4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 void remove_from_page_cache(struct page *page)
140 struct address_space *mapping = page->mapping;
142 BUG_ON(!PageLocked(page));
144 spin_lock_irq(&mapping->tree_lock);
145 __remove_from_page_cache(page);
146 spin_unlock_irq(&mapping->tree_lock);
147 mem_cgroup_uncharge_cache_page(page);
150 static int sync_page(void *word)
152 struct address_space *mapping;
155 page = container_of((unsigned long *)word, struct page, flags);
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
186 static int sync_page_killable(void *word)
189 return fatal_signal_pending(current) ? -EINTR : 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
218 if (!mapping_cap_writeback_dirty(mapping))
221 ret = do_writepages(mapping, &wbc);
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 int filemap_fdatawrite(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 EXPORT_SYMBOL(filemap_fdatawrite);
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
277 pagevec_init(&pvec, 0);
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
292 wait_on_page_writeback(page);
296 pagevec_release(&pvec);
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
339 ret = wait_on_page_writeback_range(mapping, start, end);
342 EXPORT_SYMBOL(sync_page_range);
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 ret = wait_on_page_writeback_range(mapping, start, end);
371 EXPORT_SYMBOL(sync_page_range_nolock);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 EXPORT_SYMBOL(filemap_fdatawait);
392 int filemap_write_and_wait(struct address_space *mapping)
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
405 int err2 = filemap_fdatawait(mapping);
412 EXPORT_SYMBOL(filemap_write_and_wait);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 /* See comment of filemap_write_and_wait() */
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
444 EXPORT_SYMBOL(filemap_write_and_wait_range);
447 * add_to_page_cache_locked - add a locked page to the pagecache
449 * @mapping: the page's address_space
450 * @offset: page index
451 * @gfp_mask: page allocation mode
453 * This function is used to add a page to the pagecache. It must be locked.
454 * This function does not add the page to the LRU. The caller must do that.
456 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
457 pgoff_t offset, gfp_t gfp_mask)
461 VM_BUG_ON(!PageLocked(page));
463 error = mem_cgroup_cache_charge(page, current->mm,
464 gfp_mask & GFP_RECLAIM_MASK);
468 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
470 page_cache_get(page);
471 page->mapping = mapping;
472 page->index = offset;
474 spin_lock_irq(&mapping->tree_lock);
475 error = radix_tree_insert(&mapping->page_tree, offset, page);
476 if (likely(!error)) {
478 __inc_zone_page_state(page, NR_FILE_PAGES);
479 spin_unlock_irq(&mapping->tree_lock);
481 page->mapping = NULL;
482 spin_unlock_irq(&mapping->tree_lock);
483 mem_cgroup_uncharge_cache_page(page);
484 page_cache_release(page);
486 radix_tree_preload_end();
488 mem_cgroup_uncharge_cache_page(page);
492 EXPORT_SYMBOL(add_to_page_cache_locked);
494 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
495 pgoff_t offset, gfp_t gfp_mask)
500 * Splice_read and readahead add shmem/tmpfs pages into the page cache
501 * before shmem_readpage has a chance to mark them as SwapBacked: they
502 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
503 * (called in add_to_page_cache) needs to know where they're going too.
505 if (mapping_cap_swap_backed(mapping))
506 SetPageSwapBacked(page);
508 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
510 if (page_is_file_cache(page))
511 lru_cache_add_file(page);
513 lru_cache_add_active_anon(page);
517 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
520 struct page *__page_cache_alloc(gfp_t gfp)
522 if (cpuset_do_page_mem_spread()) {
523 int n = cpuset_mem_spread_node();
524 return alloc_pages_exact_node(n, gfp, 0);
526 return alloc_pages(gfp, 0);
528 EXPORT_SYMBOL(__page_cache_alloc);
531 static int __sleep_on_page_lock(void *word)
538 * In order to wait for pages to become available there must be
539 * waitqueues associated with pages. By using a hash table of
540 * waitqueues where the bucket discipline is to maintain all
541 * waiters on the same queue and wake all when any of the pages
542 * become available, and for the woken contexts to check to be
543 * sure the appropriate page became available, this saves space
544 * at a cost of "thundering herd" phenomena during rare hash
547 static wait_queue_head_t *page_waitqueue(struct page *page)
549 const struct zone *zone = page_zone(page);
551 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
554 static inline void wake_up_page(struct page *page, int bit)
556 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
559 void wait_on_page_bit(struct page *page, int bit_nr)
561 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
563 if (test_bit(bit_nr, &page->flags))
564 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
565 TASK_UNINTERRUPTIBLE);
567 EXPORT_SYMBOL(wait_on_page_bit);
570 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
571 * @page: Page defining the wait queue of interest
572 * @waiter: Waiter to add to the queue
574 * Add an arbitrary @waiter to the wait queue for the nominated @page.
576 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
578 wait_queue_head_t *q = page_waitqueue(page);
581 spin_lock_irqsave(&q->lock, flags);
582 __add_wait_queue(q, waiter);
583 spin_unlock_irqrestore(&q->lock, flags);
585 EXPORT_SYMBOL_GPL(add_page_wait_queue);
588 * unlock_page - unlock a locked page
591 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
592 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
593 * mechananism between PageLocked pages and PageWriteback pages is shared.
594 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
596 * The mb is necessary to enforce ordering between the clear_bit and the read
597 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
599 void unlock_page(struct page *page)
601 VM_BUG_ON(!PageLocked(page));
602 clear_bit_unlock(PG_locked, &page->flags);
603 smp_mb__after_clear_bit();
604 wake_up_page(page, PG_locked);
606 EXPORT_SYMBOL(unlock_page);
609 * end_page_writeback - end writeback against a page
612 void end_page_writeback(struct page *page)
614 if (TestClearPageReclaim(page))
615 rotate_reclaimable_page(page);
617 if (!test_clear_page_writeback(page))
620 smp_mb__after_clear_bit();
621 wake_up_page(page, PG_writeback);
623 EXPORT_SYMBOL(end_page_writeback);
626 * __lock_page - get a lock on the page, assuming we need to sleep to get it
627 * @page: the page to lock
629 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
630 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
631 * chances are that on the second loop, the block layer's plug list is empty,
632 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
634 void __lock_page(struct page *page)
636 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
638 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
639 TASK_UNINTERRUPTIBLE);
641 EXPORT_SYMBOL(__lock_page);
643 int __lock_page_killable(struct page *page)
645 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
647 return __wait_on_bit_lock(page_waitqueue(page), &wait,
648 sync_page_killable, TASK_KILLABLE);
650 EXPORT_SYMBOL_GPL(__lock_page_killable);
653 * __lock_page_nosync - get a lock on the page, without calling sync_page()
654 * @page: the page to lock
656 * Variant of lock_page that does not require the caller to hold a reference
657 * on the page's mapping.
659 void __lock_page_nosync(struct page *page)
661 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
662 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
663 TASK_UNINTERRUPTIBLE);
667 * find_get_page - find and get a page reference
668 * @mapping: the address_space to search
669 * @offset: the page index
671 * Is there a pagecache struct page at the given (mapping, offset) tuple?
672 * If yes, increment its refcount and return it; if no, return NULL.
674 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
682 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
684 page = radix_tree_deref_slot(pagep);
685 if (unlikely(!page || page == RADIX_TREE_RETRY))
688 if (!page_cache_get_speculative(page))
692 * Has the page moved?
693 * This is part of the lockless pagecache protocol. See
694 * include/linux/pagemap.h for details.
696 if (unlikely(page != *pagep)) {
697 page_cache_release(page);
705 EXPORT_SYMBOL(find_get_page);
708 * find_lock_page - locate, pin and lock a pagecache page
709 * @mapping: the address_space to search
710 * @offset: the page index
712 * Locates the desired pagecache page, locks it, increments its reference
713 * count and returns its address.
715 * Returns zero if the page was not present. find_lock_page() may sleep.
717 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
722 page = find_get_page(mapping, offset);
725 /* Has the page been truncated? */
726 if (unlikely(page->mapping != mapping)) {
728 page_cache_release(page);
731 VM_BUG_ON(page->index != offset);
735 EXPORT_SYMBOL(find_lock_page);
738 * find_or_create_page - locate or add a pagecache page
739 * @mapping: the page's address_space
740 * @index: the page's index into the mapping
741 * @gfp_mask: page allocation mode
743 * Locates a page in the pagecache. If the page is not present, a new page
744 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
745 * LRU list. The returned page is locked and has its reference count
748 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
751 * find_or_create_page() returns the desired page's address, or zero on
754 struct page *find_or_create_page(struct address_space *mapping,
755 pgoff_t index, gfp_t gfp_mask)
760 page = find_lock_page(mapping, index);
762 page = __page_cache_alloc(gfp_mask);
766 * We want a regular kernel memory (not highmem or DMA etc)
767 * allocation for the radix tree nodes, but we need to honour
768 * the context-specific requirements the caller has asked for.
769 * GFP_RECLAIM_MASK collects those requirements.
771 err = add_to_page_cache_lru(page, mapping, index,
772 (gfp_mask & GFP_RECLAIM_MASK));
774 page_cache_release(page);
782 EXPORT_SYMBOL(find_or_create_page);
785 * find_get_pages - gang pagecache lookup
786 * @mapping: The address_space to search
787 * @start: The starting page index
788 * @nr_pages: The maximum number of pages
789 * @pages: Where the resulting pages are placed
791 * find_get_pages() will search for and return a group of up to
792 * @nr_pages pages in the mapping. The pages are placed at @pages.
793 * find_get_pages() takes a reference against the returned pages.
795 * The search returns a group of mapping-contiguous pages with ascending
796 * indexes. There may be holes in the indices due to not-present pages.
798 * find_get_pages() returns the number of pages which were found.
800 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
801 unsigned int nr_pages, struct page **pages)
805 unsigned int nr_found;
809 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
810 (void ***)pages, start, nr_pages);
812 for (i = 0; i < nr_found; i++) {
815 page = radix_tree_deref_slot((void **)pages[i]);
819 * this can only trigger if nr_found == 1, making livelock
822 if (unlikely(page == RADIX_TREE_RETRY))
825 if (!page_cache_get_speculative(page))
828 /* Has the page moved? */
829 if (unlikely(page != *((void **)pages[i]))) {
830 page_cache_release(page);
842 * find_get_pages_contig - gang contiguous pagecache lookup
843 * @mapping: The address_space to search
844 * @index: The starting page index
845 * @nr_pages: The maximum number of pages
846 * @pages: Where the resulting pages are placed
848 * find_get_pages_contig() works exactly like find_get_pages(), except
849 * that the returned number of pages are guaranteed to be contiguous.
851 * find_get_pages_contig() returns the number of pages which were found.
853 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
854 unsigned int nr_pages, struct page **pages)
858 unsigned int nr_found;
862 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
863 (void ***)pages, index, nr_pages);
865 for (i = 0; i < nr_found; i++) {
868 page = radix_tree_deref_slot((void **)pages[i]);
872 * this can only trigger if nr_found == 1, making livelock
875 if (unlikely(page == RADIX_TREE_RETRY))
878 if (page->mapping == NULL || page->index != index)
881 if (!page_cache_get_speculative(page))
884 /* Has the page moved? */
885 if (unlikely(page != *((void **)pages[i]))) {
886 page_cache_release(page);
897 EXPORT_SYMBOL(find_get_pages_contig);
900 * find_get_pages_tag - find and return pages that match @tag
901 * @mapping: the address_space to search
902 * @index: the starting page index
903 * @tag: the tag index
904 * @nr_pages: the maximum number of pages
905 * @pages: where the resulting pages are placed
907 * Like find_get_pages, except we only return pages which are tagged with
908 * @tag. We update @index to index the next page for the traversal.
910 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
911 int tag, unsigned int nr_pages, struct page **pages)
915 unsigned int nr_found;
919 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
920 (void ***)pages, *index, nr_pages, tag);
922 for (i = 0; i < nr_found; i++) {
925 page = radix_tree_deref_slot((void **)pages[i]);
929 * this can only trigger if nr_found == 1, making livelock
932 if (unlikely(page == RADIX_TREE_RETRY))
935 if (!page_cache_get_speculative(page))
938 /* Has the page moved? */
939 if (unlikely(page != *((void **)pages[i]))) {
940 page_cache_release(page);
950 *index = pages[ret - 1]->index + 1;
954 EXPORT_SYMBOL(find_get_pages_tag);
957 * grab_cache_page_nowait - returns locked page at given index in given cache
958 * @mapping: target address_space
959 * @index: the page index
961 * Same as grab_cache_page(), but do not wait if the page is unavailable.
962 * This is intended for speculative data generators, where the data can
963 * be regenerated if the page couldn't be grabbed. This routine should
964 * be safe to call while holding the lock for another page.
966 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
967 * and deadlock against the caller's locked page.
970 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
972 struct page *page = find_get_page(mapping, index);
975 if (trylock_page(page))
977 page_cache_release(page);
980 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
981 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
982 page_cache_release(page);
987 EXPORT_SYMBOL(grab_cache_page_nowait);
990 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
991 * a _large_ part of the i/o request. Imagine the worst scenario:
993 * ---R__________________________________________B__________
994 * ^ reading here ^ bad block(assume 4k)
996 * read(R) => miss => readahead(R...B) => media error => frustrating retries
997 * => failing the whole request => read(R) => read(R+1) =>
998 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
999 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1000 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1002 * It is going insane. Fix it by quickly scaling down the readahead size.
1004 static void shrink_readahead_size_eio(struct file *filp,
1005 struct file_ra_state *ra)
1011 * do_generic_file_read - generic file read routine
1012 * @filp: the file to read
1013 * @ppos: current file position
1014 * @desc: read_descriptor
1015 * @actor: read method
1017 * This is a generic file read routine, and uses the
1018 * mapping->a_ops->readpage() function for the actual low-level stuff.
1020 * This is really ugly. But the goto's actually try to clarify some
1021 * of the logic when it comes to error handling etc.
1023 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1024 read_descriptor_t *desc, read_actor_t actor)
1026 struct address_space *mapping = filp->f_mapping;
1027 struct inode *inode = mapping->host;
1028 struct file_ra_state *ra = &filp->f_ra;
1032 unsigned long offset; /* offset into pagecache page */
1033 unsigned int prev_offset;
1036 index = *ppos >> PAGE_CACHE_SHIFT;
1037 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1038 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1039 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1040 offset = *ppos & ~PAGE_CACHE_MASK;
1046 unsigned long nr, ret;
1050 page = find_get_page(mapping, index);
1052 page_cache_sync_readahead(mapping,
1054 index, last_index - index);
1055 page = find_get_page(mapping, index);
1056 if (unlikely(page == NULL))
1057 goto no_cached_page;
1059 if (PageReadahead(page)) {
1060 page_cache_async_readahead(mapping,
1062 index, last_index - index);
1064 if (!PageUptodate(page)) {
1065 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1066 !mapping->a_ops->is_partially_uptodate)
1067 goto page_not_up_to_date;
1068 if (!trylock_page(page))
1069 goto page_not_up_to_date;
1070 if (!mapping->a_ops->is_partially_uptodate(page,
1072 goto page_not_up_to_date_locked;
1077 * i_size must be checked after we know the page is Uptodate.
1079 * Checking i_size after the check allows us to calculate
1080 * the correct value for "nr", which means the zero-filled
1081 * part of the page is not copied back to userspace (unless
1082 * another truncate extends the file - this is desired though).
1085 isize = i_size_read(inode);
1086 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1087 if (unlikely(!isize || index > end_index)) {
1088 page_cache_release(page);
1092 /* nr is the maximum number of bytes to copy from this page */
1093 nr = PAGE_CACHE_SIZE;
1094 if (index == end_index) {
1095 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1097 page_cache_release(page);
1103 /* If users can be writing to this page using arbitrary
1104 * virtual addresses, take care about potential aliasing
1105 * before reading the page on the kernel side.
1107 if (mapping_writably_mapped(mapping))
1108 flush_dcache_page(page);
1111 * When a sequential read accesses a page several times,
1112 * only mark it as accessed the first time.
1114 if (prev_index != index || offset != prev_offset)
1115 mark_page_accessed(page);
1119 * Ok, we have the page, and it's up-to-date, so
1120 * now we can copy it to user space...
1122 * The actor routine returns how many bytes were actually used..
1123 * NOTE! This may not be the same as how much of a user buffer
1124 * we filled up (we may be padding etc), so we can only update
1125 * "pos" here (the actor routine has to update the user buffer
1126 * pointers and the remaining count).
1128 ret = actor(desc, page, offset, nr);
1130 index += offset >> PAGE_CACHE_SHIFT;
1131 offset &= ~PAGE_CACHE_MASK;
1132 prev_offset = offset;
1134 page_cache_release(page);
1135 if (ret == nr && desc->count)
1139 page_not_up_to_date:
1140 /* Get exclusive access to the page ... */
1141 error = lock_page_killable(page);
1142 if (unlikely(error))
1143 goto readpage_error;
1145 page_not_up_to_date_locked:
1146 /* Did it get truncated before we got the lock? */
1147 if (!page->mapping) {
1149 page_cache_release(page);
1153 /* Did somebody else fill it already? */
1154 if (PageUptodate(page)) {
1160 /* Start the actual read. The read will unlock the page. */
1161 error = mapping->a_ops->readpage(filp, page);
1163 if (unlikely(error)) {
1164 if (error == AOP_TRUNCATED_PAGE) {
1165 page_cache_release(page);
1168 goto readpage_error;
1171 if (!PageUptodate(page)) {
1172 error = lock_page_killable(page);
1173 if (unlikely(error))
1174 goto readpage_error;
1175 if (!PageUptodate(page)) {
1176 if (page->mapping == NULL) {
1178 * invalidate_inode_pages got it
1181 page_cache_release(page);
1185 shrink_readahead_size_eio(filp, ra);
1187 goto readpage_error;
1195 /* UHHUH! A synchronous read error occurred. Report it */
1196 desc->error = error;
1197 page_cache_release(page);
1202 * Ok, it wasn't cached, so we need to create a new
1205 page = page_cache_alloc_cold(mapping);
1207 desc->error = -ENOMEM;
1210 error = add_to_page_cache_lru(page, mapping,
1213 page_cache_release(page);
1214 if (error == -EEXIST)
1216 desc->error = error;
1223 ra->prev_pos = prev_index;
1224 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1225 ra->prev_pos |= prev_offset;
1227 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1228 file_accessed(filp);
1231 int file_read_actor(read_descriptor_t *desc, struct page *page,
1232 unsigned long offset, unsigned long size)
1235 unsigned long left, count = desc->count;
1241 * Faults on the destination of a read are common, so do it before
1244 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1245 kaddr = kmap_atomic(page, KM_USER0);
1246 left = __copy_to_user_inatomic(desc->arg.buf,
1247 kaddr + offset, size);
1248 kunmap_atomic(kaddr, KM_USER0);
1253 /* Do it the slow way */
1255 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1260 desc->error = -EFAULT;
1263 desc->count = count - size;
1264 desc->written += size;
1265 desc->arg.buf += size;
1270 * Performs necessary checks before doing a write
1271 * @iov: io vector request
1272 * @nr_segs: number of segments in the iovec
1273 * @count: number of bytes to write
1274 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1276 * Adjust number of segments and amount of bytes to write (nr_segs should be
1277 * properly initialized first). Returns appropriate error code that caller
1278 * should return or zero in case that write should be allowed.
1280 int generic_segment_checks(const struct iovec *iov,
1281 unsigned long *nr_segs, size_t *count, int access_flags)
1285 for (seg = 0; seg < *nr_segs; seg++) {
1286 const struct iovec *iv = &iov[seg];
1289 * If any segment has a negative length, or the cumulative
1290 * length ever wraps negative then return -EINVAL.
1293 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1295 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1300 cnt -= iv->iov_len; /* This segment is no good */
1306 EXPORT_SYMBOL(generic_segment_checks);
1309 * generic_file_aio_read - generic filesystem read routine
1310 * @iocb: kernel I/O control block
1311 * @iov: io vector request
1312 * @nr_segs: number of segments in the iovec
1313 * @pos: current file position
1315 * This is the "read()" routine for all filesystems
1316 * that can use the page cache directly.
1319 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1320 unsigned long nr_segs, loff_t pos)
1322 struct file *filp = iocb->ki_filp;
1326 loff_t *ppos = &iocb->ki_pos;
1329 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1333 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1334 if (filp->f_flags & O_DIRECT) {
1336 struct address_space *mapping;
1337 struct inode *inode;
1339 mapping = filp->f_mapping;
1340 inode = mapping->host;
1342 goto out; /* skip atime */
1343 size = i_size_read(inode);
1345 retval = filemap_write_and_wait_range(mapping, pos,
1346 pos + iov_length(iov, nr_segs) - 1);
1348 retval = mapping->a_ops->direct_IO(READ, iocb,
1352 *ppos = pos + retval;
1354 file_accessed(filp);
1360 for (seg = 0; seg < nr_segs; seg++) {
1361 read_descriptor_t desc;
1364 desc.arg.buf = iov[seg].iov_base;
1365 desc.count = iov[seg].iov_len;
1366 if (desc.count == 0)
1369 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1370 retval += desc.written;
1372 retval = retval ?: desc.error;
1381 EXPORT_SYMBOL(generic_file_aio_read);
1384 do_readahead(struct address_space *mapping, struct file *filp,
1385 pgoff_t index, unsigned long nr)
1387 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1390 force_page_cache_readahead(mapping, filp, index, nr);
1394 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1402 if (file->f_mode & FMODE_READ) {
1403 struct address_space *mapping = file->f_mapping;
1404 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1405 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1406 unsigned long len = end - start + 1;
1407 ret = do_readahead(mapping, file, start, len);
1413 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1414 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1416 return SYSC_readahead((int) fd, offset, (size_t) count);
1418 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1423 * page_cache_read - adds requested page to the page cache if not already there
1424 * @file: file to read
1425 * @offset: page index
1427 * This adds the requested page to the page cache if it isn't already there,
1428 * and schedules an I/O to read in its contents from disk.
1430 static int page_cache_read(struct file *file, pgoff_t offset)
1432 struct address_space *mapping = file->f_mapping;
1437 page = page_cache_alloc_cold(mapping);
1441 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1443 ret = mapping->a_ops->readpage(file, page);
1444 else if (ret == -EEXIST)
1445 ret = 0; /* losing race to add is OK */
1447 page_cache_release(page);
1449 } while (ret == AOP_TRUNCATED_PAGE);
1454 #define MMAP_LOTSAMISS (100)
1457 * Synchronous readahead happens when we don't even find
1458 * a page in the page cache at all.
1460 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1461 struct file_ra_state *ra,
1465 unsigned long ra_pages;
1466 struct address_space *mapping = file->f_mapping;
1468 /* If we don't want any read-ahead, don't bother */
1469 if (VM_RandomReadHint(vma))
1472 if (VM_SequentialReadHint(vma) ||
1473 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1474 page_cache_sync_readahead(mapping, ra, file, offset,
1479 if (ra->mmap_miss < INT_MAX)
1483 * Do we miss much more than hit in this file? If so,
1484 * stop bothering with read-ahead. It will only hurt.
1486 if (ra->mmap_miss > MMAP_LOTSAMISS)
1492 ra_pages = max_sane_readahead(ra->ra_pages);
1494 ra->start = max_t(long, 0, offset - ra_pages/2);
1495 ra->size = ra_pages;
1497 ra_submit(ra, mapping, file);
1502 * Asynchronous readahead happens when we find the page and PG_readahead,
1503 * so we want to possibly extend the readahead further..
1505 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1506 struct file_ra_state *ra,
1511 struct address_space *mapping = file->f_mapping;
1513 /* If we don't want any read-ahead, don't bother */
1514 if (VM_RandomReadHint(vma))
1516 if (ra->mmap_miss > 0)
1518 if (PageReadahead(page))
1519 page_cache_async_readahead(mapping, ra, file,
1520 page, offset, ra->ra_pages);
1524 * filemap_fault - read in file data for page fault handling
1525 * @vma: vma in which the fault was taken
1526 * @vmf: struct vm_fault containing details of the fault
1528 * filemap_fault() is invoked via the vma operations vector for a
1529 * mapped memory region to read in file data during a page fault.
1531 * The goto's are kind of ugly, but this streamlines the normal case of having
1532 * it in the page cache, and handles the special cases reasonably without
1533 * having a lot of duplicated code.
1535 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1538 struct file *file = vma->vm_file;
1539 struct address_space *mapping = file->f_mapping;
1540 struct file_ra_state *ra = &file->f_ra;
1541 struct inode *inode = mapping->host;
1542 pgoff_t offset = vmf->pgoff;
1547 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1549 return VM_FAULT_SIGBUS;
1552 * Do we have something in the page cache already?
1554 page = find_get_page(mapping, offset);
1557 * We found the page, so try async readahead before
1558 * waiting for the lock.
1560 do_async_mmap_readahead(vma, ra, file, page, offset);
1563 /* Did it get truncated? */
1564 if (unlikely(page->mapping != mapping)) {
1567 goto no_cached_page;
1570 /* No page in the page cache at all */
1571 do_sync_mmap_readahead(vma, ra, file, offset);
1572 count_vm_event(PGMAJFAULT);
1573 ret = VM_FAULT_MAJOR;
1575 page = find_lock_page(mapping, offset);
1577 goto no_cached_page;
1581 * We have a locked page in the page cache, now we need to check
1582 * that it's up-to-date. If not, it is going to be due to an error.
1584 if (unlikely(!PageUptodate(page)))
1585 goto page_not_uptodate;
1588 * Found the page and have a reference on it.
1589 * We must recheck i_size under page lock.
1591 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1592 if (unlikely(offset >= size)) {
1594 page_cache_release(page);
1595 return VM_FAULT_SIGBUS;
1598 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1600 return ret | VM_FAULT_LOCKED;
1604 * We're only likely to ever get here if MADV_RANDOM is in
1607 error = page_cache_read(file, offset);
1610 * The page we want has now been added to the page cache.
1611 * In the unlikely event that someone removed it in the
1612 * meantime, we'll just come back here and read it again.
1618 * An error return from page_cache_read can result if the
1619 * system is low on memory, or a problem occurs while trying
1622 if (error == -ENOMEM)
1623 return VM_FAULT_OOM;
1624 return VM_FAULT_SIGBUS;
1628 * Umm, take care of errors if the page isn't up-to-date.
1629 * Try to re-read it _once_. We do this synchronously,
1630 * because there really aren't any performance issues here
1631 * and we need to check for errors.
1633 ClearPageError(page);
1634 error = mapping->a_ops->readpage(file, page);
1636 wait_on_page_locked(page);
1637 if (!PageUptodate(page))
1640 page_cache_release(page);
1642 if (!error || error == AOP_TRUNCATED_PAGE)
1645 /* Things didn't work out. Return zero to tell the mm layer so. */
1646 shrink_readahead_size_eio(file, ra);
1647 return VM_FAULT_SIGBUS;
1649 EXPORT_SYMBOL(filemap_fault);
1651 struct vm_operations_struct generic_file_vm_ops = {
1652 .fault = filemap_fault,
1655 /* This is used for a general mmap of a disk file */
1657 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1659 struct address_space *mapping = file->f_mapping;
1661 if (!mapping->a_ops->readpage)
1663 file_accessed(file);
1664 vma->vm_ops = &generic_file_vm_ops;
1665 vma->vm_flags |= VM_CAN_NONLINEAR;
1670 * This is for filesystems which do not implement ->writepage.
1672 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1674 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1676 return generic_file_mmap(file, vma);
1679 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1683 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1687 #endif /* CONFIG_MMU */
1689 EXPORT_SYMBOL(generic_file_mmap);
1690 EXPORT_SYMBOL(generic_file_readonly_mmap);
1692 static struct page *__read_cache_page(struct address_space *mapping,
1694 int (*filler)(void *,struct page*),
1700 page = find_get_page(mapping, index);
1702 page = page_cache_alloc_cold(mapping);
1704 return ERR_PTR(-ENOMEM);
1705 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1706 if (unlikely(err)) {
1707 page_cache_release(page);
1710 /* Presumably ENOMEM for radix tree node */
1711 return ERR_PTR(err);
1713 err = filler(data, page);
1715 page_cache_release(page);
1716 page = ERR_PTR(err);
1723 * read_cache_page_async - read into page cache, fill it if needed
1724 * @mapping: the page's address_space
1725 * @index: the page index
1726 * @filler: function to perform the read
1727 * @data: destination for read data
1729 * Same as read_cache_page, but don't wait for page to become unlocked
1730 * after submitting it to the filler.
1732 * Read into the page cache. If a page already exists, and PageUptodate() is
1733 * not set, try to fill the page but don't wait for it to become unlocked.
1735 * If the page does not get brought uptodate, return -EIO.
1737 struct page *read_cache_page_async(struct address_space *mapping,
1739 int (*filler)(void *,struct page*),
1746 page = __read_cache_page(mapping, index, filler, data);
1749 if (PageUptodate(page))
1753 if (!page->mapping) {
1755 page_cache_release(page);
1758 if (PageUptodate(page)) {
1762 err = filler(data, page);
1764 page_cache_release(page);
1765 return ERR_PTR(err);
1768 mark_page_accessed(page);
1771 EXPORT_SYMBOL(read_cache_page_async);
1774 * read_cache_page - read into page cache, fill it if needed
1775 * @mapping: the page's address_space
1776 * @index: the page index
1777 * @filler: function to perform the read
1778 * @data: destination for read data
1780 * Read into the page cache. If a page already exists, and PageUptodate() is
1781 * not set, try to fill the page then wait for it to become unlocked.
1783 * If the page does not get brought uptodate, return -EIO.
1785 struct page *read_cache_page(struct address_space *mapping,
1787 int (*filler)(void *,struct page*),
1792 page = read_cache_page_async(mapping, index, filler, data);
1795 wait_on_page_locked(page);
1796 if (!PageUptodate(page)) {
1797 page_cache_release(page);
1798 page = ERR_PTR(-EIO);
1803 EXPORT_SYMBOL(read_cache_page);
1806 * The logic we want is
1808 * if suid or (sgid and xgrp)
1811 int should_remove_suid(struct dentry *dentry)
1813 mode_t mode = dentry->d_inode->i_mode;
1816 /* suid always must be killed */
1817 if (unlikely(mode & S_ISUID))
1818 kill = ATTR_KILL_SUID;
1821 * sgid without any exec bits is just a mandatory locking mark; leave
1822 * it alone. If some exec bits are set, it's a real sgid; kill it.
1824 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1825 kill |= ATTR_KILL_SGID;
1827 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1832 EXPORT_SYMBOL(should_remove_suid);
1834 static int __remove_suid(struct dentry *dentry, int kill)
1836 struct iattr newattrs;
1838 newattrs.ia_valid = ATTR_FORCE | kill;
1839 return notify_change(dentry, &newattrs);
1842 int file_remove_suid(struct file *file)
1844 struct dentry *dentry = file->f_path.dentry;
1845 int killsuid = should_remove_suid(dentry);
1846 int killpriv = security_inode_need_killpriv(dentry);
1852 error = security_inode_killpriv(dentry);
1853 if (!error && killsuid)
1854 error = __remove_suid(dentry, killsuid);
1858 EXPORT_SYMBOL(file_remove_suid);
1860 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1861 const struct iovec *iov, size_t base, size_t bytes)
1863 size_t copied = 0, left = 0;
1866 char __user *buf = iov->iov_base + base;
1867 int copy = min(bytes, iov->iov_len - base);
1870 left = __copy_from_user_inatomic(vaddr, buf, copy);
1879 return copied - left;
1883 * Copy as much as we can into the page and return the number of bytes which
1884 * were sucessfully copied. If a fault is encountered then return the number of
1885 * bytes which were copied.
1887 size_t iov_iter_copy_from_user_atomic(struct page *page,
1888 struct iov_iter *i, unsigned long offset, size_t bytes)
1893 BUG_ON(!in_atomic());
1894 kaddr = kmap_atomic(page, KM_USER0);
1895 if (likely(i->nr_segs == 1)) {
1897 char __user *buf = i->iov->iov_base + i->iov_offset;
1898 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1899 copied = bytes - left;
1901 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1902 i->iov, i->iov_offset, bytes);
1904 kunmap_atomic(kaddr, KM_USER0);
1908 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1911 * This has the same sideeffects and return value as
1912 * iov_iter_copy_from_user_atomic().
1913 * The difference is that it attempts to resolve faults.
1914 * Page must not be locked.
1916 size_t iov_iter_copy_from_user(struct page *page,
1917 struct iov_iter *i, unsigned long offset, size_t bytes)
1923 if (likely(i->nr_segs == 1)) {
1925 char __user *buf = i->iov->iov_base + i->iov_offset;
1926 left = __copy_from_user(kaddr + offset, buf, bytes);
1927 copied = bytes - left;
1929 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1930 i->iov, i->iov_offset, bytes);
1935 EXPORT_SYMBOL(iov_iter_copy_from_user);
1937 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1939 BUG_ON(i->count < bytes);
1941 if (likely(i->nr_segs == 1)) {
1942 i->iov_offset += bytes;
1945 const struct iovec *iov = i->iov;
1946 size_t base = i->iov_offset;
1949 * The !iov->iov_len check ensures we skip over unlikely
1950 * zero-length segments (without overruning the iovec).
1952 while (bytes || unlikely(i->count && !iov->iov_len)) {
1955 copy = min(bytes, iov->iov_len - base);
1956 BUG_ON(!i->count || i->count < copy);
1960 if (iov->iov_len == base) {
1966 i->iov_offset = base;
1969 EXPORT_SYMBOL(iov_iter_advance);
1972 * Fault in the first iovec of the given iov_iter, to a maximum length
1973 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1974 * accessed (ie. because it is an invalid address).
1976 * writev-intensive code may want this to prefault several iovecs -- that
1977 * would be possible (callers must not rely on the fact that _only_ the
1978 * first iovec will be faulted with the current implementation).
1980 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1982 char __user *buf = i->iov->iov_base + i->iov_offset;
1983 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1984 return fault_in_pages_readable(buf, bytes);
1986 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1989 * Return the count of just the current iov_iter segment.
1991 size_t iov_iter_single_seg_count(struct iov_iter *i)
1993 const struct iovec *iov = i->iov;
1994 if (i->nr_segs == 1)
1997 return min(i->count, iov->iov_len - i->iov_offset);
1999 EXPORT_SYMBOL(iov_iter_single_seg_count);
2002 * Performs necessary checks before doing a write
2004 * Can adjust writing position or amount of bytes to write.
2005 * Returns appropriate error code that caller should return or
2006 * zero in case that write should be allowed.
2008 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2010 struct inode *inode = file->f_mapping->host;
2011 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2013 if (unlikely(*pos < 0))
2017 /* FIXME: this is for backwards compatibility with 2.4 */
2018 if (file->f_flags & O_APPEND)
2019 *pos = i_size_read(inode);
2021 if (limit != RLIM_INFINITY) {
2022 if (*pos >= limit) {
2023 send_sig(SIGXFSZ, current, 0);
2026 if (*count > limit - (typeof(limit))*pos) {
2027 *count = limit - (typeof(limit))*pos;
2035 if (unlikely(*pos + *count > MAX_NON_LFS &&
2036 !(file->f_flags & O_LARGEFILE))) {
2037 if (*pos >= MAX_NON_LFS) {
2040 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2041 *count = MAX_NON_LFS - (unsigned long)*pos;
2046 * Are we about to exceed the fs block limit ?
2048 * If we have written data it becomes a short write. If we have
2049 * exceeded without writing data we send a signal and return EFBIG.
2050 * Linus frestrict idea will clean these up nicely..
2052 if (likely(!isblk)) {
2053 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2054 if (*count || *pos > inode->i_sb->s_maxbytes) {
2057 /* zero-length writes at ->s_maxbytes are OK */
2060 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2061 *count = inode->i_sb->s_maxbytes - *pos;
2065 if (bdev_read_only(I_BDEV(inode)))
2067 isize = i_size_read(inode);
2068 if (*pos >= isize) {
2069 if (*count || *pos > isize)
2073 if (*pos + *count > isize)
2074 *count = isize - *pos;
2081 EXPORT_SYMBOL(generic_write_checks);
2083 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2084 loff_t pos, unsigned len, unsigned flags,
2085 struct page **pagep, void **fsdata)
2087 const struct address_space_operations *aops = mapping->a_ops;
2089 return aops->write_begin(file, mapping, pos, len, flags,
2092 EXPORT_SYMBOL(pagecache_write_begin);
2094 int pagecache_write_end(struct file *file, struct address_space *mapping,
2095 loff_t pos, unsigned len, unsigned copied,
2096 struct page *page, void *fsdata)
2098 const struct address_space_operations *aops = mapping->a_ops;
2100 mark_page_accessed(page);
2101 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2103 EXPORT_SYMBOL(pagecache_write_end);
2106 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2107 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2108 size_t count, size_t ocount)
2110 struct file *file = iocb->ki_filp;
2111 struct address_space *mapping = file->f_mapping;
2112 struct inode *inode = mapping->host;
2117 if (count != ocount)
2118 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2120 write_len = iov_length(iov, *nr_segs);
2121 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2123 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2128 * After a write we want buffered reads to be sure to go to disk to get
2129 * the new data. We invalidate clean cached page from the region we're
2130 * about to write. We do this *before* the write so that we can return
2131 * without clobbering -EIOCBQUEUED from ->direct_IO().
2133 if (mapping->nrpages) {
2134 written = invalidate_inode_pages2_range(mapping,
2135 pos >> PAGE_CACHE_SHIFT, end);
2137 * If a page can not be invalidated, return 0 to fall back
2138 * to buffered write.
2141 if (written == -EBUSY)
2147 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2150 * Finally, try again to invalidate clean pages which might have been
2151 * cached by non-direct readahead, or faulted in by get_user_pages()
2152 * if the source of the write was an mmap'ed region of the file
2153 * we're writing. Either one is a pretty crazy thing to do,
2154 * so we don't support it 100%. If this invalidation
2155 * fails, tough, the write still worked...
2157 if (mapping->nrpages) {
2158 invalidate_inode_pages2_range(mapping,
2159 pos >> PAGE_CACHE_SHIFT, end);
2163 loff_t end = pos + written;
2164 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2165 i_size_write(inode, end);
2166 mark_inode_dirty(inode);
2172 * Sync the fs metadata but not the minor inode changes and
2173 * of course not the data as we did direct DMA for the IO.
2174 * i_mutex is held, which protects generic_osync_inode() from
2175 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2178 if ((written >= 0 || written == -EIOCBQUEUED) &&
2179 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2180 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2186 EXPORT_SYMBOL(generic_file_direct_write);
2189 * Find or create a page at the given pagecache position. Return the locked
2190 * page. This function is specifically for buffered writes.
2192 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2193 pgoff_t index, unsigned flags)
2197 gfp_t gfp_notmask = 0;
2198 if (flags & AOP_FLAG_NOFS)
2199 gfp_notmask = __GFP_FS;
2201 page = find_lock_page(mapping, index);
2205 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2208 status = add_to_page_cache_lru(page, mapping, index,
2209 GFP_KERNEL & ~gfp_notmask);
2210 if (unlikely(status)) {
2211 page_cache_release(page);
2212 if (status == -EEXIST)
2218 EXPORT_SYMBOL(grab_cache_page_write_begin);
2220 static ssize_t generic_perform_write(struct file *file,
2221 struct iov_iter *i, loff_t pos)
2223 struct address_space *mapping = file->f_mapping;
2224 const struct address_space_operations *a_ops = mapping->a_ops;
2226 ssize_t written = 0;
2227 unsigned int flags = 0;
2230 * Copies from kernel address space cannot fail (NFSD is a big user).
2232 if (segment_eq(get_fs(), KERNEL_DS))
2233 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2237 pgoff_t index; /* Pagecache index for current page */
2238 unsigned long offset; /* Offset into pagecache page */
2239 unsigned long bytes; /* Bytes to write to page */
2240 size_t copied; /* Bytes copied from user */
2243 offset = (pos & (PAGE_CACHE_SIZE - 1));
2244 index = pos >> PAGE_CACHE_SHIFT;
2245 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2251 * Bring in the user page that we will copy from _first_.
2252 * Otherwise there's a nasty deadlock on copying from the
2253 * same page as we're writing to, without it being marked
2256 * Not only is this an optimisation, but it is also required
2257 * to check that the address is actually valid, when atomic
2258 * usercopies are used, below.
2260 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2265 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2267 if (unlikely(status))
2270 pagefault_disable();
2271 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2273 flush_dcache_page(page);
2275 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2277 if (unlikely(status < 0))
2283 iov_iter_advance(i, copied);
2284 if (unlikely(copied == 0)) {
2286 * If we were unable to copy any data at all, we must
2287 * fall back to a single segment length write.
2289 * If we didn't fallback here, we could livelock
2290 * because not all segments in the iov can be copied at
2291 * once without a pagefault.
2293 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2294 iov_iter_single_seg_count(i));
2300 balance_dirty_pages_ratelimited(mapping);
2302 } while (iov_iter_count(i));
2304 return written ? written : status;
2308 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2309 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2310 size_t count, ssize_t written)
2312 struct file *file = iocb->ki_filp;
2313 struct address_space *mapping = file->f_mapping;
2314 const struct address_space_operations *a_ops = mapping->a_ops;
2315 struct inode *inode = mapping->host;
2319 iov_iter_init(&i, iov, nr_segs, count, written);
2320 status = generic_perform_write(file, &i, pos);
2322 if (likely(status >= 0)) {
2324 *ppos = pos + status;
2327 * For now, when the user asks for O_SYNC, we'll actually give
2330 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2331 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2332 status = generic_osync_inode(inode, mapping,
2333 OSYNC_METADATA|OSYNC_DATA);
2338 * If we get here for O_DIRECT writes then we must have fallen through
2339 * to buffered writes (block instantiation inside i_size). So we sync
2340 * the file data here, to try to honour O_DIRECT expectations.
2342 if (unlikely(file->f_flags & O_DIRECT) && written)
2343 status = filemap_write_and_wait_range(mapping,
2344 pos, pos + written - 1);
2346 return written ? written : status;
2348 EXPORT_SYMBOL(generic_file_buffered_write);
2351 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2352 unsigned long nr_segs, loff_t *ppos)
2354 struct file *file = iocb->ki_filp;
2355 struct address_space * mapping = file->f_mapping;
2356 size_t ocount; /* original count */
2357 size_t count; /* after file limit checks */
2358 struct inode *inode = mapping->host;
2364 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2371 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2373 /* We can write back this queue in page reclaim */
2374 current->backing_dev_info = mapping->backing_dev_info;
2377 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2384 err = file_remove_suid(file);
2388 file_update_time(file);
2390 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2391 if (unlikely(file->f_flags & O_DIRECT)) {
2393 ssize_t written_buffered;
2395 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2396 ppos, count, ocount);
2397 if (written < 0 || written == count)
2400 * direct-io write to a hole: fall through to buffered I/O
2401 * for completing the rest of the request.
2405 written_buffered = generic_file_buffered_write(iocb, iov,
2406 nr_segs, pos, ppos, count,
2409 * If generic_file_buffered_write() retuned a synchronous error
2410 * then we want to return the number of bytes which were
2411 * direct-written, or the error code if that was zero. Note
2412 * that this differs from normal direct-io semantics, which
2413 * will return -EFOO even if some bytes were written.
2415 if (written_buffered < 0) {
2416 err = written_buffered;
2421 * We need to ensure that the page cache pages are written to
2422 * disk and invalidated to preserve the expected O_DIRECT
2425 endbyte = pos + written_buffered - written - 1;
2426 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2427 SYNC_FILE_RANGE_WAIT_BEFORE|
2428 SYNC_FILE_RANGE_WRITE|
2429 SYNC_FILE_RANGE_WAIT_AFTER);
2431 written = written_buffered;
2432 invalidate_mapping_pages(mapping,
2433 pos >> PAGE_CACHE_SHIFT,
2434 endbyte >> PAGE_CACHE_SHIFT);
2437 * We don't know how much we wrote, so just return
2438 * the number of bytes which were direct-written
2442 written = generic_file_buffered_write(iocb, iov, nr_segs,
2443 pos, ppos, count, written);
2446 current->backing_dev_info = NULL;
2447 return written ? written : err;
2450 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2451 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2453 struct file *file = iocb->ki_filp;
2454 struct address_space *mapping = file->f_mapping;
2455 struct inode *inode = mapping->host;
2458 BUG_ON(iocb->ki_pos != pos);
2460 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2463 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2466 err = sync_page_range_nolock(inode, mapping, pos, ret);
2472 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2474 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2475 unsigned long nr_segs, loff_t pos)
2477 struct file *file = iocb->ki_filp;
2478 struct address_space *mapping = file->f_mapping;
2479 struct inode *inode = mapping->host;
2482 BUG_ON(iocb->ki_pos != pos);
2484 mutex_lock(&inode->i_mutex);
2485 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2487 mutex_unlock(&inode->i_mutex);
2489 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2492 err = sync_page_range(inode, mapping, pos, ret);
2498 EXPORT_SYMBOL(generic_file_aio_write);
2501 * try_to_release_page() - release old fs-specific metadata on a page
2503 * @page: the page which the kernel is trying to free
2504 * @gfp_mask: memory allocation flags (and I/O mode)
2506 * The address_space is to try to release any data against the page
2507 * (presumably at page->private). If the release was successful, return `1'.
2508 * Otherwise return zero.
2510 * This may also be called if PG_fscache is set on a page, indicating that the
2511 * page is known to the local caching routines.
2513 * The @gfp_mask argument specifies whether I/O may be performed to release
2514 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2517 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2519 struct address_space * const mapping = page->mapping;
2521 BUG_ON(!PageLocked(page));
2522 if (PageWriteback(page))
2525 if (mapping && mapping->a_ops->releasepage)
2526 return mapping->a_ops->releasepage(page, gfp_mask);
2527 return try_to_free_buffers(page);
2530 EXPORT_SYMBOL(try_to_release_page);