2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/smp.h>
21 #include <linux/spinlock.h>
22 #include <linux/kallsyms.h>
23 #include <linux/bootmem.h>
24 #include <linux/interrupt.h>
25 #include <linux/ptrace.h>
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
29 #include <asm/bootinfo.h>
30 #include <asm/branch.h>
31 #include <asm/break.h>
35 #include <asm/mipsregs.h>
36 #include <asm/mipsmtregs.h>
37 #include <asm/module.h>
38 #include <asm/pgtable.h>
39 #include <asm/ptrace.h>
40 #include <asm/sections.h>
41 #include <asm/system.h>
42 #include <asm/tlbdebug.h>
43 #include <asm/traps.h>
44 #include <asm/uaccess.h>
45 #include <asm/mmu_context.h>
46 #include <asm/types.h>
47 #include <asm/stacktrace.h>
49 extern asmlinkage void handle_int(void);
50 extern asmlinkage void handle_tlbm(void);
51 extern asmlinkage void handle_tlbl(void);
52 extern asmlinkage void handle_tlbs(void);
53 extern asmlinkage void handle_adel(void);
54 extern asmlinkage void handle_ades(void);
55 extern asmlinkage void handle_ibe(void);
56 extern asmlinkage void handle_dbe(void);
57 extern asmlinkage void handle_sys(void);
58 extern asmlinkage void handle_bp(void);
59 extern asmlinkage void handle_ri(void);
60 extern asmlinkage void handle_ri_rdhwr_vivt(void);
61 extern asmlinkage void handle_ri_rdhwr(void);
62 extern asmlinkage void handle_cpu(void);
63 extern asmlinkage void handle_ov(void);
64 extern asmlinkage void handle_tr(void);
65 extern asmlinkage void handle_fpe(void);
66 extern asmlinkage void handle_mdmx(void);
67 extern asmlinkage void handle_watch(void);
68 extern asmlinkage void handle_mt(void);
69 extern asmlinkage void handle_dsp(void);
70 extern asmlinkage void handle_mcheck(void);
71 extern asmlinkage void handle_reserved(void);
73 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
74 struct mips_fpu_struct *ctx, int has_fpu);
76 void (*board_be_init)(void);
77 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
78 void (*board_nmi_handler_setup)(void);
79 void (*board_ejtag_handler_setup)(void);
80 void (*board_bind_eic_interrupt)(int irq, int regset);
83 static void show_raw_backtrace(unsigned long reg29)
85 unsigned long *sp = (unsigned long *)(reg29 & ~3);
88 printk("Call Trace:");
89 #ifdef CONFIG_KALLSYMS
92 while (!kstack_end(sp)) {
93 unsigned long __user *p =
94 (unsigned long __user *)(unsigned long)sp++;
95 if (__get_user(addr, p)) {
96 printk(" (Bad stack address)");
99 if (__kernel_text_address(addr))
105 #ifdef CONFIG_KALLSYMS
107 static int __init set_raw_show_trace(char *str)
112 __setup("raw_show_trace", set_raw_show_trace);
115 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
117 unsigned long sp = regs->regs[29];
118 unsigned long ra = regs->regs[31];
119 unsigned long pc = regs->cp0_epc;
121 if (raw_show_trace || !__kernel_text_address(pc)) {
122 show_raw_backtrace(sp);
125 printk("Call Trace:\n");
128 pc = unwind_stack(task, &sp, pc, &ra);
134 * This routine abuses get_user()/put_user() to reference pointers
135 * with at least a bit of error checking ...
137 static void show_stacktrace(struct task_struct *task,
138 const struct pt_regs *regs)
140 const int field = 2 * sizeof(unsigned long);
143 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
147 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
148 if (i && ((i % (64 / field)) == 0))
155 if (__get_user(stackdata, sp++)) {
156 printk(" (Bad stack address)");
160 printk(" %0*lx", field, stackdata);
164 show_backtrace(task, regs);
167 void show_stack(struct task_struct *task, unsigned long *sp)
171 regs.regs[29] = (unsigned long)sp;
175 if (task && task != current) {
176 regs.regs[29] = task->thread.reg29;
178 regs.cp0_epc = task->thread.reg31;
180 prepare_frametrace(®s);
183 show_stacktrace(task, ®s);
187 * The architecture-independent dump_stack generator
189 void dump_stack(void)
193 prepare_frametrace(®s);
194 show_backtrace(current, ®s);
197 EXPORT_SYMBOL(dump_stack);
199 static void show_code(unsigned int __user *pc)
202 unsigned short __user *pc16 = NULL;
206 if ((unsigned long)pc & 1)
207 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
208 for(i = -3 ; i < 6 ; i++) {
210 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
211 printk(" (Bad address in epc)\n");
214 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
218 static void __show_regs(const struct pt_regs *regs)
220 const int field = 2 * sizeof(unsigned long);
221 unsigned int cause = regs->cp0_cause;
224 printk("Cpu %d\n", smp_processor_id());
227 * Saved main processor registers
229 for (i = 0; i < 32; ) {
233 printk(" %0*lx", field, 0UL);
234 else if (i == 26 || i == 27)
235 printk(" %*s", field, "");
237 printk(" %0*lx", field, regs->regs[i]);
244 #ifdef CONFIG_CPU_HAS_SMARTMIPS
245 printk("Acx : %0*lx\n", field, regs->acx);
247 printk("Hi : %0*lx\n", field, regs->hi);
248 printk("Lo : %0*lx\n", field, regs->lo);
251 * Saved cp0 registers
253 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
254 (void *) regs->cp0_epc);
255 printk(" %s\n", print_tainted());
256 printk("ra : %0*lx %pS\n", field, regs->regs[31],
257 (void *) regs->regs[31]);
259 printk("Status: %08x ", (uint32_t) regs->cp0_status);
261 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
262 if (regs->cp0_status & ST0_KUO)
264 if (regs->cp0_status & ST0_IEO)
266 if (regs->cp0_status & ST0_KUP)
268 if (regs->cp0_status & ST0_IEP)
270 if (regs->cp0_status & ST0_KUC)
272 if (regs->cp0_status & ST0_IEC)
275 if (regs->cp0_status & ST0_KX)
277 if (regs->cp0_status & ST0_SX)
279 if (regs->cp0_status & ST0_UX)
281 switch (regs->cp0_status & ST0_KSU) {
286 printk("SUPERVISOR ");
295 if (regs->cp0_status & ST0_ERL)
297 if (regs->cp0_status & ST0_EXL)
299 if (regs->cp0_status & ST0_IE)
304 printk("Cause : %08x\n", cause);
306 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
307 if (1 <= cause && cause <= 5)
308 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
310 printk("PrId : %08x (%s)\n", read_c0_prid(),
315 * FIXME: really the generic show_regs should take a const pointer argument.
317 void show_regs(struct pt_regs *regs)
319 __show_regs((struct pt_regs *)regs);
322 void show_registers(const struct pt_regs *regs)
324 const int field = 2 * sizeof(unsigned long);
328 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
329 current->comm, current->pid, current_thread_info(), current,
330 field, current_thread_info()->tp_value);
331 if (cpu_has_userlocal) {
334 tls = read_c0_userlocal();
335 if (tls != current_thread_info()->tp_value)
336 printk("*HwTLS: %0*lx\n", field, tls);
339 show_stacktrace(current, regs);
340 show_code((unsigned int __user *) regs->cp0_epc);
344 static DEFINE_SPINLOCK(die_lock);
346 void __noreturn die(const char * str, const struct pt_regs * regs)
348 static int die_counter;
349 #ifdef CONFIG_MIPS_MT_SMTC
350 unsigned long dvpret = dvpe();
351 #endif /* CONFIG_MIPS_MT_SMTC */
354 spin_lock_irq(&die_lock);
356 #ifdef CONFIG_MIPS_MT_SMTC
357 mips_mt_regdump(dvpret);
358 #endif /* CONFIG_MIPS_MT_SMTC */
359 printk("%s[#%d]:\n", str, ++die_counter);
360 show_registers(regs);
361 add_taint(TAINT_DIE);
362 spin_unlock_irq(&die_lock);
365 panic("Fatal exception in interrupt");
368 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
370 panic("Fatal exception");
376 extern struct exception_table_entry __start___dbe_table[];
377 extern struct exception_table_entry __stop___dbe_table[];
380 " .section __dbe_table, \"a\"\n"
383 /* Given an address, look for it in the exception tables. */
384 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
386 const struct exception_table_entry *e;
388 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
390 e = search_module_dbetables(addr);
394 asmlinkage void do_be(struct pt_regs *regs)
396 const int field = 2 * sizeof(unsigned long);
397 const struct exception_table_entry *fixup = NULL;
398 int data = regs->cp0_cause & 4;
399 int action = MIPS_BE_FATAL;
401 /* XXX For now. Fixme, this searches the wrong table ... */
402 if (data && !user_mode(regs))
403 fixup = search_dbe_tables(exception_epc(regs));
406 action = MIPS_BE_FIXUP;
408 if (board_be_handler)
409 action = board_be_handler(regs, fixup != NULL);
412 case MIPS_BE_DISCARD:
416 regs->cp0_epc = fixup->nextinsn;
425 * Assume it would be too dangerous to continue ...
427 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
428 data ? "Data" : "Instruction",
429 field, regs->cp0_epc, field, regs->regs[31]);
430 if (notify_die(DIE_OOPS, "bus error", regs, SIGBUS, 0, 0)
434 die_if_kernel("Oops", regs);
435 force_sig(SIGBUS, current);
439 * ll/sc, rdhwr, sync emulation
442 #define OPCODE 0xfc000000
443 #define BASE 0x03e00000
444 #define RT 0x001f0000
445 #define OFFSET 0x0000ffff
446 #define LL 0xc0000000
447 #define SC 0xe0000000
448 #define SPEC0 0x00000000
449 #define SPEC3 0x7c000000
450 #define RD 0x0000f800
451 #define FUNC 0x0000003f
452 #define SYNC 0x0000000f
453 #define RDHWR 0x0000003b
456 * The ll_bit is cleared by r*_switch.S
459 unsigned long ll_bit;
461 static struct task_struct *ll_task = NULL;
463 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
465 unsigned long value, __user *vaddr;
469 * analyse the ll instruction that just caused a ri exception
470 * and put the referenced address to addr.
473 /* sign extend offset */
474 offset = opcode & OFFSET;
478 vaddr = (unsigned long __user *)
479 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
481 if ((unsigned long)vaddr & 3)
483 if (get_user(value, vaddr))
488 if (ll_task == NULL || ll_task == current) {
497 regs->regs[(opcode & RT) >> 16] = value;
502 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
504 unsigned long __user *vaddr;
509 * analyse the sc instruction that just caused a ri exception
510 * and put the referenced address to addr.
513 /* sign extend offset */
514 offset = opcode & OFFSET;
518 vaddr = (unsigned long __user *)
519 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
520 reg = (opcode & RT) >> 16;
522 if ((unsigned long)vaddr & 3)
527 if (ll_bit == 0 || ll_task != current) {
535 if (put_user(regs->regs[reg], vaddr))
544 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
545 * opcodes are supposed to result in coprocessor unusable exceptions if
546 * executed on ll/sc-less processors. That's the theory. In practice a
547 * few processors such as NEC's VR4100 throw reserved instruction exceptions
548 * instead, so we're doing the emulation thing in both exception handlers.
550 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
552 if ((opcode & OPCODE) == LL)
553 return simulate_ll(regs, opcode);
554 if ((opcode & OPCODE) == SC)
555 return simulate_sc(regs, opcode);
557 return -1; /* Must be something else ... */
561 * Simulate trapping 'rdhwr' instructions to provide user accessible
562 * registers not implemented in hardware.
564 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
566 struct thread_info *ti = task_thread_info(current);
568 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
569 int rd = (opcode & RD) >> 11;
570 int rt = (opcode & RT) >> 16;
572 case 0: /* CPU number */
573 regs->regs[rt] = smp_processor_id();
575 case 1: /* SYNCI length */
576 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
577 current_cpu_data.icache.linesz);
579 case 2: /* Read count register */
580 regs->regs[rt] = read_c0_count();
582 case 3: /* Count register resolution */
583 switch (current_cpu_data.cputype) {
593 regs->regs[rt] = ti->tp_value;
604 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
606 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC)
609 return -1; /* Must be something else ... */
612 asmlinkage void do_ov(struct pt_regs *regs)
616 die_if_kernel("Integer overflow", regs);
618 info.si_code = FPE_INTOVF;
619 info.si_signo = SIGFPE;
621 info.si_addr = (void __user *) regs->cp0_epc;
622 force_sig_info(SIGFPE, &info, current);
626 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
628 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
632 if (notify_die(DIE_FP, "FP exception", regs, SIGFPE, 0, 0)
635 die_if_kernel("FP exception in kernel code", regs);
637 if (fcr31 & FPU_CSR_UNI_X) {
641 * Unimplemented operation exception. If we've got the full
642 * software emulator on-board, let's use it...
644 * Force FPU to dump state into task/thread context. We're
645 * moving a lot of data here for what is probably a single
646 * instruction, but the alternative is to pre-decode the FP
647 * register operands before invoking the emulator, which seems
648 * a bit extreme for what should be an infrequent event.
650 /* Ensure 'resume' not overwrite saved fp context again. */
653 /* Run the emulator */
654 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1);
657 * We can't allow the emulated instruction to leave any of
658 * the cause bit set in $fcr31.
660 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
662 /* Restore the hardware register state */
663 own_fpu(1); /* Using the FPU again. */
665 /* If something went wrong, signal */
667 force_sig(sig, current);
670 } else if (fcr31 & FPU_CSR_INV_X)
671 info.si_code = FPE_FLTINV;
672 else if (fcr31 & FPU_CSR_DIV_X)
673 info.si_code = FPE_FLTDIV;
674 else if (fcr31 & FPU_CSR_OVF_X)
675 info.si_code = FPE_FLTOVF;
676 else if (fcr31 & FPU_CSR_UDF_X)
677 info.si_code = FPE_FLTUND;
678 else if (fcr31 & FPU_CSR_INE_X)
679 info.si_code = FPE_FLTRES;
681 info.si_code = __SI_FAULT;
682 info.si_signo = SIGFPE;
684 info.si_addr = (void __user *) regs->cp0_epc;
685 force_sig_info(SIGFPE, &info, current);
688 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
694 if (notify_die(DIE_TRAP, str, regs, code, 0, 0) == NOTIFY_STOP)
698 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
699 * insns, even for trap and break codes that indicate arithmetic
700 * failures. Weird ...
701 * But should we continue the brokenness??? --macro
706 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
707 die_if_kernel(b, regs);
708 if (code == BRK_DIVZERO)
709 info.si_code = FPE_INTDIV;
711 info.si_code = FPE_INTOVF;
712 info.si_signo = SIGFPE;
714 info.si_addr = (void __user *) regs->cp0_epc;
715 force_sig_info(SIGFPE, &info, current);
718 die_if_kernel("Kernel bug detected", regs);
719 force_sig(SIGTRAP, current);
722 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
723 die_if_kernel(b, regs);
724 force_sig(SIGTRAP, current);
728 asmlinkage void do_bp(struct pt_regs *regs)
730 unsigned int opcode, bcode;
732 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
736 * There is the ancient bug in the MIPS assemblers that the break
737 * code starts left to bit 16 instead to bit 6 in the opcode.
738 * Gas is bug-compatible, but not always, grrr...
739 * We handle both cases with a simple heuristics. --macro
741 bcode = ((opcode >> 6) & ((1 << 20) - 1));
742 if (bcode >= (1 << 10))
745 do_trap_or_bp(regs, bcode, "Break");
749 force_sig(SIGSEGV, current);
752 asmlinkage void do_tr(struct pt_regs *regs)
754 unsigned int opcode, tcode = 0;
756 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
759 /* Immediate versions don't provide a code. */
760 if (!(opcode & OPCODE))
761 tcode = ((opcode >> 6) & ((1 << 10) - 1));
763 do_trap_or_bp(regs, tcode, "Trap");
767 force_sig(SIGSEGV, current);
770 asmlinkage void do_ri(struct pt_regs *regs)
772 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
773 unsigned long old_epc = regs->cp0_epc;
774 unsigned int opcode = 0;
777 if (notify_die(DIE_RI, "RI Fault", regs, SIGSEGV, 0, 0)
781 die_if_kernel("Reserved instruction in kernel code", regs);
783 if (unlikely(compute_return_epc(regs) < 0))
786 if (unlikely(get_user(opcode, epc) < 0))
789 if (!cpu_has_llsc && status < 0)
790 status = simulate_llsc(regs, opcode);
793 status = simulate_rdhwr(regs, opcode);
796 status = simulate_sync(regs, opcode);
801 if (unlikely(status > 0)) {
802 regs->cp0_epc = old_epc; /* Undo skip-over. */
803 force_sig(status, current);
808 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
809 * emulated more than some threshold number of instructions, force migration to
810 * a "CPU" that has FP support.
812 static void mt_ase_fp_affinity(void)
814 #ifdef CONFIG_MIPS_MT_FPAFF
815 if (mt_fpemul_threshold > 0 &&
816 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
818 * If there's no FPU present, or if the application has already
819 * restricted the allowed set to exclude any CPUs with FPUs,
820 * we'll skip the procedure.
822 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
825 cpus_and(tmask, current->thread.user_cpus_allowed,
827 set_cpus_allowed(current, tmask);
828 set_thread_flag(TIF_FPUBOUND);
831 #endif /* CONFIG_MIPS_MT_FPAFF */
834 asmlinkage void do_cpu(struct pt_regs *regs)
836 unsigned int __user *epc;
837 unsigned long old_epc;
842 die_if_kernel("do_cpu invoked from kernel context!", regs);
844 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
848 epc = (unsigned int __user *)exception_epc(regs);
849 old_epc = regs->cp0_epc;
853 if (unlikely(compute_return_epc(regs) < 0))
856 if (unlikely(get_user(opcode, epc) < 0))
859 if (!cpu_has_llsc && status < 0)
860 status = simulate_llsc(regs, opcode);
863 status = simulate_rdhwr(regs, opcode);
868 if (unlikely(status > 0)) {
869 regs->cp0_epc = old_epc; /* Undo skip-over. */
870 force_sig(status, current);
876 if (used_math()) /* Using the FPU again. */
878 else { /* First time FPU user. */
883 if (!raw_cpu_has_fpu) {
885 sig = fpu_emulator_cop1Handler(regs,
886 ¤t->thread.fpu, 0);
888 force_sig(sig, current);
890 mt_ase_fp_affinity();
900 force_sig(SIGILL, current);
903 asmlinkage void do_mdmx(struct pt_regs *regs)
905 force_sig(SIGILL, current);
908 asmlinkage void do_watch(struct pt_regs *regs)
911 * We use the watch exception where available to detect stack
916 panic("Caught WATCH exception - probably caused by stack overflow.");
919 asmlinkage void do_mcheck(struct pt_regs *regs)
921 const int field = 2 * sizeof(unsigned long);
922 int multi_match = regs->cp0_status & ST0_TS;
927 printk("Index : %0x\n", read_c0_index());
928 printk("Pagemask: %0x\n", read_c0_pagemask());
929 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
930 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
931 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
936 show_code((unsigned int __user *) regs->cp0_epc);
939 * Some chips may have other causes of machine check (e.g. SB1
942 panic("Caught Machine Check exception - %scaused by multiple "
943 "matching entries in the TLB.",
944 (multi_match) ? "" : "not ");
947 asmlinkage void do_mt(struct pt_regs *regs)
951 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
952 >> VPECONTROL_EXCPT_SHIFT;
955 printk(KERN_DEBUG "Thread Underflow\n");
958 printk(KERN_DEBUG "Thread Overflow\n");
961 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
964 printk(KERN_DEBUG "Gating Storage Exception\n");
967 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
970 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
973 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
977 die_if_kernel("MIPS MT Thread exception in kernel", regs);
979 force_sig(SIGILL, current);
983 asmlinkage void do_dsp(struct pt_regs *regs)
986 panic("Unexpected DSP exception\n");
988 force_sig(SIGILL, current);
991 asmlinkage void do_reserved(struct pt_regs *regs)
994 * Game over - no way to handle this if it ever occurs. Most probably
995 * caused by a new unknown cpu type or after another deadly
996 * hard/software error.
999 panic("Caught reserved exception %ld - should not happen.",
1000 (regs->cp0_cause & 0x7f) >> 2);
1003 static int __initdata l1parity = 1;
1004 static int __init nol1parity(char *s)
1009 __setup("nol1par", nol1parity);
1010 static int __initdata l2parity = 1;
1011 static int __init nol2parity(char *s)
1016 __setup("nol2par", nol2parity);
1019 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1020 * it different ways.
1022 static inline void parity_protection_init(void)
1024 switch (current_cpu_type()) {
1030 #define ERRCTL_PE 0x80000000
1031 #define ERRCTL_L2P 0x00800000
1032 unsigned long errctl;
1033 unsigned int l1parity_present, l2parity_present;
1035 errctl = read_c0_ecc();
1036 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1038 /* probe L1 parity support */
1039 write_c0_ecc(errctl | ERRCTL_PE);
1040 back_to_back_c0_hazard();
1041 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1043 /* probe L2 parity support */
1044 write_c0_ecc(errctl|ERRCTL_L2P);
1045 back_to_back_c0_hazard();
1046 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1048 if (l1parity_present && l2parity_present) {
1050 errctl |= ERRCTL_PE;
1051 if (l1parity ^ l2parity)
1052 errctl |= ERRCTL_L2P;
1053 } else if (l1parity_present) {
1055 errctl |= ERRCTL_PE;
1056 } else if (l2parity_present) {
1058 errctl |= ERRCTL_L2P;
1060 /* No parity available */
1063 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1065 write_c0_ecc(errctl);
1066 back_to_back_c0_hazard();
1067 errctl = read_c0_ecc();
1068 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1070 if (l1parity_present)
1071 printk(KERN_INFO "Cache parity protection %sabled\n",
1072 (errctl & ERRCTL_PE) ? "en" : "dis");
1074 if (l2parity_present) {
1075 if (l1parity_present && l1parity)
1076 errctl ^= ERRCTL_L2P;
1077 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1078 (errctl & ERRCTL_L2P) ? "en" : "dis");
1084 write_c0_ecc(0x80000000);
1085 back_to_back_c0_hazard();
1086 /* Set the PE bit (bit 31) in the c0_errctl register. */
1087 printk(KERN_INFO "Cache parity protection %sabled\n",
1088 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1092 /* Clear the DE bit (bit 16) in the c0_status register. */
1093 printk(KERN_INFO "Enable cache parity protection for "
1094 "MIPS 20KC/25KF CPUs.\n");
1095 clear_c0_status(ST0_DE);
1102 asmlinkage void cache_parity_error(void)
1104 const int field = 2 * sizeof(unsigned long);
1105 unsigned int reg_val;
1107 /* For the moment, report the problem and hang. */
1108 printk("Cache error exception:\n");
1109 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1110 reg_val = read_c0_cacheerr();
1111 printk("c0_cacheerr == %08x\n", reg_val);
1113 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1114 reg_val & (1<<30) ? "secondary" : "primary",
1115 reg_val & (1<<31) ? "data" : "insn");
1116 printk("Error bits: %s%s%s%s%s%s%s\n",
1117 reg_val & (1<<29) ? "ED " : "",
1118 reg_val & (1<<28) ? "ET " : "",
1119 reg_val & (1<<26) ? "EE " : "",
1120 reg_val & (1<<25) ? "EB " : "",
1121 reg_val & (1<<24) ? "EI " : "",
1122 reg_val & (1<<23) ? "E1 " : "",
1123 reg_val & (1<<22) ? "E0 " : "");
1124 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1126 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1127 if (reg_val & (1<<22))
1128 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1130 if (reg_val & (1<<23))
1131 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1134 panic("Can't handle the cache error!");
1138 * SDBBP EJTAG debug exception handler.
1139 * We skip the instruction and return to the next instruction.
1141 void ejtag_exception_handler(struct pt_regs *regs)
1143 const int field = 2 * sizeof(unsigned long);
1144 unsigned long depc, old_epc;
1147 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1148 depc = read_c0_depc();
1149 debug = read_c0_debug();
1150 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1151 if (debug & 0x80000000) {
1153 * In branch delay slot.
1154 * We cheat a little bit here and use EPC to calculate the
1155 * debug return address (DEPC). EPC is restored after the
1158 old_epc = regs->cp0_epc;
1159 regs->cp0_epc = depc;
1160 __compute_return_epc(regs);
1161 depc = regs->cp0_epc;
1162 regs->cp0_epc = old_epc;
1165 write_c0_depc(depc);
1168 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1169 write_c0_debug(debug | 0x100);
1174 * NMI exception handler.
1176 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1179 printk("NMI taken!!!!\n");
1183 #define VECTORSPACING 0x100 /* for EI/VI mode */
1185 unsigned long ebase;
1186 unsigned long exception_handlers[32];
1187 unsigned long vi_handlers[64];
1190 * As a side effect of the way this is implemented we're limited
1191 * to interrupt handlers in the address range from
1192 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1194 void *set_except_vector(int n, void *addr)
1196 unsigned long handler = (unsigned long) addr;
1197 unsigned long old_handler = exception_handlers[n];
1199 exception_handlers[n] = handler;
1200 if (n == 0 && cpu_has_divec) {
1201 *(u32 *)(ebase + 0x200) = 0x08000000 |
1202 (0x03ffffff & (handler >> 2));
1203 local_flush_icache_range(ebase + 0x200, ebase + 0x204);
1205 return (void *)old_handler;
1208 static asmlinkage void do_default_vi(void)
1210 show_regs(get_irq_regs());
1211 panic("Caught unexpected vectored interrupt.");
1214 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1216 unsigned long handler;
1217 unsigned long old_handler = vi_handlers[n];
1218 int srssets = current_cpu_data.srsets;
1222 if (!cpu_has_veic && !cpu_has_vint)
1226 handler = (unsigned long) do_default_vi;
1229 handler = (unsigned long) addr;
1230 vi_handlers[n] = (unsigned long) addr;
1232 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1235 panic("Shadow register set %d not supported", srs);
1238 if (board_bind_eic_interrupt)
1239 board_bind_eic_interrupt(n, srs);
1240 } else if (cpu_has_vint) {
1241 /* SRSMap is only defined if shadow sets are implemented */
1243 change_c0_srsmap(0xf << n*4, srs << n*4);
1248 * If no shadow set is selected then use the default handler
1249 * that does normal register saving and a standard interrupt exit
1252 extern char except_vec_vi, except_vec_vi_lui;
1253 extern char except_vec_vi_ori, except_vec_vi_end;
1254 #ifdef CONFIG_MIPS_MT_SMTC
1256 * We need to provide the SMTC vectored interrupt handler
1257 * not only with the address of the handler, but with the
1258 * Status.IM bit to be masked before going there.
1260 extern char except_vec_vi_mori;
1261 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1262 #endif /* CONFIG_MIPS_MT_SMTC */
1263 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1264 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1265 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1267 if (handler_len > VECTORSPACING) {
1269 * Sigh... panicing won't help as the console
1270 * is probably not configured :(
1272 panic("VECTORSPACING too small");
1275 memcpy(b, &except_vec_vi, handler_len);
1276 #ifdef CONFIG_MIPS_MT_SMTC
1277 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1279 w = (u32 *)(b + mori_offset);
1280 *w = (*w & 0xffff0000) | (0x100 << n);
1281 #endif /* CONFIG_MIPS_MT_SMTC */
1282 w = (u32 *)(b + lui_offset);
1283 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1284 w = (u32 *)(b + ori_offset);
1285 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1286 local_flush_icache_range((unsigned long)b,
1287 (unsigned long)(b+handler_len));
1291 * In other cases jump directly to the interrupt handler
1293 * It is the handlers responsibility to save registers if required
1294 * (eg hi/lo) and return from the exception using "eret"
1297 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1299 local_flush_icache_range((unsigned long)b,
1300 (unsigned long)(b+8));
1303 return (void *)old_handler;
1306 void *set_vi_handler(int n, vi_handler_t addr)
1308 return set_vi_srs_handler(n, addr, 0);
1312 * This is used by native signal handling
1314 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1315 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1317 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1318 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1320 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1321 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1324 static int smp_save_fp_context(struct sigcontext __user *sc)
1326 return raw_cpu_has_fpu
1327 ? _save_fp_context(sc)
1328 : fpu_emulator_save_context(sc);
1331 static int smp_restore_fp_context(struct sigcontext __user *sc)
1333 return raw_cpu_has_fpu
1334 ? _restore_fp_context(sc)
1335 : fpu_emulator_restore_context(sc);
1339 static inline void signal_init(void)
1342 /* For now just do the cpu_has_fpu check when the functions are invoked */
1343 save_fp_context = smp_save_fp_context;
1344 restore_fp_context = smp_restore_fp_context;
1347 save_fp_context = _save_fp_context;
1348 restore_fp_context = _restore_fp_context;
1350 save_fp_context = fpu_emulator_save_context;
1351 restore_fp_context = fpu_emulator_restore_context;
1356 #ifdef CONFIG_MIPS32_COMPAT
1359 * This is used by 32-bit signal stuff on the 64-bit kernel
1361 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1362 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1364 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1365 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1367 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1368 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1370 static inline void signal32_init(void)
1373 save_fp_context32 = _save_fp_context32;
1374 restore_fp_context32 = _restore_fp_context32;
1376 save_fp_context32 = fpu_emulator_save_context32;
1377 restore_fp_context32 = fpu_emulator_restore_context32;
1382 extern void cpu_cache_init(void);
1383 extern void tlb_init(void);
1384 extern void flush_tlb_handlers(void);
1389 int cp0_compare_irq;
1392 * Performance counter IRQ or -1 if shared with timer
1394 int cp0_perfcount_irq;
1395 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1397 static int __cpuinitdata noulri;
1399 static int __init ulri_disable(char *s)
1401 pr_info("Disabling ulri\n");
1406 __setup("noulri", ulri_disable);
1408 void __cpuinit per_cpu_trap_init(void)
1410 unsigned int cpu = smp_processor_id();
1411 unsigned int status_set = ST0_CU0;
1412 #ifdef CONFIG_MIPS_MT_SMTC
1413 int secondaryTC = 0;
1414 int bootTC = (cpu == 0);
1417 * Only do per_cpu_trap_init() for first TC of Each VPE.
1418 * Note that this hack assumes that the SMTC init code
1419 * assigns TCs consecutively and in ascending order.
1422 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1423 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1425 #endif /* CONFIG_MIPS_MT_SMTC */
1428 * Disable coprocessors and select 32-bit or 64-bit addressing
1429 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1430 * flag that some firmware may have left set and the TS bit (for
1431 * IP27). Set XX for ISA IV code to work.
1434 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1436 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1437 status_set |= ST0_XX;
1439 status_set |= ST0_MX;
1441 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1444 if (cpu_has_mips_r2) {
1445 unsigned int enable = 0x0000000f;
1447 if (!noulri && cpu_has_userlocal)
1448 enable |= (1 << 29);
1450 write_c0_hwrena(enable);
1453 #ifdef CONFIG_MIPS_MT_SMTC
1455 #endif /* CONFIG_MIPS_MT_SMTC */
1457 if (cpu_has_veic || cpu_has_vint) {
1458 write_c0_ebase(ebase);
1459 /* Setting vector spacing enables EI/VI mode */
1460 change_c0_intctl(0x3e0, VECTORSPACING);
1462 if (cpu_has_divec) {
1463 if (cpu_has_mipsmt) {
1464 unsigned int vpflags = dvpe();
1465 set_c0_cause(CAUSEF_IV);
1468 set_c0_cause(CAUSEF_IV);
1472 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1474 * o read IntCtl.IPTI to determine the timer interrupt
1475 * o read IntCtl.IPPCI to determine the performance counter interrupt
1477 if (cpu_has_mips_r2) {
1478 cp0_compare_irq = (read_c0_intctl() >> 29) & 7;
1479 cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7;
1480 if (cp0_perfcount_irq == cp0_compare_irq)
1481 cp0_perfcount_irq = -1;
1483 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1484 cp0_perfcount_irq = -1;
1487 #ifdef CONFIG_MIPS_MT_SMTC
1489 #endif /* CONFIG_MIPS_MT_SMTC */
1491 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1492 TLBMISS_HANDLER_SETUP();
1494 atomic_inc(&init_mm.mm_count);
1495 current->active_mm = &init_mm;
1496 BUG_ON(current->mm);
1497 enter_lazy_tlb(&init_mm, current);
1499 #ifdef CONFIG_MIPS_MT_SMTC
1501 #endif /* CONFIG_MIPS_MT_SMTC */
1504 #ifdef CONFIG_MIPS_MT_SMTC
1505 } else if (!secondaryTC) {
1507 * First TC in non-boot VPE must do subset of tlb_init()
1508 * for MMU countrol registers.
1510 write_c0_pagemask(PM_DEFAULT_MASK);
1513 #endif /* CONFIG_MIPS_MT_SMTC */
1516 /* Install CPU exception handler */
1517 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1519 memcpy((void *)(ebase + offset), addr, size);
1520 local_flush_icache_range(ebase + offset, ebase + offset + size);
1523 static char panic_null_cerr[] __cpuinitdata =
1524 "Trying to set NULL cache error exception handler";
1526 /* Install uncached CPU exception handler */
1527 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1531 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1534 unsigned long uncached_ebase = TO_UNCAC(ebase);
1538 panic(panic_null_cerr);
1540 memcpy((void *)(uncached_ebase + offset), addr, size);
1543 static int __initdata rdhwr_noopt;
1544 static int __init set_rdhwr_noopt(char *str)
1550 __setup("rdhwr_noopt", set_rdhwr_noopt);
1552 void __init trap_init(void)
1554 extern char except_vec3_generic, except_vec3_r4000;
1555 extern char except_vec4;
1558 #if defined(CONFIG_KGDB)
1559 if (kgdb_early_setup)
1560 return; /* Already done */
1563 if (cpu_has_veic || cpu_has_vint)
1564 ebase = (unsigned long) alloc_bootmem_low_pages(0x200 + VECTORSPACING*64);
1568 per_cpu_trap_init();
1571 * Copy the generic exception handlers to their final destination.
1572 * This will be overriden later as suitable for a particular
1575 set_handler(0x180, &except_vec3_generic, 0x80);
1578 * Setup default vectors
1580 for (i = 0; i <= 31; i++)
1581 set_except_vector(i, handle_reserved);
1584 * Copy the EJTAG debug exception vector handler code to it's final
1587 if (cpu_has_ejtag && board_ejtag_handler_setup)
1588 board_ejtag_handler_setup();
1591 * Only some CPUs have the watch exceptions.
1594 set_except_vector(23, handle_watch);
1597 * Initialise interrupt handlers
1599 if (cpu_has_veic || cpu_has_vint) {
1600 int nvec = cpu_has_veic ? 64 : 8;
1601 for (i = 0; i < nvec; i++)
1602 set_vi_handler(i, NULL);
1604 else if (cpu_has_divec)
1605 set_handler(0x200, &except_vec4, 0x8);
1608 * Some CPUs can enable/disable for cache parity detection, but does
1609 * it different ways.
1611 parity_protection_init();
1614 * The Data Bus Errors / Instruction Bus Errors are signaled
1615 * by external hardware. Therefore these two exceptions
1616 * may have board specific handlers.
1621 set_except_vector(0, handle_int);
1622 set_except_vector(1, handle_tlbm);
1623 set_except_vector(2, handle_tlbl);
1624 set_except_vector(3, handle_tlbs);
1626 set_except_vector(4, handle_adel);
1627 set_except_vector(5, handle_ades);
1629 set_except_vector(6, handle_ibe);
1630 set_except_vector(7, handle_dbe);
1632 set_except_vector(8, handle_sys);
1633 set_except_vector(9, handle_bp);
1634 set_except_vector(10, rdhwr_noopt ? handle_ri :
1635 (cpu_has_vtag_icache ?
1636 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1637 set_except_vector(11, handle_cpu);
1638 set_except_vector(12, handle_ov);
1639 set_except_vector(13, handle_tr);
1641 if (current_cpu_type() == CPU_R6000 ||
1642 current_cpu_type() == CPU_R6000A) {
1644 * The R6000 is the only R-series CPU that features a machine
1645 * check exception (similar to the R4000 cache error) and
1646 * unaligned ldc1/sdc1 exception. The handlers have not been
1647 * written yet. Well, anyway there is no R6000 machine on the
1648 * current list of targets for Linux/MIPS.
1649 * (Duh, crap, there is someone with a triple R6k machine)
1651 //set_except_vector(14, handle_mc);
1652 //set_except_vector(15, handle_ndc);
1656 if (board_nmi_handler_setup)
1657 board_nmi_handler_setup();
1659 if (cpu_has_fpu && !cpu_has_nofpuex)
1660 set_except_vector(15, handle_fpe);
1662 set_except_vector(22, handle_mdmx);
1665 set_except_vector(24, handle_mcheck);
1668 set_except_vector(25, handle_mt);
1670 set_except_vector(26, handle_dsp);
1673 /* Special exception: R4[04]00 uses also the divec space. */
1674 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1675 else if (cpu_has_4kex)
1676 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1678 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1681 #ifdef CONFIG_MIPS32_COMPAT
1685 local_flush_icache_range(ebase, ebase + 0x400);
1686 flush_tlb_handlers();
1688 sort_extable(__start___dbe_table, __stop___dbe_table);