 if (start_pfn > range_start_pfn) {
3178 BUG_ON(prev_end_pfn > start_pfn);
3179 hole_pages += start_pfn - prev_end_pfn;
3181 prev_end_pfn = early_node_map[i].end_pfn;
3184 /* Account for ranges past physical memory on this node */
3185 if (range_end_pfn > prev_end_pfn)
3186 hole_pages += range_end_pfn -
3187 max(range_start_pfn, prev_end_pfn);
3193 * absent_pages_in_range - Return number of page frames in holes within a range
3194 * @start_pfn: The start PFN to start searching for holes
3195 * @end_pfn: The end PFN to stop searching for holes
3197 * It returns the number of pages frames in memory holes within a range.
3199 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3200 unsigned long end_pfn)
3202 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3205 /* Return the number of page frames in holes in a zone on a node */
3206 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3207 unsigned long zone_type,
3208 unsigned long *ignored)
3210 unsigned long node_start_pfn, node_end_pfn;
3211 unsigned long zone_start_pfn, zone_end_pfn;
3213 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3214 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3216 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3219 adjust_zone_range_for_zone_movable(nid, zone_type,
3220 node_start_pfn, node_end_pfn,
3221 &zone_start_pfn, &zone_end_pfn);
3222 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3226 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3227 unsigned long zone_type,
3228 unsigned long *zones_size)
3230 return zones_size[zone_type];
3233 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3234 unsigned long zone_type,
3235 unsigned long *zholes_size)
3240 return zholes_size[zone_type];
3245 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3246 unsigned long *zones_size, unsigned long *zholes_size)
3248 unsigned long realtotalpages, totalpages = 0;
3251 for (i = 0; i < MAX_NR_ZONES; i++)
3252 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3254 pgdat->node_spanned_pages = totalpages;
3256 realtotalpages = totalpages;
3257 for (i = 0; i < MAX_NR_ZONES; i++)
3259 zone_absent_pages_in_node(pgdat->node_id, i,
3261 pgdat->node_present_pages = realtotalpages;
3262 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3266 #ifndef CONFIG_SPARSEMEM
3268 * Calculate the size of the zone->blockflags rounded to an unsigned long
3269 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3270 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3271 * round what is now in bits to nearest long in bits, then return it in
3274 static unsigned long __init usemap_size(unsigned long zonesize)
3276 unsigned long usemapsize;
3278 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3279 usemapsize = usemapsize >> (MAX_ORDER-1);
3280 usemapsize *= NR_PAGEBLOCK_BITS;
3281 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3283 return usemapsize / 8;
3286 static void __init setup_usemap(struct pglist_data *pgdat,
3287 struct zone *zone, unsigned long zonesize)
3289 unsigned long usemapsize = usemap_size(zonesize);
3290 zone->pageblock_flags = NULL;
3292 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3293 memset(zone->pageblock_flags, 0, usemapsize);
3297 static void inline setup_usemap(struct pglist_data *pgdat,
3298 struct zone *zone, unsigned long zonesize) {}
3299 #endif /* CONFIG_SPARSEMEM */
3302 * Set up the zone data structures:
3303 * - mark all pages reserved
3304 * - mark all memory queues empty
3305 * - clear the memory bitmaps
3307 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3308 unsigned long *zones_size, unsigned long *zholes_size)
3311 int nid = pgdat->node_id;
3312 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3315 pgdat_resize_init(pgdat);
3316 pgdat->nr_zones = 0;
3317 init_waitqueue_head(&pgdat->kswapd_wait);
3318 pgdat->kswapd_max_order = 0;
3320 for (j = 0; j < MAX_NR_ZONES; j++) {
3321 struct zone *zone = pgdat->node_zones + j;
3322 unsigned long size, realsize, memmap_pages;
3324 size = zone_spanned_pages_in_node(nid, j, zones_size);
3325 realsize = size - zone_absent_pages_in_node(nid, j,
3329 * Adjust realsize so that it accounts for how much memory
3330 * is used by this zone for memmap. This affects the watermark
3331 * and per-cpu initialisations
3333 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3334 if (realsize >= memmap_pages) {
3335 realsize -= memmap_pages;
3337 " %s zone: %lu pages used for memmap\n",
3338 zone_names[j], memmap_pages);
3341 " %s zone: %lu pages exceeds realsize %lu\n",
3342 zone_names[j], memmap_pages, realsize);
3344 /* Account for reserved pages */
3345 if (j == 0 && realsize > dma_reserve) {
3346 realsize -= dma_reserve;
3347 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3348 zone_names[0], dma_reserve);
3351 if (!is_highmem_idx(j))
3352 nr_kernel_pages += realsize;
3353 nr_all_pages += realsize;
3355 zone->spanned_pages = size;
3356 zone->present_pages = realsize;
3359 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3361 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3363 zone->name = zone_names[j];
3364 spin_lock_init(&zone->lock);
3365 spin_lock_init(&zone->lru_lock);
3366 zone_seqlock_init(zone);
3367 zone->zone_pgdat = pgdat;
3369 zone->prev_priority = DEF_PRIORITY;
3371 zone_pcp_init(zone);
3372 INIT_LIST_HEAD(&zone->active_list);
3373 INIT_LIST_HEAD(&zone->inactive_list);
3374 zone->nr_scan_active = 0;
3375 zone->nr_scan_inactive = 0;
3376 zap_zone_vm_stats(zone);
3377 atomic_set(&zone->reclaim_in_progress, 0);
3381 setup_usemap(pgdat, zone, size);
3382 ret = init_currently_empty_zone(zone, zone_start_pfn,
3383 size, MEMMAP_EARLY);
3385 zone_start_pfn += size;
3389 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3391 /* Skip empty nodes */
3392 if (!pgdat->node_spanned_pages)
3395 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3396 /* ia64 gets its own node_mem_map, before this, without bootmem */
3397 if (!pgdat->node_mem_map) {
3398 unsigned long size, start, end;
3402 * The zone's endpoints aren't required to be MAX_ORDER
3403 * aligned but the node_mem_map endpoints must be in order
3404 * for the buddy allocator to function correctly.
3406 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3407 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3408 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3409 size = (end - start) * sizeof(struct page);
3410 map = alloc_remap(pgdat->node_id, size);
3412 map = alloc_bootmem_node(pgdat, size);
3413 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3415 #ifndef CONFIG_NEED_MULTIPLE_NODES
3417 * With no DISCONTIG, the global mem_map is just set as node 0's
3419 if (pgdat == NODE_DATA(0)) {
3420 mem_map = NODE_DATA(0)->node_mem_map;
3421 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3422 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3423 mem_map -= pgdat->node_start_pfn;
3424 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3427 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3430 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3431 unsigned long *zones_size, unsigned long node_start_pfn,
3432 unsigned long *zholes_size)
3434 pgdat->node_id = nid;
3435 pgdat->node_start_pfn = node_start_pfn;
3436 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3438 alloc_node_mem_map(pgdat);
3440 free_area_init_core(pgdat, zones_size, zholes_size);
3443 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3445 #if MAX_NUMNODES > 1
3447 * Figure out the number of possible node ids.
3449 static void __init setup_nr_node_ids(void)
3452 unsigned int highest = 0;
3454 for_each_node_mask(node, node_possible_map)
3456 nr_node_ids = highest + 1;
3459 static inline void setup_nr_node_ids(void)
3465 * add_active_range - Register a range of PFNs backed by physical memory
3466 * @nid: The node ID the range resides on
3467 * @start_pfn: The start PFN of the available physical memory
3468 * @end_pfn: The end PFN of the available physical memory
3470 * These ranges are stored in an early_node_map[] and later used by
3471 * free_area_init_nodes() to calculate zone sizes and holes. If the
3472 * range spans a memory hole, it is up to the architecture to ensure
3473 * the memory is not freed by the bootmem allocator. If possible
3474 * the range being registered will be merged with existing ranges.
3476 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3477 unsigned long end_pfn)
3481 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3482 "%d entries of %d used\n",
3483 nid, start_pfn, end_pfn,
3484 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3486 /* Merge with existing active regions if possible */
3487 for (i = 0; i < nr_nodemap_entries; i++) {
3488 if (early_node_map[i].nid != nid)
3491 /* Skip if an existing region covers this new one */
3492 if (start_pfn >= early_node_map[i].start_pfn &&
3493 end_pfn <= early_node_map[i].end_pfn)
3496 /* Merge forward if suitable */
3497 if (start_pfn <= early_node_map[i].end_pfn &&
3498 end_pfn > early_node_map[i].end_pfn) {
3499 early_node_map[i].end_pfn = end_pfn;
3503 /* Merge backward if suitable */
3504 if (start_pfn < early_node_map[i].end_pfn &&
3505 end_pfn >= early_node_map[i].start_pfn) {
3506 early_node_map[i].start_pfn = start_pfn;
3511 /* Check that early_node_map is large enough */
3512 if (i >= MAX_ACTIVE_REGIONS) {
3513 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3514 MAX_ACTIVE_REGIONS);
3518 early_node_map[i].nid = nid;
3519 early_node_map[i].start_pfn = start_pfn;
3520 early_node_map[i].end_pfn = end_pfn;
3521 nr_nodemap_entries = i + 1;
3525 * shrink_active_range - Shrink an existing registered range of PFNs
3526 * @nid: The node id the range is on that should be shrunk
3527 * @old_end_pfn: The old end PFN of the range
3528 * @new_end_pfn: The new PFN of the range
3530 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3531 * The map is kept at the end physical page range that has already been
3532 * registered with add_active_range(). This function allows an arch to shrink
3533 * an existing registered range.
3535 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3536 unsigned long new_end_pfn)
3540 /* Find the old active region end and shrink */
3541 for_each_active_range_index_in_nid(i, nid)
3542 if (early_node_map[i].end_pfn == old_end_pfn) {
3543 early_node_map[i].end_pfn = new_end_pfn;
3549 * remove_all_active_ranges - Remove all currently registered regions
3551 * During discovery, it may be found that a table like SRAT is invalid
3552 * and an alternative discovery method must be used. This function removes
3553 * all currently registered regions.
3555 void __init remove_all_active_ranges(void)
3557 memset(early_node_map, 0, sizeof(early_node_map));
3558 nr_nodemap_entries = 0;
3559 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3560 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3561 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3562 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3565 /* Compare two active node_active_regions */
3566 static int __init cmp_node_active_region(const void *a, const void *b)
3568 struct node_active_region *arange = (struct node_active_region *)a;
3569 struct node_active_region *brange = (struct node_active_region *)b;
3571 /* Done this way to avoid overflows */
3572 if (arange->start_pfn > brange->start_pfn)
3574 if (arange->start_pfn < brange->start_pfn)
3580 /* sort the node_map by start_pfn */
3581 static void __init sort_node_map(void)
3583 sort(early_node_map, (size_t)nr_nodemap_entries,
3584 sizeof(struct node_active_region),
3585 cmp_node_active_region, NULL);
3588 /* Find the lowest pfn for a node */
3589 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3592 unsigned long min_pfn = ULONG_MAX;
3594 /* Assuming a sorted map, the first range found has the starting pfn */
3595 for_each_active_range_index_in_nid(i, nid)
3596 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3598 if (min_pfn == ULONG_MAX) {
3600 "Could not find start_pfn for node %lu\n", nid);
3608 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3610 * It returns the minimum PFN based on information provided via
3611 * add_active_range().
3613 unsigned long __init find_min_pfn_with_active_regions(void)
3615 return find_min_pfn_for_node(MAX_NUMNODES);
3619 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3621 * It returns the maximum PFN based on information provided via
3622 * add_active_range().
3624 unsigned long __init find_max_pfn_with_active_regions(void)
3627 unsigned long max_pfn = 0;
3629 for (i = 0; i < nr_nodemap_entries; i++)
3630 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3636 * early_calculate_totalpages()
3637 * Sum pages in active regions for movable zone.
3638 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3640 unsigned long __init early_calculate_totalpages(void)
3643 unsigned long totalpages = 0;
3645 for (i = 0; i < nr_nodemap_entries; i++) {
3646 unsigned long pages = early_node_map[i].end_pfn -
3647 early_node_map[i].start_pfn;
3648 totalpages += pages;
3650 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3656 * Find the PFN the Movable zone begins in each node. Kernel memory
3657 * is spread evenly between nodes as long as the nodes have enough
3658 * memory. When they don't, some nodes will have more kernelcore than
3661 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3664 unsigned long usable_startpfn;
3665 unsigned long kernelcore_node, kernelcore_remaining;
3666 unsigned long totalpages = early_calculate_totalpages();
3667 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3670 * If movablecore was specified, calculate what size of
3671 * kernelcore that corresponds so that memory usable for
3672 * any allocation type is evenly spread. If both kernelcore
3673 * and movablecore are specified, then the value of kernelcore
3674 * will be used for required_kernelcore if it's greater than
3675 * what movablecore would have allowed.
3677 if (required_movablecore) {
3678 unsigned long corepages;
3681 * Round-up so that ZONE_MOVABLE is at least as large as what
3682 * was requested by the user
3684 required_movablecore =
3685 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3686 corepages = totalpages - required_movablecore;
3688 required_kernelcore = max(required_kernelcore, corepages);
3691 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3692 if (!required_kernelcore)
3695 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3696 find_usable_zone_for_movable();
3697 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3700 /* Spread kernelcore memory as evenly as possible throughout nodes */
3701 kernelcore_node = required_kernelcore / usable_nodes;
3702 for_each_node_state(nid, N_HIGH_MEMORY) {
3704 * Recalculate kernelcore_node if the division per node
3705 * now exceeds what is necessary to satisfy the requested
3706 * amount of memory for the kernel
3708 if (required_kernelcore < kernelcore_node)
3709 kernelcore_node = required_kernelcore / usable_nodes;
3712 * As the map is walked, we track how much memory is usable
3713 * by the kernel using kernelcore_remaining. When it is
3714 * 0, the rest of the node is usable by ZONE_MOVABLE
3716 kernelcore_remaining = kernelcore_node;
3718 /* Go through each range of PFNs within this node */
3719 for_each_active_range_index_in_nid(i, nid) {
3720 unsigned long start_pfn, end_pfn;
3721 unsigned long size_pages;
3723 start_pfn = max(early_node_map[i].start_pfn,
3724 zone_movable_pfn[nid]);
3725 end_pfn = early_node_map[i].end_pfn;
3726 if (start_pfn >= end_pfn)
3729 /* Account for what is only usable for kernelcore */
3730 if (start_pfn < usable_startpfn) {
3731 unsigned long kernel_pages;
3732 kernel_pages = min(end_pfn, usable_startpfn)
3735 kernelcore_remaining -= min(kernel_pages,
3736 kernelcore_remaining);
3737 required_kernelcore -= min(kernel_pages,
3738 required_kernelcore);
3740 /* Continue if range is now fully accounted */
3741 if (end_pfn <= usable_startpfn) {
3744 * Push zone_movable_pfn to the end so
3745 * that if we have to rebalance
3746 * kernelcore across nodes, we will
3747 * not double account here
3749 zone_movable_pfn[nid] = end_pfn;
3752 start_pfn = usable_startpfn;
3756 * The usable PFN range for ZONE_MOVABLE is from
3757 * start_pfn->end_pfn. Calculate size_pages as the
3758 * number of pages used as kernelcore
3760 size_pages = end_pfn - start_pfn;
3761 if (size_pages > kernelcore_remaining)
3762 size_pages = kernelcore_remaining;
3763 zone_movable_pfn[nid] = start_pfn + size_pages;
3766 * Some kernelcore has been met, update counts and
3767 * break if the kernelcore for this node has been
3770 required_kernelcore -= min(required_kernelcore,
3772 kernelcore_remaining -= size_pages;
3773 if (!kernelcore_remaining)
3779 * If there is still required_kernelcore, we do another pass with one
3780 * less node in the count. This will push zone_movable_pfn[nid] further
3781 * along on the nodes that still have memory until kernelcore is
3785 if (usable_nodes && required_kernelcore > usable_nodes)
3788 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3789 for (nid = 0; nid < MAX_NUMNODES; nid++)
3790 zone_movable_pfn[nid] =
3791 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3794 /* Any regular memory on that node ? */
3795 static void check_for_regular_memory(pg_data_t *pgdat)
3797 #ifdef CONFIG_HIGHMEM
3798 enum zone_type zone_type;
3800 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3801 struct zone *zone = &pgdat->node_zones[zone_type];
3802 if (zone->present_pages)
3803 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3809 * free_area_init_nodes - Initialise all pg_data_t and zone data
3810 * @max_zone_pfn: an array of max PFNs for each zone
3812 * This will call free_area_init_node() for each active node in the system.
3813 * Using the page ranges provided by add_active_range(), the size of each
3814 * zone in each node and their holes is calculated. If the maximum PFN
3815 * between two adjacent zones match, it is assumed that the zone is empty.
3816 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3817 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3818 * starts where the previous one ended. For example, ZONE_DMA32 starts
3819 * at arch_max_dma_pfn.
3821 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3826 /* Sort early_node_map as initialisation assumes it is sorted */
3829 /* Record where the zone boundaries are */
3830 memset(arch_zone_lowest_possible_pfn, 0,
3831 sizeof(arch_zone_lowest_possible_pfn));
3832 memset(arch_zone_highest_possible_pfn, 0,
3833 sizeof(arch_zone_highest_possible_pfn));
3834 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3835 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3836 for (i = 1; i < MAX_NR_ZONES; i++) {
3837 if (i == ZONE_MOVABLE)
3839 arch_zone_lowest_possible_pfn[i] =
3840 arch_zone_highest_possible_pfn[i-1];
3841 arch_zone_highest_possible_pfn[i] =
3842 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3844 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3845 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3847 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3848 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3849 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3851 /* Print out the zone ranges */
3852 printk("Zone PFN ranges:\n");
3853 for (i = 0; i < MAX_NR_ZONES; i++) {
3854 if (i == ZONE_MOVABLE)
3856 printk(" %-8s %8lu -> %8lu\n",
3858 arch_zone_lowest_possible_pfn[i],
3859 arch_zone_highest_possible_pfn[i]);
3862 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3863 printk("Movable zone start PFN for each node\n");
3864 for (i = 0; i < MAX_NUMNODES; i++) {
3865 if (zone_movable_pfn[i])
3866 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3869 /* Print out the early_node_map[] */
3870 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3871 for (i = 0; i < nr_nodemap_entries; i++)
3872 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3873 early_node_map[i].start_pfn,
3874 early_node_map[i].end_pfn);
3876 /* Initialise every node */
3877 setup_nr_node_ids();
3878 for_each_online_node(nid) {
3879 pg_data_t *pgdat = NODE_DATA(nid);
3880 free_area_init_node(nid, pgdat, NULL,
3881 find_min_pfn_for_node(nid), NULL);
3883 /* Any memory on that node */
3884 if (pgdat->node_present_pages)
3885 node_set_state(nid, N_HIGH_MEMORY);
3886 check_for_regular_memory(pgdat);
3890 static int __init cmdline_parse_core(char *p, unsigned long *core)
3892 unsigned long long coremem;
3896 coremem = memparse(p, &p);
3897 *core = coremem >> PAGE_SHIFT;
3899 /* Paranoid check that UL is enough for the coremem value */
3900 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3906 * kernelcore=size sets the amount of memory for use for allocations that
3907 * cannot be reclaimed or migrated.
3909 static int __init cmdline_parse_kernelcore(char *p)
3911 return cmdline_parse_core(p, &required_kernelcore);
3915 * movablecore=size sets the amount of memory for use for allocations that
3916 * can be reclaimed or migrated.
3918 static int __init cmdline_parse_movablecore(char *p)
3920 return cmdline_parse_core(p, &required_movablecore);
3923 early_param("kernelcore", cmdline_parse_kernelcore);
3924 early_param("movablecore", cmdline_parse_movablecore);
3926 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3929 * set_dma_reserve - set the specified number of pages reserved in the first zone
3930 * @new_dma_reserve: The number of pages to mark reserved
3932 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3933 * In the DMA zone, a significant percentage may be consumed by kernel image
3934 * and other unfreeable allocations which can skew the watermarks badly. This
3935 * function may optionally be used to account for unfreeable pages in the
3936 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3937 * smaller per-cpu batchsize.
3939 void __init set_dma_reserve(unsigned long new_dma_reserve)
3941 dma_reserve = new_dma_reserve;
3944 #ifndef CONFIG_NEED_MULTIPLE_NODES
3945 static bootmem_data_t contig_bootmem_data;
3946 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3948 EXPORT_SYMBOL(contig_page_data);
3951 void __init free_area_init(unsigned long *zones_size)
3953 free_area_init_node(0, NODE_DATA(0), zones_size,
3954 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3957 static int page_alloc_cpu_notify(struct notifier_block *self,
3958 unsigned long action, void *hcpu)
3960 int cpu = (unsigned long)hcpu;
3962 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3963 local_irq_disable();
3965 vm_events_fold_cpu(cpu);
3967 refresh_cpu_vm_stats(cpu);
3972 void __init page_alloc_init(void)
3974 hotcpu_notifier(page_alloc_cpu_notify, 0);
3978 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3979 * or min_free_kbytes changes.
3981 static void calculate_totalreserve_pages(void)
3983 struct pglist_data *pgdat;
3984 unsigned long reserve_pages = 0;
3985 enum zone_type i, j;
3987 for_each_online_pgdat(pgdat) {
3988 for (i = 0; i < MAX_NR_ZONES; i++) {
3989 struct zone *zone = pgdat->node_zones + i;
3990 unsigned long max = 0;
3992 /* Find valid and maximum lowmem_reserve in the zone */
3993 for (j = i; j < MAX_NR_ZONES; j++) {
3994 if (zone->lowmem_reserve[j] > max)
3995 max = zone->lowmem_reserve[j];
3998 /* we treat pages_high as reserved pages. */
3999 max += zone->pages_high;
4001 if (max > zone->present_pages)
4002 max = zone->present_pages;
4003 reserve_pages += max;
4006 totalreserve_pages = reserve_pages;
4010 * setup_per_zone_lowmem_reserve - called whenever
4011 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4012 * has a correct pages reserved value, so an adequate number of
4013 * pages are left in the zone after a successful __alloc_pages().
4015 static void setup_per_zone_lowmem_reserve(void)
4017 struct pglist_data *pgdat;
4018 enum zone_type j, idx;
4020 for_each_online_pgdat(pgdat) {
4021 for (j = 0; j < MAX_NR_ZONES; j++) {
4022 struct zone *zone = pgdat->node_zones + j;
4023 unsigned long present_pages = zone->present_pages;
4025 zone->lowmem_reserve[j] = 0;
4029 struct zone *lower_zone;
4033 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4034 sysctl_lowmem_reserve_ratio[idx] = 1;
4036 lower_zone = pgdat->node_zones + idx;
4037 lower_zone->lowmem_reserve[j] = present_pages /
4038 sysctl_lowmem_reserve_ratio[idx];
4039 present_pages += lower_zone->present_pages;
4044 /* update totalreserve_pages */
4045 calculate_totalreserve_pages();
4049 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4051 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4052 * with respect to min_free_kbytes.
4054 void setup_per_zone_pages_min(void)
4056 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4057 unsigned long lowmem_pages = 0;
4059 unsigned long flags;
4061 /* Calculate total number of !ZONE_HIGHMEM pages */
4062 for_each_zone(zone) {
4063 if (!is_highmem(zone))
4064 lowmem_pages += zone->present_pages;
4067 for_each_zone(zone) {
4070 spin_lock_irqsave(&zone->lru_lock, flags);
4071 tmp = (u64)pages_min * zone->present_pages;
4072 do_div(tmp, lowmem_pages);
4073 if (is_highmem(zone)) {
4075 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4076 * need highmem pages, so cap pages_min to a small
4079 * The (pages_high-pages_low) and (pages_low-pages_min)
4080 * deltas controls asynch page reclaim, and so should
4081 * not be capped for highmem.
4085 min_pages = zone->present_pages / 1024;
4086 if (min_pages < SWAP_CLUSTER_MAX)
4087 min_pages = SWAP_CLUSTER_MAX;
4088 if (min_pages > 128)
4090 zone->pages_min = min_pages;
4093 * If it's a lowmem zone, reserve a number of pages
4094 * proportionate to the zone's size.
4096 zone->pages_min = tmp;
4099 zone->pages_low = zone->pages_min + (tmp >> 2);
4100 zone->pages_high = zone->pages_min + (tmp >> 1);
4101 setup_zone_migrate_reserve(zone);
4102 spin_unlock_irqrestore(&zone->lru_lock, flags);
4105 /* update totalreserve_pages */
4106 calculate_totalreserve_pages();
4110 * Initialise min_free_kbytes.
4112 * For small machines we want it small (128k min). For large machines
4113 * we want it large (64MB max). But it is not linear, because network
4114 * bandwidth does not increase linearly with machine size. We use
4116 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4117 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4133 static int __init init_per_zone_pages_min(void)
4135 unsigned long lowmem_kbytes;
4137 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4139 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4140 if (min_free_kbytes < 128)
4141 min_free_kbytes = 128;
4142 if (min_free_kbytes > 65536)
4143 min_free_kbytes = 65536;
4144 setup_per_zone_pages_min();
4145 setup_per_zone_lowmem_reserve();
4148 module_init(init_per_zone_pages_min)
4151 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4152 * that we can call two helper functions whenever min_free_kbytes
4155 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4156 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4158 proc_dointvec(table, write, file, buffer, length, ppos);
4160 setup_per_zone_pages_min();
4165 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4166 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4171 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4176 zone->min_unmapped_pages = (zone->present_pages *
4177 sysctl_min_unmapped_ratio) / 100;
4181 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4182 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4187 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4192 zone->min_slab_pages = (zone->present_pages *
4193 sysctl_min_slab_ratio) / 100;
4199 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4200 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4201 * whenever sysctl_lowmem_reserve_ratio changes.
4203 * The reserve ratio obviously has absolutely no relation with the
4204 * pages_min watermarks. The lowmem reserve ratio can only make sense
4205 * if in function of the boot time zone sizes.
4207 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4208 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4210 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4211 setup_per_zone_lowmem_reserve();
4216 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4217 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4218 * can have before it gets flushed back to buddy allocator.
4221 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4222 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4228 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4229 if (!write || (ret == -EINVAL))
4231 for_each_zone(zone) {
4232 for_each_online_cpu(cpu) {
4234 high = zone->present_pages / percpu_pagelist_fraction;
4235 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4241 int hashdist = HASHDIST_DEFAULT;
4244 static int __init set_hashdist(char *str)
4248 hashdist = simple_strtoul(str, &str, 0);
4251 __setup("hashdist=", set_hashdist);
4255 * allocate a large system hash table from bootmem
4256 * - it is assumed that the hash table must contain an exact power-of-2
4257 * quantity of entries
4258 * - limit is the number of hash buckets, not the total allocation size
4260 void *__init alloc_large_system_hash(const char *tablename,
4261 unsigned long bucketsize,
4262 unsigned long numentries,
4265 unsigned int *_hash_shift,
4266 unsigned int *_hash_mask,
4267 unsigned long limit)
4269 unsigned long long max = limit;
4270 unsigned long log2qty, size;
4273 /* allow the kernel cmdline to have a say */
4275 /* round applicable memory size up to nearest megabyte */
4276 numentries = nr_kernel_pages;
4277 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4278 numentries >>= 20 - PAGE_SHIFT;
4279 numentries <<= 20 - PAGE_SHIFT;
4281 /* limit to 1 bucket per 2^scale bytes of low memory */
4282 if (scale > PAGE_SHIFT)
4283 numentries >>= (scale - PAGE_SHIFT);
4285 numentries <<= (PAGE_SHIFT - scale);
4287 /* Make sure we've got at least a 0-order allocation.. */
4288 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4289 numentries = PAGE_SIZE / bucketsize;
4291 numentries = roundup_pow_of_two(numentries);
4293 /* limit allocation size to 1/16 total memory by default */
4295 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4296 do_div(max, bucketsize);
4299 if (numentries > max)
4302 log2qty = ilog2(numentries);
4305 size = bucketsize << log2qty;
4306 if (flags & HASH_EARLY)
4307 table = alloc_bootmem(size);
4309 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4311 unsigned long order;
4312 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4314 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4316 * If bucketsize is not a power-of-two, we may free
4317 * some pages at the end of hash table.
4320 unsigned long alloc_end = (unsigned long)table +
4321 (PAGE_SIZE << order);
4322 unsigned long used = (unsigned long)table +
4324 split_page(virt_to_page(table), order);
4325 while (used < alloc_end) {
4331 } while (!table && size > PAGE_SIZE && --log2qty);
4334 panic("Failed to allocate %s hash table\n", tablename);
4336 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4339 ilog2(size) - PAGE_SHIFT,
4343 *_hash_shift = log2qty;
4345 *_hash_mask = (1 << log2qty) - 1;
4350 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4351 struct page *pfn_to_page(unsigned long pfn)
4353 return __pfn_to_page(pfn);
4355 unsigned long page_to_pfn(struct page *page)
4357 return __page_to_pfn(page);
4359 EXPORT_SYMBOL(pfn_to_page);
4360 EXPORT_SYMBOL(page_to_pfn);
4361 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4363 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4364 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4367 #ifdef CONFIG_SPARSEMEM
4368 return __pfn_to_section(pfn)->pageblock_flags;
4370 return zone->pageblock_flags;
4371 #endif /* CONFIG_SPARSEMEM */
4374 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4376 #ifdef CONFIG_SPARSEMEM
4377 pfn &= (PAGES_PER_SECTION-1);
4378 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4380 pfn = pfn - zone->zone_start_pfn;
4381 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4382 #endif /* CONFIG_SPARSEMEM */
4386 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4387 * @page: The page within the block of interest
4388 * @start_bitidx: The first bit of interest to retrieve
4389 * @end_bitidx: The last bit of interest
4390 * returns pageblock_bits flags
4392 unsigned long get_pageblock_flags_group(struct page *page,
4393 int start_bitidx, int end_bitidx)
4396 unsigned long *bitmap;
4397 unsigned long pfn, bitidx;
4398 unsigned long flags = 0;
4399 unsigned long value = 1;
4401 zone = page_zone(page);
4402 pfn = page_to_pfn(page);
4403 bitmap = get_pageblock_bitmap(zone, pfn);
4404 bitidx = pfn_to_bitidx(zone, pfn);
4406 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4407 if (test_bit(bitidx + start_bitidx, bitmap))
4414 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4415 * @page: The page within the block of interest
4416 * @start_bitidx: The first bit of interest
4417 * @end_bitidx: The last bit of interest
4418 * @flags: The flags to set
4420 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4421 int start_bitidx, int end_bitidx)
4424 unsigned long *bitmap;
4425 unsigned long pfn, bitidx;
4426 unsigned long value = 1;
4428 zone = page_zone(page);
4429 pfn = page_to_pfn(page);
4430 bitmap = get_pageblock_bitmap(zone, pfn);
4431 bitidx = pfn_to_bitidx(zone, pfn);
4433 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4435 __set_bit(bitidx + start_bitidx, bitmap);
4437 __clear_bit(bitidx + start_bitidx, bitmap);