Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfashe...
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct net_device *dev);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
217                      pci_channel_state_t state);
218 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
219 static void e1000_io_resume(struct pci_dev *pdev);
220
221 static struct pci_error_handlers e1000_err_handler = {
222         .error_detected = e1000_io_error_detected,
223         .slot_reset = e1000_io_slot_reset,
224         .resume = e1000_io_resume,
225 };
226
227 static struct pci_driver e1000_driver = {
228         .name     = e1000_driver_name,
229         .id_table = e1000_pci_tbl,
230         .probe    = e1000_probe,
231         .remove   = __devexit_p(e1000_remove),
232 #ifdef CONFIG_PM
233         /* Power Managment Hooks */
234         .suspend  = e1000_suspend,
235         .resume   = e1000_resume,
236 #endif
237         .shutdown = e1000_shutdown,
238         .err_handler = &e1000_err_handler
239 };
240
241 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
242 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
243 MODULE_LICENSE("GPL");
244 MODULE_VERSION(DRV_VERSION);
245
246 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 /**
251  * e1000_init_module - Driver Registration Routine
252  *
253  * e1000_init_module is the first routine called when the driver is
254  * loaded. All it does is register with the PCI subsystem.
255  **/
256
257 static int __init
258 e1000_init_module(void)
259 {
260         int ret;
261         printk(KERN_INFO "%s - version %s\n",
262                e1000_driver_string, e1000_driver_version);
263
264         printk(KERN_INFO "%s\n", e1000_copyright);
265
266         ret = pci_register_driver(&e1000_driver);
267
268         return ret;
269 }
270
271 module_init(e1000_init_module);
272
273 /**
274  * e1000_exit_module - Driver Exit Cleanup Routine
275  *
276  * e1000_exit_module is called just before the driver is removed
277  * from memory.
278  **/
279
280 static void __exit
281 e1000_exit_module(void)
282 {
283         pci_unregister_driver(&e1000_driver);
284 }
285
286 module_exit(e1000_exit_module);
287
288 static int e1000_request_irq(struct e1000_adapter *adapter)
289 {
290         struct net_device *netdev = adapter->netdev;
291         int flags, err = 0;
292
293         flags = IRQF_SHARED;
294 #ifdef CONFIG_PCI_MSI
295         if (adapter->hw.mac_type >= e1000_82571) {
296                 adapter->have_msi = TRUE;
297                 if ((err = pci_enable_msi(adapter->pdev))) {
298                         DPRINTK(PROBE, ERR,
299                          "Unable to allocate MSI interrupt Error: %d\n", err);
300                         adapter->have_msi = FALSE;
301                 }
302         }
303         if (adapter->have_msi) {
304                 flags &= ~IRQF_SHARED;
305                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
306                                   netdev->name, netdev);
307                 if (err)
308                         DPRINTK(PROBE, ERR,
309                                "Unable to allocate interrupt Error: %d\n", err);
310         } else
311 #endif
312         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
313                                netdev->name, netdev)))
314                 DPRINTK(PROBE, ERR,
315                         "Unable to allocate interrupt Error: %d\n", err);
316
317         return err;
318 }
319
320 static void e1000_free_irq(struct e1000_adapter *adapter)
321 {
322         struct net_device *netdev = adapter->netdev;
323
324         free_irq(adapter->pdev->irq, netdev);
325
326 #ifdef CONFIG_PCI_MSI
327         if (adapter->have_msi)
328                 pci_disable_msi(adapter->pdev);
329 #endif
330 }
331
332 /**
333  * e1000_irq_disable - Mask off interrupt generation on the NIC
334  * @adapter: board private structure
335  **/
336
337 static void
338 e1000_irq_disable(struct e1000_adapter *adapter)
339 {
340         atomic_inc(&adapter->irq_sem);
341         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
342         E1000_WRITE_FLUSH(&adapter->hw);
343         synchronize_irq(adapter->pdev->irq);
344 }
345
346 /**
347  * e1000_irq_enable - Enable default interrupt generation settings
348  * @adapter: board private structure
349  **/
350
351 static void
352 e1000_irq_enable(struct e1000_adapter *adapter)
353 {
354         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
355                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
356                 E1000_WRITE_FLUSH(&adapter->hw);
357         }
358 }
359
360 static void
361 e1000_update_mng_vlan(struct e1000_adapter *adapter)
362 {
363         struct net_device *netdev = adapter->netdev;
364         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
365         uint16_t old_vid = adapter->mng_vlan_id;
366         if (adapter->vlgrp) {
367                 if (!adapter->vlgrp->vlan_devices[vid]) {
368                         if (adapter->hw.mng_cookie.status &
369                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
370                                 e1000_vlan_rx_add_vid(netdev, vid);
371                                 adapter->mng_vlan_id = vid;
372                         } else
373                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
374
375                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
376                                         (vid != old_vid) &&
377                                         !adapter->vlgrp->vlan_devices[old_vid])
378                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
379                 } else
380                         adapter->mng_vlan_id = vid;
381         }
382 }
383
384 /**
385  * e1000_release_hw_control - release control of the h/w to f/w
386  * @adapter: address of board private structure
387  *
388  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
389  * For ASF and Pass Through versions of f/w this means that the
390  * driver is no longer loaded. For AMT version (only with 82573) i
391  * of the f/w this means that the network i/f is closed.
392  *
393  **/
394
395 static void
396 e1000_release_hw_control(struct e1000_adapter *adapter)
397 {
398         uint32_t ctrl_ext;
399         uint32_t swsm;
400         uint32_t extcnf;
401
402         /* Let firmware taken over control of h/w */
403         switch (adapter->hw.mac_type) {
404         case e1000_82571:
405         case e1000_82572:
406         case e1000_80003es2lan:
407                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
408                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
409                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
410                 break;
411         case e1000_82573:
412                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
413                 E1000_WRITE_REG(&adapter->hw, SWSM,
414                                 swsm & ~E1000_SWSM_DRV_LOAD);
415         case e1000_ich8lan:
416                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
419                 break;
420         default:
421                 break;
422         }
423 }
424
425 /**
426  * e1000_get_hw_control - get control of the h/w from f/w
427  * @adapter: address of board private structure
428  *
429  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430  * For ASF and Pass Through versions of f/w this means that
431  * the driver is loaded. For AMT version (only with 82573)
432  * of the f/w this means that the network i/f is open.
433  *
434  **/
435
436 static void
437 e1000_get_hw_control(struct e1000_adapter *adapter)
438 {
439         uint32_t ctrl_ext;
440         uint32_t swsm;
441         uint32_t extcnf;
442
443         /* Let firmware know the driver has taken over */
444         switch (adapter->hw.mac_type) {
445         case e1000_82571:
446         case e1000_82572:
447         case e1000_80003es2lan:
448                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
449                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
450                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
451                 break;
452         case e1000_82573:
453                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
454                 E1000_WRITE_REG(&adapter->hw, SWSM,
455                                 swsm | E1000_SWSM_DRV_LOAD);
456                 break;
457         case e1000_ich8lan:
458                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
459                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
460                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
461                 break;
462         default:
463                 break;
464         }
465 }
466
467 int
468 e1000_up(struct e1000_adapter *adapter)
469 {
470         struct net_device *netdev = adapter->netdev;
471         int i;
472
473         /* hardware has been reset, we need to reload some things */
474
475         e1000_set_multi(netdev);
476
477         e1000_restore_vlan(adapter);
478
479         e1000_configure_tx(adapter);
480         e1000_setup_rctl(adapter);
481         e1000_configure_rx(adapter);
482         /* call E1000_DESC_UNUSED which always leaves
483          * at least 1 descriptor unused to make sure
484          * next_to_use != next_to_clean */
485         for (i = 0; i < adapter->num_rx_queues; i++) {
486                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
487                 adapter->alloc_rx_buf(adapter, ring,
488                                       E1000_DESC_UNUSED(ring));
489         }
490
491         adapter->tx_queue_len = netdev->tx_queue_len;
492
493 #ifdef CONFIG_E1000_NAPI
494         netif_poll_enable(netdev);
495 #endif
496         e1000_irq_enable(adapter);
497
498         clear_bit(__E1000_DOWN, &adapter->flags);
499
500         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
501         return 0;
502 }
503
504 /**
505  * e1000_power_up_phy - restore link in case the phy was powered down
506  * @adapter: address of board private structure
507  *
508  * The phy may be powered down to save power and turn off link when the
509  * driver is unloaded and wake on lan is not enabled (among others)
510  * *** this routine MUST be followed by a call to e1000_reset ***
511  *
512  **/
513
514 void e1000_power_up_phy(struct e1000_adapter *adapter)
515 {
516         uint16_t mii_reg = 0;
517
518         /* Just clear the power down bit to wake the phy back up */
519         if (adapter->hw.media_type == e1000_media_type_copper) {
520                 /* according to the manual, the phy will retain its
521                  * settings across a power-down/up cycle */
522                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
523                 mii_reg &= ~MII_CR_POWER_DOWN;
524                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
525         }
526 }
527
528 static void e1000_power_down_phy(struct e1000_adapter *adapter)
529 {
530         /* Power down the PHY so no link is implied when interface is down *
531          * The PHY cannot be powered down if any of the following is TRUE *
532          * (a) WoL is enabled
533          * (b) AMT is active
534          * (c) SoL/IDER session is active */
535         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
536            adapter->hw.media_type == e1000_media_type_copper) {
537                 uint16_t mii_reg = 0;
538
539                 switch (adapter->hw.mac_type) {
540                 case e1000_82540:
541                 case e1000_82545:
542                 case e1000_82545_rev_3:
543                 case e1000_82546:
544                 case e1000_82546_rev_3:
545                 case e1000_82541:
546                 case e1000_82541_rev_2:
547                 case e1000_82547:
548                 case e1000_82547_rev_2:
549                         if (E1000_READ_REG(&adapter->hw, MANC) &
550                             E1000_MANC_SMBUS_EN)
551                                 goto out;
552                         break;
553                 case e1000_82571:
554                 case e1000_82572:
555                 case e1000_82573:
556                 case e1000_80003es2lan:
557                 case e1000_ich8lan:
558                         if (e1000_check_mng_mode(&adapter->hw) ||
559                             e1000_check_phy_reset_block(&adapter->hw))
560                                 goto out;
561                         break;
562                 default:
563                         goto out;
564                 }
565                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
566                 mii_reg |= MII_CR_POWER_DOWN;
567                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
568                 mdelay(1);
569         }
570 out:
571         return;
572 }
573
574 void
575 e1000_down(struct e1000_adapter *adapter)
576 {
577         struct net_device *netdev = adapter->netdev;
578
579         /* signal that we're down so the interrupt handler does not
580          * reschedule our watchdog timer */
581         set_bit(__E1000_DOWN, &adapter->flags);
582
583         e1000_irq_disable(adapter);
584
585         del_timer_sync(&adapter->tx_fifo_stall_timer);
586         del_timer_sync(&adapter->watchdog_timer);
587         del_timer_sync(&adapter->phy_info_timer);
588
589 #ifdef CONFIG_E1000_NAPI
590         netif_poll_disable(netdev);
591 #endif
592         netdev->tx_queue_len = adapter->tx_queue_len;
593         adapter->link_speed = 0;
594         adapter->link_duplex = 0;
595         netif_carrier_off(netdev);
596         netif_stop_queue(netdev);
597
598         e1000_reset(adapter);
599         e1000_clean_all_tx_rings(adapter);
600         e1000_clean_all_rx_rings(adapter);
601 }
602
603 void
604 e1000_reinit_locked(struct e1000_adapter *adapter)
605 {
606         WARN_ON(in_interrupt());
607         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
608                 msleep(1);
609         e1000_down(adapter);
610         e1000_up(adapter);
611         clear_bit(__E1000_RESETTING, &adapter->flags);
612 }
613
614 void
615 e1000_reset(struct e1000_adapter *adapter)
616 {
617         uint32_t pba, manc;
618         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
619
620         /* Repartition Pba for greater than 9k mtu
621          * To take effect CTRL.RST is required.
622          */
623
624         switch (adapter->hw.mac_type) {
625         case e1000_82547:
626         case e1000_82547_rev_2:
627                 pba = E1000_PBA_30K;
628                 break;
629         case e1000_82571:
630         case e1000_82572:
631         case e1000_80003es2lan:
632                 pba = E1000_PBA_38K;
633                 break;
634         case e1000_82573:
635                 pba = E1000_PBA_12K;
636                 break;
637         case e1000_ich8lan:
638                 pba = E1000_PBA_8K;
639                 break;
640         default:
641                 pba = E1000_PBA_48K;
642                 break;
643         }
644
645         if ((adapter->hw.mac_type != e1000_82573) &&
646            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
647                 pba -= 8; /* allocate more FIFO for Tx */
648
649
650         if (adapter->hw.mac_type == e1000_82547) {
651                 adapter->tx_fifo_head = 0;
652                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
653                 adapter->tx_fifo_size =
654                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
655                 atomic_set(&adapter->tx_fifo_stall, 0);
656         }
657
658         E1000_WRITE_REG(&adapter->hw, PBA, pba);
659
660         /* flow control settings */
661         /* Set the FC high water mark to 90% of the FIFO size.
662          * Required to clear last 3 LSB */
663         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
664         /* We can't use 90% on small FIFOs because the remainder
665          * would be less than 1 full frame.  In this case, we size
666          * it to allow at least a full frame above the high water
667          *  mark. */
668         if (pba < E1000_PBA_16K)
669                 fc_high_water_mark = (pba * 1024) - 1600;
670
671         adapter->hw.fc_high_water = fc_high_water_mark;
672         adapter->hw.fc_low_water = fc_high_water_mark - 8;
673         if (adapter->hw.mac_type == e1000_80003es2lan)
674                 adapter->hw.fc_pause_time = 0xFFFF;
675         else
676                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
677         adapter->hw.fc_send_xon = 1;
678         adapter->hw.fc = adapter->hw.original_fc;
679
680         /* Allow time for pending master requests to run */
681         e1000_reset_hw(&adapter->hw);
682         if (adapter->hw.mac_type >= e1000_82544)
683                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
684
685         if (e1000_init_hw(&adapter->hw))
686                 DPRINTK(PROBE, ERR, "Hardware Error\n");
687         e1000_update_mng_vlan(adapter);
688         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
689         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
690
691         e1000_reset_adaptive(&adapter->hw);
692         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
693
694         if (!adapter->smart_power_down &&
695             (adapter->hw.mac_type == e1000_82571 ||
696              adapter->hw.mac_type == e1000_82572)) {
697                 uint16_t phy_data = 0;
698                 /* speed up time to link by disabling smart power down, ignore
699                  * the return value of this function because there is nothing
700                  * different we would do if it failed */
701                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
702                                    &phy_data);
703                 phy_data &= ~IGP02E1000_PM_SPD;
704                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
705                                     phy_data);
706         }
707
708         if ((adapter->en_mng_pt) &&
709             (adapter->hw.mac_type >= e1000_82540) &&
710             (adapter->hw.mac_type < e1000_82571) &&
711             (adapter->hw.media_type == e1000_media_type_copper)) {
712                 manc = E1000_READ_REG(&adapter->hw, MANC);
713                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
714                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
715         }
716 }
717
718 /**
719  * e1000_probe - Device Initialization Routine
720  * @pdev: PCI device information struct
721  * @ent: entry in e1000_pci_tbl
722  *
723  * Returns 0 on success, negative on failure
724  *
725  * e1000_probe initializes an adapter identified by a pci_dev structure.
726  * The OS initialization, configuring of the adapter private structure,
727  * and a hardware reset occur.
728  **/
729
730 static int __devinit
731 e1000_probe(struct pci_dev *pdev,
732             const struct pci_device_id *ent)
733 {
734         struct net_device *netdev;
735         struct e1000_adapter *adapter;
736         unsigned long mmio_start, mmio_len;
737         unsigned long flash_start, flash_len;
738
739         static int cards_found = 0;
740         static int global_quad_port_a = 0; /* global ksp3 port a indication */
741         int i, err, pci_using_dac;
742         uint16_t eeprom_data = 0;
743         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
744         if ((err = pci_enable_device(pdev)))
745                 return err;
746
747         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
748             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
749                 pci_using_dac = 1;
750         } else {
751                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
752                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
753                         E1000_ERR("No usable DMA configuration, aborting\n");
754                         goto err_dma;
755                 }
756                 pci_using_dac = 0;
757         }
758
759         if ((err = pci_request_regions(pdev, e1000_driver_name)))
760                 goto err_pci_reg;
761
762         pci_set_master(pdev);
763
764         err = -ENOMEM;
765         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
766         if (!netdev)
767                 goto err_alloc_etherdev;
768
769         SET_MODULE_OWNER(netdev);
770         SET_NETDEV_DEV(netdev, &pdev->dev);
771
772         pci_set_drvdata(pdev, netdev);
773         adapter = netdev_priv(netdev);
774         adapter->netdev = netdev;
775         adapter->pdev = pdev;
776         adapter->hw.back = adapter;
777         adapter->msg_enable = (1 << debug) - 1;
778
779         mmio_start = pci_resource_start(pdev, BAR_0);
780         mmio_len = pci_resource_len(pdev, BAR_0);
781
782         err = -EIO;
783         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
784         if (!adapter->hw.hw_addr)
785                 goto err_ioremap;
786
787         for (i = BAR_1; i <= BAR_5; i++) {
788                 if (pci_resource_len(pdev, i) == 0)
789                         continue;
790                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
791                         adapter->hw.io_base = pci_resource_start(pdev, i);
792                         break;
793                 }
794         }
795
796         netdev->open = &e1000_open;
797         netdev->stop = &e1000_close;
798         netdev->hard_start_xmit = &e1000_xmit_frame;
799         netdev->get_stats = &e1000_get_stats;
800         netdev->set_multicast_list = &e1000_set_multi;
801         netdev->set_mac_address = &e1000_set_mac;
802         netdev->change_mtu = &e1000_change_mtu;
803         netdev->do_ioctl = &e1000_ioctl;
804         e1000_set_ethtool_ops(netdev);
805         netdev->tx_timeout = &e1000_tx_timeout;
806         netdev->watchdog_timeo = 5 * HZ;
807 #ifdef CONFIG_E1000_NAPI
808         netdev->poll = &e1000_clean;
809         netdev->weight = 64;
810 #endif
811         netdev->vlan_rx_register = e1000_vlan_rx_register;
812         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
813         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
814 #ifdef CONFIG_NET_POLL_CONTROLLER
815         netdev->poll_controller = e1000_netpoll;
816 #endif
817         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
818
819         netdev->mem_start = mmio_start;
820         netdev->mem_end = mmio_start + mmio_len;
821         netdev->base_addr = adapter->hw.io_base;
822
823         adapter->bd_number = cards_found;
824
825         /* setup the private structure */
826
827         if ((err = e1000_sw_init(adapter)))
828                 goto err_sw_init;
829
830         err = -EIO;
831         /* Flash BAR mapping must happen after e1000_sw_init
832          * because it depends on mac_type */
833         if ((adapter->hw.mac_type == e1000_ich8lan) &&
834            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
835                 flash_start = pci_resource_start(pdev, 1);
836                 flash_len = pci_resource_len(pdev, 1);
837                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
838                 if (!adapter->hw.flash_address)
839                         goto err_flashmap;
840         }
841
842         if (e1000_check_phy_reset_block(&adapter->hw))
843                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
844
845         if (adapter->hw.mac_type >= e1000_82543) {
846                 netdev->features = NETIF_F_SG |
847                                    NETIF_F_HW_CSUM |
848                                    NETIF_F_HW_VLAN_TX |
849                                    NETIF_F_HW_VLAN_RX |
850                                    NETIF_F_HW_VLAN_FILTER;
851                 if (adapter->hw.mac_type == e1000_ich8lan)
852                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
853         }
854
855 #ifdef NETIF_F_TSO
856         if ((adapter->hw.mac_type >= e1000_82544) &&
857            (adapter->hw.mac_type != e1000_82547))
858                 netdev->features |= NETIF_F_TSO;
859
860 #ifdef NETIF_F_TSO6
861         if (adapter->hw.mac_type > e1000_82547_rev_2)
862                 netdev->features |= NETIF_F_TSO6;
863 #endif
864 #endif
865         if (pci_using_dac)
866                 netdev->features |= NETIF_F_HIGHDMA;
867
868         netdev->features |= NETIF_F_LLTX;
869
870         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
871
872         /* initialize eeprom parameters */
873
874         if (e1000_init_eeprom_params(&adapter->hw)) {
875                 E1000_ERR("EEPROM initialization failed\n");
876                 goto err_eeprom;
877         }
878
879         /* before reading the EEPROM, reset the controller to
880          * put the device in a known good starting state */
881
882         e1000_reset_hw(&adapter->hw);
883
884         /* make sure the EEPROM is good */
885
886         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
887                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
888                 goto err_eeprom;
889         }
890
891         /* copy the MAC address out of the EEPROM */
892
893         if (e1000_read_mac_addr(&adapter->hw))
894                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
895         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
896         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
897
898         if (!is_valid_ether_addr(netdev->perm_addr)) {
899                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
900                 goto err_eeprom;
901         }
902
903         e1000_get_bus_info(&adapter->hw);
904
905         init_timer(&adapter->tx_fifo_stall_timer);
906         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
907         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
908
909         init_timer(&adapter->watchdog_timer);
910         adapter->watchdog_timer.function = &e1000_watchdog;
911         adapter->watchdog_timer.data = (unsigned long) adapter;
912
913         init_timer(&adapter->phy_info_timer);
914         adapter->phy_info_timer.function = &e1000_update_phy_info;
915         adapter->phy_info_timer.data = (unsigned long) adapter;
916
917         INIT_WORK(&adapter->reset_task,
918                 (void (*)(void *))e1000_reset_task, netdev);
919
920         e1000_check_options(adapter);
921
922         /* Initial Wake on LAN setting
923          * If APM wake is enabled in the EEPROM,
924          * enable the ACPI Magic Packet filter
925          */
926
927         switch (adapter->hw.mac_type) {
928         case e1000_82542_rev2_0:
929         case e1000_82542_rev2_1:
930         case e1000_82543:
931                 break;
932         case e1000_82544:
933                 e1000_read_eeprom(&adapter->hw,
934                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
935                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
936                 break;
937         case e1000_ich8lan:
938                 e1000_read_eeprom(&adapter->hw,
939                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
940                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
941                 break;
942         case e1000_82546:
943         case e1000_82546_rev_3:
944         case e1000_82571:
945         case e1000_80003es2lan:
946                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
947                         e1000_read_eeprom(&adapter->hw,
948                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
949                         break;
950                 }
951                 /* Fall Through */
952         default:
953                 e1000_read_eeprom(&adapter->hw,
954                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
955                 break;
956         }
957         if (eeprom_data & eeprom_apme_mask)
958                 adapter->eeprom_wol |= E1000_WUFC_MAG;
959
960         /* now that we have the eeprom settings, apply the special cases
961          * where the eeprom may be wrong or the board simply won't support
962          * wake on lan on a particular port */
963         switch (pdev->device) {
964         case E1000_DEV_ID_82546GB_PCIE:
965                 adapter->eeprom_wol = 0;
966                 break;
967         case E1000_DEV_ID_82546EB_FIBER:
968         case E1000_DEV_ID_82546GB_FIBER:
969         case E1000_DEV_ID_82571EB_FIBER:
970                 /* Wake events only supported on port A for dual fiber
971                  * regardless of eeprom setting */
972                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
973                         adapter->eeprom_wol = 0;
974                 break;
975         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
976         case E1000_DEV_ID_82571EB_QUAD_COPPER:
977         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
978                 /* if quad port adapter, disable WoL on all but port A */
979                 if (global_quad_port_a != 0)
980                         adapter->eeprom_wol = 0;
981                 else
982                         adapter->quad_port_a = 1;
983                 /* Reset for multiple quad port adapters */
984                 if (++global_quad_port_a == 4)
985                         global_quad_port_a = 0;
986                 break;
987         }
988
989         /* initialize the wol settings based on the eeprom settings */
990         adapter->wol = adapter->eeprom_wol;
991
992         /* print bus type/speed/width info */
993         {
994         struct e1000_hw *hw = &adapter->hw;
995         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
996                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
997                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
998                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
999                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1000                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1001                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1002                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1003                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1004                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1005                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1006                  "32-bit"));
1007         }
1008
1009         for (i = 0; i < 6; i++)
1010                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1011
1012         /* reset the hardware with the new settings */
1013         e1000_reset(adapter);
1014
1015         /* If the controller is 82573 and f/w is AMT, do not set
1016          * DRV_LOAD until the interface is up.  For all other cases,
1017          * let the f/w know that the h/w is now under the control
1018          * of the driver. */
1019         if (adapter->hw.mac_type != e1000_82573 ||
1020             !e1000_check_mng_mode(&adapter->hw))
1021                 e1000_get_hw_control(adapter);
1022
1023         strcpy(netdev->name, "eth%d");
1024         if ((err = register_netdev(netdev)))
1025                 goto err_register;
1026
1027         /* tell the stack to leave us alone until e1000_open() is called */
1028         netif_carrier_off(netdev);
1029         netif_stop_queue(netdev);
1030
1031         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1032
1033         cards_found++;
1034         return 0;
1035
1036 err_register:
1037         e1000_release_hw_control(adapter);
1038 err_eeprom:
1039         if (!e1000_check_phy_reset_block(&adapter->hw))
1040                 e1000_phy_hw_reset(&adapter->hw);
1041
1042         if (adapter->hw.flash_address)
1043                 iounmap(adapter->hw.flash_address);
1044 err_flashmap:
1045 #ifdef CONFIG_E1000_NAPI
1046         for (i = 0; i < adapter->num_rx_queues; i++)
1047                 dev_put(&adapter->polling_netdev[i]);
1048 #endif
1049
1050         kfree(adapter->tx_ring);
1051         kfree(adapter->rx_ring);
1052 #ifdef CONFIG_E1000_NAPI
1053         kfree(adapter->polling_netdev);
1054 #endif
1055 err_sw_init:
1056         iounmap(adapter->hw.hw_addr);
1057 err_ioremap:
1058         free_netdev(netdev);
1059 err_alloc_etherdev:
1060         pci_release_regions(pdev);
1061 err_pci_reg:
1062 err_dma:
1063         pci_disable_device(pdev);
1064         return err;
1065 }
1066
1067 /**
1068  * e1000_remove - Device Removal Routine
1069  * @pdev: PCI device information struct
1070  *
1071  * e1000_remove is called by the PCI subsystem to alert the driver
1072  * that it should release a PCI device.  The could be caused by a
1073  * Hot-Plug event, or because the driver is going to be removed from
1074  * memory.
1075  **/
1076
1077 static void __devexit
1078 e1000_remove(struct pci_dev *pdev)
1079 {
1080         struct net_device *netdev = pci_get_drvdata(pdev);
1081         struct e1000_adapter *adapter = netdev_priv(netdev);
1082         uint32_t manc;
1083 #ifdef CONFIG_E1000_NAPI
1084         int i;
1085 #endif
1086
1087         flush_scheduled_work();
1088
1089         if (adapter->hw.mac_type >= e1000_82540 &&
1090             adapter->hw.mac_type < e1000_82571 &&
1091             adapter->hw.media_type == e1000_media_type_copper) {
1092                 manc = E1000_READ_REG(&adapter->hw, MANC);
1093                 if (manc & E1000_MANC_SMBUS_EN) {
1094                         manc |= E1000_MANC_ARP_EN;
1095                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1096                 }
1097         }
1098
1099         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1100          * would have already happened in close and is redundant. */
1101         e1000_release_hw_control(adapter);
1102
1103         unregister_netdev(netdev);
1104 #ifdef CONFIG_E1000_NAPI
1105         for (i = 0; i < adapter->num_rx_queues; i++)
1106                 dev_put(&adapter->polling_netdev[i]);
1107 #endif
1108
1109         if (!e1000_check_phy_reset_block(&adapter->hw))
1110                 e1000_phy_hw_reset(&adapter->hw);
1111
1112         kfree(adapter->tx_ring);
1113         kfree(adapter->rx_ring);
1114 #ifdef CONFIG_E1000_NAPI
1115         kfree(adapter->polling_netdev);
1116 #endif
1117
1118         iounmap(adapter->hw.hw_addr);
1119         if (adapter->hw.flash_address)
1120                 iounmap(adapter->hw.flash_address);
1121         pci_release_regions(pdev);
1122
1123         free_netdev(netdev);
1124
1125         pci_disable_device(pdev);
1126 }
1127
1128 /**
1129  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1130  * @adapter: board private structure to initialize
1131  *
1132  * e1000_sw_init initializes the Adapter private data structure.
1133  * Fields are initialized based on PCI device information and
1134  * OS network device settings (MTU size).
1135  **/
1136
1137 static int __devinit
1138 e1000_sw_init(struct e1000_adapter *adapter)
1139 {
1140         struct e1000_hw *hw = &adapter->hw;
1141         struct net_device *netdev = adapter->netdev;
1142         struct pci_dev *pdev = adapter->pdev;
1143 #ifdef CONFIG_E1000_NAPI
1144         int i;
1145 #endif
1146
1147         /* PCI config space info */
1148
1149         hw->vendor_id = pdev->vendor;
1150         hw->device_id = pdev->device;
1151         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1152         hw->subsystem_id = pdev->subsystem_device;
1153
1154         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1155
1156         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1157
1158         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1159         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1160         hw->max_frame_size = netdev->mtu +
1161                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1162         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1163
1164         /* identify the MAC */
1165
1166         if (e1000_set_mac_type(hw)) {
1167                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1168                 return -EIO;
1169         }
1170
1171         switch (hw->mac_type) {
1172         default:
1173                 break;
1174         case e1000_82541:
1175         case e1000_82547:
1176         case e1000_82541_rev_2:
1177         case e1000_82547_rev_2:
1178                 hw->phy_init_script = 1;
1179                 break;
1180         }
1181
1182         e1000_set_media_type(hw);
1183
1184         hw->wait_autoneg_complete = FALSE;
1185         hw->tbi_compatibility_en = TRUE;
1186         hw->adaptive_ifs = TRUE;
1187
1188         /* Copper options */
1189
1190         if (hw->media_type == e1000_media_type_copper) {
1191                 hw->mdix = AUTO_ALL_MODES;
1192                 hw->disable_polarity_correction = FALSE;
1193                 hw->master_slave = E1000_MASTER_SLAVE;
1194         }
1195
1196         adapter->num_tx_queues = 1;
1197         adapter->num_rx_queues = 1;
1198
1199         if (e1000_alloc_queues(adapter)) {
1200                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1201                 return -ENOMEM;
1202         }
1203
1204 #ifdef CONFIG_E1000_NAPI
1205         for (i = 0; i < adapter->num_rx_queues; i++) {
1206                 adapter->polling_netdev[i].priv = adapter;
1207                 adapter->polling_netdev[i].poll = &e1000_clean;
1208                 adapter->polling_netdev[i].weight = 64;
1209                 dev_hold(&adapter->polling_netdev[i]);
1210                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1211         }
1212         spin_lock_init(&adapter->tx_queue_lock);
1213 #endif
1214
1215         atomic_set(&adapter->irq_sem, 1);
1216         spin_lock_init(&adapter->stats_lock);
1217
1218         set_bit(__E1000_DOWN, &adapter->flags);
1219
1220         return 0;
1221 }
1222
1223 /**
1224  * e1000_alloc_queues - Allocate memory for all rings
1225  * @adapter: board private structure to initialize
1226  *
1227  * We allocate one ring per queue at run-time since we don't know the
1228  * number of queues at compile-time.  The polling_netdev array is
1229  * intended for Multiqueue, but should work fine with a single queue.
1230  **/
1231
1232 static int __devinit
1233 e1000_alloc_queues(struct e1000_adapter *adapter)
1234 {
1235         int size;
1236
1237         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1238         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1239         if (!adapter->tx_ring)
1240                 return -ENOMEM;
1241         memset(adapter->tx_ring, 0, size);
1242
1243         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1244         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1245         if (!adapter->rx_ring) {
1246                 kfree(adapter->tx_ring);
1247                 return -ENOMEM;
1248         }
1249         memset(adapter->rx_ring, 0, size);
1250
1251 #ifdef CONFIG_E1000_NAPI
1252         size = sizeof(struct net_device) * adapter->num_rx_queues;
1253         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1254         if (!adapter->polling_netdev) {
1255                 kfree(adapter->tx_ring);
1256                 kfree(adapter->rx_ring);
1257                 return -ENOMEM;
1258         }
1259         memset(adapter->polling_netdev, 0, size);
1260 #endif
1261
1262         return E1000_SUCCESS;
1263 }
1264
1265 /**
1266  * e1000_open - Called when a network interface is made active
1267  * @netdev: network interface device structure
1268  *
1269  * Returns 0 on success, negative value on failure
1270  *
1271  * The open entry point is called when a network interface is made
1272  * active by the system (IFF_UP).  At this point all resources needed
1273  * for transmit and receive operations are allocated, the interrupt
1274  * handler is registered with the OS, the watchdog timer is started,
1275  * and the stack is notified that the interface is ready.
1276  **/
1277
1278 static int
1279 e1000_open(struct net_device *netdev)
1280 {
1281         struct e1000_adapter *adapter = netdev_priv(netdev);
1282         int err;
1283
1284         /* disallow open during test */
1285         if (test_bit(__E1000_TESTING, &adapter->flags))
1286                 return -EBUSY;
1287
1288         /* allocate transmit descriptors */
1289         if ((err = e1000_setup_all_tx_resources(adapter)))
1290                 goto err_setup_tx;
1291
1292         /* allocate receive descriptors */
1293         if ((err = e1000_setup_all_rx_resources(adapter)))
1294                 goto err_setup_rx;
1295
1296         err = e1000_request_irq(adapter);
1297         if (err)
1298                 goto err_req_irq;
1299
1300         e1000_power_up_phy(adapter);
1301
1302         if ((err = e1000_up(adapter)))
1303                 goto err_up;
1304         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1305         if ((adapter->hw.mng_cookie.status &
1306                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1307                 e1000_update_mng_vlan(adapter);
1308         }
1309
1310         /* If AMT is enabled, let the firmware know that the network
1311          * interface is now open */
1312         if (adapter->hw.mac_type == e1000_82573 &&
1313             e1000_check_mng_mode(&adapter->hw))
1314                 e1000_get_hw_control(adapter);
1315
1316         return E1000_SUCCESS;
1317
1318 err_up:
1319         e1000_power_down_phy(adapter);
1320         e1000_free_irq(adapter);
1321 err_req_irq:
1322         e1000_free_all_rx_resources(adapter);
1323 err_setup_rx:
1324         e1000_free_all_tx_resources(adapter);
1325 err_setup_tx:
1326         e1000_reset(adapter);
1327
1328         return err;
1329 }
1330
1331 /**
1332  * e1000_close - Disables a network interface
1333  * @netdev: network interface device structure
1334  *
1335  * Returns 0, this is not allowed to fail
1336  *
1337  * The close entry point is called when an interface is de-activated
1338  * by the OS.  The hardware is still under the drivers control, but
1339  * needs to be disabled.  A global MAC reset is issued to stop the
1340  * hardware, and all transmit and receive resources are freed.
1341  **/
1342
1343 static int
1344 e1000_close(struct net_device *netdev)
1345 {
1346         struct e1000_adapter *adapter = netdev_priv(netdev);
1347
1348         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1349         e1000_down(adapter);
1350         e1000_power_down_phy(adapter);
1351         e1000_free_irq(adapter);
1352
1353         e1000_free_all_tx_resources(adapter);
1354         e1000_free_all_rx_resources(adapter);
1355
1356         /* kill manageability vlan ID if supported, but not if a vlan with
1357          * the same ID is registered on the host OS (let 8021q kill it) */
1358         if ((adapter->hw.mng_cookie.status &
1359                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1360              !(adapter->vlgrp &&
1361                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1362                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1363         }
1364
1365         /* If AMT is enabled, let the firmware know that the network
1366          * interface is now closed */
1367         if (adapter->hw.mac_type == e1000_82573 &&
1368             e1000_check_mng_mode(&adapter->hw))
1369                 e1000_release_hw_control(adapter);
1370
1371         return 0;
1372 }
1373
1374 /**
1375  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1376  * @adapter: address of board private structure
1377  * @start: address of beginning of memory
1378  * @len: length of memory
1379  **/
1380 static boolean_t
1381 e1000_check_64k_bound(struct e1000_adapter *adapter,
1382                       void *start, unsigned long len)
1383 {
1384         unsigned long begin = (unsigned long) start;
1385         unsigned long end = begin + len;
1386
1387         /* First rev 82545 and 82546 need to not allow any memory
1388          * write location to cross 64k boundary due to errata 23 */
1389         if (adapter->hw.mac_type == e1000_82545 ||
1390             adapter->hw.mac_type == e1000_82546) {
1391                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1392         }
1393
1394         return TRUE;
1395 }
1396
1397 /**
1398  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1399  * @adapter: board private structure
1400  * @txdr:    tx descriptor ring (for a specific queue) to setup
1401  *
1402  * Return 0 on success, negative on failure
1403  **/
1404
1405 static int
1406 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1407                          struct e1000_tx_ring *txdr)
1408 {
1409         struct pci_dev *pdev = adapter->pdev;
1410         int size;
1411
1412         size = sizeof(struct e1000_buffer) * txdr->count;
1413         txdr->buffer_info = vmalloc(size);
1414         if (!txdr->buffer_info) {
1415                 DPRINTK(PROBE, ERR,
1416                 "Unable to allocate memory for the transmit descriptor ring\n");
1417                 return -ENOMEM;
1418         }
1419         memset(txdr->buffer_info, 0, size);
1420
1421         /* round up to nearest 4K */
1422
1423         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1424         E1000_ROUNDUP(txdr->size, 4096);
1425
1426         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1427         if (!txdr->desc) {
1428 setup_tx_desc_die:
1429                 vfree(txdr->buffer_info);
1430                 DPRINTK(PROBE, ERR,
1431                 "Unable to allocate memory for the transmit descriptor ring\n");
1432                 return -ENOMEM;
1433         }
1434
1435         /* Fix for errata 23, can't cross 64kB boundary */
1436         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1437                 void *olddesc = txdr->desc;
1438                 dma_addr_t olddma = txdr->dma;
1439                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1440                                      "at %p\n", txdr->size, txdr->desc);
1441                 /* Try again, without freeing the previous */
1442                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1443                 /* Failed allocation, critical failure */
1444                 if (!txdr->desc) {
1445                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1446                         goto setup_tx_desc_die;
1447                 }
1448
1449                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1450                         /* give up */
1451                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1452                                             txdr->dma);
1453                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1454                         DPRINTK(PROBE, ERR,
1455                                 "Unable to allocate aligned memory "
1456                                 "for the transmit descriptor ring\n");
1457                         vfree(txdr->buffer_info);
1458                         return -ENOMEM;
1459                 } else {
1460                         /* Free old allocation, new allocation was successful */
1461                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1462                 }
1463         }
1464         memset(txdr->desc, 0, txdr->size);
1465
1466         txdr->next_to_use = 0;
1467         txdr->next_to_clean = 0;
1468         spin_lock_init(&txdr->tx_lock);
1469
1470         return 0;
1471 }
1472
1473 /**
1474  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1475  *                                (Descriptors) for all queues
1476  * @adapter: board private structure
1477  *
1478  * Return 0 on success, negative on failure
1479  **/
1480
1481 int
1482 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1483 {
1484         int i, err = 0;
1485
1486         for (i = 0; i < adapter->num_tx_queues; i++) {
1487                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1488                 if (err) {
1489                         DPRINTK(PROBE, ERR,
1490                                 "Allocation for Tx Queue %u failed\n", i);
1491                         for (i-- ; i >= 0; i--)
1492                                 e1000_free_tx_resources(adapter,
1493                                                         &adapter->tx_ring[i]);
1494                         break;
1495                 }
1496         }
1497
1498         return err;
1499 }
1500
1501 /**
1502  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1503  * @adapter: board private structure
1504  *
1505  * Configure the Tx unit of the MAC after a reset.
1506  **/
1507
1508 static void
1509 e1000_configure_tx(struct e1000_adapter *adapter)
1510 {
1511         uint64_t tdba;
1512         struct e1000_hw *hw = &adapter->hw;
1513         uint32_t tdlen, tctl, tipg, tarc;
1514         uint32_t ipgr1, ipgr2;
1515
1516         /* Setup the HW Tx Head and Tail descriptor pointers */
1517
1518         switch (adapter->num_tx_queues) {
1519         case 1:
1520         default:
1521                 tdba = adapter->tx_ring[0].dma;
1522                 tdlen = adapter->tx_ring[0].count *
1523                         sizeof(struct e1000_tx_desc);
1524                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1525                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1526                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1527                 E1000_WRITE_REG(hw, TDT, 0);
1528                 E1000_WRITE_REG(hw, TDH, 0);
1529                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1530                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1531                 break;
1532         }
1533
1534         /* Set the default values for the Tx Inter Packet Gap timer */
1535
1536         if (hw->media_type == e1000_media_type_fiber ||
1537             hw->media_type == e1000_media_type_internal_serdes)
1538                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1539         else
1540                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1541
1542         switch (hw->mac_type) {
1543         case e1000_82542_rev2_0:
1544         case e1000_82542_rev2_1:
1545                 tipg = DEFAULT_82542_TIPG_IPGT;
1546                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1547                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1548                 break;
1549         case e1000_80003es2lan:
1550                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1551                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1552                 break;
1553         default:
1554                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1555                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1556                 break;
1557         }
1558         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1559         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1560         E1000_WRITE_REG(hw, TIPG, tipg);
1561
1562         /* Set the Tx Interrupt Delay register */
1563
1564         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1565         if (hw->mac_type >= e1000_82540)
1566                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1567
1568         /* Program the Transmit Control Register */
1569
1570         tctl = E1000_READ_REG(hw, TCTL);
1571         tctl &= ~E1000_TCTL_CT;
1572         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1573                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1574
1575         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1576                 tarc = E1000_READ_REG(hw, TARC0);
1577                 /* set the speed mode bit, we'll clear it if we're not at
1578                  * gigabit link later */
1579                 tarc |= (1 << 21);
1580                 E1000_WRITE_REG(hw, TARC0, tarc);
1581         } else if (hw->mac_type == e1000_80003es2lan) {
1582                 tarc = E1000_READ_REG(hw, TARC0);
1583                 tarc |= 1;
1584                 E1000_WRITE_REG(hw, TARC0, tarc);
1585                 tarc = E1000_READ_REG(hw, TARC1);
1586                 tarc |= 1;
1587                 E1000_WRITE_REG(hw, TARC1, tarc);
1588         }
1589
1590         e1000_config_collision_dist(hw);
1591
1592         /* Setup Transmit Descriptor Settings for eop descriptor */
1593         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1594
1595         /* only set IDE if we are delaying interrupts using the timers */
1596         if (adapter->tx_int_delay)
1597                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1598
1599         if (hw->mac_type < e1000_82543)
1600                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1601         else
1602                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1603
1604         /* Cache if we're 82544 running in PCI-X because we'll
1605          * need this to apply a workaround later in the send path. */
1606         if (hw->mac_type == e1000_82544 &&
1607             hw->bus_type == e1000_bus_type_pcix)
1608                 adapter->pcix_82544 = 1;
1609
1610         E1000_WRITE_REG(hw, TCTL, tctl);
1611
1612 }
1613
1614 /**
1615  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1616  * @adapter: board private structure
1617  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1618  *
1619  * Returns 0 on success, negative on failure
1620  **/
1621
1622 static int
1623 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1624                          struct e1000_rx_ring *rxdr)
1625 {
1626         struct pci_dev *pdev = adapter->pdev;
1627         int size, desc_len;
1628
1629         size = sizeof(struct e1000_buffer) * rxdr->count;
1630         rxdr->buffer_info = vmalloc(size);
1631         if (!rxdr->buffer_info) {
1632                 DPRINTK(PROBE, ERR,
1633                 "Unable to allocate memory for the receive descriptor ring\n");
1634                 return -ENOMEM;
1635         }
1636         memset(rxdr->buffer_info, 0, size);
1637
1638         size = sizeof(struct e1000_ps_page) * rxdr->count;
1639         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1640         if (!rxdr->ps_page) {
1641                 vfree(rxdr->buffer_info);
1642                 DPRINTK(PROBE, ERR,
1643                 "Unable to allocate memory for the receive descriptor ring\n");
1644                 return -ENOMEM;
1645         }
1646         memset(rxdr->ps_page, 0, size);
1647
1648         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1649         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1650         if (!rxdr->ps_page_dma) {
1651                 vfree(rxdr->buffer_info);
1652                 kfree(rxdr->ps_page);
1653                 DPRINTK(PROBE, ERR,
1654                 "Unable to allocate memory for the receive descriptor ring\n");
1655                 return -ENOMEM;
1656         }
1657         memset(rxdr->ps_page_dma, 0, size);
1658
1659         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1660                 desc_len = sizeof(struct e1000_rx_desc);
1661         else
1662                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1663
1664         /* Round up to nearest 4K */
1665
1666         rxdr->size = rxdr->count * desc_len;
1667         E1000_ROUNDUP(rxdr->size, 4096);
1668
1669         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1670
1671         if (!rxdr->desc) {
1672                 DPRINTK(PROBE, ERR,
1673                 "Unable to allocate memory for the receive descriptor ring\n");
1674 setup_rx_desc_die:
1675                 vfree(rxdr->buffer_info);
1676                 kfree(rxdr->ps_page);
1677                 kfree(rxdr->ps_page_dma);
1678                 return -ENOMEM;
1679         }
1680
1681         /* Fix for errata 23, can't cross 64kB boundary */
1682         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1683                 void *olddesc = rxdr->desc;
1684                 dma_addr_t olddma = rxdr->dma;
1685                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1686                                      "at %p\n", rxdr->size, rxdr->desc);
1687                 /* Try again, without freeing the previous */
1688                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1689                 /* Failed allocation, critical failure */
1690                 if (!rxdr->desc) {
1691                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1692                         DPRINTK(PROBE, ERR,
1693                                 "Unable to allocate memory "
1694                                 "for the receive descriptor ring\n");
1695                         goto setup_rx_desc_die;
1696                 }
1697
1698                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1699                         /* give up */
1700                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1701                                             rxdr->dma);
1702                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1703                         DPRINTK(PROBE, ERR,
1704                                 "Unable to allocate aligned memory "
1705                                 "for the receive descriptor ring\n");
1706                         goto setup_rx_desc_die;
1707                 } else {
1708                         /* Free old allocation, new allocation was successful */
1709                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1710                 }
1711         }
1712         memset(rxdr->desc, 0, rxdr->size);
1713
1714         rxdr->next_to_clean = 0;
1715         rxdr->next_to_use = 0;
1716
1717         return 0;
1718 }
1719
1720 /**
1721  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1722  *                                (Descriptors) for all queues
1723  * @adapter: board private structure
1724  *
1725  * Return 0 on success, negative on failure
1726  **/
1727
1728 int
1729 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1730 {
1731         int i, err = 0;
1732
1733         for (i = 0; i < adapter->num_rx_queues; i++) {
1734                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1735                 if (err) {
1736                         DPRINTK(PROBE, ERR,
1737                                 "Allocation for Rx Queue %u failed\n", i);
1738                         for (i-- ; i >= 0; i--)
1739                                 e1000_free_rx_resources(adapter,
1740                                                         &adapter->rx_ring[i]);
1741                         break;
1742                 }
1743         }
1744
1745         return err;
1746 }
1747
1748 /**
1749  * e1000_setup_rctl - configure the receive control registers
1750  * @adapter: Board private structure
1751  **/
1752 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1753                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1754 static void
1755 e1000_setup_rctl(struct e1000_adapter *adapter)
1756 {
1757         uint32_t rctl, rfctl;
1758         uint32_t psrctl = 0;
1759 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1760         uint32_t pages = 0;
1761 #endif
1762
1763         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1764
1765         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1766
1767         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1768                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1769                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1770
1771         if (adapter->hw.tbi_compatibility_on == 1)
1772                 rctl |= E1000_RCTL_SBP;
1773         else
1774                 rctl &= ~E1000_RCTL_SBP;
1775
1776         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1777                 rctl &= ~E1000_RCTL_LPE;
1778         else
1779                 rctl |= E1000_RCTL_LPE;
1780
1781         /* Setup buffer sizes */
1782         rctl &= ~E1000_RCTL_SZ_4096;
1783         rctl |= E1000_RCTL_BSEX;
1784         switch (adapter->rx_buffer_len) {
1785                 case E1000_RXBUFFER_256:
1786                         rctl |= E1000_RCTL_SZ_256;
1787                         rctl &= ~E1000_RCTL_BSEX;
1788                         break;
1789                 case E1000_RXBUFFER_512:
1790                         rctl |= E1000_RCTL_SZ_512;
1791                         rctl &= ~E1000_RCTL_BSEX;
1792                         break;
1793                 case E1000_RXBUFFER_1024:
1794                         rctl |= E1000_RCTL_SZ_1024;
1795                         rctl &= ~E1000_RCTL_BSEX;
1796                         break;
1797                 case E1000_RXBUFFER_2048:
1798                 default:
1799                         rctl |= E1000_RCTL_SZ_2048;
1800                         rctl &= ~E1000_RCTL_BSEX;
1801                         break;
1802                 case E1000_RXBUFFER_4096:
1803                         rctl |= E1000_RCTL_SZ_4096;
1804                         break;
1805                 case E1000_RXBUFFER_8192:
1806                         rctl |= E1000_RCTL_SZ_8192;
1807                         break;
1808                 case E1000_RXBUFFER_16384:
1809                         rctl |= E1000_RCTL_SZ_16384;
1810                         break;
1811         }
1812
1813 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1814         /* 82571 and greater support packet-split where the protocol
1815          * header is placed in skb->data and the packet data is
1816          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1817          * In the case of a non-split, skb->data is linearly filled,
1818          * followed by the page buffers.  Therefore, skb->data is
1819          * sized to hold the largest protocol header.
1820          */
1821         /* allocations using alloc_page take too long for regular MTU
1822          * so only enable packet split for jumbo frames */
1823         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1824         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1825             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1826                 adapter->rx_ps_pages = pages;
1827         else
1828                 adapter->rx_ps_pages = 0;
1829 #endif
1830         if (adapter->rx_ps_pages) {
1831                 /* Configure extra packet-split registers */
1832                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1833                 rfctl |= E1000_RFCTL_EXTEN;
1834                 /* disable packet split support for IPv6 extension headers,
1835                  * because some malformed IPv6 headers can hang the RX */
1836                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1837                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1838
1839                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1840
1841                 rctl |= E1000_RCTL_DTYP_PS;
1842
1843                 psrctl |= adapter->rx_ps_bsize0 >>
1844                         E1000_PSRCTL_BSIZE0_SHIFT;
1845
1846                 switch (adapter->rx_ps_pages) {
1847                 case 3:
1848                         psrctl |= PAGE_SIZE <<
1849                                 E1000_PSRCTL_BSIZE3_SHIFT;
1850                 case 2:
1851                         psrctl |= PAGE_SIZE <<
1852                                 E1000_PSRCTL_BSIZE2_SHIFT;
1853                 case 1:
1854                         psrctl |= PAGE_SIZE >>
1855                                 E1000_PSRCTL_BSIZE1_SHIFT;
1856                         break;
1857                 }
1858
1859                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1860         }
1861
1862         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1863 }
1864
1865 /**
1866  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1867  * @adapter: board private structure
1868  *
1869  * Configure the Rx unit of the MAC after a reset.
1870  **/
1871
1872 static void
1873 e1000_configure_rx(struct e1000_adapter *adapter)
1874 {
1875         uint64_t rdba;
1876         struct e1000_hw *hw = &adapter->hw;
1877         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1878
1879         if (adapter->rx_ps_pages) {
1880                 /* this is a 32 byte descriptor */
1881                 rdlen = adapter->rx_ring[0].count *
1882                         sizeof(union e1000_rx_desc_packet_split);
1883                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1884                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1885         } else {
1886                 rdlen = adapter->rx_ring[0].count *
1887                         sizeof(struct e1000_rx_desc);
1888                 adapter->clean_rx = e1000_clean_rx_irq;
1889                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1890         }
1891
1892         /* disable receives while setting up the descriptors */
1893         rctl = E1000_READ_REG(hw, RCTL);
1894         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1895
1896         /* set the Receive Delay Timer Register */
1897         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1898
1899         if (hw->mac_type >= e1000_82540) {
1900                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1901                 if (adapter->itr_setting != 0)
1902                         E1000_WRITE_REG(hw, ITR,
1903                                 1000000000 / (adapter->itr * 256));
1904         }
1905
1906         if (hw->mac_type >= e1000_82571) {
1907                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1908                 /* Reset delay timers after every interrupt */
1909                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1910 #ifdef CONFIG_E1000_NAPI
1911                 /* Auto-Mask interrupts upon ICR access */
1912                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1913                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
1914 #endif
1915                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1916                 E1000_WRITE_FLUSH(hw);
1917         }
1918
1919         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1920          * the Base and Length of the Rx Descriptor Ring */
1921         switch (adapter->num_rx_queues) {
1922         case 1:
1923         default:
1924                 rdba = adapter->rx_ring[0].dma;
1925                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1926                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1927                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1928                 E1000_WRITE_REG(hw, RDT, 0);
1929                 E1000_WRITE_REG(hw, RDH, 0);
1930                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1931                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1932                 break;
1933         }
1934
1935         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1936         if (hw->mac_type >= e1000_82543) {
1937                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1938                 if (adapter->rx_csum == TRUE) {
1939                         rxcsum |= E1000_RXCSUM_TUOFL;
1940
1941                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1942                          * Must be used in conjunction with packet-split. */
1943                         if ((hw->mac_type >= e1000_82571) &&
1944                             (adapter->rx_ps_pages)) {
1945                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1946                         }
1947                 } else {
1948                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1949                         /* don't need to clear IPPCSE as it defaults to 0 */
1950                 }
1951                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1952         }
1953
1954         /* enable early receives on 82573, only takes effect if using > 2048
1955          * byte total frame size.  for example only for jumbo frames */
1956 #define E1000_ERT_2048 0x100
1957         if (hw->mac_type == e1000_82573)
1958                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1959
1960         /* Enable Receives */
1961         E1000_WRITE_REG(hw, RCTL, rctl);
1962 }
1963
1964 /**
1965  * e1000_free_tx_resources - Free Tx Resources per Queue
1966  * @adapter: board private structure
1967  * @tx_ring: Tx descriptor ring for a specific queue
1968  *
1969  * Free all transmit software resources
1970  **/
1971
1972 static void
1973 e1000_free_tx_resources(struct e1000_adapter *adapter,
1974                         struct e1000_tx_ring *tx_ring)
1975 {
1976         struct pci_dev *pdev = adapter->pdev;
1977
1978         e1000_clean_tx_ring(adapter, tx_ring);
1979
1980         vfree(tx_ring->buffer_info);
1981         tx_ring->buffer_info = NULL;
1982
1983         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1984
1985         tx_ring->desc = NULL;
1986 }
1987
1988 /**
1989  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1990  * @adapter: board private structure
1991  *
1992  * Free all transmit software resources
1993  **/
1994
1995 void
1996 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1997 {
1998         int i;
1999
2000         for (i = 0; i < adapter->num_tx_queues; i++)
2001                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2002 }
2003
2004 static void
2005 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2006                         struct e1000_buffer *buffer_info)
2007 {
2008         if (buffer_info->dma) {
2009                 pci_unmap_page(adapter->pdev,
2010                                 buffer_info->dma,
2011                                 buffer_info->length,
2012                                 PCI_DMA_TODEVICE);
2013                 buffer_info->dma = 0;
2014         }
2015         if (buffer_info->skb) {
2016                 dev_kfree_skb_any(buffer_info->skb);
2017                 buffer_info->skb = NULL;
2018         }
2019         /* buffer_info must be completely set up in the transmit path */
2020 }
2021
2022 /**
2023  * e1000_clean_tx_ring - Free Tx Buffers
2024  * @adapter: board private structure
2025  * @tx_ring: ring to be cleaned
2026  **/
2027
2028 static void
2029 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2030                     struct e1000_tx_ring *tx_ring)
2031 {
2032         struct e1000_buffer *buffer_info;
2033         unsigned long size;
2034         unsigned int i;
2035
2036         /* Free all the Tx ring sk_buffs */
2037
2038         for (i = 0; i < tx_ring->count; i++) {
2039                 buffer_info = &tx_ring->buffer_info[i];
2040                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2041         }
2042
2043         size = sizeof(struct e1000_buffer) * tx_ring->count;
2044         memset(tx_ring->buffer_info, 0, size);
2045
2046         /* Zero out the descriptor ring */
2047
2048         memset(tx_ring->desc, 0, tx_ring->size);
2049
2050         tx_ring->next_to_use = 0;
2051         tx_ring->next_to_clean = 0;
2052         tx_ring->last_tx_tso = 0;
2053
2054         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2055         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2056 }
2057
2058 /**
2059  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2060  * @adapter: board private structure
2061  **/
2062
2063 static void
2064 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2065 {
2066         int i;
2067
2068         for (i = 0; i < adapter->num_tx_queues; i++)
2069                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2070 }
2071
2072 /**
2073  * e1000_free_rx_resources - Free Rx Resources
2074  * @adapter: board private structure
2075  * @rx_ring: ring to clean the resources from
2076  *
2077  * Free all receive software resources
2078  **/
2079
2080 static void
2081 e1000_free_rx_resources(struct e1000_adapter *adapter,
2082                         struct e1000_rx_ring *rx_ring)
2083 {
2084         struct pci_dev *pdev = adapter->pdev;
2085
2086         e1000_clean_rx_ring(adapter, rx_ring);
2087
2088         vfree(rx_ring->buffer_info);
2089         rx_ring->buffer_info = NULL;
2090         kfree(rx_ring->ps_page);
2091         rx_ring->ps_page = NULL;
2092         kfree(rx_ring->ps_page_dma);
2093         rx_ring->ps_page_dma = NULL;
2094
2095         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2096
2097         rx_ring->desc = NULL;
2098 }
2099
2100 /**
2101  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2102  * @adapter: board private structure
2103  *
2104  * Free all receive software resources
2105  **/
2106
2107 void
2108 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2109 {
2110         int i;
2111
2112         for (i = 0; i < adapter->num_rx_queues; i++)
2113                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2114 }
2115
2116 /**
2117  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2118  * @adapter: board private structure
2119  * @rx_ring: ring to free buffers from
2120  **/
2121
2122 static void
2123 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2124                     struct e1000_rx_ring *rx_ring)
2125 {
2126         struct e1000_buffer *buffer_info;
2127         struct e1000_ps_page *ps_page;
2128         struct e1000_ps_page_dma *ps_page_dma;
2129         struct pci_dev *pdev = adapter->pdev;
2130         unsigned long size;
2131         unsigned int i, j;
2132
2133         /* Free all the Rx ring sk_buffs */
2134         for (i = 0; i < rx_ring->count; i++) {
2135                 buffer_info = &rx_ring->buffer_info[i];
2136                 if (buffer_info->skb) {
2137                         pci_unmap_single(pdev,
2138                                          buffer_info->dma,
2139                                          buffer_info->length,
2140                                          PCI_DMA_FROMDEVICE);
2141
2142                         dev_kfree_skb(buffer_info->skb);
2143                         buffer_info->skb = NULL;
2144                 }
2145                 ps_page = &rx_ring->ps_page[i];
2146                 ps_page_dma = &rx_ring->ps_page_dma[i];
2147                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2148                         if (!ps_page->ps_page[j]) break;
2149                         pci_unmap_page(pdev,
2150                                        ps_page_dma->ps_page_dma[j],
2151                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2152                         ps_page_dma->ps_page_dma[j] = 0;
2153                         put_page(ps_page->ps_page[j]);
2154                         ps_page->ps_page[j] = NULL;
2155                 }
2156         }
2157
2158         size = sizeof(struct e1000_buffer) * rx_ring->count;
2159         memset(rx_ring->buffer_info, 0, size);
2160         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2161         memset(rx_ring->ps_page, 0, size);
2162         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2163         memset(rx_ring->ps_page_dma, 0, size);
2164
2165         /* Zero out the descriptor ring */
2166
2167         memset(rx_ring->desc, 0, rx_ring->size);
2168
2169         rx_ring->next_to_clean = 0;
2170         rx_ring->next_to_use = 0;
2171
2172         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2173         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2174 }
2175
2176 /**
2177  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2178  * @adapter: board private structure
2179  **/
2180
2181 static void
2182 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2183 {
2184         int i;
2185
2186         for (i = 0; i < adapter->num_rx_queues; i++)
2187                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2188 }
2189
2190 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2191  * and memory write and invalidate disabled for certain operations
2192  */
2193 static void
2194 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2195 {
2196         struct net_device *netdev = adapter->netdev;
2197         uint32_t rctl;
2198
2199         e1000_pci_clear_mwi(&adapter->hw);
2200
2201         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2202         rctl |= E1000_RCTL_RST;
2203         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2204         E1000_WRITE_FLUSH(&adapter->hw);
2205         mdelay(5);
2206
2207         if (netif_running(netdev))
2208                 e1000_clean_all_rx_rings(adapter);
2209 }
2210
2211 static void
2212 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2213 {
2214         struct net_device *netdev = adapter->netdev;
2215         uint32_t rctl;
2216
2217         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2218         rctl &= ~E1000_RCTL_RST;
2219         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2220         E1000_WRITE_FLUSH(&adapter->hw);
2221         mdelay(5);
2222
2223         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2224                 e1000_pci_set_mwi(&adapter->hw);
2225
2226         if (netif_running(netdev)) {
2227                 /* No need to loop, because 82542 supports only 1 queue */
2228                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2229                 e1000_configure_rx(adapter);
2230                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2231         }
2232 }
2233
2234 /**
2235  * e1000_set_mac - Change the Ethernet Address of the NIC
2236  * @netdev: network interface device structure
2237  * @p: pointer to an address structure
2238  *
2239  * Returns 0 on success, negative on failure
2240  **/
2241
2242 static int
2243 e1000_set_mac(struct net_device *netdev, void *p)
2244 {
2245         struct e1000_adapter *adapter = netdev_priv(netdev);
2246         struct sockaddr *addr = p;
2247
2248         if (!is_valid_ether_addr(addr->sa_data))
2249                 return -EADDRNOTAVAIL;
2250
2251         /* 82542 2.0 needs to be in reset to write receive address registers */
2252
2253         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2254                 e1000_enter_82542_rst(adapter);
2255
2256         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2257         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2258
2259         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2260
2261         /* With 82571 controllers, LAA may be overwritten (with the default)
2262          * due to controller reset from the other port. */
2263         if (adapter->hw.mac_type == e1000_82571) {
2264                 /* activate the work around */
2265                 adapter->hw.laa_is_present = 1;
2266
2267                 /* Hold a copy of the LAA in RAR[14] This is done so that
2268                  * between the time RAR[0] gets clobbered  and the time it
2269                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2270                  * of the RARs and no incoming packets directed to this port
2271                  * are dropped. Eventaully the LAA will be in RAR[0] and
2272                  * RAR[14] */
2273                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2274                                         E1000_RAR_ENTRIES - 1);
2275         }
2276
2277         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2278                 e1000_leave_82542_rst(adapter);
2279
2280         return 0;
2281 }
2282
2283 /**
2284  * e1000_set_multi - Multicast and Promiscuous mode set
2285  * @netdev: network interface device structure
2286  *
2287  * The set_multi entry point is called whenever the multicast address
2288  * list or the network interface flags are updated.  This routine is
2289  * responsible for configuring the hardware for proper multicast,
2290  * promiscuous mode, and all-multi behavior.
2291  **/
2292
2293 static void
2294 e1000_set_multi(struct net_device *netdev)
2295 {
2296         struct e1000_adapter *adapter = netdev_priv(netdev);
2297         struct e1000_hw *hw = &adapter->hw;
2298         struct dev_mc_list *mc_ptr;
2299         uint32_t rctl;
2300         uint32_t hash_value;
2301         int i, rar_entries = E1000_RAR_ENTRIES;
2302         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2303                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2304                                 E1000_NUM_MTA_REGISTERS;
2305
2306         if (adapter->hw.mac_type == e1000_ich8lan)
2307                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2308
2309         /* reserve RAR[14] for LAA over-write work-around */
2310         if (adapter->hw.mac_type == e1000_82571)
2311                 rar_entries--;
2312
2313         /* Check for Promiscuous and All Multicast modes */
2314
2315         rctl = E1000_READ_REG(hw, RCTL);
2316
2317         if (netdev->flags & IFF_PROMISC) {
2318                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2319         } else if (netdev->flags & IFF_ALLMULTI) {
2320                 rctl |= E1000_RCTL_MPE;
2321                 rctl &= ~E1000_RCTL_UPE;
2322         } else {
2323                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2324         }
2325
2326         E1000_WRITE_REG(hw, RCTL, rctl);
2327
2328         /* 82542 2.0 needs to be in reset to write receive address registers */
2329
2330         if (hw->mac_type == e1000_82542_rev2_0)
2331                 e1000_enter_82542_rst(adapter);
2332
2333         /* load the first 14 multicast address into the exact filters 1-14
2334          * RAR 0 is used for the station MAC adddress
2335          * if there are not 14 addresses, go ahead and clear the filters
2336          * -- with 82571 controllers only 0-13 entries are filled here
2337          */
2338         mc_ptr = netdev->mc_list;
2339
2340         for (i = 1; i < rar_entries; i++) {
2341                 if (mc_ptr) {
2342                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2343                         mc_ptr = mc_ptr->next;
2344                 } else {
2345                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2346                         E1000_WRITE_FLUSH(hw);
2347                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2348                         E1000_WRITE_FLUSH(hw);
2349                 }
2350         }
2351
2352         /* clear the old settings from the multicast hash table */
2353
2354         for (i = 0; i < mta_reg_count; i++) {
2355                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2356                 E1000_WRITE_FLUSH(hw);
2357         }
2358
2359         /* load any remaining addresses into the hash table */
2360
2361         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2362                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2363                 e1000_mta_set(hw, hash_value);
2364         }
2365
2366         if (hw->mac_type == e1000_82542_rev2_0)
2367                 e1000_leave_82542_rst(adapter);
2368 }
2369
2370 /* Need to wait a few seconds after link up to get diagnostic information from
2371  * the phy */
2372
2373 static void
2374 e1000_update_phy_info(unsigned long data)
2375 {
2376         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2377         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2378 }
2379
2380 /**
2381  * e1000_82547_tx_fifo_stall - Timer Call-back
2382  * @data: pointer to adapter cast into an unsigned long
2383  **/
2384
2385 static void
2386 e1000_82547_tx_fifo_stall(unsigned long data)
2387 {
2388         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2389         struct net_device *netdev = adapter->netdev;
2390         uint32_t tctl;
2391
2392         if (atomic_read(&adapter->tx_fifo_stall)) {
2393                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2394                     E1000_READ_REG(&adapter->hw, TDH)) &&
2395                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2396                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2397                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2398                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2399                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2400                         E1000_WRITE_REG(&adapter->hw, TCTL,
2401                                         tctl & ~E1000_TCTL_EN);
2402                         E1000_WRITE_REG(&adapter->hw, TDFT,
2403                                         adapter->tx_head_addr);
2404                         E1000_WRITE_REG(&adapter->hw, TDFH,
2405                                         adapter->tx_head_addr);
2406                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2407                                         adapter->tx_head_addr);
2408                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2409                                         adapter->tx_head_addr);
2410                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2411                         E1000_WRITE_FLUSH(&adapter->hw);
2412
2413                         adapter->tx_fifo_head = 0;
2414                         atomic_set(&adapter->tx_fifo_stall, 0);
2415                         netif_wake_queue(netdev);
2416                 } else {
2417                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2418                 }
2419         }
2420 }
2421
2422 /**
2423  * e1000_watchdog - Timer Call-back
2424  * @data: pointer to adapter cast into an unsigned long
2425  **/
2426 static void
2427 e1000_watchdog(unsigned long data)
2428 {
2429         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2430         struct net_device *netdev = adapter->netdev;
2431         struct e1000_tx_ring *txdr = adapter->tx_ring;
2432         uint32_t link, tctl;
2433         int32_t ret_val;
2434
2435         ret_val = e1000_check_for_link(&adapter->hw);
2436         if ((ret_val == E1000_ERR_PHY) &&
2437             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2438             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2439                 /* See e1000_kumeran_lock_loss_workaround() */
2440                 DPRINTK(LINK, INFO,
2441                         "Gigabit has been disabled, downgrading speed\n");
2442         }
2443
2444         if (adapter->hw.mac_type == e1000_82573) {
2445                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2446                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2447                         e1000_update_mng_vlan(adapter);
2448         }
2449
2450         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2451            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2452                 link = !adapter->hw.serdes_link_down;
2453         else
2454                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2455
2456         if (link) {
2457                 if (!netif_carrier_ok(netdev)) {
2458                         boolean_t txb2b = 1;
2459                         e1000_get_speed_and_duplex(&adapter->hw,
2460                                                    &adapter->link_speed,
2461                                                    &adapter->link_duplex);
2462
2463                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2464                                adapter->link_speed,
2465                                adapter->link_duplex == FULL_DUPLEX ?
2466                                "Full Duplex" : "Half Duplex");
2467
2468                         /* tweak tx_queue_len according to speed/duplex
2469                          * and adjust the timeout factor */
2470                         netdev->tx_queue_len = adapter->tx_queue_len;
2471                         adapter->tx_timeout_factor = 1;
2472                         switch (adapter->link_speed) {
2473                         case SPEED_10:
2474                                 txb2b = 0;
2475                                 netdev->tx_queue_len = 10;
2476                                 adapter->tx_timeout_factor = 8;
2477                                 break;
2478                         case SPEED_100:
2479                                 txb2b = 0;
2480                                 netdev->tx_queue_len = 100;
2481                                 /* maybe add some timeout factor ? */
2482                                 break;
2483                         }
2484
2485                         if ((adapter->hw.mac_type == e1000_82571 ||
2486                              adapter->hw.mac_type == e1000_82572) &&
2487                             txb2b == 0) {
2488                                 uint32_t tarc0;
2489                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2490                                 tarc0 &= ~(1 << 21);
2491                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2492                         }
2493
2494 #ifdef NETIF_F_TSO
2495                         /* disable TSO for pcie and 10/100 speeds, to avoid
2496                          * some hardware issues */
2497                         if (!adapter->tso_force &&
2498                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2499                                 switch (adapter->link_speed) {
2500                                 case SPEED_10:
2501                                 case SPEED_100:
2502                                         DPRINTK(PROBE,INFO,
2503                                         "10/100 speed: disabling TSO\n");
2504                                         netdev->features &= ~NETIF_F_TSO;
2505 #ifdef NETIF_F_TSO6
2506                                         netdev->features &= ~NETIF_F_TSO6;
2507 #endif
2508                                         break;
2509                                 case SPEED_1000:
2510                                         netdev->features |= NETIF_F_TSO;
2511 #ifdef NETIF_F_TSO6
2512                                         netdev->features |= NETIF_F_TSO6;
2513 #endif
2514                                         break;
2515                                 default:
2516                                         /* oops */
2517                                         break;
2518                                 }
2519                         }
2520 #endif
2521
2522                         /* enable transmits in the hardware, need to do this
2523                          * after setting TARC0 */
2524                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2525                         tctl |= E1000_TCTL_EN;
2526                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2527
2528                         netif_carrier_on(netdev);
2529                         netif_wake_queue(netdev);
2530                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2531                         adapter->smartspeed = 0;
2532                 }
2533         } else {
2534                 if (netif_carrier_ok(netdev)) {
2535                         adapter->link_speed = 0;
2536                         adapter->link_duplex = 0;
2537                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2538                         netif_carrier_off(netdev);
2539                         netif_stop_queue(netdev);
2540                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2541
2542                         /* 80003ES2LAN workaround--
2543                          * For packet buffer work-around on link down event;
2544                          * disable receives in the ISR and
2545                          * reset device here in the watchdog
2546                          */
2547                         if (adapter->hw.mac_type == e1000_80003es2lan)
2548                                 /* reset device */
2549                                 schedule_work(&adapter->reset_task);
2550                 }
2551
2552                 e1000_smartspeed(adapter);
2553         }
2554
2555         e1000_update_stats(adapter);
2556
2557         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2558         adapter->tpt_old = adapter->stats.tpt;
2559         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2560         adapter->colc_old = adapter->stats.colc;
2561
2562         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2563         adapter->gorcl_old = adapter->stats.gorcl;
2564         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2565         adapter->gotcl_old = adapter->stats.gotcl;
2566
2567         e1000_update_adaptive(&adapter->hw);
2568
2569         if (!netif_carrier_ok(netdev)) {
2570                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2571                         /* We've lost link, so the controller stops DMA,
2572                          * but we've got queued Tx work that's never going
2573                          * to get done, so reset controller to flush Tx.
2574                          * (Do the reset outside of interrupt context). */
2575                         adapter->tx_timeout_count++;
2576                         schedule_work(&adapter->reset_task);
2577                 }
2578         }
2579
2580         /* Cause software interrupt to ensure rx ring is cleaned */
2581         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2582
2583         /* Force detection of hung controller every watchdog period */
2584         adapter->detect_tx_hung = TRUE;
2585
2586         /* With 82571 controllers, LAA may be overwritten due to controller
2587          * reset from the other port. Set the appropriate LAA in RAR[0] */
2588         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2589                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2590
2591         /* Reset the timer */
2592         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2593 }
2594
2595 enum latency_range {
2596         lowest_latency = 0,
2597         low_latency = 1,
2598         bulk_latency = 2,
2599         latency_invalid = 255
2600 };
2601
2602 /**
2603  * e1000_update_itr - update the dynamic ITR value based on statistics
2604  *      Stores a new ITR value based on packets and byte
2605  *      counts during the last interrupt.  The advantage of per interrupt
2606  *      computation is faster updates and more accurate ITR for the current
2607  *      traffic pattern.  Constants in this function were computed
2608  *      based on theoretical maximum wire speed and thresholds were set based
2609  *      on testing data as well as attempting to minimize response time
2610  *      while increasing bulk throughput.
2611  *      this functionality is controlled by the InterruptThrottleRate module
2612  *      parameter (see e1000_param.c)
2613  * @adapter: pointer to adapter
2614  * @itr_setting: current adapter->itr
2615  * @packets: the number of packets during this measurement interval
2616  * @bytes: the number of bytes during this measurement interval
2617  **/
2618 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2619                                    uint16_t itr_setting,
2620                                    int packets,
2621                                    int bytes)
2622 {
2623         unsigned int retval = itr_setting;
2624         struct e1000_hw *hw = &adapter->hw;
2625
2626         if (unlikely(hw->mac_type < e1000_82540))
2627                 goto update_itr_done;
2628
2629         if (packets == 0)
2630                 goto update_itr_done;
2631
2632
2633         switch (itr_setting) {
2634         case lowest_latency:
2635                 if ((packets < 5) && (bytes > 512))
2636                         retval = low_latency;
2637                 break;
2638         case low_latency:  /* 50 usec aka 20000 ints/s */
2639                 if (bytes > 10000) {
2640                         if ((packets < 10) ||
2641                              ((bytes/packets) > 1200))
2642                                 retval = bulk_latency;
2643                         else if ((packets > 35))
2644                                 retval = lowest_latency;
2645                 } else if (packets <= 2 && bytes < 512)
2646                         retval = lowest_latency;
2647                 break;
2648         case bulk_latency: /* 250 usec aka 4000 ints/s */
2649                 if (bytes > 25000) {
2650                         if (packets > 35)
2651                                 retval = low_latency;
2652                 } else {
2653                         if (bytes < 6000)
2654                                 retval = low_latency;
2655                 }
2656                 break;
2657         }
2658
2659 update_itr_done:
2660         return retval;
2661 }
2662
2663 static void e1000_set_itr(struct e1000_adapter *adapter)
2664 {
2665         struct e1000_hw *hw = &adapter->hw;
2666         uint16_t current_itr;
2667         uint32_t new_itr = adapter->itr;
2668
2669         if (unlikely(hw->mac_type < e1000_82540))
2670                 return;
2671
2672         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2673         if (unlikely(adapter->link_speed != SPEED_1000)) {
2674                 current_itr = 0;
2675                 new_itr = 4000;
2676                 goto set_itr_now;
2677         }
2678
2679         adapter->tx_itr = e1000_update_itr(adapter,
2680                                     adapter->tx_itr,
2681                                     adapter->total_tx_packets,
2682                                     adapter->total_tx_bytes);
2683         adapter->rx_itr = e1000_update_itr(adapter,
2684                                     adapter->rx_itr,
2685                                     adapter->total_rx_packets,
2686                                     adapter->total_rx_bytes);
2687
2688         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2689
2690         /* conservative mode eliminates the lowest_latency setting */
2691         if (current_itr == lowest_latency && (adapter->itr_setting == 3))
2692                 current_itr = low_latency;
2693
2694         switch (current_itr) {
2695         /* counts and packets in update_itr are dependent on these numbers */
2696         case lowest_latency:
2697                 new_itr = 70000;
2698                 break;
2699         case low_latency:
2700                 new_itr = 20000; /* aka hwitr = ~200 */
2701                 break;
2702         case bulk_latency:
2703                 new_itr = 4000;
2704                 break;
2705         default:
2706                 break;
2707         }
2708
2709 set_itr_now:
2710         if (new_itr != adapter->itr) {
2711                 /* this attempts to bias the interrupt rate towards Bulk
2712                  * by adding intermediate steps when interrupt rate is
2713                  * increasing */
2714                 new_itr = new_itr > adapter->itr ?
2715                              min(adapter->itr + (new_itr >> 2), new_itr) :
2716                              new_itr;
2717                 adapter->itr = new_itr;
2718                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2719         }
2720
2721         return;
2722 }
2723
2724 #define E1000_TX_FLAGS_CSUM             0x00000001
2725 #define E1000_TX_FLAGS_VLAN             0x00000002
2726 #define E1000_TX_FLAGS_TSO              0x00000004
2727 #define E1000_TX_FLAGS_IPV4             0x00000008
2728 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2729 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2730
2731 static int
2732 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2733           struct sk_buff *skb)
2734 {
2735 #ifdef NETIF_F_TSO
2736         struct e1000_context_desc *context_desc;
2737         struct e1000_buffer *buffer_info;
2738         unsigned int i;
2739         uint32_t cmd_length = 0;
2740         uint16_t ipcse = 0, tucse, mss;
2741         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2742         int err;
2743
2744         if (skb_is_gso(skb)) {
2745                 if (skb_header_cloned(skb)) {
2746                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2747                         if (err)
2748                                 return err;
2749                 }
2750
2751                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2752                 mss = skb_shinfo(skb)->gso_size;
2753                 if (skb->protocol == htons(ETH_P_IP)) {
2754                         skb->nh.iph->tot_len = 0;
2755                         skb->nh.iph->check = 0;
2756                         skb->h.th->check =
2757                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2758                                                    skb->nh.iph->daddr,
2759                                                    0,
2760                                                    IPPROTO_TCP,
2761                                                    0);
2762                         cmd_length = E1000_TXD_CMD_IP;
2763                         ipcse = skb->h.raw - skb->data - 1;
2764 #ifdef NETIF_F_TSO6
2765                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2766                         skb->nh.ipv6h->payload_len = 0;
2767                         skb->h.th->check =
2768                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2769                                                  &skb->nh.ipv6h->daddr,
2770                                                  0,
2771                                                  IPPROTO_TCP,
2772                                                  0);
2773                         ipcse = 0;
2774 #endif
2775                 }
2776                 ipcss = skb->nh.raw - skb->data;
2777                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2778                 tucss = skb->h.raw - skb->data;
2779                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2780                 tucse = 0;
2781
2782                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2783                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2784
2785                 i = tx_ring->next_to_use;
2786                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2787                 buffer_info = &tx_ring->buffer_info[i];
2788
2789                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2790                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2791                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2792                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2793                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2794                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2795                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2796                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2797                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2798
2799                 buffer_info->time_stamp = jiffies;
2800                 buffer_info->next_to_watch = i;
2801
2802                 if (++i == tx_ring->count) i = 0;
2803                 tx_ring->next_to_use = i;
2804
2805                 return TRUE;
2806         }
2807 #endif
2808
2809         return FALSE;
2810 }
2811
2812 static boolean_t
2813 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2814               struct sk_buff *skb)
2815 {
2816         struct e1000_context_desc *context_desc;
2817         struct e1000_buffer *buffer_info;
2818         unsigned int i;
2819         uint8_t css;
2820
2821         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2822                 css = skb->h.raw - skb->data;
2823
2824                 i = tx_ring->next_to_use;
2825                 buffer_info = &tx_ring->buffer_info[i];
2826                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2827
2828                 context_desc->upper_setup.tcp_fields.tucss = css;
2829                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
2830                 context_desc->upper_setup.tcp_fields.tucse = 0;
2831                 context_desc->tcp_seg_setup.data = 0;
2832                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2833
2834                 buffer_info->time_stamp = jiffies;
2835                 buffer_info->next_to_watch = i;
2836
2837                 if (unlikely(++i == tx_ring->count)) i = 0;
2838                 tx_ring->next_to_use = i;
2839
2840                 return TRUE;
2841         }
2842
2843         return FALSE;
2844 }
2845
2846 #define E1000_MAX_TXD_PWR       12
2847 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2848
2849 static int
2850 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2851              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2852              unsigned int nr_frags, unsigned int mss)
2853 {
2854         struct e1000_buffer *buffer_info;
2855         unsigned int len = skb->len;
2856         unsigned int offset = 0, size, count = 0, i;
2857         unsigned int f;
2858         len -= skb->data_len;
2859
2860         i = tx_ring->next_to_use;
2861
2862         while (len) {
2863                 buffer_info = &tx_ring->buffer_info[i];
2864                 size = min(len, max_per_txd);
2865 #ifdef NETIF_F_TSO
2866                 /* Workaround for Controller erratum --
2867                  * descriptor for non-tso packet in a linear SKB that follows a
2868                  * tso gets written back prematurely before the data is fully
2869                  * DMA'd to the controller */
2870                 if (!skb->data_len && tx_ring->last_tx_tso &&
2871                     !skb_is_gso(skb)) {
2872                         tx_ring->last_tx_tso = 0;
2873                         size -= 4;
2874                 }
2875
2876                 /* Workaround for premature desc write-backs
2877                  * in TSO mode.  Append 4-byte sentinel desc */
2878                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2879                         size -= 4;
2880 #endif
2881                 /* work-around for errata 10 and it applies
2882                  * to all controllers in PCI-X mode
2883                  * The fix is to make sure that the first descriptor of a
2884                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2885                  */
2886                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2887                                 (size > 2015) && count == 0))
2888                         size = 2015;
2889
2890                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2891                  * terminating buffers within evenly-aligned dwords. */
2892                 if (unlikely(adapter->pcix_82544 &&
2893                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2894                    size > 4))
2895                         size -= 4;
2896
2897                 buffer_info->length = size;
2898                 buffer_info->dma =
2899                         pci_map_single(adapter->pdev,
2900                                 skb->data + offset,
2901                                 size,
2902                                 PCI_DMA_TODEVICE);
2903                 buffer_info->time_stamp = jiffies;
2904                 buffer_info->next_to_watch = i;
2905
2906                 len -= size;
2907                 offset += size;
2908                 count++;
2909                 if (unlikely(++i == tx_ring->count)) i = 0;
2910         }
2911
2912         for (f = 0; f < nr_frags; f++) {
2913                 struct skb_frag_struct *frag;
2914
2915                 frag = &skb_shinfo(skb)->frags[f];
2916                 len = frag->size;
2917                 offset = frag->page_offset;
2918
2919                 while (len) {
2920                         buffer_info = &tx_ring->buffer_info[i];
2921                         size = min(len, max_per_txd);
2922 #ifdef NETIF_F_TSO
2923                         /* Workaround for premature desc write-backs
2924                          * in TSO mode.  Append 4-byte sentinel desc */
2925                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2926                                 size -= 4;
2927 #endif
2928                         /* Workaround for potential 82544 hang in PCI-X.
2929                          * Avoid terminating buffers within evenly-aligned
2930                          * dwords. */
2931                         if (unlikely(adapter->pcix_82544 &&
2932                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2933                            size > 4))
2934                                 size -= 4;
2935
2936                         buffer_info->length = size;
2937                         buffer_info->dma =
2938                                 pci_map_page(adapter->pdev,
2939                                         frag->page,
2940                                         offset,
2941                                         size,
2942                                         PCI_DMA_TODEVICE);
2943                         buffer_info->time_stamp = jiffies;
2944                         buffer_info->next_to_watch = i;
2945
2946                         len -= size;
2947                         offset += size;
2948                         count++;
2949                         if (unlikely(++i == tx_ring->count)) i = 0;
2950                 }
2951         }
2952
2953         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2954         tx_ring->buffer_info[i].skb = skb;
2955         tx_ring->buffer_info[first].next_to_watch = i;
2956
2957         return count;
2958 }
2959
2960 static void
2961 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2962                int tx_flags, int count)
2963 {
2964         struct e1000_tx_desc *tx_desc = NULL;
2965         struct e1000_buffer *buffer_info;
2966         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2967         unsigned int i;
2968
2969         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2970                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2971                              E1000_TXD_CMD_TSE;
2972                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2973
2974                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2975                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2976         }
2977
2978         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2979                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2980                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981         }
2982
2983         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2984                 txd_lower |= E1000_TXD_CMD_VLE;
2985                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2986         }
2987
2988         i = tx_ring->next_to_use;
2989
2990         while (count--) {
2991                 buffer_info = &tx_ring->buffer_info[i];
2992                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2993                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2994                 tx_desc->lower.data =
2995                         cpu_to_le32(txd_lower | buffer_info->length);
2996                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2997                 if (unlikely(++i == tx_ring->count)) i = 0;
2998         }
2999
3000         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3001
3002         /* Force memory writes to complete before letting h/w
3003          * know there are new descriptors to fetch.  (Only
3004          * applicable for weak-ordered memory model archs,
3005          * such as IA-64). */
3006         wmb();
3007
3008         tx_ring->next_to_use = i;
3009         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3010         /* we need this if more than one processor can write to our tail
3011          * at a time, it syncronizes IO on IA64/Altix systems */
3012         mmiowb();
3013 }
3014
3015 /**
3016  * 82547 workaround to avoid controller hang in half-duplex environment.
3017  * The workaround is to avoid queuing a large packet that would span
3018  * the internal Tx FIFO ring boundary by notifying the stack to resend
3019  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3020  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3021  * to the beginning of the Tx FIFO.
3022  **/
3023
3024 #define E1000_FIFO_HDR                  0x10
3025 #define E1000_82547_PAD_LEN             0x3E0
3026
3027 static int
3028 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3029 {
3030         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3031         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3032
3033         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3034
3035         if (adapter->link_duplex != HALF_DUPLEX)
3036                 goto no_fifo_stall_required;
3037
3038         if (atomic_read(&adapter->tx_fifo_stall))
3039                 return 1;
3040
3041         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3042                 atomic_set(&adapter->tx_fifo_stall, 1);
3043                 return 1;
3044         }
3045
3046 no_fifo_stall_required:
3047         adapter->tx_fifo_head += skb_fifo_len;
3048         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3049                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3050         return 0;
3051 }
3052
3053 #define MINIMUM_DHCP_PACKET_SIZE 282
3054 static int
3055 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3056 {
3057         struct e1000_hw *hw =  &adapter->hw;
3058         uint16_t length, offset;
3059         if (vlan_tx_tag_present(skb)) {
3060                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3061                         ( adapter->hw.mng_cookie.status &
3062                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3063                         return 0;
3064         }
3065         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3066                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3067                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3068                         const struct iphdr *ip =
3069                                 (struct iphdr *)((uint8_t *)skb->data+14);
3070                         if (IPPROTO_UDP == ip->protocol) {
3071                                 struct udphdr *udp =
3072                                         (struct udphdr *)((uint8_t *)ip +
3073                                                 (ip->ihl << 2));
3074                                 if (ntohs(udp->dest) == 67) {
3075                                         offset = (uint8_t *)udp + 8 - skb->data;
3076                                         length = skb->len - offset;
3077
3078                                         return e1000_mng_write_dhcp_info(hw,
3079                                                         (uint8_t *)udp + 8,
3080                                                         length);
3081                                 }
3082                         }
3083                 }
3084         }
3085         return 0;
3086 }
3087
3088 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3089 {
3090         struct e1000_adapter *adapter = netdev_priv(netdev);
3091         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3092
3093         netif_stop_queue(netdev);
3094         /* Herbert's original patch had:
3095          *  smp_mb__after_netif_stop_queue();
3096          * but since that doesn't exist yet, just open code it. */
3097         smp_mb();
3098
3099         /* We need to check again in a case another CPU has just
3100          * made room available. */
3101         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3102                 return -EBUSY;
3103
3104         /* A reprieve! */
3105         netif_start_queue(netdev);
3106         ++adapter->restart_queue;
3107         return 0;
3108 }
3109
3110 static int e1000_maybe_stop_tx(struct net_device *netdev,
3111                                struct e1000_tx_ring *tx_ring, int size)
3112 {
3113         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3114                 return 0;
3115         return __e1000_maybe_stop_tx(netdev, size);
3116 }
3117
3118 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3119 static int
3120 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3121 {
3122         struct e1000_adapter *adapter = netdev_priv(netdev);
3123         struct e1000_tx_ring *tx_ring;
3124         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3125         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3126         unsigned int tx_flags = 0;
3127         unsigned int len = skb->len;
3128         unsigned long flags;
3129         unsigned int nr_frags = 0;
3130         unsigned int mss = 0;
3131         int count = 0;
3132         int tso;
3133         unsigned int f;
3134         len -= skb->data_len;
3135
3136         /* This goes back to the question of how to logically map a tx queue
3137          * to a flow.  Right now, performance is impacted slightly negatively
3138          * if using multiple tx queues.  If the stack breaks away from a
3139          * single qdisc implementation, we can look at this again. */
3140         tx_ring = adapter->tx_ring;
3141
3142         if (unlikely(skb->len <= 0)) {
3143                 dev_kfree_skb_any(skb);
3144                 return NETDEV_TX_OK;
3145         }
3146
3147         /* 82571 and newer doesn't need the workaround that limited descriptor
3148          * length to 4kB */
3149         if (adapter->hw.mac_type >= e1000_82571)
3150                 max_per_txd = 8192;
3151
3152 #ifdef NETIF_F_TSO
3153         mss = skb_shinfo(skb)->gso_size;
3154         /* The controller does a simple calculation to
3155          * make sure there is enough room in the FIFO before
3156          * initiating the DMA for each buffer.  The calc is:
3157          * 4 = ceil(buffer len/mss).  To make sure we don't
3158          * overrun the FIFO, adjust the max buffer len if mss
3159          * drops. */
3160         if (mss) {
3161                 uint8_t hdr_len;
3162                 max_per_txd = min(mss << 2, max_per_txd);
3163                 max_txd_pwr = fls(max_per_txd) - 1;
3164
3165                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3166                 * points to just header, pull a few bytes of payload from
3167                 * frags into skb->data */
3168                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3169                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3170                         switch (adapter->hw.mac_type) {
3171                                 unsigned int pull_size;
3172                         case e1000_82571:
3173                         case e1000_82572:
3174                         case e1000_82573:
3175                         case e1000_ich8lan:
3176                                 pull_size = min((unsigned int)4, skb->data_len);
3177                                 if (!__pskb_pull_tail(skb, pull_size)) {
3178                                         DPRINTK(DRV, ERR,
3179                                                 "__pskb_pull_tail failed.\n");
3180                                         dev_kfree_skb_any(skb);
3181                                         return NETDEV_TX_OK;
3182                                 }
3183                                 len = skb->len - skb->data_len;
3184                                 break;
3185                         default:
3186                                 /* do nothing */
3187                                 break;
3188                         }
3189                 }
3190         }
3191
3192         /* reserve a descriptor for the offload context */
3193         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3194                 count++;
3195         count++;
3196 #else
3197         if (skb->ip_summed == CHECKSUM_PARTIAL)
3198                 count++;
3199 #endif
3200
3201 #ifdef NETIF_F_TSO
3202         /* Controller Erratum workaround */
3203         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3204                 count++;
3205 #endif
3206
3207         count += TXD_USE_COUNT(len, max_txd_pwr);
3208
3209         if (adapter->pcix_82544)
3210                 count++;
3211
3212         /* work-around for errata 10 and it applies to all controllers
3213          * in PCI-X mode, so add one more descriptor to the count
3214          */
3215         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3216                         (len > 2015)))
3217                 count++;
3218
3219         nr_frags = skb_shinfo(skb)->nr_frags;
3220         for (f = 0; f < nr_frags; f++)
3221                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3222                                        max_txd_pwr);
3223         if (adapter->pcix_82544)
3224                 count += nr_frags;
3225
3226
3227         if (adapter->hw.tx_pkt_filtering &&
3228             (adapter->hw.mac_type == e1000_82573))
3229                 e1000_transfer_dhcp_info(adapter, skb);
3230
3231         local_irq_save(flags);
3232         if (!spin_trylock(&tx_ring->tx_lock)) {
3233                 /* Collision - tell upper layer to requeue */
3234                 local_irq_restore(flags);
3235                 return NETDEV_TX_LOCKED;
3236         }
3237
3238         /* need: count + 2 desc gap to keep tail from touching
3239          * head, otherwise try next time */
3240         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3241                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3242                 return NETDEV_TX_BUSY;
3243         }
3244
3245         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3246                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3247                         netif_stop_queue(netdev);
3248                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3249                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3250                         return NETDEV_TX_BUSY;
3251                 }
3252         }
3253
3254         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3255                 tx_flags |= E1000_TX_FLAGS_VLAN;
3256                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3257         }
3258
3259         first = tx_ring->next_to_use;
3260
3261         tso = e1000_tso(adapter, tx_ring, skb);
3262         if (tso < 0) {
3263                 dev_kfree_skb_any(skb);
3264                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3265                 return NETDEV_TX_OK;
3266         }
3267
3268         if (likely(tso)) {
3269                 tx_ring->last_tx_tso = 1;
3270                 tx_flags |= E1000_TX_FLAGS_TSO;
3271         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3272                 tx_flags |= E1000_TX_FLAGS_CSUM;
3273
3274         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3275          * 82571 hardware supports TSO capabilities for IPv6 as well...
3276          * no longer assume, we must. */
3277         if (likely(skb->protocol == htons(ETH_P_IP)))
3278                 tx_flags |= E1000_TX_FLAGS_IPV4;
3279
3280         e1000_tx_queue(adapter, tx_ring, tx_flags,
3281                        e1000_tx_map(adapter, tx_ring, skb, first,
3282                                     max_per_txd, nr_frags, mss));
3283
3284         netdev->trans_start = jiffies;
3285
3286         /* Make sure there is space in the ring for the next send. */
3287         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3288
3289         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3290         return NETDEV_TX_OK;
3291 }
3292
3293 /**
3294  * e1000_tx_timeout - Respond to a Tx Hang
3295  * @netdev: network interface device structure
3296  **/
3297
3298 static void
3299 e1000_tx_timeout(struct net_device *netdev)
3300 {
3301         struct e1000_adapter *adapter = netdev_priv(netdev);
3302
3303         /* Do the reset outside of interrupt context */
3304         adapter->tx_timeout_count++;
3305         schedule_work(&adapter->reset_task);
3306 }
3307
3308 static void
3309 e1000_reset_task(struct net_device *netdev)
3310 {
3311         struct e1000_adapter *adapter = netdev_priv(netdev);
3312
3313         e1000_reinit_locked(adapter);
3314 }
3315
3316 /**
3317  * e1000_get_stats - Get System Network Statistics
3318  * @netdev: network interface device structure
3319  *
3320  * Returns the address of the device statistics structure.
3321  * The statistics are actually updated from the timer callback.
3322  **/
3323
3324 static struct net_device_stats *
3325 e1000_get_stats(struct net_device *netdev)
3326 {
3327         struct e1000_adapter *adapter = netdev_priv(netdev);
3328
3329         /* only return the current stats */
3330         return &adapter->net_stats;
3331 }
3332
3333 /**
3334  * e1000_change_mtu - Change the Maximum Transfer Unit
3335  * @netdev: network interface device structure
3336  * @new_mtu: new value for maximum frame size
3337  *
3338  * Returns 0 on success, negative on failure
3339  **/
3340
3341 static int
3342 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3343 {
3344         struct e1000_adapter *adapter = netdev_priv(netdev);
3345         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3346         uint16_t eeprom_data = 0;
3347
3348         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3349             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3350                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3351                 return -EINVAL;
3352         }
3353
3354         /* Adapter-specific max frame size limits. */
3355         switch (adapter->hw.mac_type) {
3356         case e1000_undefined ... e1000_82542_rev2_1:
3357         case e1000_ich8lan:
3358                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3359                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3360                         return -EINVAL;
3361                 }
3362                 break;
3363         case e1000_82573:
3364                 /* Jumbo Frames not supported if:
3365                  * - this is not an 82573L device
3366                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3367                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3368                                   &eeprom_data);
3369                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3370                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3371                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3372                                 DPRINTK(PROBE, ERR,
3373                                         "Jumbo Frames not supported.\n");
3374                                 return -EINVAL;
3375                         }
3376                         break;
3377                 }
3378                 /* ERT will be enabled later to enable wire speed receives */
3379
3380                 /* fall through to get support */
3381         case e1000_82571:
3382         case e1000_82572:
3383         case e1000_80003es2lan:
3384 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3385                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3386                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3387                         return -EINVAL;
3388                 }
3389                 break;
3390         default:
3391                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3392                 break;
3393         }
3394
3395         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3396          * means we reserve 2 more, this pushes us to allocate from the next
3397          * larger slab size
3398          * i.e. RXBUFFER_2048 --> size-4096 slab */
3399
3400         if (max_frame <= E1000_RXBUFFER_256)
3401                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3402         else if (max_frame <= E1000_RXBUFFER_512)
3403                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3404         else if (max_frame <= E1000_RXBUFFER_1024)
3405                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3406         else if (max_frame <= E1000_RXBUFFER_2048)
3407                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3408         else if (max_frame <= E1000_RXBUFFER_4096)
3409                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3410         else if (max_frame <= E1000_RXBUFFER_8192)
3411                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3412         else if (max_frame <= E1000_RXBUFFER_16384)
3413                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3414
3415         /* adjust allocation if LPE protects us, and we aren't using SBP */
3416         if (!adapter->hw.tbi_compatibility_on &&
3417             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3418              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3419                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3420
3421         netdev->mtu = new_mtu;
3422
3423         if (netif_running(netdev))
3424                 e1000_reinit_locked(adapter);
3425
3426         adapter->hw.max_frame_size = max_frame;
3427
3428         return 0;
3429 }
3430
3431 /**
3432  * e1000_update_stats - Update the board statistics counters
3433  * @adapter: board private structure
3434  **/
3435
3436 void
3437 e1000_update_stats(struct e1000_adapter *adapter)
3438 {
3439         struct e1000_hw *hw = &adapter->hw;
3440         struct pci_dev *pdev = adapter->pdev;
3441         unsigned long flags;
3442         uint16_t phy_tmp;
3443
3444 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3445
3446         /*
3447          * Prevent stats update while adapter is being reset, or if the pci
3448          * connection is down.
3449          */
3450         if (adapter->link_speed == 0)
3451                 return;
3452         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3453                 return;
3454
3455         spin_lock_irqsave(&adapter->stats_lock, flags);
3456
3457         /* these counters are modified from e1000_adjust_tbi_stats,
3458          * called from the interrupt context, so they must only
3459          * be written while holding adapter->stats_lock
3460          */
3461
3462         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3463         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3464         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3465         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3466         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3467         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3468         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3469
3470         if (adapter->hw.mac_type != e1000_ich8lan) {
3471                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3472                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3473                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3474                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3475                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3476                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3477         }
3478
3479         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3480         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3481         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3482         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3483         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3484         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3485         adapter->stats.dc += E1000_READ_REG(hw, DC);
3486         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3487         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3488         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3489         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3490         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3491         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3492         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3493         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3494         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3495         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3496         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3497         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3498         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3499         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3500         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3501         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3502         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3503         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3504         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3505
3506         if (adapter->hw.mac_type != e1000_ich8lan) {
3507                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3508                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3509                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3510                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3511                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3512                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3513         }
3514
3515         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3516         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3517
3518         /* used for adaptive IFS */
3519
3520         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3521         adapter->stats.tpt += hw->tx_packet_delta;
3522         hw->collision_delta = E1000_READ_REG(hw, COLC);
3523         adapter->stats.colc += hw->collision_delta;
3524
3525         if (hw->mac_type >= e1000_82543) {
3526                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3527                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3528                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3529                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3530                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3531                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3532         }
3533         if (hw->mac_type > e1000_82547_rev_2) {
3534                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3535                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3536
3537                 if (adapter->hw.mac_type != e1000_ich8lan) {
3538                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3539                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3540                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3541                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3542                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3543                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3544                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3545                 }
3546         }
3547
3548         /* Fill out the OS statistics structure */
3549         adapter->net_stats.rx_packets = adapter->stats.gprc;
3550         adapter->net_stats.tx_packets = adapter->stats.gptc;
3551         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3552         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3553         adapter->net_stats.multicast = adapter->stats.mprc;
3554         adapter->net_stats.collisions = adapter->stats.colc;
3555
3556         /* Rx Errors */
3557
3558         /* RLEC on some newer hardware can be incorrect so build
3559         * our own version based on RUC and ROC */
3560         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3561                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3562                 adapter->stats.ruc + adapter->stats.roc +
3563                 adapter->stats.cexterr;
3564         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3565         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3566         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3567         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3568         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3569
3570         /* Tx Errors */
3571         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3572         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3573         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3574         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3575         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3576
3577         /* Tx Dropped needs to be maintained elsewhere */
3578
3579         /* Phy Stats */
3580         if (hw->media_type == e1000_media_type_copper) {
3581                 if ((adapter->link_speed == SPEED_1000) &&
3582                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3583                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3584                         adapter->phy_stats.idle_errors += phy_tmp;
3585                 }
3586
3587                 if ((hw->mac_type <= e1000_82546) &&
3588                    (hw->phy_type == e1000_phy_m88) &&
3589                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3590                         adapter->phy_stats.receive_errors += phy_tmp;
3591         }
3592
3593         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3594 }
3595 #ifdef CONFIG_PCI_MSI
3596
3597 /**
3598  * e1000_intr_msi - Interrupt Handler
3599  * @irq: interrupt number
3600  * @data: pointer to a network interface device structure
3601  **/
3602
3603 static
3604 irqreturn_t e1000_intr_msi(int irq, void *data)
3605 {
3606         struct net_device *netdev = data;
3607         struct e1000_adapter *adapter = netdev_priv(netdev);
3608         struct e1000_hw *hw = &adapter->hw;
3609 #ifndef CONFIG_E1000_NAPI
3610         int i;
3611 #endif
3612
3613         /* this code avoids the read of ICR but has to get 1000 interrupts
3614          * at every link change event before it will notice the change */
3615         if (++adapter->detect_link >= 1000) {
3616                 uint32_t icr = E1000_READ_REG(hw, ICR);
3617 #ifdef CONFIG_E1000_NAPI
3618                 /* read ICR disables interrupts using IAM, so keep up with our
3619                  * enable/disable accounting */
3620                 atomic_inc(&adapter->irq_sem);
3621 #endif
3622                 adapter->detect_link = 0;
3623                 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3624                     (icr & E1000_ICR_INT_ASSERTED)) {
3625                         hw->get_link_status = 1;
3626                         /* 80003ES2LAN workaround--
3627                         * For packet buffer work-around on link down event;
3628                         * disable receives here in the ISR and
3629                         * reset adapter in watchdog
3630                         */
3631                         if (netif_carrier_ok(netdev) &&
3632                             (adapter->hw.mac_type == e1000_80003es2lan)) {
3633                                 /* disable receives */
3634                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3635                                 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3636                         }
3637                         /* guard against interrupt when we're going down */
3638                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3639                                 mod_timer(&adapter->watchdog_timer,
3640                                           jiffies + 1);
3641                 }
3642         } else {
3643                 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3644                                                          E1000_ICR_LSC)));
3645                 /* bummer we have to flush here, but things break otherwise as
3646                  * some event appears to be lost or delayed and throughput
3647                  * drops.  In almost all tests this flush is un-necessary */
3648                 E1000_WRITE_FLUSH(hw);
3649 #ifdef CONFIG_E1000_NAPI
3650                 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3651                  * masked.  No need for the IMC write, but it does mean we
3652                  * should account for it ASAP. */
3653                 atomic_inc(&adapter->irq_sem);
3654 #endif
3655         }
3656
3657 #ifdef CONFIG_E1000_NAPI
3658         if (likely(netif_rx_schedule_prep(netdev))) {
3659                 adapter->total_tx_bytes = 0;
3660                 adapter->total_tx_packets = 0;
3661                 adapter->total_rx_bytes = 0;
3662                 adapter->total_rx_packets = 0;
3663                 __netif_rx_schedule(netdev);
3664         } else
3665                 e1000_irq_enable(adapter);
3666 #else
3667         adapter->total_tx_bytes = 0;
3668         adapter->total_rx_bytes = 0;
3669         adapter->total_tx_packets = 0;
3670         adapter->total_rx_packets = 0;
3671
3672         for (i = 0; i < E1000_MAX_INTR; i++)
3673                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3674                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3675                         break;
3676
3677         if (likely(adapter->itr_setting & 3))
3678                 e1000_set_itr(adapter);
3679 #endif
3680
3681         return IRQ_HANDLED;
3682 }
3683 #endif
3684
3685 /**
3686  * e1000_intr - Interrupt Handler
3687  * @irq: interrupt number
3688  * @data: pointer to a network interface device structure
3689  **/
3690
3691 static irqreturn_t
3692 e1000_intr(int irq, void *data)
3693 {
3694         struct net_device *netdev = data;
3695         struct e1000_adapter *adapter = netdev_priv(netdev);
3696         struct e1000_hw *hw = &adapter->hw;
3697         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3698 #ifndef CONFIG_E1000_NAPI
3699         int i;
3700 #endif
3701         if (unlikely(!icr))
3702                 return IRQ_NONE;  /* Not our interrupt */
3703
3704 #ifdef CONFIG_E1000_NAPI
3705         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3706          * not set, then the adapter didn't send an interrupt */
3707         if (unlikely(hw->mac_type >= e1000_82571 &&
3708                      !(icr & E1000_ICR_INT_ASSERTED)))
3709                 return IRQ_NONE;
3710
3711         /* Interrupt Auto-Mask...upon reading ICR,
3712          * interrupts are masked.  No need for the
3713          * IMC write, but it does mean we should
3714          * account for it ASAP. */
3715         if (likely(hw->mac_type >= e1000_82571))
3716                 atomic_inc(&adapter->irq_sem);
3717 #endif
3718
3719         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3720                 hw->get_link_status = 1;
3721                 /* 80003ES2LAN workaround--
3722                  * For packet buffer work-around on link down event;
3723                  * disable receives here in the ISR and
3724                  * reset adapter in watchdog
3725                  */
3726                 if (netif_carrier_ok(netdev) &&
3727                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3728                         /* disable receives */
3729                         rctl = E1000_READ_REG(hw, RCTL);
3730                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3731                 }
3732                 /* guard against interrupt when we're going down */
3733                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3734                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3735         }
3736
3737 #ifdef CONFIG_E1000_NAPI
3738         if (unlikely(hw->mac_type < e1000_82571)) {
3739                 /* disable interrupts, without the synchronize_irq bit */
3740                 atomic_inc(&adapter->irq_sem);
3741                 E1000_WRITE_REG(hw, IMC, ~0);
3742                 E1000_WRITE_FLUSH(hw);
3743         }
3744         if (likely(netif_rx_schedule_prep(netdev))) {
3745                 adapter->total_tx_bytes = 0;
3746                 adapter->total_tx_packets = 0;
3747                 adapter->total_rx_bytes = 0;
3748                 adapter->total_rx_packets = 0;
3749                 __netif_rx_schedule(netdev);
3750         } else
3751                 /* this really should not happen! if it does it is basically a
3752                  * bug, but not a hard error, so enable ints and continue */
3753                 e1000_irq_enable(adapter);
3754 #else
3755         /* Writing IMC and IMS is needed for 82547.
3756          * Due to Hub Link bus being occupied, an interrupt
3757          * de-assertion message is not able to be sent.
3758          * When an interrupt assertion message is generated later,
3759          * two messages are re-ordered and sent out.
3760          * That causes APIC to think 82547 is in de-assertion
3761          * state, while 82547 is in assertion state, resulting
3762          * in dead lock. Writing IMC forces 82547 into
3763          * de-assertion state.
3764          */
3765         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3766                 atomic_inc(&adapter->irq_sem);
3767                 E1000_WRITE_REG(hw, IMC, ~0);
3768         }
3769
3770         adapter->total_tx_bytes = 0;
3771         adapter->total_rx_bytes = 0;
3772         adapter->total_tx_packets = 0;
3773         adapter->total_rx_packets = 0;
3774
3775         for (i = 0; i < E1000_MAX_INTR; i++)
3776                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3777                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3778                         break;
3779
3780         if (likely(adapter->itr_setting & 3))
3781                 e1000_set_itr(adapter);
3782
3783         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3784                 e1000_irq_enable(adapter);
3785
3786 #endif
3787         return IRQ_HANDLED;
3788 }
3789
3790 #ifdef CONFIG_E1000_NAPI
3791 /**
3792  * e1000_clean - NAPI Rx polling callback
3793  * @adapter: board private structure
3794  **/
3795
3796 static int
3797 e1000_clean(struct net_device *poll_dev, int *budget)
3798 {
3799         struct e1000_adapter *adapter;
3800         int work_to_do = min(*budget, poll_dev->quota);
3801         int tx_cleaned = 0, work_done = 0;
3802
3803         /* Must NOT use netdev_priv macro here. */
3804         adapter = poll_dev->priv;
3805
3806         /* Keep link state information with original netdev */
3807         if (!netif_carrier_ok(poll_dev))
3808                 goto quit_polling;
3809
3810         /* e1000_clean is called per-cpu.  This lock protects
3811          * tx_ring[0] from being cleaned by multiple cpus
3812          * simultaneously.  A failure obtaining the lock means
3813          * tx_ring[0] is currently being cleaned anyway. */
3814         if (spin_trylock(&adapter->tx_queue_lock)) {
3815                 tx_cleaned = e1000_clean_tx_irq(adapter,
3816                                                 &adapter->tx_ring[0]);
3817                 spin_unlock(&adapter->tx_queue_lock);
3818         }
3819
3820         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3821                           &work_done, work_to_do);
3822
3823         *budget -= work_done;
3824         poll_dev->quota -= work_done;
3825
3826         /* If no Tx and not enough Rx work done, exit the polling mode */
3827         if ((!tx_cleaned && (work_done == 0)) ||
3828            !netif_running(poll_dev)) {
3829 quit_polling:
3830                 if (likely(adapter->itr_setting & 3))
3831                         e1000_set_itr(adapter);
3832                 netif_rx_complete(poll_dev);
3833                 e1000_irq_enable(adapter);
3834                 return 0;
3835         }
3836
3837         return 1;
3838 }
3839
3840 #endif
3841 /**
3842  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843  * @adapter: board private structure
3844  **/
3845
3846 static boolean_t
3847 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3848                    struct e1000_tx_ring *tx_ring)
3849 {
3850         struct net_device *netdev = adapter->netdev;
3851         struct e1000_tx_desc *tx_desc, *eop_desc;
3852         struct e1000_buffer *buffer_info;
3853         unsigned int i, eop;
3854 #ifdef CONFIG_E1000_NAPI
3855         unsigned int count = 0;
3856 #endif
3857         boolean_t cleaned = FALSE;
3858         unsigned int total_tx_bytes=0, total_tx_packets=0;
3859
3860         i = tx_ring->next_to_clean;
3861         eop = tx_ring->buffer_info[i].next_to_watch;
3862         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3863
3864         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3865                 for (cleaned = FALSE; !cleaned; ) {
3866                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3867                         buffer_info = &tx_ring->buffer_info[i];
3868                         cleaned = (i == eop);
3869
3870                         if (cleaned) {
3871                                 /* this packet count is wrong for TSO but has a
3872                                  * tendency to make dynamic ITR change more
3873                                  * towards bulk */
3874                                 total_tx_packets++;
3875                                 total_tx_bytes += buffer_info->skb->len;
3876                         }
3877                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3878                         tx_desc->upper.data = 0;
3879
3880                         if (unlikely(++i == tx_ring->count)) i = 0;
3881                 }
3882
3883                 eop = tx_ring->buffer_info[i].next_to_watch;
3884                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3885 #ifdef CONFIG_E1000_NAPI
3886 #define E1000_TX_WEIGHT 64
3887                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3888                 if (count++ == E1000_TX_WEIGHT) break;
3889 #endif
3890         }
3891
3892         tx_ring->next_to_clean = i;
3893
3894 #define TX_WAKE_THRESHOLD 32
3895         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3896                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3897                 /* Make sure that anybody stopping the queue after this
3898                  * sees the new next_to_clean.
3899                  */
3900                 smp_mb();
3901                 if (netif_queue_stopped(netdev)) {
3902                         netif_wake_queue(netdev);
3903                         ++adapter->restart_queue;
3904                 }
3905         }
3906
3907         if (adapter->detect_tx_hung) {
3908                 /* Detect a transmit hang in hardware, this serializes the
3909                  * check with the clearing of time_stamp and movement of i */
3910                 adapter->detect_tx_hung = FALSE;
3911                 if (tx_ring->buffer_info[eop].dma &&
3912                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3913                                (adapter->tx_timeout_factor * HZ))
3914                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3915                          E1000_STATUS_TXOFF)) {
3916
3917                         /* detected Tx unit hang */
3918                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3919                                         "  Tx Queue             <%lu>\n"
3920                                         "  TDH                  <%x>\n"
3921                                         "  TDT                  <%x>\n"
3922                                         "  next_to_use          <%x>\n"
3923                                         "  next_to_clean        <%x>\n"
3924                                         "buffer_info[next_to_clean]\n"
3925                                         "  time_stamp           <%lx>\n"
3926                                         "  next_to_watch        <%x>\n"
3927                                         "  jiffies              <%lx>\n"
3928                                         "  next_to_watch.status <%x>\n",
3929                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3930                                         sizeof(struct e1000_tx_ring)),
3931                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3932                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3933                                 tx_ring->next_to_use,
3934                                 tx_ring->next_to_clean,
3935                                 tx_ring->buffer_info[eop].time_stamp,
3936                                 eop,
3937                                 jiffies,
3938                                 eop_desc->upper.fields.status);
3939                         netif_stop_queue(netdev);
3940                 }
3941         }
3942         adapter->total_tx_bytes += total_tx_bytes;
3943         adapter->total_tx_packets += total_tx_packets;
3944         return cleaned;
3945 }
3946
3947 /**
3948  * e1000_rx_checksum - Receive Checksum Offload for 82543
3949  * @adapter:     board private structure
3950  * @status_err:  receive descriptor status and error fields
3951  * @csum:        receive descriptor csum field
3952  * @sk_buff:     socket buffer with received data
3953  **/
3954
3955 static void
3956 e1000_rx_checksum(struct e1000_adapter *adapter,
3957                   uint32_t status_err, uint32_t csum,
3958                   struct sk_buff *skb)
3959 {
3960         uint16_t status = (uint16_t)status_err;
3961         uint8_t errors = (uint8_t)(status_err >> 24);
3962         skb->ip_summed = CHECKSUM_NONE;
3963
3964         /* 82543 or newer only */
3965         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3966         /* Ignore Checksum bit is set */
3967         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3968         /* TCP/UDP checksum error bit is set */
3969         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3970                 /* let the stack verify checksum errors */
3971                 adapter->hw_csum_err++;
3972                 return;
3973         }
3974         /* TCP/UDP Checksum has not been calculated */
3975         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3976                 if (!(status & E1000_RXD_STAT_TCPCS))
3977                         return;
3978         } else {
3979                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3980                         return;
3981         }
3982         /* It must be a TCP or UDP packet with a valid checksum */
3983         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3984                 /* TCP checksum is good */
3985                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3986         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3987                 /* IP fragment with UDP payload */
3988                 /* Hardware complements the payload checksum, so we undo it
3989                  * and then put the value in host order for further stack use.
3990                  */
3991                 csum = ntohl(csum ^ 0xFFFF);
3992                 skb->csum = csum;
3993                 skb->ip_summed = CHECKSUM_COMPLETE;
3994         }
3995         adapter->hw_csum_good++;
3996 }
3997
3998 /**
3999  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4000  * @adapter: board private structure
4001  **/
4002
4003 static boolean_t
4004 #ifdef CONFIG_E1000_NAPI
4005 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4006                    struct e1000_rx_ring *rx_ring,
4007                    int *work_done, int work_to_do)
4008 #else
4009 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4010                    struct e1000_rx_ring *rx_ring)
4011 #endif
4012 {
4013         struct net_device *netdev = adapter->netdev;
4014         struct pci_dev *pdev = adapter->pdev;
4015         struct e1000_rx_desc *rx_desc, *next_rxd;
4016         struct e1000_buffer *buffer_info, *next_buffer;
4017         unsigned long flags;
4018         uint32_t length;
4019         uint8_t last_byte;
4020         unsigned int i;
4021         int cleaned_count = 0;
4022         boolean_t cleaned = FALSE;
4023         unsigned int total_rx_bytes=0, total_rx_packets=0;
4024
4025         i = rx_ring->next_to_clean;
4026         rx_desc = E1000_RX_DESC(*rx_ring, i);
4027         buffer_info = &rx_ring->buffer_info[i];
4028
4029         while (rx_desc->status & E1000_RXD_STAT_DD) {
4030                 struct sk_buff *skb;
4031                 u8 status;
4032
4033 #ifdef CONFIG_E1000_NAPI
4034                 if (*work_done >= work_to_do)
4035                         break;
4036                 (*work_done)++;
4037 #endif
4038                 status = rx_desc->status;
4039                 skb = buffer_info->skb;
4040                 buffer_info->skb = NULL;
4041
4042                 prefetch(skb->data - NET_IP_ALIGN);
4043
4044                 if (++i == rx_ring->count) i = 0;
4045                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4046                 prefetch(next_rxd);
4047
4048                 next_buffer = &rx_ring->buffer_info[i];
4049
4050                 cleaned = TRUE;
4051                 cleaned_count++;
4052                 pci_unmap_single(pdev,
4053                                  buffer_info->dma,
4054                                  buffer_info->length,
4055                                  PCI_DMA_FROMDEVICE);
4056
4057                 length = le16_to_cpu(rx_desc->length);
4058
4059                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4060                         /* All receives must fit into a single buffer */
4061                         E1000_DBG("%s: Receive packet consumed multiple"
4062                                   " buffers\n", netdev->name);
4063                         /* recycle */
4064                         buffer_info->skb = skb;
4065                         goto next_desc;
4066                 }
4067
4068                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4069                         last_byte = *(skb->data + length - 1);
4070                         if (TBI_ACCEPT(&adapter->hw, status,
4071                                       rx_desc->errors, length, last_byte)) {
4072                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4073                                 e1000_tbi_adjust_stats(&adapter->hw,
4074                                                        &adapter->stats,
4075                                                        length, skb->data);
4076                                 spin_unlock_irqrestore(&adapter->stats_lock,
4077                                                        flags);
4078                                 length--;
4079                         } else {
4080                                 /* recycle */
4081                                 buffer_info->skb = skb;
4082                                 goto next_desc;
4083                         }
4084                 }
4085
4086                 /* adjust length to remove Ethernet CRC, this must be
4087                  * done after the TBI_ACCEPT workaround above */
4088                 length -= 4;
4089
4090                 /* probably a little skewed due to removing CRC */
4091                 total_rx_bytes += length;
4092                 total_rx_packets++;
4093
4094                 /* code added for copybreak, this should improve
4095                  * performance for small packets with large amounts
4096                  * of reassembly being done in the stack */
4097 #define E1000_CB_LENGTH 256
4098                 if (length < E1000_CB_LENGTH) {
4099                         struct sk_buff *new_skb =
4100                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4101                         if (new_skb) {
4102                                 skb_reserve(new_skb, NET_IP_ALIGN);
4103                                 memcpy(new_skb->data - NET_IP_ALIGN,
4104                                        skb->data - NET_IP_ALIGN,
4105                                        length + NET_IP_ALIGN);
4106                                 /* save the skb in buffer_info as good */
4107                                 buffer_info->skb = skb;
4108                                 skb = new_skb;
4109                         }
4110                         /* else just continue with the old one */
4111                 }
4112                 /* end copybreak code */
4113                 skb_put(skb, length);
4114
4115                 /* Receive Checksum Offload */
4116                 e1000_rx_checksum(adapter,
4117                                   (uint32_t)(status) |
4118                                   ((uint32_t)(rx_desc->errors) << 24),
4119                                   le16_to_cpu(rx_desc->csum), skb);
4120
4121                 skb->protocol = eth_type_trans(skb, netdev);
4122 #ifdef CONFIG_E1000_NAPI
4123                 if (unlikely(adapter->vlgrp &&
4124                             (status & E1000_RXD_STAT_VP))) {
4125                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4126                                                  le16_to_cpu(rx_desc->special) &
4127                                                  E1000_RXD_SPC_VLAN_MASK);
4128                 } else {
4129                         netif_receive_skb(skb);
4130                 }
4131 #else /* CONFIG_E1000_NAPI */
4132                 if (unlikely(adapter->vlgrp &&
4133                             (status & E1000_RXD_STAT_VP))) {
4134                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4135                                         le16_to_cpu(rx_desc->special) &
4136                                         E1000_RXD_SPC_VLAN_MASK);
4137                 } else {
4138                         netif_rx(skb);
4139                 }
4140 #endif /* CONFIG_E1000_NAPI */
4141                 netdev->last_rx = jiffies;
4142
4143 next_desc:
4144                 rx_desc->status = 0;
4145
4146                 /* return some buffers to hardware, one at a time is too slow */
4147                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4148                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4149                         cleaned_count = 0;
4150                 }
4151
4152                 /* use prefetched values */
4153                 rx_desc = next_rxd;
4154                 buffer_info = next_buffer;
4155         }
4156         rx_ring->next_to_clean = i;
4157
4158         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4159         if (cleaned_count)
4160                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4161
4162         adapter->total_rx_packets += total_rx_packets;
4163         adapter->total_rx_bytes += total_rx_bytes;
4164         return cleaned;
4165 }
4166
4167 /**
4168  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4169  * @adapter: board private structure
4170  **/
4171
4172 static boolean_t
4173 #ifdef CONFIG_E1000_NAPI
4174 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4175                       struct e1000_rx_ring *rx_ring,
4176                       int *work_done, int work_to_do)
4177 #else
4178 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4179                       struct e1000_rx_ring *rx_ring)
4180 #endif
4181 {
4182         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4183         struct net_device *netdev = adapter->netdev;
4184         struct pci_dev *pdev = adapter->pdev;
4185         struct e1000_buffer *buffer_info, *next_buffer;
4186         struct e1000_ps_page *ps_page;
4187         struct e1000_ps_page_dma *ps_page_dma;
4188         struct sk_buff *skb;
4189         unsigned int i, j;
4190         uint32_t length, staterr;
4191         int cleaned_count = 0;
4192         boolean_t cleaned = FALSE;
4193         unsigned int total_rx_bytes=0, total_rx_packets=0;
4194
4195         i = rx_ring->next_to_clean;
4196         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4197         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4198         buffer_info = &rx_ring->buffer_info[i];
4199
4200         while (staterr & E1000_RXD_STAT_DD) {
4201                 ps_page = &rx_ring->ps_page[i];
4202                 ps_page_dma = &rx_ring->ps_page_dma[i];
4203 #ifdef CONFIG_E1000_NAPI
4204                 if (unlikely(*work_done >= work_to_do))
4205                         break;
4206                 (*work_done)++;
4207 #endif
4208                 skb = buffer_info->skb;
4209
4210                 /* in the packet split case this is header only */
4211                 prefetch(skb->data - NET_IP_ALIGN);
4212
4213                 if (++i == rx_ring->count) i = 0;
4214                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4215                 prefetch(next_rxd);
4216
4217                 next_buffer = &rx_ring->buffer_info[i];
4218
4219                 cleaned = TRUE;
4220                 cleaned_count++;
4221                 pci_unmap_single(pdev, buffer_info->dma,
4222                                  buffer_info->length,
4223                                  PCI_DMA_FROMDEVICE);
4224
4225                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4226                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4227                                   " the full packet\n", netdev->name);
4228                         dev_kfree_skb_irq(skb);
4229                         goto next_desc;
4230                 }
4231
4232                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4233                         dev_kfree_skb_irq(skb);
4234                         goto next_desc;
4235                 }
4236
4237                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4238
4239                 if (unlikely(!length)) {
4240                         E1000_DBG("%s: Last part of the packet spanning"
4241                                   " multiple descriptors\n", netdev->name);
4242                         dev_kfree_skb_irq(skb);
4243                         goto next_desc;
4244                 }
4245
4246                 /* Good Receive */
4247                 skb_put(skb, length);
4248
4249                 {
4250                 /* this looks ugly, but it seems compiler issues make it
4251                    more efficient than reusing j */
4252                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4253
4254                 /* page alloc/put takes too long and effects small packet
4255                  * throughput, so unsplit small packets and save the alloc/put*/
4256                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4257                         u8 *vaddr;
4258                         /* there is no documentation about how to call
4259                          * kmap_atomic, so we can't hold the mapping
4260                          * very long */
4261                         pci_dma_sync_single_for_cpu(pdev,
4262                                 ps_page_dma->ps_page_dma[0],
4263                                 PAGE_SIZE,
4264                                 PCI_DMA_FROMDEVICE);
4265                         vaddr = kmap_atomic(ps_page->ps_page[0],
4266                                             KM_SKB_DATA_SOFTIRQ);
4267                         memcpy(skb->tail, vaddr, l1);
4268                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4269                         pci_dma_sync_single_for_device(pdev,
4270                                 ps_page_dma->ps_page_dma[0],
4271                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4272                         /* remove the CRC */
4273                         l1 -= 4;
4274                         skb_put(skb, l1);
4275                         goto copydone;
4276                 } /* if */
4277                 }
4278
4279                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4280                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4281                                 break;
4282                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4283                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4284                         ps_page_dma->ps_page_dma[j] = 0;
4285                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4286                                            length);
4287                         ps_page->ps_page[j] = NULL;
4288                         skb->len += length;
4289                         skb->data_len += length;
4290                         skb->truesize += length;
4291                 }
4292
4293                 /* strip the ethernet crc, problem is we're using pages now so
4294                  * this whole operation can get a little cpu intensive */
4295                 pskb_trim(skb, skb->len - 4);
4296
4297 copydone:
4298                 total_rx_bytes += skb->len;
4299                 total_rx_packets++;
4300
4301                 e1000_rx_checksum(adapter, staterr,
4302                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4303                 skb->protocol = eth_type_trans(skb, netdev);
4304
4305                 if (likely(rx_desc->wb.upper.header_status &
4306                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4307                         adapter->rx_hdr_split++;
4308 #ifdef CONFIG_E1000_NAPI
4309                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4310                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4311                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4312                                 E1000_RXD_SPC_VLAN_MASK);
4313                 } else {
4314                         netif_receive_skb(skb);
4315                 }
4316 #else /* CONFIG_E1000_NAPI */
4317                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4318                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4319                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4320                                 E1000_RXD_SPC_VLAN_MASK);
4321                 } else {
4322                         netif_rx(skb);
4323                 }
4324 #endif /* CONFIG_E1000_NAPI */
4325                 netdev->last_rx = jiffies;
4326
4327 next_desc:
4328                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4329                 buffer_info->skb = NULL;
4330
4331                 /* return some buffers to hardware, one at a time is too slow */
4332                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4333                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334                         cleaned_count = 0;
4335                 }
4336
4337                 /* use prefetched values */
4338                 rx_desc = next_rxd;
4339                 buffer_info = next_buffer;
4340
4341                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4342         }
4343         rx_ring->next_to_clean = i;
4344
4345         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4346         if (cleaned_count)
4347                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4348
4349         adapter->total_rx_packets += total_rx_packets;
4350         adapter->total_rx_bytes += total_rx_bytes;
4351         return cleaned;
4352 }
4353
4354 /**
4355  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4356  * @adapter: address of board private structure
4357  **/
4358
4359 static void
4360 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4361                        struct e1000_rx_ring *rx_ring,
4362                        int cleaned_count)
4363 {
4364         struct net_device *netdev = adapter->netdev;
4365         struct pci_dev *pdev = adapter->pdev;
4366         struct e1000_rx_desc *rx_desc;
4367         struct e1000_buffer *buffer_info;
4368         struct sk_buff *skb;
4369         unsigned int i;
4370         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4371
4372         i = rx_ring->next_to_use;
4373         buffer_info = &rx_ring->buffer_info[i];
4374
4375         while (cleaned_count--) {
4376                 skb = buffer_info->skb;
4377                 if (skb) {
4378                         skb_trim(skb, 0);
4379                         goto map_skb;
4380                 }
4381
4382                 skb = netdev_alloc_skb(netdev, bufsz);
4383                 if (unlikely(!skb)) {
4384                         /* Better luck next round */
4385                         adapter->alloc_rx_buff_failed++;
4386                         break;
4387                 }
4388
4389                 /* Fix for errata 23, can't cross 64kB boundary */
4390                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4391                         struct sk_buff *oldskb = skb;
4392                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4393                                              "at %p\n", bufsz, skb->data);
4394                         /* Try again, without freeing the previous */
4395                         skb = netdev_alloc_skb(netdev, bufsz);
4396                         /* Failed allocation, critical failure */
4397                         if (!skb) {
4398                                 dev_kfree_skb(oldskb);
4399                                 break;
4400                         }
4401
4402                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4403                                 /* give up */
4404                                 dev_kfree_skb(skb);
4405                                 dev_kfree_skb(oldskb);
4406                                 break; /* while !buffer_info->skb */
4407                         }
4408
4409                         /* Use new allocation */
4410                         dev_kfree_skb(oldskb);
4411                 }
4412                 /* Make buffer alignment 2 beyond a 16 byte boundary
4413                  * this will result in a 16 byte aligned IP header after
4414                  * the 14 byte MAC header is removed
4415                  */
4416                 skb_reserve(skb, NET_IP_ALIGN);
4417
4418                 buffer_info->skb = skb;
4419                 buffer_info->length = adapter->rx_buffer_len;
4420 map_skb:
4421                 buffer_info->dma = pci_map_single(pdev,
4422                                                   skb->data,
4423                                                   adapter->rx_buffer_len,
4424                                                   PCI_DMA_FROMDEVICE);
4425
4426                 /* Fix for errata 23, can't cross 64kB boundary */
4427                 if (!e1000_check_64k_bound(adapter,
4428                                         (void *)(unsigned long)buffer_info->dma,
4429                                         adapter->rx_buffer_len)) {
4430                         DPRINTK(RX_ERR, ERR,
4431                                 "dma align check failed: %u bytes at %p\n",
4432                                 adapter->rx_buffer_len,
4433                                 (void *)(unsigned long)buffer_info->dma);
4434                         dev_kfree_skb(skb);
4435                         buffer_info->skb = NULL;
4436
4437                         pci_unmap_single(pdev, buffer_info->dma,
4438                                          adapter->rx_buffer_len,
4439                                          PCI_DMA_FROMDEVICE);
4440
4441                         break; /* while !buffer_info->skb */
4442                 }
4443                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4444                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4445
4446                 if (unlikely(++i == rx_ring->count))
4447                         i = 0;
4448                 buffer_info = &rx_ring->buffer_info[i];
4449         }
4450
4451         if (likely(rx_ring->next_to_use != i)) {
4452                 rx_ring->next_to_use = i;
4453                 if (unlikely(i-- == 0))
4454                         i = (rx_ring->count - 1);
4455
4456                 /* Force memory writes to complete before letting h/w
4457                  * know there are new descriptors to fetch.  (Only
4458                  * applicable for weak-ordered memory model archs,
4459                  * such as IA-64). */
4460                 wmb();
4461                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4462         }
4463 }
4464
4465 /**
4466  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4467  * @adapter: address of board private structure
4468  **/
4469
4470 static void
4471 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4472                           struct e1000_rx_ring *rx_ring,
4473                           int cleaned_count)
4474 {
4475         struct net_device *netdev = adapter->netdev;
4476         struct pci_dev *pdev = adapter->pdev;
4477         union e1000_rx_desc_packet_split *rx_desc;
4478         struct e1000_buffer *buffer_info;
4479         struct e1000_ps_page *ps_page;
4480         struct e1000_ps_page_dma *ps_page_dma;
4481         struct sk_buff *skb;
4482         unsigned int i, j;
4483
4484         i = rx_ring->next_to_use;
4485         buffer_info = &rx_ring->buffer_info[i];
4486         ps_page = &rx_ring->ps_page[i];
4487         ps_page_dma = &rx_ring->ps_page_dma[i];
4488
4489         while (cleaned_count--) {
4490                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4491
4492                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4493                         if (j < adapter->rx_ps_pages) {
4494                                 if (likely(!ps_page->ps_page[j])) {
4495                                         ps_page->ps_page[j] =
4496                                                 alloc_page(GFP_ATOMIC);
4497                                         if (unlikely(!ps_page->ps_page[j])) {
4498                                                 adapter->alloc_rx_buff_failed++;
4499                                                 goto no_buffers;
4500                                         }
4501                                         ps_page_dma->ps_page_dma[j] =
4502                                                 pci_map_page(pdev,
4503                                                             ps_page->ps_page[j],
4504                                                             0, PAGE_SIZE,
4505                                                             PCI_DMA_FROMDEVICE);
4506                                 }
4507                                 /* Refresh the desc even if buffer_addrs didn't
4508                                  * change because each write-back erases
4509                                  * this info.
4510                                  */
4511                                 rx_desc->read.buffer_addr[j+1] =
4512                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4513                         } else
4514                                 rx_desc->read.buffer_addr[j+1] = ~0;
4515                 }
4516
4517                 skb = netdev_alloc_skb(netdev,
4518                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4519
4520                 if (unlikely(!skb)) {
4521                         adapter->alloc_rx_buff_failed++;
4522                         break;
4523                 }
4524
4525                 /* Make buffer alignment 2 beyond a 16 byte boundary
4526                  * this will result in a 16 byte aligned IP header after
4527                  * the 14 byte MAC header is removed
4528                  */
4529                 skb_reserve(skb, NET_IP_ALIGN);
4530
4531                 buffer_info->skb = skb;
4532                 buffer_info->length = adapter->rx_ps_bsize0;
4533                 buffer_info->dma = pci_map_single(pdev, skb->data,
4534                                                   adapter->rx_ps_bsize0,
4535                                                   PCI_DMA_FROMDEVICE);
4536
4537                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4538
4539                 if (unlikely(++i == rx_ring->count)) i = 0;
4540                 buffer_info = &rx_ring->buffer_info[i];
4541                 ps_page = &rx_ring->ps_page[i];
4542                 ps_page_dma = &rx_ring->ps_page_dma[i];
4543         }
4544
4545 no_buffers:
4546         if (likely(rx_ring->next_to_use != i)) {
4547                 rx_ring->next_to_use = i;
4548                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4549
4550                 /* Force memory writes to complete before letting h/w
4551                  * know there are new descriptors to fetch.  (Only
4552                  * applicable for weak-ordered memory model archs,
4553                  * such as IA-64). */
4554                 wmb();
4555                 /* Hardware increments by 16 bytes, but packet split
4556                  * descriptors are 32 bytes...so we increment tail
4557                  * twice as much.
4558                  */
4559                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4560         }
4561 }
4562
4563 /**
4564  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4565  * @adapter:
4566  **/
4567
4568 static void
4569 e1000_smartspeed(struct e1000_adapter *adapter)
4570 {
4571         uint16_t phy_status;
4572         uint16_t phy_ctrl;
4573
4574         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4575            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4576                 return;
4577
4578         if (adapter->smartspeed == 0) {
4579                 /* If Master/Slave config fault is asserted twice,
4580                  * we assume back-to-back */
4581                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4582                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4583                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4584                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4585                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4586                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4587                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4588                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4589                                             phy_ctrl);
4590                         adapter->smartspeed++;
4591                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4592                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4593                                                &phy_ctrl)) {
4594                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4595                                              MII_CR_RESTART_AUTO_NEG);
4596                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4597                                                     phy_ctrl);
4598                         }
4599                 }
4600                 return;
4601         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4602                 /* If still no link, perhaps using 2/3 pair cable */
4603                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4604                 phy_ctrl |= CR_1000T_MS_ENABLE;
4605                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4606                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4607                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4608                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4609                                      MII_CR_RESTART_AUTO_NEG);
4610                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4611                 }
4612         }
4613         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4614         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4615                 adapter->smartspeed = 0;
4616 }
4617
4618 /**
4619  * e1000_ioctl -
4620  * @netdev:
4621  * @ifreq:
4622  * @cmd:
4623  **/
4624
4625 static int
4626 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4627 {
4628         switch (cmd) {
4629         case SIOCGMIIPHY:
4630         case SIOCGMIIREG:
4631         case SIOCSMIIREG:
4632                 return e1000_mii_ioctl(netdev, ifr, cmd);
4633         default:
4634                 return -EOPNOTSUPP;
4635         }
4636 }
4637
4638 /**
4639  * e1000_mii_ioctl -
4640  * @netdev:
4641  * @ifreq:
4642  * @cmd:
4643  **/
4644
4645 static int
4646 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4647 {
4648         struct e1000_adapter *adapter = netdev_priv(netdev);
4649         struct mii_ioctl_data *data = if_mii(ifr);
4650         int retval;
4651         uint16_t mii_reg;
4652         uint16_t spddplx;
4653         unsigned long flags;
4654
4655         if (adapter->hw.media_type != e1000_media_type_copper)
4656                 return -EOPNOTSUPP;
4657
4658         switch (cmd) {
4659         case SIOCGMIIPHY:
4660                 data->phy_id = adapter->hw.phy_addr;
4661                 break;
4662         case SIOCGMIIREG:
4663                 if (!capable(CAP_NET_ADMIN))
4664                         return -EPERM;
4665                 spin_lock_irqsave(&adapter->stats_lock, flags);
4666                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4667                                    &data->val_out)) {
4668                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4669                         return -EIO;
4670                 }
4671                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4672                 break;
4673         case SIOCSMIIREG:
4674                 if (!capable(CAP_NET_ADMIN))
4675                         return -EPERM;
4676                 if (data->reg_num & ~(0x1F))
4677                         return -EFAULT;
4678                 mii_reg = data->val_in;
4679                 spin_lock_irqsave(&adapter->stats_lock, flags);
4680                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4681                                         mii_reg)) {
4682                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4683                         return -EIO;
4684                 }
4685                 if (adapter->hw.media_type == e1000_media_type_copper) {
4686                         switch (data->reg_num) {
4687                         case PHY_CTRL:
4688                                 if (mii_reg & MII_CR_POWER_DOWN)
4689                                         break;
4690                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4691                                         adapter->hw.autoneg = 1;
4692                                         adapter->hw.autoneg_advertised = 0x2F;
4693                                 } else {
4694                                         if (mii_reg & 0x40)
4695                                                 spddplx = SPEED_1000;
4696                                         else if (mii_reg & 0x2000)
4697                                                 spddplx = SPEED_100;
4698                                         else
4699                                                 spddplx = SPEED_10;
4700                                         spddplx += (mii_reg & 0x100)
4701                                                    ? DUPLEX_FULL :
4702                                                    DUPLEX_HALF;
4703                                         retval = e1000_set_spd_dplx(adapter,
4704                                                                     spddplx);
4705                                         if (retval) {
4706                                                 spin_unlock_irqrestore(
4707                                                         &adapter->stats_lock,
4708                                                         flags);
4709                                                 return retval;
4710                                         }
4711                                 }
4712                                 if (netif_running(adapter->netdev))
4713                                         e1000_reinit_locked(adapter);
4714                                 else
4715                                         e1000_reset(adapter);
4716                                 break;
4717                         case M88E1000_PHY_SPEC_CTRL:
4718                         case M88E1000_EXT_PHY_SPEC_CTRL:
4719                                 if (e1000_phy_reset(&adapter->hw)) {
4720                                         spin_unlock_irqrestore(
4721                                                 &adapter->stats_lock, flags);
4722                                         return -EIO;
4723                                 }
4724                                 break;
4725                         }
4726                 } else {
4727                         switch (data->reg_num) {
4728                         case PHY_CTRL:
4729                                 if (mii_reg & MII_CR_POWER_DOWN)
4730                                         break;
4731                                 if (netif_running(adapter->netdev))
4732                                         e1000_reinit_locked(adapter);
4733                                 else
4734                                         e1000_reset(adapter);
4735                                 break;
4736                         }
4737                 }
4738                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4739                 break;
4740         default:
4741                 return -EOPNOTSUPP;
4742         }
4743         return E1000_SUCCESS;
4744 }
4745
4746 void
4747 e1000_pci_set_mwi(struct e1000_hw *hw)
4748 {
4749         struct e1000_adapter *adapter = hw->back;
4750         int ret_val = pci_set_mwi(adapter->pdev);
4751
4752         if (ret_val)
4753                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4754 }
4755
4756 void
4757 e1000_pci_clear_mwi(struct e1000_hw *hw)
4758 {
4759         struct e1000_adapter *adapter = hw->back;
4760
4761         pci_clear_mwi(adapter->pdev);
4762 }
4763
4764 void
4765 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4766 {
4767         struct e1000_adapter *adapter = hw->back;
4768
4769         pci_read_config_word(adapter->pdev, reg, value);
4770 }
4771
4772 void
4773 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4774 {
4775         struct e1000_adapter *adapter = hw->back;
4776
4777         pci_write_config_word(adapter->pdev, reg, *value);
4778 }
4779
4780 int32_t
4781 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4782 {
4783     struct e1000_adapter *adapter = hw->back;
4784     uint16_t cap_offset;
4785
4786     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4787     if (!cap_offset)
4788         return -E1000_ERR_CONFIG;
4789
4790     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4791
4792     return E1000_SUCCESS;
4793 }
4794
4795 void
4796 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4797 {
4798         outl(value, port);
4799 }
4800
4801 static void
4802 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4803 {
4804         struct e1000_adapter *adapter = netdev_priv(netdev);
4805         uint32_t ctrl, rctl;
4806
4807         e1000_irq_disable(adapter);
4808         adapter->vlgrp = grp;
4809
4810         if (grp) {
4811                 /* enable VLAN tag insert/strip */
4812                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4813                 ctrl |= E1000_CTRL_VME;
4814                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4815
4816                 if (adapter->hw.mac_type != e1000_ich8lan) {
4817                         /* enable VLAN receive filtering */
4818                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4819                         rctl |= E1000_RCTL_VFE;
4820                         rctl &= ~E1000_RCTL_CFIEN;
4821                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4822                         e1000_update_mng_vlan(adapter);
4823                 }
4824         } else {
4825                 /* disable VLAN tag insert/strip */
4826                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4827                 ctrl &= ~E1000_CTRL_VME;
4828                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4829
4830                 if (adapter->hw.mac_type != e1000_ich8lan) {
4831                         /* disable VLAN filtering */
4832                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4833                         rctl &= ~E1000_RCTL_VFE;
4834                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4835                         if (adapter->mng_vlan_id !=
4836                             (uint16_t)E1000_MNG_VLAN_NONE) {
4837                                 e1000_vlan_rx_kill_vid(netdev,
4838                                                        adapter->mng_vlan_id);
4839                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4840                         }
4841                 }
4842         }
4843
4844         e1000_irq_enable(adapter);
4845 }
4846
4847 static void
4848 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4849 {
4850         struct e1000_adapter *adapter = netdev_priv(netdev);
4851         uint32_t vfta, index;
4852
4853         if ((adapter->hw.mng_cookie.status &
4854              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4855             (vid == adapter->mng_vlan_id))
4856                 return;
4857         /* add VID to filter table */
4858         index = (vid >> 5) & 0x7F;
4859         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4860         vfta |= (1 << (vid & 0x1F));
4861         e1000_write_vfta(&adapter->hw, index, vfta);
4862 }
4863
4864 static void
4865 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4866 {
4867         struct e1000_adapter *adapter = netdev_priv(netdev);
4868         uint32_t vfta, index;
4869
4870         e1000_irq_disable(adapter);
4871
4872         if (adapter->vlgrp)
4873                 adapter->vlgrp->vlan_devices[vid] = NULL;
4874
4875         e1000_irq_enable(adapter);
4876
4877         if ((adapter->hw.mng_cookie.status &
4878              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4879             (vid == adapter->mng_vlan_id)) {
4880                 /* release control to f/w */
4881                 e1000_release_hw_control(adapter);
4882                 return;
4883         }
4884
4885         /* remove VID from filter table */
4886         index = (vid >> 5) & 0x7F;
4887         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4888         vfta &= ~(1 << (vid & 0x1F));
4889         e1000_write_vfta(&adapter->hw, index, vfta);
4890 }
4891
4892 static void
4893 e1000_restore_vlan(struct e1000_adapter *adapter)
4894 {
4895         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4896
4897         if (adapter->vlgrp) {
4898                 uint16_t vid;
4899                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4900                         if (!adapter->vlgrp->vlan_devices[vid])
4901                                 continue;
4902                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4903                 }
4904         }
4905 }
4906
4907 int
4908 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4909 {
4910         adapter->hw.autoneg = 0;
4911
4912         /* Fiber NICs only allow 1000 gbps Full duplex */
4913         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4914                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4915                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4916                 return -EINVAL;
4917         }
4918
4919         switch (spddplx) {
4920         case SPEED_10 + DUPLEX_HALF:
4921                 adapter->hw.forced_speed_duplex = e1000_10_half;
4922                 break;
4923         case SPEED_10 + DUPLEX_FULL:
4924                 adapter->hw.forced_speed_duplex = e1000_10_full;
4925                 break;
4926         case SPEED_100 + DUPLEX_HALF:
4927                 adapter->hw.forced_speed_duplex = e1000_100_half;
4928                 break;
4929         case SPEED_100 + DUPLEX_FULL:
4930                 adapter->hw.forced_speed_duplex = e1000_100_full;
4931                 break;
4932         case SPEED_1000 + DUPLEX_FULL:
4933                 adapter->hw.autoneg = 1;
4934                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4935                 break;
4936         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4937         default:
4938                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4939                 return -EINVAL;
4940         }
4941         return 0;
4942 }
4943
4944 #ifdef CONFIG_PM
4945 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4946  * bus we're on (PCI(X) vs. PCI-E)
4947  */
4948 #define PCIE_CONFIG_SPACE_LEN 256
4949 #define PCI_CONFIG_SPACE_LEN 64
4950 static int
4951 e1000_pci_save_state(struct e1000_adapter *adapter)
4952 {
4953         struct pci_dev *dev = adapter->pdev;
4954         int size;
4955         int i;
4956
4957         if (adapter->hw.mac_type >= e1000_82571)
4958                 size = PCIE_CONFIG_SPACE_LEN;
4959         else
4960                 size = PCI_CONFIG_SPACE_LEN;
4961
4962         WARN_ON(adapter->config_space != NULL);
4963
4964         adapter->config_space = kmalloc(size, GFP_KERNEL);
4965         if (!adapter->config_space) {
4966                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4967                 return -ENOMEM;
4968         }
4969         for (i = 0; i < (size / 4); i++)
4970                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4971         return 0;
4972 }
4973
4974 static void
4975 e1000_pci_restore_state(struct e1000_adapter *adapter)
4976 {
4977         struct pci_dev *dev = adapter->pdev;
4978         int size;
4979         int i;
4980
4981         if (adapter->config_space == NULL)
4982                 return;
4983
4984         if (adapter->hw.mac_type >= e1000_82571)
4985                 size = PCIE_CONFIG_SPACE_LEN;
4986         else
4987                 size = PCI_CONFIG_SPACE_LEN;
4988         for (i = 0; i < (size / 4); i++)
4989                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4990         kfree(adapter->config_space);
4991         adapter->config_space = NULL;
4992         return;
4993 }
4994 #endif /* CONFIG_PM */
4995
4996 static int
4997 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4998 {
4999         struct net_device *netdev = pci_get_drvdata(pdev);
5000         struct e1000_adapter *adapter = netdev_priv(netdev);
5001         uint32_t ctrl, ctrl_ext, rctl, manc, status;
5002         uint32_t wufc = adapter->wol;
5003 #ifdef CONFIG_PM
5004         int retval = 0;
5005 #endif
5006
5007         netif_device_detach(netdev);
5008
5009         if (netif_running(netdev)) {
5010                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5011                 e1000_down(adapter);
5012         }
5013
5014 #ifdef CONFIG_PM
5015         /* Implement our own version of pci_save_state(pdev) because pci-
5016          * express adapters have 256-byte config spaces. */
5017         retval = e1000_pci_save_state(adapter);
5018         if (retval)
5019                 return retval;
5020 #endif
5021
5022         status = E1000_READ_REG(&adapter->hw, STATUS);
5023         if (status & E1000_STATUS_LU)
5024                 wufc &= ~E1000_WUFC_LNKC;
5025
5026         if (wufc) {
5027                 e1000_setup_rctl(adapter);
5028                 e1000_set_multi(netdev);
5029
5030                 /* turn on all-multi mode if wake on multicast is enabled */
5031                 if (wufc & E1000_WUFC_MC) {
5032                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5033                         rctl |= E1000_RCTL_MPE;
5034                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5035                 }
5036
5037                 if (adapter->hw.mac_type >= e1000_82540) {
5038                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5039                         /* advertise wake from D3Cold */
5040                         #define E1000_CTRL_ADVD3WUC 0x00100000
5041                         /* phy power management enable */
5042                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5043                         ctrl |= E1000_CTRL_ADVD3WUC |
5044                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5045                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5046                 }
5047
5048                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5049                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5050                         /* keep the laser running in D3 */
5051                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5052                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5053                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5054                 }
5055
5056                 /* Allow time for pending master requests to run */
5057                 e1000_disable_pciex_master(&adapter->hw);
5058
5059                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5060                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5061                 pci_enable_wake(pdev, PCI_D3hot, 1);
5062                 pci_enable_wake(pdev, PCI_D3cold, 1);
5063         } else {
5064                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5065                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5066                 pci_enable_wake(pdev, PCI_D3hot, 0);
5067                 pci_enable_wake(pdev, PCI_D3cold, 0);
5068         }
5069
5070         if (adapter->hw.mac_type >= e1000_82540 &&
5071             adapter->hw.mac_type < e1000_82571 &&
5072             adapter->hw.media_type == e1000_media_type_copper) {
5073                 manc = E1000_READ_REG(&adapter->hw, MANC);
5074                 if (manc & E1000_MANC_SMBUS_EN) {
5075                         manc |= E1000_MANC_ARP_EN;
5076                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
5077                         pci_enable_wake(pdev, PCI_D3hot, 1);
5078                         pci_enable_wake(pdev, PCI_D3cold, 1);
5079                 }
5080         }
5081
5082         if (adapter->hw.phy_type == e1000_phy_igp_3)
5083                 e1000_phy_powerdown_workaround(&adapter->hw);
5084
5085         if (netif_running(netdev))
5086                 e1000_free_irq(adapter);
5087
5088         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5089          * would have already happened in close and is redundant. */
5090         e1000_release_hw_control(adapter);
5091
5092         pci_disable_device(pdev);
5093
5094         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5095
5096         return 0;
5097 }
5098
5099 #ifdef CONFIG_PM
5100 static int
5101 e1000_resume(struct pci_dev *pdev)
5102 {
5103         struct net_device *netdev = pci_get_drvdata(pdev);
5104         struct e1000_adapter *adapter = netdev_priv(netdev);
5105         uint32_t manc, err;
5106
5107         pci_set_power_state(pdev, PCI_D0);
5108         e1000_pci_restore_state(adapter);
5109         if ((err = pci_enable_device(pdev))) {
5110                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5111                 return err;
5112         }
5113         pci_set_master(pdev);
5114
5115         pci_enable_wake(pdev, PCI_D3hot, 0);
5116         pci_enable_wake(pdev, PCI_D3cold, 0);
5117
5118         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5119                 return err;
5120
5121         e1000_power_up_phy(adapter);
5122         e1000_reset(adapter);
5123         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5124
5125         if (netif_running(netdev))
5126                 e1000_up(adapter);
5127
5128         netif_device_attach(netdev);
5129
5130         if (adapter->hw.mac_type >= e1000_82540 &&
5131             adapter->hw.mac_type < e1000_82571 &&
5132             adapter->hw.media_type == e1000_media_type_copper) {
5133                 manc = E1000_READ_REG(&adapter->hw, MANC);
5134                 manc &= ~(E1000_MANC_ARP_EN);
5135                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
5136         }
5137
5138         /* If the controller is 82573 and f/w is AMT, do not set
5139          * DRV_LOAD until the interface is up.  For all other cases,
5140          * let the f/w know that the h/w is now under the control
5141          * of the driver. */
5142         if (adapter->hw.mac_type != e1000_82573 ||
5143             !e1000_check_mng_mode(&adapter->hw))
5144                 e1000_get_hw_control(adapter);
5145
5146         return 0;
5147 }
5148 #endif
5149
5150 static void e1000_shutdown(struct pci_dev *pdev)
5151 {
5152         e1000_suspend(pdev, PMSG_SUSPEND);
5153 }
5154
5155 #ifdef CONFIG_NET_POLL_CONTROLLER
5156 /*
5157  * Polling 'interrupt' - used by things like netconsole to send skbs
5158  * without having to re-enable interrupts. It's not called while
5159  * the interrupt routine is executing.
5160  */
5161 static void
5162 e1000_netpoll(struct net_device *netdev)
5163 {
5164         struct e1000_adapter *adapter = netdev_priv(netdev);
5165
5166         disable_irq(adapter->pdev->irq);
5167         e1000_intr(adapter->pdev->irq, netdev);
5168         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5169 #ifndef CONFIG_E1000_NAPI
5170         adapter->clean_rx(adapter, adapter->rx_ring);
5171 #endif
5172         enable_irq(adapter->pdev->irq);
5173 }
5174 #endif
5175
5176 /**
5177  * e1000_io_error_detected - called when PCI error is detected
5178  * @pdev: Pointer to PCI device
5179  * @state: The current pci conneection state
5180  *
5181  * This function is called after a PCI bus error affecting
5182  * this device has been detected.
5183  */
5184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5185 {
5186         struct net_device *netdev = pci_get_drvdata(pdev);
5187         struct e1000_adapter *adapter = netdev->priv;
5188
5189         netif_device_detach(netdev);
5190
5191         if (netif_running(netdev))
5192                 e1000_down(adapter);
5193         pci_disable_device(pdev);
5194
5195         /* Request a slot slot reset. */
5196         return PCI_ERS_RESULT_NEED_RESET;
5197 }
5198
5199 /**
5200  * e1000_io_slot_reset - called after the pci bus has been reset.
5201  * @pdev: Pointer to PCI device
5202  *
5203  * Restart the card from scratch, as if from a cold-boot. Implementation
5204  * resembles the first-half of the e1000_resume routine.
5205  */
5206 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5207 {
5208         struct net_device *netdev = pci_get_drvdata(pdev);
5209         struct e1000_adapter *adapter = netdev->priv;
5210
5211         if (pci_enable_device(pdev)) {
5212                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5213                 return PCI_ERS_RESULT_DISCONNECT;
5214         }
5215         pci_set_master(pdev);
5216
5217         pci_enable_wake(pdev, PCI_D3hot, 0);
5218         pci_enable_wake(pdev, PCI_D3cold, 0);
5219
5220         e1000_reset(adapter);
5221         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5222
5223         return PCI_ERS_RESULT_RECOVERED;
5224 }
5225
5226 /**
5227  * e1000_io_resume - called when traffic can start flowing again.
5228  * @pdev: Pointer to PCI device
5229  *
5230  * This callback is called when the error recovery driver tells us that
5231  * its OK to resume normal operation. Implementation resembles the
5232  * second-half of the e1000_resume routine.
5233  */
5234 static void e1000_io_resume(struct pci_dev *pdev)
5235 {
5236         struct net_device *netdev = pci_get_drvdata(pdev);
5237         struct e1000_adapter *adapter = netdev->priv;
5238         uint32_t manc, swsm;
5239
5240         if (netif_running(netdev)) {
5241                 if (e1000_up(adapter)) {
5242                         printk("e1000: can't bring device back up after reset\n");
5243                         return;
5244                 }
5245         }
5246
5247         netif_device_attach(netdev);
5248
5249         if (adapter->hw.mac_type >= e1000_82540 &&
5250             adapter->hw.mac_type < e1000_82571 &&
5251             adapter->hw.media_type == e1000_media_type_copper) {
5252                 manc = E1000_READ_REG(&adapter->hw, MANC);
5253                 manc &= ~(E1000_MANC_ARP_EN);
5254                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
5255         }
5256
5257         switch (adapter->hw.mac_type) {
5258         case e1000_82573:
5259                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
5260                 E1000_WRITE_REG(&adapter->hw, SWSM,
5261                                 swsm | E1000_SWSM_DRV_LOAD);
5262                 break;
5263         default:
5264                 break;
5265         }
5266
5267         if (netif_running(netdev))
5268                 mod_timer(&adapter->watchdog_timer, jiffies);
5269 }
5270
5271 /* e1000_main.c */