2 * drivers/base/dd.c - The core device/driver interactions.
4 * This file contains the (sometimes tricky) code that controls the
5 * interactions between devices and drivers, which primarily includes
6 * driver binding and unbinding.
8 * All of this code used to exist in drivers/base/bus.c, but was
9 * relocated to here in the name of compartmentalization (since it wasn't
10 * strictly code just for the 'struct bus_type'.
12 * Copyright (c) 2002-5 Patrick Mochel
13 * Copyright (c) 2002-3 Open Source Development Labs
15 * This file is released under the GPLv2
18 #include <linux/device.h>
19 #include <linux/module.h>
20 #include <linux/kthread.h>
23 #include "power/power.h"
25 #define to_drv(node) container_of(node, struct device_driver, kobj.entry)
29 * device_bind_driver - bind a driver to one device.
32 * Allow manual attachment of a driver to a device.
33 * Caller must have already set @dev->driver.
35 * Note that this does not modify the bus reference count
36 * nor take the bus's rwsem. Please verify those are accounted
37 * for before calling this. (It is ok to call with no other effort
38 * from a driver's probe() method.)
40 * This function must be called with @dev->sem held.
42 int device_bind_driver(struct device *dev)
46 if (klist_node_attached(&dev->knode_driver)) {
47 printk(KERN_WARNING "%s: device %s already bound\n",
48 __FUNCTION__, kobject_name(&dev->kobj));
52 pr_debug("bound device '%s' to driver '%s'\n",
53 dev->bus_id, dev->driver->name);
54 klist_add_tail(&dev->knode_driver, &dev->driver->klist_devices);
55 ret = sysfs_create_link(&dev->driver->kobj, &dev->kobj,
56 kobject_name(&dev->kobj));
58 ret = sysfs_create_link(&dev->kobj, &dev->driver->kobj,
61 sysfs_remove_link(&dev->driver->kobj,
62 kobject_name(&dev->kobj));
67 struct stupid_thread_structure {
68 struct device_driver *drv;
72 static atomic_t probe_count = ATOMIC_INIT(0);
73 static int really_probe(void *void_data)
75 struct stupid_thread_structure *data = void_data;
76 struct device_driver *drv = data->drv;
77 struct device *dev = data->dev;
80 atomic_inc(&probe_count);
81 pr_debug("%s: Probing driver %s with device %s\n",
82 drv->bus->name, drv->name, dev->bus_id);
85 if (dev->bus->probe) {
86 ret = dev->bus->probe(dev);
91 } else if (drv->probe) {
92 ret = drv->probe(dev);
98 if (device_bind_driver(dev)) {
99 printk(KERN_ERR "%s: device_bind_driver(%s) failed\n",
100 __FUNCTION__, dev->bus_id);
101 /* How does undo a ->probe? We're screwed. */
104 pr_debug("%s: Bound Device %s to Driver %s\n",
105 drv->bus->name, dev->bus_id, drv->name);
109 if (ret == -ENODEV || ret == -ENXIO) {
110 /* Driver matched, but didn't support device
111 * or device not found.
112 * Not an error; keep going.
116 /* driver matched but the probe failed */
118 "%s: probe of %s failed with error %d\n",
119 drv->name, dev->bus_id, ret);
123 atomic_dec(&probe_count);
129 * Determine if the probe sequence is finished or not.
131 * Should somehow figure out how to use a semaphore, not an atomic variable...
133 int driver_probe_done(void)
135 pr_debug("%s: probe_count = %d\n", __FUNCTION__,
136 atomic_read(&probe_count));
137 if (atomic_read(&probe_count))
143 * driver_probe_device - attempt to bind device & driver together
144 * @drv: driver to bind a device to
145 * @dev: device to try to bind to the driver
147 * First, we call the bus's match function, if one present, which should
148 * compare the device IDs the driver supports with the device IDs of the
149 * device. Note we don't do this ourselves because we don't know the
150 * format of the ID structures, nor what is to be considered a match and
153 * This function returns 1 if a match is found, an error if one occurs
154 * (that is not -ENODEV or -ENXIO), and 0 otherwise.
156 * This function must be called with @dev->sem held. When called for a
157 * USB interface, @dev->parent->sem must be held as well.
159 int driver_probe_device(struct device_driver * drv, struct device * dev)
161 struct stupid_thread_structure *data;
162 struct task_struct *probe_task;
165 if (!device_is_registered(dev))
167 if (drv->bus->match && !drv->bus->match(dev, drv))
170 pr_debug("%s: Matched Device %s with Driver %s\n",
171 drv->bus->name, dev->bus_id, drv->name);
173 data = kmalloc(sizeof(*data), GFP_KERNEL);
179 if (drv->multithread_probe) {
180 probe_task = kthread_run(really_probe, data,
181 "probe-%s", dev->bus_id);
182 if (IS_ERR(probe_task))
183 ret = really_probe(data);
185 ret = really_probe(data);
191 static int __device_attach(struct device_driver * drv, void * data)
193 struct device * dev = data;
194 return driver_probe_device(drv, dev);
198 * device_attach - try to attach device to a driver.
201 * Walk the list of drivers that the bus has and call
202 * driver_probe_device() for each pair. If a compatible
203 * pair is found, break out and return.
205 * Returns 1 if the device was bound to a driver;
206 * 0 if no matching device was found; error code otherwise.
208 * When called for a USB interface, @dev->parent->sem must be held.
210 int device_attach(struct device * dev)
216 ret = device_bind_driver(dev);
220 ret = bus_for_each_drv(dev->bus, NULL, dev, __device_attach);
225 static int __driver_attach(struct device * dev, void * data)
227 struct device_driver * drv = data;
230 * Lock device and try to bind to it. We drop the error
231 * here and always return 0, because we need to keep trying
232 * to bind to devices and some drivers will return an error
233 * simply if it didn't support the device.
235 * driver_probe_device() will spit a warning if there
239 if (dev->parent) /* Needed for USB */
240 down(&dev->parent->sem);
243 driver_probe_device(drv, dev);
246 up(&dev->parent->sem);
252 * driver_attach - try to bind driver to devices.
255 * Walk the list of devices that the bus has on it and try to
256 * match the driver with each one. If driver_probe_device()
257 * returns 0 and the @dev->driver is set, we've found a
260 int driver_attach(struct device_driver * drv)
262 return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
266 * device_release_driver - manually detach device from driver.
269 * Manually detach device from driver.
271 * __device_release_driver() must be called with @dev->sem held.
272 * When called for a USB interface, @dev->parent->sem must be held
276 static void __device_release_driver(struct device * dev)
278 struct device_driver * drv;
283 sysfs_remove_link(&drv->kobj, kobject_name(&dev->kobj));
284 sysfs_remove_link(&dev->kobj, "driver");
285 klist_remove(&dev->knode_driver);
287 if (dev->bus && dev->bus->remove)
288 dev->bus->remove(dev);
289 else if (drv->remove)
296 void device_release_driver(struct device * dev)
299 * If anyone calls device_release_driver() recursively from
300 * within their ->remove callback for the same device, they
301 * will deadlock right here.
304 __device_release_driver(dev);
310 * driver_detach - detach driver from all devices it controls.
313 void driver_detach(struct device_driver * drv)
318 spin_lock(&drv->klist_devices.k_lock);
319 if (list_empty(&drv->klist_devices.k_list)) {
320 spin_unlock(&drv->klist_devices.k_lock);
323 dev = list_entry(drv->klist_devices.k_list.prev,
324 struct device, knode_driver.n_node);
326 spin_unlock(&drv->klist_devices.k_lock);
328 if (dev->parent) /* Needed for USB */
329 down(&dev->parent->sem);
331 if (dev->driver == drv)
332 __device_release_driver(dev);
335 up(&dev->parent->sem);
341 EXPORT_SYMBOL_GPL(device_bind_driver);
342 EXPORT_SYMBOL_GPL(device_release_driver);
343 EXPORT_SYMBOL_GPL(device_attach);
344 EXPORT_SYMBOL_GPL(driver_attach);