2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/intel-iommu.h>
39 #include <asm/uaccess.h>
43 #define MAX_IO_MSRS 256
44 #define CR0_RESERVED_BITS \
45 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
46 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
47 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
48 #define CR4_RESERVED_BITS \
49 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
50 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
51 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
52 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
54 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
56 * - enable syscall per default because its emulated by KVM
57 * - enable LME and LMA per default on 64 bit KVM
60 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
65 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
66 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
68 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
69 struct kvm_cpuid_entry2 __user *entries);
71 struct kvm_x86_ops *kvm_x86_ops;
72 EXPORT_SYMBOL_GPL(kvm_x86_ops);
74 struct kvm_stats_debugfs_item debugfs_entries[] = {
75 { "pf_fixed", VCPU_STAT(pf_fixed) },
76 { "pf_guest", VCPU_STAT(pf_guest) },
77 { "tlb_flush", VCPU_STAT(tlb_flush) },
78 { "invlpg", VCPU_STAT(invlpg) },
79 { "exits", VCPU_STAT(exits) },
80 { "io_exits", VCPU_STAT(io_exits) },
81 { "mmio_exits", VCPU_STAT(mmio_exits) },
82 { "signal_exits", VCPU_STAT(signal_exits) },
83 { "irq_window", VCPU_STAT(irq_window_exits) },
84 { "nmi_window", VCPU_STAT(nmi_window_exits) },
85 { "halt_exits", VCPU_STAT(halt_exits) },
86 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
87 { "hypercalls", VCPU_STAT(hypercalls) },
88 { "request_irq", VCPU_STAT(request_irq_exits) },
89 { "irq_exits", VCPU_STAT(irq_exits) },
90 { "host_state_reload", VCPU_STAT(host_state_reload) },
91 { "efer_reload", VCPU_STAT(efer_reload) },
92 { "fpu_reload", VCPU_STAT(fpu_reload) },
93 { "insn_emulation", VCPU_STAT(insn_emulation) },
94 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
95 { "irq_injections", VCPU_STAT(irq_injections) },
96 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
97 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
98 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
99 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
100 { "mmu_flooded", VM_STAT(mmu_flooded) },
101 { "mmu_recycled", VM_STAT(mmu_recycled) },
102 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
103 { "mmu_unsync", VM_STAT(mmu_unsync) },
104 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
105 { "largepages", VM_STAT(lpages) },
109 unsigned long segment_base(u16 selector)
111 struct descriptor_table gdt;
112 struct desc_struct *d;
113 unsigned long table_base;
119 asm("sgdt %0" : "=m"(gdt));
120 table_base = gdt.base;
122 if (selector & 4) { /* from ldt */
125 asm("sldt %0" : "=g"(ldt_selector));
126 table_base = segment_base(ldt_selector);
128 d = (struct desc_struct *)(table_base + (selector & ~7));
129 v = d->base0 | ((unsigned long)d->base1 << 16) |
130 ((unsigned long)d->base2 << 24);
132 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
133 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
137 EXPORT_SYMBOL_GPL(segment_base);
139 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
141 if (irqchip_in_kernel(vcpu->kvm))
142 return vcpu->arch.apic_base;
144 return vcpu->arch.apic_base;
146 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
148 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
150 /* TODO: reserve bits check */
151 if (irqchip_in_kernel(vcpu->kvm))
152 kvm_lapic_set_base(vcpu, data);
154 vcpu->arch.apic_base = data;
156 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
158 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
160 WARN_ON(vcpu->arch.exception.pending);
161 vcpu->arch.exception.pending = true;
162 vcpu->arch.exception.has_error_code = false;
163 vcpu->arch.exception.nr = nr;
165 EXPORT_SYMBOL_GPL(kvm_queue_exception);
167 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
170 ++vcpu->stat.pf_guest;
171 if (vcpu->arch.exception.pending) {
172 if (vcpu->arch.exception.nr == PF_VECTOR) {
173 printk(KERN_DEBUG "kvm: inject_page_fault:"
174 " double fault 0x%lx\n", addr);
175 vcpu->arch.exception.nr = DF_VECTOR;
176 vcpu->arch.exception.error_code = 0;
177 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
178 /* triple fault -> shutdown */
179 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
183 vcpu->arch.cr2 = addr;
184 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
187 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
189 vcpu->arch.nmi_pending = 1;
191 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
193 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
195 WARN_ON(vcpu->arch.exception.pending);
196 vcpu->arch.exception.pending = true;
197 vcpu->arch.exception.has_error_code = true;
198 vcpu->arch.exception.nr = nr;
199 vcpu->arch.exception.error_code = error_code;
201 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
203 static void __queue_exception(struct kvm_vcpu *vcpu)
205 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
206 vcpu->arch.exception.has_error_code,
207 vcpu->arch.exception.error_code);
211 * Load the pae pdptrs. Return true is they are all valid.
213 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
215 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
216 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
219 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
221 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
222 offset * sizeof(u64), sizeof(pdpte));
227 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
228 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
235 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
240 EXPORT_SYMBOL_GPL(load_pdptrs);
242 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
244 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
248 if (is_long_mode(vcpu) || !is_pae(vcpu))
251 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
254 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
260 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
262 if (cr0 & CR0_RESERVED_BITS) {
263 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
264 cr0, vcpu->arch.cr0);
265 kvm_inject_gp(vcpu, 0);
269 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
270 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
271 kvm_inject_gp(vcpu, 0);
275 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
276 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
277 "and a clear PE flag\n");
278 kvm_inject_gp(vcpu, 0);
282 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
284 if ((vcpu->arch.shadow_efer & EFER_LME)) {
288 printk(KERN_DEBUG "set_cr0: #GP, start paging "
289 "in long mode while PAE is disabled\n");
290 kvm_inject_gp(vcpu, 0);
293 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
295 printk(KERN_DEBUG "set_cr0: #GP, start paging "
296 "in long mode while CS.L == 1\n");
297 kvm_inject_gp(vcpu, 0);
303 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
304 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
306 kvm_inject_gp(vcpu, 0);
312 kvm_x86_ops->set_cr0(vcpu, cr0);
313 vcpu->arch.cr0 = cr0;
315 kvm_mmu_reset_context(vcpu);
318 EXPORT_SYMBOL_GPL(kvm_set_cr0);
320 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
322 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
323 KVMTRACE_1D(LMSW, vcpu,
324 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
327 EXPORT_SYMBOL_GPL(kvm_lmsw);
329 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
331 if (cr4 & CR4_RESERVED_BITS) {
332 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
333 kvm_inject_gp(vcpu, 0);
337 if (is_long_mode(vcpu)) {
338 if (!(cr4 & X86_CR4_PAE)) {
339 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
341 kvm_inject_gp(vcpu, 0);
344 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
345 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
346 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
347 kvm_inject_gp(vcpu, 0);
351 if (cr4 & X86_CR4_VMXE) {
352 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
353 kvm_inject_gp(vcpu, 0);
356 kvm_x86_ops->set_cr4(vcpu, cr4);
357 vcpu->arch.cr4 = cr4;
358 kvm_mmu_reset_context(vcpu);
360 EXPORT_SYMBOL_GPL(kvm_set_cr4);
362 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
364 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
365 kvm_mmu_sync_roots(vcpu);
366 kvm_mmu_flush_tlb(vcpu);
370 if (is_long_mode(vcpu)) {
371 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
372 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
373 kvm_inject_gp(vcpu, 0);
378 if (cr3 & CR3_PAE_RESERVED_BITS) {
380 "set_cr3: #GP, reserved bits\n");
381 kvm_inject_gp(vcpu, 0);
384 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
385 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
387 kvm_inject_gp(vcpu, 0);
392 * We don't check reserved bits in nonpae mode, because
393 * this isn't enforced, and VMware depends on this.
398 * Does the new cr3 value map to physical memory? (Note, we
399 * catch an invalid cr3 even in real-mode, because it would
400 * cause trouble later on when we turn on paging anyway.)
402 * A real CPU would silently accept an invalid cr3 and would
403 * attempt to use it - with largely undefined (and often hard
404 * to debug) behavior on the guest side.
406 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
407 kvm_inject_gp(vcpu, 0);
409 vcpu->arch.cr3 = cr3;
410 vcpu->arch.mmu.new_cr3(vcpu);
413 EXPORT_SYMBOL_GPL(kvm_set_cr3);
415 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
417 if (cr8 & CR8_RESERVED_BITS) {
418 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
419 kvm_inject_gp(vcpu, 0);
422 if (irqchip_in_kernel(vcpu->kvm))
423 kvm_lapic_set_tpr(vcpu, cr8);
425 vcpu->arch.cr8 = cr8;
427 EXPORT_SYMBOL_GPL(kvm_set_cr8);
429 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
431 if (irqchip_in_kernel(vcpu->kvm))
432 return kvm_lapic_get_cr8(vcpu);
434 return vcpu->arch.cr8;
436 EXPORT_SYMBOL_GPL(kvm_get_cr8);
439 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
440 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
442 * This list is modified at module load time to reflect the
443 * capabilities of the host cpu.
445 static u32 msrs_to_save[] = {
446 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
449 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
451 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
452 MSR_IA32_PERF_STATUS,
455 static unsigned num_msrs_to_save;
457 static u32 emulated_msrs[] = {
458 MSR_IA32_MISC_ENABLE,
461 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
463 if (efer & efer_reserved_bits) {
464 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
466 kvm_inject_gp(vcpu, 0);
471 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
472 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
473 kvm_inject_gp(vcpu, 0);
477 kvm_x86_ops->set_efer(vcpu, efer);
480 efer |= vcpu->arch.shadow_efer & EFER_LMA;
482 vcpu->arch.shadow_efer = efer;
485 void kvm_enable_efer_bits(u64 mask)
487 efer_reserved_bits &= ~mask;
489 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
493 * Writes msr value into into the appropriate "register".
494 * Returns 0 on success, non-0 otherwise.
495 * Assumes vcpu_load() was already called.
497 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
499 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
503 * Adapt set_msr() to msr_io()'s calling convention
505 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
507 return kvm_set_msr(vcpu, index, *data);
510 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
513 struct pvclock_wall_clock wc;
514 struct timespec now, sys, boot;
521 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
524 * The guest calculates current wall clock time by adding
525 * system time (updated by kvm_write_guest_time below) to the
526 * wall clock specified here. guest system time equals host
527 * system time for us, thus we must fill in host boot time here.
529 now = current_kernel_time();
531 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
533 wc.sec = boot.tv_sec;
534 wc.nsec = boot.tv_nsec;
535 wc.version = version;
537 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
540 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
543 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
545 uint32_t quotient, remainder;
547 /* Don't try to replace with do_div(), this one calculates
548 * "(dividend << 32) / divisor" */
550 : "=a" (quotient), "=d" (remainder)
551 : "0" (0), "1" (dividend), "r" (divisor) );
555 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
557 uint64_t nsecs = 1000000000LL;
562 tps64 = tsc_khz * 1000LL;
563 while (tps64 > nsecs*2) {
568 tps32 = (uint32_t)tps64;
569 while (tps32 <= (uint32_t)nsecs) {
574 hv_clock->tsc_shift = shift;
575 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
577 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
578 __func__, tsc_khz, hv_clock->tsc_shift,
579 hv_clock->tsc_to_system_mul);
582 static void kvm_write_guest_time(struct kvm_vcpu *v)
586 struct kvm_vcpu_arch *vcpu = &v->arch;
589 if ((!vcpu->time_page))
592 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
593 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
594 vcpu->hv_clock_tsc_khz = tsc_khz;
597 /* Keep irq disabled to prevent changes to the clock */
598 local_irq_save(flags);
599 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
600 &vcpu->hv_clock.tsc_timestamp);
602 local_irq_restore(flags);
604 /* With all the info we got, fill in the values */
606 vcpu->hv_clock.system_time = ts.tv_nsec +
607 (NSEC_PER_SEC * (u64)ts.tv_sec);
609 * The interface expects us to write an even number signaling that the
610 * update is finished. Since the guest won't see the intermediate
611 * state, we just increase by 2 at the end.
613 vcpu->hv_clock.version += 2;
615 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
617 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
618 sizeof(vcpu->hv_clock));
620 kunmap_atomic(shared_kaddr, KM_USER0);
622 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
625 static bool msr_mtrr_valid(unsigned msr)
628 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
629 case MSR_MTRRfix64K_00000:
630 case MSR_MTRRfix16K_80000:
631 case MSR_MTRRfix16K_A0000:
632 case MSR_MTRRfix4K_C0000:
633 case MSR_MTRRfix4K_C8000:
634 case MSR_MTRRfix4K_D0000:
635 case MSR_MTRRfix4K_D8000:
636 case MSR_MTRRfix4K_E0000:
637 case MSR_MTRRfix4K_E8000:
638 case MSR_MTRRfix4K_F0000:
639 case MSR_MTRRfix4K_F8000:
640 case MSR_MTRRdefType:
641 case MSR_IA32_CR_PAT:
649 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
651 if (!msr_mtrr_valid(msr))
654 vcpu->arch.mtrr[msr - 0x200] = data;
658 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
662 set_efer(vcpu, data);
664 case MSR_IA32_MC0_STATUS:
665 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
668 case MSR_IA32_MCG_STATUS:
669 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
672 case MSR_IA32_MCG_CTL:
673 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
676 case MSR_IA32_DEBUGCTLMSR:
678 /* We support the non-activated case already */
680 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
681 /* Values other than LBR and BTF are vendor-specific,
682 thus reserved and should throw a #GP */
685 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
688 case MSR_IA32_UCODE_REV:
689 case MSR_IA32_UCODE_WRITE:
691 case 0x200 ... 0x2ff:
692 return set_msr_mtrr(vcpu, msr, data);
693 case MSR_IA32_APICBASE:
694 kvm_set_apic_base(vcpu, data);
696 case MSR_IA32_MISC_ENABLE:
697 vcpu->arch.ia32_misc_enable_msr = data;
699 case MSR_KVM_WALL_CLOCK:
700 vcpu->kvm->arch.wall_clock = data;
701 kvm_write_wall_clock(vcpu->kvm, data);
703 case MSR_KVM_SYSTEM_TIME: {
704 if (vcpu->arch.time_page) {
705 kvm_release_page_dirty(vcpu->arch.time_page);
706 vcpu->arch.time_page = NULL;
709 vcpu->arch.time = data;
711 /* we verify if the enable bit is set... */
715 /* ...but clean it before doing the actual write */
716 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
718 vcpu->arch.time_page =
719 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
721 if (is_error_page(vcpu->arch.time_page)) {
722 kvm_release_page_clean(vcpu->arch.time_page);
723 vcpu->arch.time_page = NULL;
726 kvm_write_guest_time(vcpu);
730 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
735 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
739 * Reads an msr value (of 'msr_index') into 'pdata'.
740 * Returns 0 on success, non-0 otherwise.
741 * Assumes vcpu_load() was already called.
743 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
745 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
748 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
750 if (!msr_mtrr_valid(msr))
753 *pdata = vcpu->arch.mtrr[msr - 0x200];
757 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
762 case 0xc0010010: /* SYSCFG */
763 case 0xc0010015: /* HWCR */
764 case MSR_IA32_PLATFORM_ID:
765 case MSR_IA32_P5_MC_ADDR:
766 case MSR_IA32_P5_MC_TYPE:
767 case MSR_IA32_MC0_CTL:
768 case MSR_IA32_MCG_STATUS:
769 case MSR_IA32_MCG_CAP:
770 case MSR_IA32_MCG_CTL:
771 case MSR_IA32_MC0_MISC:
772 case MSR_IA32_MC0_MISC+4:
773 case MSR_IA32_MC0_MISC+8:
774 case MSR_IA32_MC0_MISC+12:
775 case MSR_IA32_MC0_MISC+16:
776 case MSR_IA32_MC0_MISC+20:
777 case MSR_IA32_UCODE_REV:
778 case MSR_IA32_EBL_CR_POWERON:
779 case MSR_IA32_DEBUGCTLMSR:
780 case MSR_IA32_LASTBRANCHFROMIP:
781 case MSR_IA32_LASTBRANCHTOIP:
782 case MSR_IA32_LASTINTFROMIP:
783 case MSR_IA32_LASTINTTOIP:
787 data = 0x500 | KVM_NR_VAR_MTRR;
789 case 0x200 ... 0x2ff:
790 return get_msr_mtrr(vcpu, msr, pdata);
791 case 0xcd: /* fsb frequency */
794 case MSR_IA32_APICBASE:
795 data = kvm_get_apic_base(vcpu);
797 case MSR_IA32_MISC_ENABLE:
798 data = vcpu->arch.ia32_misc_enable_msr;
800 case MSR_IA32_PERF_STATUS:
801 /* TSC increment by tick */
804 data |= (((uint64_t)4ULL) << 40);
807 data = vcpu->arch.shadow_efer;
809 case MSR_KVM_WALL_CLOCK:
810 data = vcpu->kvm->arch.wall_clock;
812 case MSR_KVM_SYSTEM_TIME:
813 data = vcpu->arch.time;
816 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
822 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
825 * Read or write a bunch of msrs. All parameters are kernel addresses.
827 * @return number of msrs set successfully.
829 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
830 struct kvm_msr_entry *entries,
831 int (*do_msr)(struct kvm_vcpu *vcpu,
832 unsigned index, u64 *data))
838 down_read(&vcpu->kvm->slots_lock);
839 for (i = 0; i < msrs->nmsrs; ++i)
840 if (do_msr(vcpu, entries[i].index, &entries[i].data))
842 up_read(&vcpu->kvm->slots_lock);
850 * Read or write a bunch of msrs. Parameters are user addresses.
852 * @return number of msrs set successfully.
854 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
855 int (*do_msr)(struct kvm_vcpu *vcpu,
856 unsigned index, u64 *data),
859 struct kvm_msrs msrs;
860 struct kvm_msr_entry *entries;
865 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
869 if (msrs.nmsrs >= MAX_IO_MSRS)
873 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
874 entries = vmalloc(size);
879 if (copy_from_user(entries, user_msrs->entries, size))
882 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
887 if (writeback && copy_to_user(user_msrs->entries, entries, size))
898 int kvm_dev_ioctl_check_extension(long ext)
903 case KVM_CAP_IRQCHIP:
905 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
906 case KVM_CAP_USER_MEMORY:
907 case KVM_CAP_SET_TSS_ADDR:
908 case KVM_CAP_EXT_CPUID:
909 case KVM_CAP_CLOCKSOURCE:
911 case KVM_CAP_NOP_IO_DELAY:
912 case KVM_CAP_MP_STATE:
913 case KVM_CAP_SYNC_MMU:
916 case KVM_CAP_COALESCED_MMIO:
917 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
920 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
922 case KVM_CAP_NR_VCPUS:
925 case KVM_CAP_NR_MEMSLOTS:
926 r = KVM_MEMORY_SLOTS;
932 r = intel_iommu_found();
942 long kvm_arch_dev_ioctl(struct file *filp,
943 unsigned int ioctl, unsigned long arg)
945 void __user *argp = (void __user *)arg;
949 case KVM_GET_MSR_INDEX_LIST: {
950 struct kvm_msr_list __user *user_msr_list = argp;
951 struct kvm_msr_list msr_list;
955 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
958 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
959 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
962 if (n < num_msrs_to_save)
965 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
966 num_msrs_to_save * sizeof(u32)))
968 if (copy_to_user(user_msr_list->indices
969 + num_msrs_to_save * sizeof(u32),
971 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
976 case KVM_GET_SUPPORTED_CPUID: {
977 struct kvm_cpuid2 __user *cpuid_arg = argp;
978 struct kvm_cpuid2 cpuid;
981 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
983 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
989 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1001 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1003 kvm_x86_ops->vcpu_load(vcpu, cpu);
1004 kvm_write_guest_time(vcpu);
1007 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1009 kvm_x86_ops->vcpu_put(vcpu);
1010 kvm_put_guest_fpu(vcpu);
1013 static int is_efer_nx(void)
1017 rdmsrl(MSR_EFER, efer);
1018 return efer & EFER_NX;
1021 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1024 struct kvm_cpuid_entry2 *e, *entry;
1027 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1028 e = &vcpu->arch.cpuid_entries[i];
1029 if (e->function == 0x80000001) {
1034 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1035 entry->edx &= ~(1 << 20);
1036 printk(KERN_INFO "kvm: guest NX capability removed\n");
1040 /* when an old userspace process fills a new kernel module */
1041 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1042 struct kvm_cpuid *cpuid,
1043 struct kvm_cpuid_entry __user *entries)
1046 struct kvm_cpuid_entry *cpuid_entries;
1049 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1052 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1056 if (copy_from_user(cpuid_entries, entries,
1057 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1059 for (i = 0; i < cpuid->nent; i++) {
1060 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1061 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1062 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1063 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1064 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1065 vcpu->arch.cpuid_entries[i].index = 0;
1066 vcpu->arch.cpuid_entries[i].flags = 0;
1067 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1068 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1069 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1071 vcpu->arch.cpuid_nent = cpuid->nent;
1072 cpuid_fix_nx_cap(vcpu);
1076 vfree(cpuid_entries);
1081 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1082 struct kvm_cpuid2 *cpuid,
1083 struct kvm_cpuid_entry2 __user *entries)
1088 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1091 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1092 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1094 vcpu->arch.cpuid_nent = cpuid->nent;
1101 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1102 struct kvm_cpuid2 *cpuid,
1103 struct kvm_cpuid_entry2 __user *entries)
1108 if (cpuid->nent < vcpu->arch.cpuid_nent)
1111 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1112 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1117 cpuid->nent = vcpu->arch.cpuid_nent;
1121 static inline u32 bit(int bitno)
1123 return 1 << (bitno & 31);
1126 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1129 entry->function = function;
1130 entry->index = index;
1131 cpuid_count(entry->function, entry->index,
1132 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1136 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1137 u32 index, int *nent, int maxnent)
1139 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1140 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1141 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1142 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1143 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1144 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1145 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1146 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1147 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1148 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1149 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1150 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1151 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1152 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1153 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1154 bit(X86_FEATURE_PGE) |
1155 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1156 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1157 bit(X86_FEATURE_SYSCALL) |
1158 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1159 #ifdef CONFIG_X86_64
1160 bit(X86_FEATURE_LM) |
1162 bit(X86_FEATURE_MMXEXT) |
1163 bit(X86_FEATURE_3DNOWEXT) |
1164 bit(X86_FEATURE_3DNOW);
1165 const u32 kvm_supported_word3_x86_features =
1166 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1167 const u32 kvm_supported_word6_x86_features =
1168 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1170 /* all func 2 cpuid_count() should be called on the same cpu */
1172 do_cpuid_1_ent(entry, function, index);
1177 entry->eax = min(entry->eax, (u32)0xb);
1180 entry->edx &= kvm_supported_word0_x86_features;
1181 entry->ecx &= kvm_supported_word3_x86_features;
1183 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1184 * may return different values. This forces us to get_cpu() before
1185 * issuing the first command, and also to emulate this annoying behavior
1186 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1188 int t, times = entry->eax & 0xff;
1190 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1191 for (t = 1; t < times && *nent < maxnent; ++t) {
1192 do_cpuid_1_ent(&entry[t], function, 0);
1193 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1198 /* function 4 and 0xb have additional index. */
1202 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1203 /* read more entries until cache_type is zero */
1204 for (i = 1; *nent < maxnent; ++i) {
1205 cache_type = entry[i - 1].eax & 0x1f;
1208 do_cpuid_1_ent(&entry[i], function, i);
1210 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1218 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1219 /* read more entries until level_type is zero */
1220 for (i = 1; *nent < maxnent; ++i) {
1221 level_type = entry[i - 1].ecx & 0xff;
1224 do_cpuid_1_ent(&entry[i], function, i);
1226 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1232 entry->eax = min(entry->eax, 0x8000001a);
1235 entry->edx &= kvm_supported_word1_x86_features;
1236 entry->ecx &= kvm_supported_word6_x86_features;
1242 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1243 struct kvm_cpuid_entry2 __user *entries)
1245 struct kvm_cpuid_entry2 *cpuid_entries;
1246 int limit, nent = 0, r = -E2BIG;
1249 if (cpuid->nent < 1)
1252 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1256 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1257 limit = cpuid_entries[0].eax;
1258 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1259 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1260 &nent, cpuid->nent);
1262 if (nent >= cpuid->nent)
1265 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1266 limit = cpuid_entries[nent - 1].eax;
1267 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1268 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1269 &nent, cpuid->nent);
1271 if (copy_to_user(entries, cpuid_entries,
1272 nent * sizeof(struct kvm_cpuid_entry2)))
1278 vfree(cpuid_entries);
1283 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1284 struct kvm_lapic_state *s)
1287 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1293 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1294 struct kvm_lapic_state *s)
1297 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1298 kvm_apic_post_state_restore(vcpu);
1304 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1305 struct kvm_interrupt *irq)
1307 if (irq->irq < 0 || irq->irq >= 256)
1309 if (irqchip_in_kernel(vcpu->kvm))
1313 set_bit(irq->irq, vcpu->arch.irq_pending);
1314 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1321 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1322 struct kvm_tpr_access_ctl *tac)
1326 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1330 long kvm_arch_vcpu_ioctl(struct file *filp,
1331 unsigned int ioctl, unsigned long arg)
1333 struct kvm_vcpu *vcpu = filp->private_data;
1334 void __user *argp = (void __user *)arg;
1336 struct kvm_lapic_state *lapic = NULL;
1339 case KVM_GET_LAPIC: {
1340 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1345 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1349 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1354 case KVM_SET_LAPIC: {
1355 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1360 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1362 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1368 case KVM_INTERRUPT: {
1369 struct kvm_interrupt irq;
1372 if (copy_from_user(&irq, argp, sizeof irq))
1374 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1380 case KVM_SET_CPUID: {
1381 struct kvm_cpuid __user *cpuid_arg = argp;
1382 struct kvm_cpuid cpuid;
1385 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1387 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1392 case KVM_SET_CPUID2: {
1393 struct kvm_cpuid2 __user *cpuid_arg = argp;
1394 struct kvm_cpuid2 cpuid;
1397 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1399 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1400 cpuid_arg->entries);
1405 case KVM_GET_CPUID2: {
1406 struct kvm_cpuid2 __user *cpuid_arg = argp;
1407 struct kvm_cpuid2 cpuid;
1410 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1412 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1413 cpuid_arg->entries);
1417 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1423 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1426 r = msr_io(vcpu, argp, do_set_msr, 0);
1428 case KVM_TPR_ACCESS_REPORTING: {
1429 struct kvm_tpr_access_ctl tac;
1432 if (copy_from_user(&tac, argp, sizeof tac))
1434 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1438 if (copy_to_user(argp, &tac, sizeof tac))
1443 case KVM_SET_VAPIC_ADDR: {
1444 struct kvm_vapic_addr va;
1447 if (!irqchip_in_kernel(vcpu->kvm))
1450 if (copy_from_user(&va, argp, sizeof va))
1453 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1465 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1469 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1471 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1475 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1476 u32 kvm_nr_mmu_pages)
1478 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1481 down_write(&kvm->slots_lock);
1483 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1484 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1486 up_write(&kvm->slots_lock);
1490 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1492 return kvm->arch.n_alloc_mmu_pages;
1495 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1498 struct kvm_mem_alias *alias;
1500 for (i = 0; i < kvm->arch.naliases; ++i) {
1501 alias = &kvm->arch.aliases[i];
1502 if (gfn >= alias->base_gfn
1503 && gfn < alias->base_gfn + alias->npages)
1504 return alias->target_gfn + gfn - alias->base_gfn;
1510 * Set a new alias region. Aliases map a portion of physical memory into
1511 * another portion. This is useful for memory windows, for example the PC
1514 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1515 struct kvm_memory_alias *alias)
1518 struct kvm_mem_alias *p;
1521 /* General sanity checks */
1522 if (alias->memory_size & (PAGE_SIZE - 1))
1524 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1526 if (alias->slot >= KVM_ALIAS_SLOTS)
1528 if (alias->guest_phys_addr + alias->memory_size
1529 < alias->guest_phys_addr)
1531 if (alias->target_phys_addr + alias->memory_size
1532 < alias->target_phys_addr)
1535 down_write(&kvm->slots_lock);
1536 spin_lock(&kvm->mmu_lock);
1538 p = &kvm->arch.aliases[alias->slot];
1539 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1540 p->npages = alias->memory_size >> PAGE_SHIFT;
1541 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1543 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1544 if (kvm->arch.aliases[n - 1].npages)
1546 kvm->arch.naliases = n;
1548 spin_unlock(&kvm->mmu_lock);
1549 kvm_mmu_zap_all(kvm);
1551 up_write(&kvm->slots_lock);
1559 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1564 switch (chip->chip_id) {
1565 case KVM_IRQCHIP_PIC_MASTER:
1566 memcpy(&chip->chip.pic,
1567 &pic_irqchip(kvm)->pics[0],
1568 sizeof(struct kvm_pic_state));
1570 case KVM_IRQCHIP_PIC_SLAVE:
1571 memcpy(&chip->chip.pic,
1572 &pic_irqchip(kvm)->pics[1],
1573 sizeof(struct kvm_pic_state));
1575 case KVM_IRQCHIP_IOAPIC:
1576 memcpy(&chip->chip.ioapic,
1577 ioapic_irqchip(kvm),
1578 sizeof(struct kvm_ioapic_state));
1587 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1592 switch (chip->chip_id) {
1593 case KVM_IRQCHIP_PIC_MASTER:
1594 memcpy(&pic_irqchip(kvm)->pics[0],
1596 sizeof(struct kvm_pic_state));
1598 case KVM_IRQCHIP_PIC_SLAVE:
1599 memcpy(&pic_irqchip(kvm)->pics[1],
1601 sizeof(struct kvm_pic_state));
1603 case KVM_IRQCHIP_IOAPIC:
1604 memcpy(ioapic_irqchip(kvm),
1606 sizeof(struct kvm_ioapic_state));
1612 kvm_pic_update_irq(pic_irqchip(kvm));
1616 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1620 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1624 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1628 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1629 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1634 * Get (and clear) the dirty memory log for a memory slot.
1636 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1637 struct kvm_dirty_log *log)
1641 struct kvm_memory_slot *memslot;
1644 down_write(&kvm->slots_lock);
1646 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1650 /* If nothing is dirty, don't bother messing with page tables. */
1652 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1653 kvm_flush_remote_tlbs(kvm);
1654 memslot = &kvm->memslots[log->slot];
1655 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1656 memset(memslot->dirty_bitmap, 0, n);
1660 up_write(&kvm->slots_lock);
1664 long kvm_arch_vm_ioctl(struct file *filp,
1665 unsigned int ioctl, unsigned long arg)
1667 struct kvm *kvm = filp->private_data;
1668 void __user *argp = (void __user *)arg;
1671 * This union makes it completely explicit to gcc-3.x
1672 * that these two variables' stack usage should be
1673 * combined, not added together.
1676 struct kvm_pit_state ps;
1677 struct kvm_memory_alias alias;
1681 case KVM_SET_TSS_ADDR:
1682 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1686 case KVM_SET_MEMORY_REGION: {
1687 struct kvm_memory_region kvm_mem;
1688 struct kvm_userspace_memory_region kvm_userspace_mem;
1691 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1693 kvm_userspace_mem.slot = kvm_mem.slot;
1694 kvm_userspace_mem.flags = kvm_mem.flags;
1695 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1696 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1697 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1702 case KVM_SET_NR_MMU_PAGES:
1703 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1707 case KVM_GET_NR_MMU_PAGES:
1708 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1710 case KVM_SET_MEMORY_ALIAS:
1712 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1714 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1718 case KVM_CREATE_IRQCHIP:
1720 kvm->arch.vpic = kvm_create_pic(kvm);
1721 if (kvm->arch.vpic) {
1722 r = kvm_ioapic_init(kvm);
1724 kfree(kvm->arch.vpic);
1725 kvm->arch.vpic = NULL;
1731 case KVM_CREATE_PIT:
1733 kvm->arch.vpit = kvm_create_pit(kvm);
1737 case KVM_IRQ_LINE: {
1738 struct kvm_irq_level irq_event;
1741 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1743 if (irqchip_in_kernel(kvm)) {
1744 mutex_lock(&kvm->lock);
1745 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1746 irq_event.irq, irq_event.level);
1747 mutex_unlock(&kvm->lock);
1752 case KVM_GET_IRQCHIP: {
1753 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1754 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1760 if (copy_from_user(chip, argp, sizeof *chip))
1761 goto get_irqchip_out;
1763 if (!irqchip_in_kernel(kvm))
1764 goto get_irqchip_out;
1765 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1767 goto get_irqchip_out;
1769 if (copy_to_user(argp, chip, sizeof *chip))
1770 goto get_irqchip_out;
1778 case KVM_SET_IRQCHIP: {
1779 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1780 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1786 if (copy_from_user(chip, argp, sizeof *chip))
1787 goto set_irqchip_out;
1789 if (!irqchip_in_kernel(kvm))
1790 goto set_irqchip_out;
1791 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1793 goto set_irqchip_out;
1803 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1806 if (!kvm->arch.vpit)
1808 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1812 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1819 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1822 if (!kvm->arch.vpit)
1824 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1837 static void kvm_init_msr_list(void)
1842 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1843 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1846 msrs_to_save[j] = msrs_to_save[i];
1849 num_msrs_to_save = j;
1853 * Only apic need an MMIO device hook, so shortcut now..
1855 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1856 gpa_t addr, int len,
1859 struct kvm_io_device *dev;
1861 if (vcpu->arch.apic) {
1862 dev = &vcpu->arch.apic->dev;
1863 if (dev->in_range(dev, addr, len, is_write))
1870 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1871 gpa_t addr, int len,
1874 struct kvm_io_device *dev;
1876 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1878 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1883 int emulator_read_std(unsigned long addr,
1886 struct kvm_vcpu *vcpu)
1889 int r = X86EMUL_CONTINUE;
1892 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1893 unsigned offset = addr & (PAGE_SIZE-1);
1894 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1897 if (gpa == UNMAPPED_GVA) {
1898 r = X86EMUL_PROPAGATE_FAULT;
1901 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1903 r = X86EMUL_UNHANDLEABLE;
1914 EXPORT_SYMBOL_GPL(emulator_read_std);
1916 static int emulator_read_emulated(unsigned long addr,
1919 struct kvm_vcpu *vcpu)
1921 struct kvm_io_device *mmio_dev;
1924 if (vcpu->mmio_read_completed) {
1925 memcpy(val, vcpu->mmio_data, bytes);
1926 vcpu->mmio_read_completed = 0;
1927 return X86EMUL_CONTINUE;
1930 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1932 /* For APIC access vmexit */
1933 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1936 if (emulator_read_std(addr, val, bytes, vcpu)
1937 == X86EMUL_CONTINUE)
1938 return X86EMUL_CONTINUE;
1939 if (gpa == UNMAPPED_GVA)
1940 return X86EMUL_PROPAGATE_FAULT;
1944 * Is this MMIO handled locally?
1946 mutex_lock(&vcpu->kvm->lock);
1947 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
1949 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1950 mutex_unlock(&vcpu->kvm->lock);
1951 return X86EMUL_CONTINUE;
1953 mutex_unlock(&vcpu->kvm->lock);
1955 vcpu->mmio_needed = 1;
1956 vcpu->mmio_phys_addr = gpa;
1957 vcpu->mmio_size = bytes;
1958 vcpu->mmio_is_write = 0;
1960 return X86EMUL_UNHANDLEABLE;
1963 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1964 const void *val, int bytes)
1968 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1971 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1975 static int emulator_write_emulated_onepage(unsigned long addr,
1978 struct kvm_vcpu *vcpu)
1980 struct kvm_io_device *mmio_dev;
1983 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1985 if (gpa == UNMAPPED_GVA) {
1986 kvm_inject_page_fault(vcpu, addr, 2);
1987 return X86EMUL_PROPAGATE_FAULT;
1990 /* For APIC access vmexit */
1991 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
1994 if (emulator_write_phys(vcpu, gpa, val, bytes))
1995 return X86EMUL_CONTINUE;
1999 * Is this MMIO handled locally?
2001 mutex_lock(&vcpu->kvm->lock);
2002 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2004 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2005 mutex_unlock(&vcpu->kvm->lock);
2006 return X86EMUL_CONTINUE;
2008 mutex_unlock(&vcpu->kvm->lock);
2010 vcpu->mmio_needed = 1;
2011 vcpu->mmio_phys_addr = gpa;
2012 vcpu->mmio_size = bytes;
2013 vcpu->mmio_is_write = 1;
2014 memcpy(vcpu->mmio_data, val, bytes);
2016 return X86EMUL_CONTINUE;
2019 int emulator_write_emulated(unsigned long addr,
2022 struct kvm_vcpu *vcpu)
2024 /* Crossing a page boundary? */
2025 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2028 now = -addr & ~PAGE_MASK;
2029 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2030 if (rc != X86EMUL_CONTINUE)
2036 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2038 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2040 static int emulator_cmpxchg_emulated(unsigned long addr,
2044 struct kvm_vcpu *vcpu)
2046 static int reported;
2050 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2052 #ifndef CONFIG_X86_64
2053 /* guests cmpxchg8b have to be emulated atomically */
2060 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2062 if (gpa == UNMAPPED_GVA ||
2063 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2066 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2071 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2073 kaddr = kmap_atomic(page, KM_USER0);
2074 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2075 kunmap_atomic(kaddr, KM_USER0);
2076 kvm_release_page_dirty(page);
2081 return emulator_write_emulated(addr, new, bytes, vcpu);
2084 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2086 return kvm_x86_ops->get_segment_base(vcpu, seg);
2089 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2091 kvm_mmu_invlpg(vcpu, address);
2092 return X86EMUL_CONTINUE;
2095 int emulate_clts(struct kvm_vcpu *vcpu)
2097 KVMTRACE_0D(CLTS, vcpu, handler);
2098 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2099 return X86EMUL_CONTINUE;
2102 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2104 struct kvm_vcpu *vcpu = ctxt->vcpu;
2108 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2109 return X86EMUL_CONTINUE;
2111 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2112 return X86EMUL_UNHANDLEABLE;
2116 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2118 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2121 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2123 /* FIXME: better handling */
2124 return X86EMUL_UNHANDLEABLE;
2126 return X86EMUL_CONTINUE;
2129 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2132 unsigned long rip = kvm_rip_read(vcpu);
2133 unsigned long rip_linear;
2135 if (!printk_ratelimit())
2138 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2140 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2142 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2143 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2145 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2147 static struct x86_emulate_ops emulate_ops = {
2148 .read_std = emulator_read_std,
2149 .read_emulated = emulator_read_emulated,
2150 .write_emulated = emulator_write_emulated,
2151 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2154 static void cache_all_regs(struct kvm_vcpu *vcpu)
2156 kvm_register_read(vcpu, VCPU_REGS_RAX);
2157 kvm_register_read(vcpu, VCPU_REGS_RSP);
2158 kvm_register_read(vcpu, VCPU_REGS_RIP);
2159 vcpu->arch.regs_dirty = ~0;
2162 int emulate_instruction(struct kvm_vcpu *vcpu,
2163 struct kvm_run *run,
2169 struct decode_cache *c;
2171 kvm_clear_exception_queue(vcpu);
2172 vcpu->arch.mmio_fault_cr2 = cr2;
2174 * TODO: fix x86_emulate.c to use guest_read/write_register
2175 * instead of direct ->regs accesses, can save hundred cycles
2176 * on Intel for instructions that don't read/change RSP, for
2179 cache_all_regs(vcpu);
2181 vcpu->mmio_is_write = 0;
2182 vcpu->arch.pio.string = 0;
2184 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2186 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2188 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2189 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2190 vcpu->arch.emulate_ctxt.mode =
2191 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2192 ? X86EMUL_MODE_REAL : cs_l
2193 ? X86EMUL_MODE_PROT64 : cs_db
2194 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2196 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2198 /* Reject the instructions other than VMCALL/VMMCALL when
2199 * try to emulate invalid opcode */
2200 c = &vcpu->arch.emulate_ctxt.decode;
2201 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2202 (!(c->twobyte && c->b == 0x01 &&
2203 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2204 c->modrm_mod == 3 && c->modrm_rm == 1)))
2205 return EMULATE_FAIL;
2207 ++vcpu->stat.insn_emulation;
2209 ++vcpu->stat.insn_emulation_fail;
2210 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2211 return EMULATE_DONE;
2212 return EMULATE_FAIL;
2216 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2218 if (vcpu->arch.pio.string)
2219 return EMULATE_DO_MMIO;
2221 if ((r || vcpu->mmio_is_write) && run) {
2222 run->exit_reason = KVM_EXIT_MMIO;
2223 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2224 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2225 run->mmio.len = vcpu->mmio_size;
2226 run->mmio.is_write = vcpu->mmio_is_write;
2230 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2231 return EMULATE_DONE;
2232 if (!vcpu->mmio_needed) {
2233 kvm_report_emulation_failure(vcpu, "mmio");
2234 return EMULATE_FAIL;
2236 return EMULATE_DO_MMIO;
2239 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2241 if (vcpu->mmio_is_write) {
2242 vcpu->mmio_needed = 0;
2243 return EMULATE_DO_MMIO;
2246 return EMULATE_DONE;
2248 EXPORT_SYMBOL_GPL(emulate_instruction);
2250 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2254 for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2255 if (vcpu->arch.pio.guest_pages[i]) {
2256 kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2257 vcpu->arch.pio.guest_pages[i] = NULL;
2261 static int pio_copy_data(struct kvm_vcpu *vcpu)
2263 void *p = vcpu->arch.pio_data;
2266 int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2268 q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2271 free_pio_guest_pages(vcpu);
2274 q += vcpu->arch.pio.guest_page_offset;
2275 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2276 if (vcpu->arch.pio.in)
2277 memcpy(q, p, bytes);
2279 memcpy(p, q, bytes);
2280 q -= vcpu->arch.pio.guest_page_offset;
2282 free_pio_guest_pages(vcpu);
2286 int complete_pio(struct kvm_vcpu *vcpu)
2288 struct kvm_pio_request *io = &vcpu->arch.pio;
2295 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2296 memcpy(&val, vcpu->arch.pio_data, io->size);
2297 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2301 r = pio_copy_data(vcpu);
2308 delta *= io->cur_count;
2310 * The size of the register should really depend on
2311 * current address size.
2313 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2315 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2321 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2323 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2325 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2327 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2331 io->count -= io->cur_count;
2337 static void kernel_pio(struct kvm_io_device *pio_dev,
2338 struct kvm_vcpu *vcpu,
2341 /* TODO: String I/O for in kernel device */
2343 mutex_lock(&vcpu->kvm->lock);
2344 if (vcpu->arch.pio.in)
2345 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2346 vcpu->arch.pio.size,
2349 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2350 vcpu->arch.pio.size,
2352 mutex_unlock(&vcpu->kvm->lock);
2355 static void pio_string_write(struct kvm_io_device *pio_dev,
2356 struct kvm_vcpu *vcpu)
2358 struct kvm_pio_request *io = &vcpu->arch.pio;
2359 void *pd = vcpu->arch.pio_data;
2362 mutex_lock(&vcpu->kvm->lock);
2363 for (i = 0; i < io->cur_count; i++) {
2364 kvm_iodevice_write(pio_dev, io->port,
2369 mutex_unlock(&vcpu->kvm->lock);
2372 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2373 gpa_t addr, int len,
2376 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2379 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2380 int size, unsigned port)
2382 struct kvm_io_device *pio_dev;
2385 vcpu->run->exit_reason = KVM_EXIT_IO;
2386 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2387 vcpu->run->io.size = vcpu->arch.pio.size = size;
2388 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2389 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2390 vcpu->run->io.port = vcpu->arch.pio.port = port;
2391 vcpu->arch.pio.in = in;
2392 vcpu->arch.pio.string = 0;
2393 vcpu->arch.pio.down = 0;
2394 vcpu->arch.pio.guest_page_offset = 0;
2395 vcpu->arch.pio.rep = 0;
2397 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2398 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2401 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2404 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2405 memcpy(vcpu->arch.pio_data, &val, 4);
2407 kvm_x86_ops->skip_emulated_instruction(vcpu);
2409 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2411 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2417 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2419 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2420 int size, unsigned long count, int down,
2421 gva_t address, int rep, unsigned port)
2423 unsigned now, in_page;
2427 struct kvm_io_device *pio_dev;
2429 vcpu->run->exit_reason = KVM_EXIT_IO;
2430 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2431 vcpu->run->io.size = vcpu->arch.pio.size = size;
2432 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2433 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2434 vcpu->run->io.port = vcpu->arch.pio.port = port;
2435 vcpu->arch.pio.in = in;
2436 vcpu->arch.pio.string = 1;
2437 vcpu->arch.pio.down = down;
2438 vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2439 vcpu->arch.pio.rep = rep;
2441 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2442 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2445 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2449 kvm_x86_ops->skip_emulated_instruction(vcpu);
2454 in_page = PAGE_SIZE - offset_in_page(address);
2456 in_page = offset_in_page(address) + size;
2457 now = min(count, (unsigned long)in_page / size);
2460 * String I/O straddles page boundary. Pin two guest pages
2461 * so that we satisfy atomicity constraints. Do just one
2462 * transaction to avoid complexity.
2469 * String I/O in reverse. Yuck. Kill the guest, fix later.
2471 pr_unimpl(vcpu, "guest string pio down\n");
2472 kvm_inject_gp(vcpu, 0);
2475 vcpu->run->io.count = now;
2476 vcpu->arch.pio.cur_count = now;
2478 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2479 kvm_x86_ops->skip_emulated_instruction(vcpu);
2481 for (i = 0; i < nr_pages; ++i) {
2482 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2483 vcpu->arch.pio.guest_pages[i] = page;
2485 kvm_inject_gp(vcpu, 0);
2486 free_pio_guest_pages(vcpu);
2491 pio_dev = vcpu_find_pio_dev(vcpu, port,
2492 vcpu->arch.pio.cur_count,
2493 !vcpu->arch.pio.in);
2494 if (!vcpu->arch.pio.in) {
2495 /* string PIO write */
2496 ret = pio_copy_data(vcpu);
2497 if (ret >= 0 && pio_dev) {
2498 pio_string_write(pio_dev, vcpu);
2500 if (vcpu->arch.pio.count == 0)
2504 pr_unimpl(vcpu, "no string pio read support yet, "
2505 "port %x size %d count %ld\n",
2510 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2512 int kvm_arch_init(void *opaque)
2515 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2518 printk(KERN_ERR "kvm: already loaded the other module\n");
2523 if (!ops->cpu_has_kvm_support()) {
2524 printk(KERN_ERR "kvm: no hardware support\n");
2528 if (ops->disabled_by_bios()) {
2529 printk(KERN_ERR "kvm: disabled by bios\n");
2534 r = kvm_mmu_module_init();
2538 kvm_init_msr_list();
2541 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2542 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2543 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2544 PT_DIRTY_MASK, PT64_NX_MASK, 0);
2551 void kvm_arch_exit(void)
2554 kvm_mmu_module_exit();
2557 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2559 ++vcpu->stat.halt_exits;
2560 KVMTRACE_0D(HLT, vcpu, handler);
2561 if (irqchip_in_kernel(vcpu->kvm)) {
2562 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2565 vcpu->run->exit_reason = KVM_EXIT_HLT;
2569 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2571 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2574 if (is_long_mode(vcpu))
2577 return a0 | ((gpa_t)a1 << 32);
2580 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2582 unsigned long nr, a0, a1, a2, a3, ret;
2585 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2586 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2587 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2588 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2589 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2591 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2593 if (!is_long_mode(vcpu)) {
2602 case KVM_HC_VAPIC_POLL_IRQ:
2606 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2612 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2613 ++vcpu->stat.hypercalls;
2616 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2618 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2620 char instruction[3];
2622 unsigned long rip = kvm_rip_read(vcpu);
2626 * Blow out the MMU to ensure that no other VCPU has an active mapping
2627 * to ensure that the updated hypercall appears atomically across all
2630 kvm_mmu_zap_all(vcpu->kvm);
2632 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2633 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2634 != X86EMUL_CONTINUE)
2640 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2642 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2645 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2647 struct descriptor_table dt = { limit, base };
2649 kvm_x86_ops->set_gdt(vcpu, &dt);
2652 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2654 struct descriptor_table dt = { limit, base };
2656 kvm_x86_ops->set_idt(vcpu, &dt);
2659 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2660 unsigned long *rflags)
2662 kvm_lmsw(vcpu, msw);
2663 *rflags = kvm_x86_ops->get_rflags(vcpu);
2666 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2668 unsigned long value;
2670 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2673 value = vcpu->arch.cr0;
2676 value = vcpu->arch.cr2;
2679 value = vcpu->arch.cr3;
2682 value = vcpu->arch.cr4;
2685 value = kvm_get_cr8(vcpu);
2688 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2691 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2692 (u32)((u64)value >> 32), handler);
2697 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2698 unsigned long *rflags)
2700 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2701 (u32)((u64)val >> 32), handler);
2705 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2706 *rflags = kvm_x86_ops->get_rflags(vcpu);
2709 vcpu->arch.cr2 = val;
2712 kvm_set_cr3(vcpu, val);
2715 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2718 kvm_set_cr8(vcpu, val & 0xfUL);
2721 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2725 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2727 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2728 int j, nent = vcpu->arch.cpuid_nent;
2730 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2731 /* when no next entry is found, the current entry[i] is reselected */
2732 for (j = i + 1; j == i; j = (j + 1) % nent) {
2733 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2734 if (ej->function == e->function) {
2735 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2739 return 0; /* silence gcc, even though control never reaches here */
2742 /* find an entry with matching function, matching index (if needed), and that
2743 * should be read next (if it's stateful) */
2744 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2745 u32 function, u32 index)
2747 if (e->function != function)
2749 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2751 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2752 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2757 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2760 u32 function, index;
2761 struct kvm_cpuid_entry2 *e, *best;
2763 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2764 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2765 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2766 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2767 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2768 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2770 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2771 e = &vcpu->arch.cpuid_entries[i];
2772 if (is_matching_cpuid_entry(e, function, index)) {
2773 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2774 move_to_next_stateful_cpuid_entry(vcpu, i);
2779 * Both basic or both extended?
2781 if (((e->function ^ function) & 0x80000000) == 0)
2782 if (!best || e->function > best->function)
2786 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2787 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2788 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2789 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2791 kvm_x86_ops->skip_emulated_instruction(vcpu);
2792 KVMTRACE_5D(CPUID, vcpu, function,
2793 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2794 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2795 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2796 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2798 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2801 * Check if userspace requested an interrupt window, and that the
2802 * interrupt window is open.
2804 * No need to exit to userspace if we already have an interrupt queued.
2806 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2807 struct kvm_run *kvm_run)
2809 return (!vcpu->arch.irq_summary &&
2810 kvm_run->request_interrupt_window &&
2811 vcpu->arch.interrupt_window_open &&
2812 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2815 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2816 struct kvm_run *kvm_run)
2818 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2819 kvm_run->cr8 = kvm_get_cr8(vcpu);
2820 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2821 if (irqchip_in_kernel(vcpu->kvm))
2822 kvm_run->ready_for_interrupt_injection = 1;
2824 kvm_run->ready_for_interrupt_injection =
2825 (vcpu->arch.interrupt_window_open &&
2826 vcpu->arch.irq_summary == 0);
2829 static void vapic_enter(struct kvm_vcpu *vcpu)
2831 struct kvm_lapic *apic = vcpu->arch.apic;
2834 if (!apic || !apic->vapic_addr)
2837 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2839 vcpu->arch.apic->vapic_page = page;
2842 static void vapic_exit(struct kvm_vcpu *vcpu)
2844 struct kvm_lapic *apic = vcpu->arch.apic;
2846 if (!apic || !apic->vapic_addr)
2849 down_read(&vcpu->kvm->slots_lock);
2850 kvm_release_page_dirty(apic->vapic_page);
2851 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2852 up_read(&vcpu->kvm->slots_lock);
2855 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2860 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2861 kvm_mmu_unload(vcpu);
2863 r = kvm_mmu_reload(vcpu);
2867 if (vcpu->requests) {
2868 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2869 __kvm_migrate_timers(vcpu);
2870 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2871 kvm_mmu_sync_roots(vcpu);
2872 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2873 kvm_x86_ops->tlb_flush(vcpu);
2874 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2876 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2880 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2881 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2887 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2888 kvm_inject_pending_timer_irqs(vcpu);
2892 kvm_x86_ops->prepare_guest_switch(vcpu);
2893 kvm_load_guest_fpu(vcpu);
2895 local_irq_disable();
2897 if (vcpu->requests || need_resched() || signal_pending(current)) {
2904 if (vcpu->guest_debug.enabled)
2905 kvm_x86_ops->guest_debug_pre(vcpu);
2907 vcpu->guest_mode = 1;
2909 * Make sure that guest_mode assignment won't happen after
2910 * testing the pending IRQ vector bitmap.
2914 if (vcpu->arch.exception.pending)
2915 __queue_exception(vcpu);
2916 else if (irqchip_in_kernel(vcpu->kvm))
2917 kvm_x86_ops->inject_pending_irq(vcpu);
2919 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2921 kvm_lapic_sync_to_vapic(vcpu);
2923 up_read(&vcpu->kvm->slots_lock);
2928 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
2929 kvm_x86_ops->run(vcpu, kvm_run);
2931 vcpu->guest_mode = 0;
2937 * We must have an instruction between local_irq_enable() and
2938 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2939 * the interrupt shadow. The stat.exits increment will do nicely.
2940 * But we need to prevent reordering, hence this barrier():
2948 down_read(&vcpu->kvm->slots_lock);
2951 * Profile KVM exit RIPs:
2953 if (unlikely(prof_on == KVM_PROFILING)) {
2954 unsigned long rip = kvm_rip_read(vcpu);
2955 profile_hit(KVM_PROFILING, (void *)rip);
2958 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
2959 vcpu->arch.exception.pending = false;
2961 kvm_lapic_sync_from_vapic(vcpu);
2963 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2968 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2972 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
2973 pr_debug("vcpu %d received sipi with vector # %x\n",
2974 vcpu->vcpu_id, vcpu->arch.sipi_vector);
2975 kvm_lapic_reset(vcpu);
2976 r = kvm_x86_ops->vcpu_reset(vcpu);
2979 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2982 down_read(&vcpu->kvm->slots_lock);
2987 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
2988 r = vcpu_enter_guest(vcpu, kvm_run);
2990 up_read(&vcpu->kvm->slots_lock);
2991 kvm_vcpu_block(vcpu);
2992 down_read(&vcpu->kvm->slots_lock);
2993 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
2994 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
2995 vcpu->arch.mp_state =
2996 KVM_MP_STATE_RUNNABLE;
2997 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3002 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3004 kvm_run->exit_reason = KVM_EXIT_INTR;
3005 ++vcpu->stat.request_irq_exits;
3007 if (signal_pending(current)) {
3009 kvm_run->exit_reason = KVM_EXIT_INTR;
3010 ++vcpu->stat.signal_exits;
3012 if (need_resched()) {
3013 up_read(&vcpu->kvm->slots_lock);
3015 down_read(&vcpu->kvm->slots_lock);
3020 up_read(&vcpu->kvm->slots_lock);
3021 post_kvm_run_save(vcpu, kvm_run);
3028 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3035 if (vcpu->sigset_active)
3036 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3038 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3039 kvm_vcpu_block(vcpu);
3040 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3045 /* re-sync apic's tpr */
3046 if (!irqchip_in_kernel(vcpu->kvm))
3047 kvm_set_cr8(vcpu, kvm_run->cr8);
3049 if (vcpu->arch.pio.cur_count) {
3050 r = complete_pio(vcpu);
3054 #if CONFIG_HAS_IOMEM
3055 if (vcpu->mmio_needed) {
3056 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3057 vcpu->mmio_read_completed = 1;
3058 vcpu->mmio_needed = 0;
3060 down_read(&vcpu->kvm->slots_lock);
3061 r = emulate_instruction(vcpu, kvm_run,
3062 vcpu->arch.mmio_fault_cr2, 0,
3063 EMULTYPE_NO_DECODE);
3064 up_read(&vcpu->kvm->slots_lock);
3065 if (r == EMULATE_DO_MMIO) {
3067 * Read-modify-write. Back to userspace.
3074 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3075 kvm_register_write(vcpu, VCPU_REGS_RAX,
3076 kvm_run->hypercall.ret);
3078 r = __vcpu_run(vcpu, kvm_run);
3081 if (vcpu->sigset_active)
3082 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3088 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3092 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3093 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3094 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3095 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3096 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3097 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3098 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3099 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3100 #ifdef CONFIG_X86_64
3101 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3102 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3103 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3104 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3105 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3106 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3107 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3108 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3111 regs->rip = kvm_rip_read(vcpu);
3112 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3115 * Don't leak debug flags in case they were set for guest debugging
3117 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3118 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3125 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3129 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3130 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3131 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3132 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3133 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3134 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3135 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3136 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3137 #ifdef CONFIG_X86_64
3138 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3139 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3140 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3141 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3142 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3143 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3144 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3145 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3149 kvm_rip_write(vcpu, regs->rip);
3150 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3153 vcpu->arch.exception.pending = false;
3160 void kvm_get_segment(struct kvm_vcpu *vcpu,
3161 struct kvm_segment *var, int seg)
3163 kvm_x86_ops->get_segment(vcpu, var, seg);
3166 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3168 struct kvm_segment cs;
3170 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3174 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3176 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3177 struct kvm_sregs *sregs)
3179 struct descriptor_table dt;
3184 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3185 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3186 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3187 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3188 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3189 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3191 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3192 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3194 kvm_x86_ops->get_idt(vcpu, &dt);
3195 sregs->idt.limit = dt.limit;
3196 sregs->idt.base = dt.base;
3197 kvm_x86_ops->get_gdt(vcpu, &dt);
3198 sregs->gdt.limit = dt.limit;
3199 sregs->gdt.base = dt.base;
3201 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3202 sregs->cr0 = vcpu->arch.cr0;
3203 sregs->cr2 = vcpu->arch.cr2;
3204 sregs->cr3 = vcpu->arch.cr3;
3205 sregs->cr4 = vcpu->arch.cr4;
3206 sregs->cr8 = kvm_get_cr8(vcpu);
3207 sregs->efer = vcpu->arch.shadow_efer;
3208 sregs->apic_base = kvm_get_apic_base(vcpu);
3210 if (irqchip_in_kernel(vcpu->kvm)) {
3211 memset(sregs->interrupt_bitmap, 0,
3212 sizeof sregs->interrupt_bitmap);
3213 pending_vec = kvm_x86_ops->get_irq(vcpu);
3214 if (pending_vec >= 0)
3215 set_bit(pending_vec,
3216 (unsigned long *)sregs->interrupt_bitmap);
3218 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3219 sizeof sregs->interrupt_bitmap);
3226 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3227 struct kvm_mp_state *mp_state)
3230 mp_state->mp_state = vcpu->arch.mp_state;
3235 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3236 struct kvm_mp_state *mp_state)
3239 vcpu->arch.mp_state = mp_state->mp_state;
3244 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3245 struct kvm_segment *var, int seg)
3247 kvm_x86_ops->set_segment(vcpu, var, seg);
3250 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3251 struct kvm_segment *kvm_desct)
3253 kvm_desct->base = seg_desc->base0;
3254 kvm_desct->base |= seg_desc->base1 << 16;
3255 kvm_desct->base |= seg_desc->base2 << 24;
3256 kvm_desct->limit = seg_desc->limit0;
3257 kvm_desct->limit |= seg_desc->limit << 16;
3259 kvm_desct->limit <<= 12;
3260 kvm_desct->limit |= 0xfff;
3262 kvm_desct->selector = selector;
3263 kvm_desct->type = seg_desc->type;
3264 kvm_desct->present = seg_desc->p;
3265 kvm_desct->dpl = seg_desc->dpl;
3266 kvm_desct->db = seg_desc->d;
3267 kvm_desct->s = seg_desc->s;
3268 kvm_desct->l = seg_desc->l;
3269 kvm_desct->g = seg_desc->g;
3270 kvm_desct->avl = seg_desc->avl;
3272 kvm_desct->unusable = 1;
3274 kvm_desct->unusable = 0;
3275 kvm_desct->padding = 0;
3278 static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
3280 struct descriptor_table *dtable)
3282 if (selector & 1 << 2) {
3283 struct kvm_segment kvm_seg;
3285 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3287 if (kvm_seg.unusable)
3290 dtable->limit = kvm_seg.limit;
3291 dtable->base = kvm_seg.base;
3294 kvm_x86_ops->get_gdt(vcpu, dtable);
3297 /* allowed just for 8 bytes segments */
3298 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3299 struct desc_struct *seg_desc)
3302 struct descriptor_table dtable;
3303 u16 index = selector >> 3;
3305 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3307 if (dtable.limit < index * 8 + 7) {
3308 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3311 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3313 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3316 /* allowed just for 8 bytes segments */
3317 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3318 struct desc_struct *seg_desc)
3321 struct descriptor_table dtable;
3322 u16 index = selector >> 3;
3324 get_segment_descritptor_dtable(vcpu, selector, &dtable);
3326 if (dtable.limit < index * 8 + 7)
3328 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3330 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3333 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3334 struct desc_struct *seg_desc)
3338 base_addr = seg_desc->base0;
3339 base_addr |= (seg_desc->base1 << 16);
3340 base_addr |= (seg_desc->base2 << 24);
3342 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3345 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3347 struct kvm_segment kvm_seg;
3349 kvm_get_segment(vcpu, &kvm_seg, seg);
3350 return kvm_seg.selector;
3353 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3355 struct kvm_segment *kvm_seg)
3357 struct desc_struct seg_desc;
3359 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3361 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3365 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3367 struct kvm_segment segvar = {
3368 .base = selector << 4,
3370 .selector = selector,
3381 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3385 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3386 int type_bits, int seg)
3388 struct kvm_segment kvm_seg;
3390 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3391 return kvm_load_realmode_segment(vcpu, selector, seg);
3392 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3394 kvm_seg.type |= type_bits;
3396 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3397 seg != VCPU_SREG_LDTR)
3399 kvm_seg.unusable = 1;
3401 kvm_set_segment(vcpu, &kvm_seg, seg);
3405 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3406 struct tss_segment_32 *tss)
3408 tss->cr3 = vcpu->arch.cr3;
3409 tss->eip = kvm_rip_read(vcpu);
3410 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3411 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3412 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3413 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3414 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3415 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3416 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3417 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3418 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3419 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3420 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3421 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3422 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3423 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3424 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3425 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3426 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3429 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3430 struct tss_segment_32 *tss)
3432 kvm_set_cr3(vcpu, tss->cr3);
3434 kvm_rip_write(vcpu, tss->eip);
3435 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3437 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3438 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3439 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3440 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3441 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3442 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3443 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3444 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3446 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3449 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3452 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3455 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3458 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3461 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3464 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3469 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3470 struct tss_segment_16 *tss)
3472 tss->ip = kvm_rip_read(vcpu);
3473 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3474 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3475 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3476 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3477 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3478 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3479 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3480 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3481 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3483 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3484 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3485 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3486 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3487 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3488 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3491 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3492 struct tss_segment_16 *tss)
3494 kvm_rip_write(vcpu, tss->ip);
3495 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3496 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3497 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3498 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3499 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3500 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3501 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3502 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3503 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3505 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3508 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3511 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3514 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3517 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3522 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3524 struct desc_struct *nseg_desc)
3526 struct tss_segment_16 tss_segment_16;
3529 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3530 sizeof tss_segment_16))
3533 save_state_to_tss16(vcpu, &tss_segment_16);
3535 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3536 sizeof tss_segment_16))
3539 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3540 &tss_segment_16, sizeof tss_segment_16))
3543 if (load_state_from_tss16(vcpu, &tss_segment_16))
3551 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3553 struct desc_struct *nseg_desc)
3555 struct tss_segment_32 tss_segment_32;
3558 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3559 sizeof tss_segment_32))
3562 save_state_to_tss32(vcpu, &tss_segment_32);
3564 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3565 sizeof tss_segment_32))
3568 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3569 &tss_segment_32, sizeof tss_segment_32))
3572 if (load_state_from_tss32(vcpu, &tss_segment_32))
3580 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3582 struct kvm_segment tr_seg;
3583 struct desc_struct cseg_desc;
3584 struct desc_struct nseg_desc;
3586 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3587 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3589 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3591 /* FIXME: Handle errors. Failure to read either TSS or their
3592 * descriptors should generate a pagefault.
3594 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3597 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3600 if (reason != TASK_SWITCH_IRET) {
3603 cpl = kvm_x86_ops->get_cpl(vcpu);
3604 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3605 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3610 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3611 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3615 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3616 cseg_desc.type &= ~(1 << 1); //clear the B flag
3617 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3620 if (reason == TASK_SWITCH_IRET) {
3621 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3622 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3625 kvm_x86_ops->skip_emulated_instruction(vcpu);
3627 if (nseg_desc.type & 8)
3628 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3631 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3634 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3635 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3636 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3639 if (reason != TASK_SWITCH_IRET) {
3640 nseg_desc.type |= (1 << 1);
3641 save_guest_segment_descriptor(vcpu, tss_selector,
3645 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3646 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3648 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3652 EXPORT_SYMBOL_GPL(kvm_task_switch);
3654 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3655 struct kvm_sregs *sregs)
3657 int mmu_reset_needed = 0;
3658 int i, pending_vec, max_bits;
3659 struct descriptor_table dt;
3663 dt.limit = sregs->idt.limit;
3664 dt.base = sregs->idt.base;
3665 kvm_x86_ops->set_idt(vcpu, &dt);
3666 dt.limit = sregs->gdt.limit;
3667 dt.base = sregs->gdt.base;
3668 kvm_x86_ops->set_gdt(vcpu, &dt);
3670 vcpu->arch.cr2 = sregs->cr2;
3671 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3672 vcpu->arch.cr3 = sregs->cr3;
3674 kvm_set_cr8(vcpu, sregs->cr8);
3676 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3677 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3678 kvm_set_apic_base(vcpu, sregs->apic_base);
3680 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3682 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3683 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3684 vcpu->arch.cr0 = sregs->cr0;
3686 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3687 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3688 if (!is_long_mode(vcpu) && is_pae(vcpu))
3689 load_pdptrs(vcpu, vcpu->arch.cr3);
3691 if (mmu_reset_needed)
3692 kvm_mmu_reset_context(vcpu);
3694 if (!irqchip_in_kernel(vcpu->kvm)) {
3695 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3696 sizeof vcpu->arch.irq_pending);
3697 vcpu->arch.irq_summary = 0;
3698 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3699 if (vcpu->arch.irq_pending[i])
3700 __set_bit(i, &vcpu->arch.irq_summary);
3702 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3703 pending_vec = find_first_bit(
3704 (const unsigned long *)sregs->interrupt_bitmap,
3706 /* Only pending external irq is handled here */
3707 if (pending_vec < max_bits) {
3708 kvm_x86_ops->set_irq(vcpu, pending_vec);
3709 pr_debug("Set back pending irq %d\n",
3712 kvm_pic_clear_isr_ack(vcpu->kvm);
3715 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3716 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3717 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3718 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3719 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3720 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3722 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3723 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3725 /* Older userspace won't unhalt the vcpu on reset. */
3726 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3727 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3728 !(vcpu->arch.cr0 & X86_CR0_PE))
3729 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3736 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3737 struct kvm_debug_guest *dbg)
3743 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3751 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3752 * we have asm/x86/processor.h
3763 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3764 #ifdef CONFIG_X86_64
3765 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3767 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3772 * Translate a guest virtual address to a guest physical address.
3774 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3775 struct kvm_translation *tr)
3777 unsigned long vaddr = tr->linear_address;
3781 down_read(&vcpu->kvm->slots_lock);
3782 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3783 up_read(&vcpu->kvm->slots_lock);
3784 tr->physical_address = gpa;
3785 tr->valid = gpa != UNMAPPED_GVA;
3793 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3795 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3799 memcpy(fpu->fpr, fxsave->st_space, 128);
3800 fpu->fcw = fxsave->cwd;
3801 fpu->fsw = fxsave->swd;
3802 fpu->ftwx = fxsave->twd;
3803 fpu->last_opcode = fxsave->fop;
3804 fpu->last_ip = fxsave->rip;
3805 fpu->last_dp = fxsave->rdp;
3806 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3813 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3815 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3819 memcpy(fxsave->st_space, fpu->fpr, 128);
3820 fxsave->cwd = fpu->fcw;
3821 fxsave->swd = fpu->fsw;
3822 fxsave->twd = fpu->ftwx;
3823 fxsave->fop = fpu->last_opcode;
3824 fxsave->rip = fpu->last_ip;
3825 fxsave->rdp = fpu->last_dp;
3826 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3833 void fx_init(struct kvm_vcpu *vcpu)
3835 unsigned after_mxcsr_mask;
3838 * Touch the fpu the first time in non atomic context as if
3839 * this is the first fpu instruction the exception handler
3840 * will fire before the instruction returns and it'll have to
3841 * allocate ram with GFP_KERNEL.
3844 kvm_fx_save(&vcpu->arch.host_fx_image);
3846 /* Initialize guest FPU by resetting ours and saving into guest's */
3848 kvm_fx_save(&vcpu->arch.host_fx_image);
3850 kvm_fx_save(&vcpu->arch.guest_fx_image);
3851 kvm_fx_restore(&vcpu->arch.host_fx_image);
3854 vcpu->arch.cr0 |= X86_CR0_ET;
3855 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3856 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3857 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3858 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3860 EXPORT_SYMBOL_GPL(fx_init);
3862 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3864 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3867 vcpu->guest_fpu_loaded = 1;
3868 kvm_fx_save(&vcpu->arch.host_fx_image);
3869 kvm_fx_restore(&vcpu->arch.guest_fx_image);
3871 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3873 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3875 if (!vcpu->guest_fpu_loaded)
3878 vcpu->guest_fpu_loaded = 0;
3879 kvm_fx_save(&vcpu->arch.guest_fx_image);
3880 kvm_fx_restore(&vcpu->arch.host_fx_image);
3881 ++vcpu->stat.fpu_reload;
3883 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3885 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3887 kvm_x86_ops->vcpu_free(vcpu);
3890 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3893 return kvm_x86_ops->vcpu_create(kvm, id);
3896 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3900 /* We do fxsave: this must be aligned. */
3901 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3904 r = kvm_arch_vcpu_reset(vcpu);
3906 r = kvm_mmu_setup(vcpu);
3913 kvm_x86_ops->vcpu_free(vcpu);
3917 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3920 kvm_mmu_unload(vcpu);
3923 kvm_x86_ops->vcpu_free(vcpu);
3926 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
3928 return kvm_x86_ops->vcpu_reset(vcpu);
3931 void kvm_arch_hardware_enable(void *garbage)
3933 kvm_x86_ops->hardware_enable(garbage);
3936 void kvm_arch_hardware_disable(void *garbage)
3938 kvm_x86_ops->hardware_disable(garbage);
3941 int kvm_arch_hardware_setup(void)
3943 return kvm_x86_ops->hardware_setup();
3946 void kvm_arch_hardware_unsetup(void)
3948 kvm_x86_ops->hardware_unsetup();
3951 void kvm_arch_check_processor_compat(void *rtn)
3953 kvm_x86_ops->check_processor_compatibility(rtn);
3956 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
3962 BUG_ON(vcpu->kvm == NULL);
3965 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3966 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
3967 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3969 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
3971 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3976 vcpu->arch.pio_data = page_address(page);
3978 r = kvm_mmu_create(vcpu);
3980 goto fail_free_pio_data;
3982 if (irqchip_in_kernel(kvm)) {
3983 r = kvm_create_lapic(vcpu);
3985 goto fail_mmu_destroy;
3991 kvm_mmu_destroy(vcpu);
3993 free_page((unsigned long)vcpu->arch.pio_data);
3998 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4000 kvm_free_lapic(vcpu);
4001 down_read(&vcpu->kvm->slots_lock);
4002 kvm_mmu_destroy(vcpu);
4003 up_read(&vcpu->kvm->slots_lock);
4004 free_page((unsigned long)vcpu->arch.pio_data);
4007 struct kvm *kvm_arch_create_vm(void)
4009 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4012 return ERR_PTR(-ENOMEM);
4014 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4015 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4017 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4018 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4023 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4026 kvm_mmu_unload(vcpu);
4030 static void kvm_free_vcpus(struct kvm *kvm)
4035 * Unpin any mmu pages first.
4037 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4039 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4040 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4041 if (kvm->vcpus[i]) {
4042 kvm_arch_vcpu_free(kvm->vcpus[i]);
4043 kvm->vcpus[i] = NULL;
4049 void kvm_arch_destroy_vm(struct kvm *kvm)
4051 kvm_iommu_unmap_guest(kvm);
4052 kvm_free_all_assigned_devices(kvm);
4054 kfree(kvm->arch.vpic);
4055 kfree(kvm->arch.vioapic);
4056 kvm_free_vcpus(kvm);
4057 kvm_free_physmem(kvm);
4058 if (kvm->arch.apic_access_page)
4059 put_page(kvm->arch.apic_access_page);
4060 if (kvm->arch.ept_identity_pagetable)
4061 put_page(kvm->arch.ept_identity_pagetable);
4065 int kvm_arch_set_memory_region(struct kvm *kvm,
4066 struct kvm_userspace_memory_region *mem,
4067 struct kvm_memory_slot old,
4070 int npages = mem->memory_size >> PAGE_SHIFT;
4071 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4073 /*To keep backward compatibility with older userspace,
4074 *x86 needs to hanlde !user_alloc case.
4077 if (npages && !old.rmap) {
4078 unsigned long userspace_addr;
4080 down_write(¤t->mm->mmap_sem);
4081 userspace_addr = do_mmap(NULL, 0,
4083 PROT_READ | PROT_WRITE,
4084 MAP_PRIVATE | MAP_ANONYMOUS,
4086 up_write(¤t->mm->mmap_sem);
4088 if (IS_ERR((void *)userspace_addr))
4089 return PTR_ERR((void *)userspace_addr);
4091 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4092 spin_lock(&kvm->mmu_lock);
4093 memslot->userspace_addr = userspace_addr;
4094 spin_unlock(&kvm->mmu_lock);
4096 if (!old.user_alloc && old.rmap) {
4099 down_write(¤t->mm->mmap_sem);
4100 ret = do_munmap(current->mm, old.userspace_addr,
4101 old.npages * PAGE_SIZE);
4102 up_write(¤t->mm->mmap_sem);
4105 "kvm_vm_ioctl_set_memory_region: "
4106 "failed to munmap memory\n");
4111 if (!kvm->arch.n_requested_mmu_pages) {
4112 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4113 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4116 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4117 kvm_flush_remote_tlbs(kvm);
4122 void kvm_arch_flush_shadow(struct kvm *kvm)
4124 kvm_mmu_zap_all(kvm);
4127 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4129 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4130 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
4133 static void vcpu_kick_intr(void *info)
4136 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4137 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4141 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4143 int ipi_pcpu = vcpu->cpu;
4144 int cpu = get_cpu();
4146 if (waitqueue_active(&vcpu->wq)) {
4147 wake_up_interruptible(&vcpu->wq);
4148 ++vcpu->stat.halt_wakeup;
4151 * We may be called synchronously with irqs disabled in guest mode,
4152 * So need not to call smp_call_function_single() in that case.
4154 if (vcpu->guest_mode && vcpu->cpu != cpu)
4155 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);