[PATCH] ipw2200: wireless extension sensitivity threshold support
[linux-2.6] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful,
16  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  *  GNU General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License
21  *  along with this program; if not, write to the Free Software
22  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  *
26  */
27
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
45
46 #include <linux/efi.h>
47
48 #define _COMPONENT              ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX          "ACPI: "
51 struct acpi_os_dpc {
52         acpi_osd_exec_callback function;
53         void *context;
54 };
55
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
59
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
62
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
66
67 extern char line_buf[80];
68 #endif                          /*ENABLE_DEBUGGER */
69
70 int acpi_specific_hotkey_enabled = TRUE;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
72
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77
78 acpi_status acpi_os_initialize(void)
79 {
80         return AE_OK;
81 }
82
83 acpi_status acpi_os_initialize1(void)
84 {
85         /*
86          * Initialize PCI configuration space access, as we'll need to access
87          * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
88          */
89         if (!raw_pci_ops) {
90                 printk(KERN_ERR PREFIX
91                        "Access to PCI configuration space unavailable\n");
92                 return AE_NULL_ENTRY;
93         }
94         kacpid_wq = create_singlethread_workqueue("kacpid");
95         BUG_ON(!kacpid_wq);
96
97         return AE_OK;
98 }
99
100 acpi_status acpi_os_terminate(void)
101 {
102         if (acpi_irq_handler) {
103                 acpi_os_remove_interrupt_handler(acpi_irq_irq,
104                                                  acpi_irq_handler);
105         }
106
107         destroy_workqueue(kacpid_wq);
108
109         return AE_OK;
110 }
111
112 void acpi_os_printf(const char *fmt, ...)
113 {
114         va_list args;
115         va_start(args, fmt);
116         acpi_os_vprintf(fmt, args);
117         va_end(args);
118 }
119
120 EXPORT_SYMBOL(acpi_os_printf);
121
122 void acpi_os_vprintf(const char *fmt, va_list args)
123 {
124         static char buffer[512];
125
126         vsprintf(buffer, fmt, args);
127
128 #ifdef ENABLE_DEBUGGER
129         if (acpi_in_debugger) {
130                 kdb_printf("%s", buffer);
131         } else {
132                 printk("%s", buffer);
133         }
134 #else
135         printk("%s", buffer);
136 #endif
137 }
138
139 extern int acpi_in_resume;
140 void *acpi_os_allocate(acpi_size size)
141 {
142         if (acpi_in_resume)
143                 return kmalloc(size, GFP_ATOMIC);
144         else
145                 return kmalloc(size, GFP_KERNEL);
146 }
147
148 void acpi_os_free(void *ptr)
149 {
150         kfree(ptr);
151 }
152
153 EXPORT_SYMBOL(acpi_os_free);
154
155 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
156 {
157         if (efi_enabled) {
158                 addr->pointer_type = ACPI_PHYSICAL_POINTER;
159                 if (efi.acpi20)
160                         addr->pointer.physical =
161                             (acpi_physical_address) virt_to_phys(efi.acpi20);
162                 else if (efi.acpi)
163                         addr->pointer.physical =
164                             (acpi_physical_address) virt_to_phys(efi.acpi);
165                 else {
166                         printk(KERN_ERR PREFIX
167                                "System description tables not found\n");
168                         return AE_NOT_FOUND;
169                 }
170         } else {
171                 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
172                         printk(KERN_ERR PREFIX
173                                "System description tables not found\n");
174                         return AE_NOT_FOUND;
175                 }
176         }
177
178         return AE_OK;
179 }
180
181 acpi_status
182 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
183                    void __iomem ** virt)
184 {
185         if (efi_enabled) {
186                 if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
187                         *virt = (void __iomem *)phys_to_virt(phys);
188                 } else {
189                         *virt = ioremap(phys, size);
190                 }
191         } else {
192                 if (phys > ULONG_MAX) {
193                         printk(KERN_ERR PREFIX "Cannot map memory that high\n");
194                         return AE_BAD_PARAMETER;
195                 }
196                 /*
197                  * ioremap checks to ensure this is in reserved space
198                  */
199                 *virt = ioremap((unsigned long)phys, size);
200         }
201
202         if (!*virt)
203                 return AE_NO_MEMORY;
204
205         return AE_OK;
206 }
207 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
208
209 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
210 {
211         iounmap(virt);
212 }
213 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
214
215 #ifdef ACPI_FUTURE_USAGE
216 acpi_status
217 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
218 {
219         if (!phys || !virt)
220                 return AE_BAD_PARAMETER;
221
222         *phys = virt_to_phys(virt);
223
224         return AE_OK;
225 }
226 #endif
227
228 #define ACPI_MAX_OVERRIDE_LEN 100
229
230 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
231
232 acpi_status
233 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
234                             acpi_string * new_val)
235 {
236         if (!init_val || !new_val)
237                 return AE_BAD_PARAMETER;
238
239         *new_val = NULL;
240         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
241                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
242                        acpi_os_name);
243                 *new_val = acpi_os_name;
244         }
245
246         return AE_OK;
247 }
248
249 acpi_status
250 acpi_os_table_override(struct acpi_table_header * existing_table,
251                        struct acpi_table_header ** new_table)
252 {
253         if (!existing_table || !new_table)
254                 return AE_BAD_PARAMETER;
255
256 #ifdef CONFIG_ACPI_CUSTOM_DSDT
257         if (strncmp(existing_table->signature, "DSDT", 4) == 0)
258                 *new_table = (struct acpi_table_header *)AmlCode;
259         else
260                 *new_table = NULL;
261 #else
262         *new_table = NULL;
263 #endif
264         return AE_OK;
265 }
266
267 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
268 {
269         return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
270 }
271
272 acpi_status
273 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
274                                   void *context)
275 {
276         unsigned int irq;
277
278         /*
279          * Ignore the GSI from the core, and use the value in our copy of the
280          * FADT. It may not be the same if an interrupt source override exists
281          * for the SCI.
282          */
283         gsi = acpi_fadt.sci_int;
284         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
285                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
286                        gsi);
287                 return AE_OK;
288         }
289
290         acpi_irq_handler = handler;
291         acpi_irq_context = context;
292         if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
293                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
294                 return AE_NOT_ACQUIRED;
295         }
296         acpi_irq_irq = irq;
297
298         return AE_OK;
299 }
300
301 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
302 {
303         if (irq) {
304                 free_irq(irq, acpi_irq);
305                 acpi_irq_handler = NULL;
306                 acpi_irq_irq = 0;
307         }
308
309         return AE_OK;
310 }
311
312 /*
313  * Running in interpreter thread context, safe to sleep
314  */
315
316 void acpi_os_sleep(acpi_integer ms)
317 {
318         schedule_timeout_interruptible(msecs_to_jiffies(ms));
319 }
320
321 EXPORT_SYMBOL(acpi_os_sleep);
322
323 void acpi_os_stall(u32 us)
324 {
325         while (us) {
326                 u32 delay = 1000;
327
328                 if (delay > us)
329                         delay = us;
330                 udelay(delay);
331                 touch_nmi_watchdog();
332                 us -= delay;
333         }
334 }
335
336 EXPORT_SYMBOL(acpi_os_stall);
337
338 /*
339  * Support ACPI 3.0 AML Timer operand
340  * Returns 64-bit free-running, monotonically increasing timer
341  * with 100ns granularity
342  */
343 u64 acpi_os_get_timer(void)
344 {
345         static u64 t;
346
347 #ifdef  CONFIG_HPET
348         /* TBD: use HPET if available */
349 #endif
350
351 #ifdef  CONFIG_X86_PM_TIMER
352         /* TBD: default to PM timer if HPET was not available */
353 #endif
354         if (!t)
355                 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
356
357         return ++t;
358 }
359
360 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
361 {
362         u32 dummy;
363
364         if (!value)
365                 value = &dummy;
366
367         switch (width) {
368         case 8:
369                 *(u8 *) value = inb(port);
370                 break;
371         case 16:
372                 *(u16 *) value = inw(port);
373                 break;
374         case 32:
375                 *(u32 *) value = inl(port);
376                 break;
377         default:
378                 BUG();
379         }
380
381         return AE_OK;
382 }
383
384 EXPORT_SYMBOL(acpi_os_read_port);
385
386 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
387 {
388         switch (width) {
389         case 8:
390                 outb(value, port);
391                 break;
392         case 16:
393                 outw(value, port);
394                 break;
395         case 32:
396                 outl(value, port);
397                 break;
398         default:
399                 BUG();
400         }
401
402         return AE_OK;
403 }
404
405 EXPORT_SYMBOL(acpi_os_write_port);
406
407 acpi_status
408 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
409 {
410         u32 dummy;
411         void __iomem *virt_addr;
412         int iomem = 0;
413
414         if (efi_enabled) {
415                 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
416                         /* HACK ALERT! We can use readb/w/l on real memory too.. */
417                         virt_addr = (void __iomem *)phys_to_virt(phys_addr);
418                 } else {
419                         iomem = 1;
420                         virt_addr = ioremap(phys_addr, width);
421                 }
422         } else
423                 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
424         if (!value)
425                 value = &dummy;
426
427         switch (width) {
428         case 8:
429                 *(u8 *) value = readb(virt_addr);
430                 break;
431         case 16:
432                 *(u16 *) value = readw(virt_addr);
433                 break;
434         case 32:
435                 *(u32 *) value = readl(virt_addr);
436                 break;
437         default:
438                 BUG();
439         }
440
441         if (efi_enabled) {
442                 if (iomem)
443                         iounmap(virt_addr);
444         }
445
446         return AE_OK;
447 }
448
449 acpi_status
450 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
451 {
452         void __iomem *virt_addr;
453         int iomem = 0;
454
455         if (efi_enabled) {
456                 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
457                         /* HACK ALERT! We can use writeb/w/l on real memory too */
458                         virt_addr = (void __iomem *)phys_to_virt(phys_addr);
459                 } else {
460                         iomem = 1;
461                         virt_addr = ioremap(phys_addr, width);
462                 }
463         } else
464                 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
465
466         switch (width) {
467         case 8:
468                 writeb(value, virt_addr);
469                 break;
470         case 16:
471                 writew(value, virt_addr);
472                 break;
473         case 32:
474                 writel(value, virt_addr);
475                 break;
476         default:
477                 BUG();
478         }
479
480         if (iomem)
481                 iounmap(virt_addr);
482
483         return AE_OK;
484 }
485
486 acpi_status
487 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
488                                void *value, u32 width)
489 {
490         int result, size;
491
492         if (!value)
493                 return AE_BAD_PARAMETER;
494
495         switch (width) {
496         case 8:
497                 size = 1;
498                 break;
499         case 16:
500                 size = 2;
501                 break;
502         case 32:
503                 size = 4;
504                 break;
505         default:
506                 return AE_ERROR;
507         }
508
509         BUG_ON(!raw_pci_ops);
510
511         result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
512                                    PCI_DEVFN(pci_id->device, pci_id->function),
513                                    reg, size, value);
514
515         return (result ? AE_ERROR : AE_OK);
516 }
517
518 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
519
520 acpi_status
521 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
522                                 acpi_integer value, u32 width)
523 {
524         int result, size;
525
526         switch (width) {
527         case 8:
528                 size = 1;
529                 break;
530         case 16:
531                 size = 2;
532                 break;
533         case 32:
534                 size = 4;
535                 break;
536         default:
537                 return AE_ERROR;
538         }
539
540         BUG_ON(!raw_pci_ops);
541
542         result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
543                                     PCI_DEVFN(pci_id->device, pci_id->function),
544                                     reg, size, value);
545
546         return (result ? AE_ERROR : AE_OK);
547 }
548
549 /* TODO: Change code to take advantage of driver model more */
550 static void acpi_os_derive_pci_id_2(acpi_handle rhandle,        /* upper bound  */
551                                     acpi_handle chandle,        /* current node */
552                                     struct acpi_pci_id **id,
553                                     int *is_bridge, u8 * bus_number)
554 {
555         acpi_handle handle;
556         struct acpi_pci_id *pci_id = *id;
557         acpi_status status;
558         unsigned long temp;
559         acpi_object_type type;
560         u8 tu8;
561
562         acpi_get_parent(chandle, &handle);
563         if (handle != rhandle) {
564                 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
565                                         bus_number);
566
567                 status = acpi_get_type(handle, &type);
568                 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
569                         return;
570
571                 status =
572                     acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
573                                           &temp);
574                 if (ACPI_SUCCESS(status)) {
575                         pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
576                         pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
577
578                         if (*is_bridge)
579                                 pci_id->bus = *bus_number;
580
581                         /* any nicer way to get bus number of bridge ? */
582                         status =
583                             acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
584                                                            8);
585                         if (ACPI_SUCCESS(status)
586                             && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
587                                 status =
588                                     acpi_os_read_pci_configuration(pci_id, 0x18,
589                                                                    &tu8, 8);
590                                 if (!ACPI_SUCCESS(status)) {
591                                         /* Certainly broken...  FIX ME */
592                                         return;
593                                 }
594                                 *is_bridge = 1;
595                                 pci_id->bus = tu8;
596                                 status =
597                                     acpi_os_read_pci_configuration(pci_id, 0x19,
598                                                                    &tu8, 8);
599                                 if (ACPI_SUCCESS(status)) {
600                                         *bus_number = tu8;
601                                 }
602                         } else
603                                 *is_bridge = 0;
604                 }
605         }
606 }
607
608 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound  */
609                            acpi_handle chandle, /* current node */
610                            struct acpi_pci_id **id)
611 {
612         int is_bridge = 1;
613         u8 bus_number = (*id)->bus;
614
615         acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
616 }
617
618 static void acpi_os_execute_deferred(void *context)
619 {
620         struct acpi_os_dpc *dpc = NULL;
621
622         ACPI_FUNCTION_TRACE("os_execute_deferred");
623
624         dpc = (struct acpi_os_dpc *)context;
625         if (!dpc) {
626                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
627                 return_VOID;
628         }
629
630         dpc->function(dpc->context);
631
632         kfree(dpc);
633
634         return_VOID;
635 }
636
637 acpi_status
638 acpi_os_queue_for_execution(u32 priority,
639                             acpi_osd_exec_callback function, void *context)
640 {
641         acpi_status status = AE_OK;
642         struct acpi_os_dpc *dpc;
643         struct work_struct *task;
644
645         ACPI_FUNCTION_TRACE("os_queue_for_execution");
646
647         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
648                           "Scheduling function [%p(%p)] for deferred execution.\n",
649                           function, context));
650
651         if (!function)
652                 return_ACPI_STATUS(AE_BAD_PARAMETER);
653
654         /*
655          * Allocate/initialize DPC structure.  Note that this memory will be
656          * freed by the callee.  The kernel handles the tq_struct list  in a
657          * way that allows us to also free its memory inside the callee.
658          * Because we may want to schedule several tasks with different
659          * parameters we can't use the approach some kernel code uses of
660          * having a static tq_struct.
661          * We can save time and code by allocating the DPC and tq_structs
662          * from the same memory.
663          */
664
665         dpc =
666             kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
667                     GFP_ATOMIC);
668         if (!dpc)
669                 return_ACPI_STATUS(AE_NO_MEMORY);
670
671         dpc->function = function;
672         dpc->context = context;
673
674         task = (void *)(dpc + 1);
675         INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
676
677         if (!queue_work(kacpid_wq, task)) {
678                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
679                                   "Call to queue_work() failed.\n"));
680                 kfree(dpc);
681                 status = AE_ERROR;
682         }
683
684         return_ACPI_STATUS(status);
685 }
686
687 EXPORT_SYMBOL(acpi_os_queue_for_execution);
688
689 void acpi_os_wait_events_complete(void *context)
690 {
691         flush_workqueue(kacpid_wq);
692 }
693
694 EXPORT_SYMBOL(acpi_os_wait_events_complete);
695
696 /*
697  * Allocate the memory for a spinlock and initialize it.
698  */
699 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
700 {
701         spinlock_t *lock_ptr;
702
703         ACPI_FUNCTION_TRACE("os_create_lock");
704
705         lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
706
707         spin_lock_init(lock_ptr);
708
709         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
710
711         *out_handle = lock_ptr;
712
713         return_ACPI_STATUS(AE_OK);
714 }
715
716 /*
717  * Deallocate the memory for a spinlock.
718  */
719 void acpi_os_delete_lock(acpi_handle handle)
720 {
721         ACPI_FUNCTION_TRACE("os_create_lock");
722
723         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
724
725         acpi_os_free(handle);
726
727         return_VOID;
728 }
729
730 acpi_status
731 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
732 {
733         struct semaphore *sem = NULL;
734
735         ACPI_FUNCTION_TRACE("os_create_semaphore");
736
737         sem = acpi_os_allocate(sizeof(struct semaphore));
738         if (!sem)
739                 return_ACPI_STATUS(AE_NO_MEMORY);
740         memset(sem, 0, sizeof(struct semaphore));
741
742         sema_init(sem, initial_units);
743
744         *handle = (acpi_handle *) sem;
745
746         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
747                           *handle, initial_units));
748
749         return_ACPI_STATUS(AE_OK);
750 }
751
752 EXPORT_SYMBOL(acpi_os_create_semaphore);
753
754 /*
755  * TODO: A better way to delete semaphores?  Linux doesn't have a
756  * 'delete_semaphore()' function -- may result in an invalid
757  * pointer dereference for non-synchronized consumers.  Should
758  * we at least check for blocked threads and signal/cancel them?
759  */
760
761 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
762 {
763         struct semaphore *sem = (struct semaphore *)handle;
764
765         ACPI_FUNCTION_TRACE("os_delete_semaphore");
766
767         if (!sem)
768                 return_ACPI_STATUS(AE_BAD_PARAMETER);
769
770         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
771
772         acpi_os_free(sem);
773         sem = NULL;
774
775         return_ACPI_STATUS(AE_OK);
776 }
777
778 EXPORT_SYMBOL(acpi_os_delete_semaphore);
779
780 /*
781  * TODO: The kernel doesn't have a 'down_timeout' function -- had to
782  * improvise.  The process is to sleep for one scheduler quantum
783  * until the semaphore becomes available.  Downside is that this
784  * may result in starvation for timeout-based waits when there's
785  * lots of semaphore activity.
786  *
787  * TODO: Support for units > 1?
788  */
789 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
790 {
791         acpi_status status = AE_OK;
792         struct semaphore *sem = (struct semaphore *)handle;
793         int ret = 0;
794
795         ACPI_FUNCTION_TRACE("os_wait_semaphore");
796
797         if (!sem || (units < 1))
798                 return_ACPI_STATUS(AE_BAD_PARAMETER);
799
800         if (units > 1)
801                 return_ACPI_STATUS(AE_SUPPORT);
802
803         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
804                           handle, units, timeout));
805
806         if (in_atomic())
807                 timeout = 0;
808
809         switch (timeout) {
810                 /*
811                  * No Wait:
812                  * --------
813                  * A zero timeout value indicates that we shouldn't wait - just
814                  * acquire the semaphore if available otherwise return AE_TIME
815                  * (a.k.a. 'would block').
816                  */
817         case 0:
818                 if (down_trylock(sem))
819                         status = AE_TIME;
820                 break;
821
822                 /*
823                  * Wait Indefinitely:
824                  * ------------------
825                  */
826         case ACPI_WAIT_FOREVER:
827                 down(sem);
828                 break;
829
830                 /*
831                  * Wait w/ Timeout:
832                  * ----------------
833                  */
834         default:
835                 // TODO: A better timeout algorithm?
836                 {
837                         int i = 0;
838                         static const int quantum_ms = 1000 / HZ;
839
840                         ret = down_trylock(sem);
841                         for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
842                                 schedule_timeout_interruptible(1);
843                                 ret = down_trylock(sem);
844                         }
845
846                         if (ret != 0)
847                                 status = AE_TIME;
848                 }
849                 break;
850         }
851
852         if (ACPI_FAILURE(status)) {
853                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
854                                   "Failed to acquire semaphore[%p|%d|%d], %s\n",
855                                   handle, units, timeout,
856                                   acpi_format_exception(status)));
857         } else {
858                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
859                                   "Acquired semaphore[%p|%d|%d]\n", handle,
860                                   units, timeout));
861         }
862
863         return_ACPI_STATUS(status);
864 }
865
866 EXPORT_SYMBOL(acpi_os_wait_semaphore);
867
868 /*
869  * TODO: Support for units > 1?
870  */
871 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
872 {
873         struct semaphore *sem = (struct semaphore *)handle;
874
875         ACPI_FUNCTION_TRACE("os_signal_semaphore");
876
877         if (!sem || (units < 1))
878                 return_ACPI_STATUS(AE_BAD_PARAMETER);
879
880         if (units > 1)
881                 return_ACPI_STATUS(AE_SUPPORT);
882
883         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
884                           units));
885
886         up(sem);
887
888         return_ACPI_STATUS(AE_OK);
889 }
890
891 EXPORT_SYMBOL(acpi_os_signal_semaphore);
892
893 #ifdef ACPI_FUTURE_USAGE
894 u32 acpi_os_get_line(char *buffer)
895 {
896
897 #ifdef ENABLE_DEBUGGER
898         if (acpi_in_debugger) {
899                 u32 chars;
900
901                 kdb_read(buffer, sizeof(line_buf));
902
903                 /* remove the CR kdb includes */
904                 chars = strlen(buffer) - 1;
905                 buffer[chars] = '\0';
906         }
907 #endif
908
909         return 0;
910 }
911 #endif                          /*  ACPI_FUTURE_USAGE  */
912
913 /* Assumes no unreadable holes inbetween */
914 u8 acpi_os_readable(void *ptr, acpi_size len)
915 {
916 #if defined(__i386__) || defined(__x86_64__)
917         char tmp;
918         return !__get_user(tmp, (char __user *)ptr)
919             && !__get_user(tmp, (char __user *)ptr + len - 1);
920 #endif
921         return 1;
922 }
923
924 #ifdef ACPI_FUTURE_USAGE
925 u8 acpi_os_writable(void *ptr, acpi_size len)
926 {
927         /* could do dummy write (racy) or a kernel page table lookup.
928            The later may be difficult at early boot when kmap doesn't work yet. */
929         return 1;
930 }
931 #endif
932
933 u32 acpi_os_get_thread_id(void)
934 {
935         if (!in_atomic())
936                 return current->pid;
937
938         return 0;
939 }
940
941 acpi_status acpi_os_signal(u32 function, void *info)
942 {
943         switch (function) {
944         case ACPI_SIGNAL_FATAL:
945                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
946                 break;
947         case ACPI_SIGNAL_BREAKPOINT:
948                 /*
949                  * AML Breakpoint
950                  * ACPI spec. says to treat it as a NOP unless
951                  * you are debugging.  So if/when we integrate
952                  * AML debugger into the kernel debugger its
953                  * hook will go here.  But until then it is
954                  * not useful to print anything on breakpoints.
955                  */
956                 break;
957         default:
958                 break;
959         }
960
961         return AE_OK;
962 }
963
964 EXPORT_SYMBOL(acpi_os_signal);
965
966 static int __init acpi_os_name_setup(char *str)
967 {
968         char *p = acpi_os_name;
969         int count = ACPI_MAX_OVERRIDE_LEN - 1;
970
971         if (!str || !*str)
972                 return 0;
973
974         for (; count-- && str && *str; str++) {
975                 if (isalnum(*str) || *str == ' ' || *str == ':')
976                         *p++ = *str;
977                 else if (*str == '\'' || *str == '"')
978                         continue;
979                 else
980                         break;
981         }
982         *p = 0;
983
984         return 1;
985
986 }
987
988 __setup("acpi_os_name=", acpi_os_name_setup);
989
990 /*
991  * _OSI control
992  * empty string disables _OSI
993  * TBD additional string adds to _OSI
994  */
995 static int __init acpi_osi_setup(char *str)
996 {
997         if (str == NULL || *str == '\0') {
998                 printk(KERN_INFO PREFIX "_OSI method disabled\n");
999                 acpi_gbl_create_osi_method = FALSE;
1000         } else {
1001                 /* TBD */
1002                 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
1003                        str);
1004         }
1005
1006         return 1;
1007 }
1008
1009 __setup("acpi_osi=", acpi_osi_setup);
1010
1011 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1012 static int __init acpi_serialize_setup(char *str)
1013 {
1014         printk(KERN_INFO PREFIX "serialize enabled\n");
1015
1016         acpi_gbl_all_methods_serialized = TRUE;
1017
1018         return 1;
1019 }
1020
1021 __setup("acpi_serialize", acpi_serialize_setup);
1022
1023 /*
1024  * Wake and Run-Time GPES are expected to be separate.
1025  * We disable wake-GPEs at run-time to prevent spurious
1026  * interrupts.
1027  *
1028  * However, if a system exists that shares Wake and
1029  * Run-time events on the same GPE this flag is available
1030  * to tell Linux to keep the wake-time GPEs enabled at run-time.
1031  */
1032 static int __init acpi_wake_gpes_always_on_setup(char *str)
1033 {
1034         printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1035
1036         acpi_gbl_leave_wake_gpes_disabled = FALSE;
1037
1038         return 1;
1039 }
1040
1041 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1042
1043 static int __init acpi_hotkey_setup(char *str)
1044 {
1045         acpi_specific_hotkey_enabled = FALSE;
1046         return 1;
1047 }
1048
1049 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1050
1051 /*
1052  * max_cstate is defined in the base kernel so modules can
1053  * change it w/o depending on the state of the processor module.
1054  */
1055 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1056
1057 EXPORT_SYMBOL(max_cstate);
1058
1059 /*
1060  * Acquire a spinlock.
1061  *
1062  * handle is a pointer to the spinlock_t.
1063  */
1064
1065 acpi_cpu_flags acpi_os_acquire_lock(acpi_handle handle)
1066 {
1067         acpi_cpu_flags flags;
1068         spin_lock_irqsave((spinlock_t *) handle, flags);
1069         return flags;
1070 }
1071
1072 /*
1073  * Release a spinlock. See above.
1074  */
1075
1076 void acpi_os_release_lock(acpi_handle handle, acpi_cpu_flags flags)
1077 {
1078         spin_unlock_irqrestore((spinlock_t *) handle, flags);
1079 }
1080
1081 #ifndef ACPI_USE_LOCAL_CACHE
1082
1083 /*******************************************************************************
1084  *
1085  * FUNCTION:    acpi_os_create_cache
1086  *
1087  * PARAMETERS:  CacheName       - Ascii name for the cache
1088  *              ObjectSize      - Size of each cached object
1089  *              MaxDepth        - Maximum depth of the cache (in objects)
1090  *              ReturnCache     - Where the new cache object is returned
1091  *
1092  * RETURN:      Status
1093  *
1094  * DESCRIPTION: Create a cache object
1095  *
1096  ******************************************************************************/
1097
1098 acpi_status
1099 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1100 {
1101         *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1102         return AE_OK;
1103 }
1104
1105 /*******************************************************************************
1106  *
1107  * FUNCTION:    acpi_os_purge_cache
1108  *
1109  * PARAMETERS:  Cache           - Handle to cache object
1110  *
1111  * RETURN:      Status
1112  *
1113  * DESCRIPTION: Free all objects within the requested cache.
1114  *
1115  ******************************************************************************/
1116
1117 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1118 {
1119         (void)kmem_cache_shrink(cache);
1120         return (AE_OK);
1121 }
1122
1123 /*******************************************************************************
1124  *
1125  * FUNCTION:    acpi_os_delete_cache
1126  *
1127  * PARAMETERS:  Cache           - Handle to cache object
1128  *
1129  * RETURN:      Status
1130  *
1131  * DESCRIPTION: Free all objects within the requested cache and delete the
1132  *              cache object.
1133  *
1134  ******************************************************************************/
1135
1136 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1137 {
1138         (void)kmem_cache_destroy(cache);
1139         return (AE_OK);
1140 }
1141
1142 /*******************************************************************************
1143  *
1144  * FUNCTION:    acpi_os_release_object
1145  *
1146  * PARAMETERS:  Cache       - Handle to cache object
1147  *              Object      - The object to be released
1148  *
1149  * RETURN:      None
1150  *
1151  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1152  *              the object is deleted.
1153  *
1154  ******************************************************************************/
1155
1156 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1157 {
1158         kmem_cache_free(cache, object);
1159         return (AE_OK);
1160 }
1161
1162 /*******************************************************************************
1163  *
1164  * FUNCTION:    acpi_os_acquire_object
1165  *
1166  * PARAMETERS:  Cache           - Handle to cache object
1167  *              ReturnObject    - Where the object is returned
1168  *
1169  * RETURN:      Status
1170  *
1171  * DESCRIPTION: Get an object from the specified cache.  If cache is empty,
1172  *              the object is allocated.
1173  *
1174  ******************************************************************************/
1175
1176 void *acpi_os_acquire_object(acpi_cache_t * cache)
1177 {
1178         void *object = kmem_cache_alloc(cache, GFP_KERNEL);
1179         WARN_ON(!object);
1180         return object;
1181 }
1182
1183 #endif