2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/hdreg.h>
93 #include <linux/platform_device.h>
94 #if defined(CONFIG_OF)
95 #include <linux/of_device.h>
96 #include <linux/of_platform.h>
99 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
100 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
101 MODULE_LICENSE("GPL");
103 /* SystemACE register definitions */
104 #define ACE_BUSMODE (0x00)
106 #define ACE_STATUS (0x04)
107 #define ACE_STATUS_CFGLOCK (0x00000001)
108 #define ACE_STATUS_MPULOCK (0x00000002)
109 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
110 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
111 #define ACE_STATUS_CFDETECT (0x00000010)
112 #define ACE_STATUS_DATABUFRDY (0x00000020)
113 #define ACE_STATUS_DATABUFMODE (0x00000040)
114 #define ACE_STATUS_CFGDONE (0x00000080)
115 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
116 #define ACE_STATUS_CFGMODEPIN (0x00000200)
117 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
118 #define ACE_STATUS_CFBSY (0x00020000)
119 #define ACE_STATUS_CFRDY (0x00040000)
120 #define ACE_STATUS_CFDWF (0x00080000)
121 #define ACE_STATUS_CFDSC (0x00100000)
122 #define ACE_STATUS_CFDRQ (0x00200000)
123 #define ACE_STATUS_CFCORR (0x00400000)
124 #define ACE_STATUS_CFERR (0x00800000)
126 #define ACE_ERROR (0x08)
127 #define ACE_CFGLBA (0x0c)
128 #define ACE_MPULBA (0x10)
130 #define ACE_SECCNTCMD (0x14)
131 #define ACE_SECCNTCMD_RESET (0x0100)
132 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
133 #define ACE_SECCNTCMD_READ_DATA (0x0300)
134 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
135 #define ACE_SECCNTCMD_ABORT (0x0600)
137 #define ACE_VERSION (0x16)
138 #define ACE_VERSION_REVISION_MASK (0x00FF)
139 #define ACE_VERSION_MINOR_MASK (0x0F00)
140 #define ACE_VERSION_MAJOR_MASK (0xF000)
142 #define ACE_CTRL (0x18)
143 #define ACE_CTRL_FORCELOCKREQ (0x0001)
144 #define ACE_CTRL_LOCKREQ (0x0002)
145 #define ACE_CTRL_FORCECFGADDR (0x0004)
146 #define ACE_CTRL_FORCECFGMODE (0x0008)
147 #define ACE_CTRL_CFGMODE (0x0010)
148 #define ACE_CTRL_CFGSTART (0x0020)
149 #define ACE_CTRL_CFGSEL (0x0040)
150 #define ACE_CTRL_CFGRESET (0x0080)
151 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
152 #define ACE_CTRL_ERRORIRQ (0x0200)
153 #define ACE_CTRL_CFGDONEIRQ (0x0400)
154 #define ACE_CTRL_RESETIRQ (0x0800)
155 #define ACE_CTRL_CFGPROG (0x1000)
156 #define ACE_CTRL_CFGADDR_MASK (0xe000)
158 #define ACE_FATSTAT (0x1c)
160 #define ACE_NUM_MINORS 16
161 #define ACE_SECTOR_SIZE (512)
162 #define ACE_FIFO_SIZE (32)
163 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
165 #define ACE_BUS_WIDTH_8 0
166 #define ACE_BUS_WIDTH_16 1
171 /* driver state data */
175 struct list_head list;
177 /* finite state machine data */
178 struct tasklet_struct fsm_tasklet;
179 uint fsm_task; /* Current activity (ACE_TASK_*) */
180 uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
181 uint fsm_continue_flag; /* cleared to exit FSM mainloop */
183 struct timer_list stall_timer;
185 /* Transfer state/result, use for both id and block request */
186 struct request *req; /* request being processed */
187 void *data_ptr; /* pointer to I/O buffer */
188 int data_count; /* number of buffers remaining */
189 int data_result; /* Result of transfer; 0 := success */
191 int id_req_count; /* count of id requests */
193 struct completion id_completion; /* used when id req finishes */
196 /* Details of hardware device */
197 unsigned long physaddr;
198 void __iomem *baseaddr;
200 int bus_width; /* 0 := 8 bit; 1 := 16 bit */
201 struct ace_reg_ops *reg_ops;
204 /* Block device data structures */
207 struct request_queue *queue;
210 /* Inserted CF card parameters */
211 struct hd_driveid cf_id;
214 static int ace_major;
216 /* ---------------------------------------------------------------------
217 * Low level register access
221 u16(*in) (struct ace_device * ace, int reg);
222 void (*out) (struct ace_device * ace, int reg, u16 val);
223 void (*datain) (struct ace_device * ace);
224 void (*dataout) (struct ace_device * ace);
227 /* 8 Bit bus width */
228 static u16 ace_in_8(struct ace_device *ace, int reg)
230 void __iomem *r = ace->baseaddr + reg;
231 return in_8(r) | (in_8(r + 1) << 8);
234 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
236 void __iomem *r = ace->baseaddr + reg;
238 out_8(r + 1, val >> 8);
241 static void ace_datain_8(struct ace_device *ace)
243 void __iomem *r = ace->baseaddr + 0x40;
244 u8 *dst = ace->data_ptr;
245 int i = ACE_FIFO_SIZE;
251 static void ace_dataout_8(struct ace_device *ace)
253 void __iomem *r = ace->baseaddr + 0x40;
254 u8 *src = ace->data_ptr;
255 int i = ACE_FIFO_SIZE;
261 static struct ace_reg_ops ace_reg_8_ops = {
264 .datain = ace_datain_8,
265 .dataout = ace_dataout_8,
268 /* 16 bit big endian bus attachment */
269 static u16 ace_in_be16(struct ace_device *ace, int reg)
271 return in_be16(ace->baseaddr + reg);
274 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
276 out_be16(ace->baseaddr + reg, val);
279 static void ace_datain_be16(struct ace_device *ace)
281 int i = ACE_FIFO_SIZE / 2;
282 u16 *dst = ace->data_ptr;
284 *dst++ = in_le16(ace->baseaddr + 0x40);
288 static void ace_dataout_be16(struct ace_device *ace)
290 int i = ACE_FIFO_SIZE / 2;
291 u16 *src = ace->data_ptr;
293 out_le16(ace->baseaddr + 0x40, *src++);
297 /* 16 bit little endian bus attachment */
298 static u16 ace_in_le16(struct ace_device *ace, int reg)
300 return in_le16(ace->baseaddr + reg);
303 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
305 out_le16(ace->baseaddr + reg, val);
308 static void ace_datain_le16(struct ace_device *ace)
310 int i = ACE_FIFO_SIZE / 2;
311 u16 *dst = ace->data_ptr;
313 *dst++ = in_be16(ace->baseaddr + 0x40);
317 static void ace_dataout_le16(struct ace_device *ace)
319 int i = ACE_FIFO_SIZE / 2;
320 u16 *src = ace->data_ptr;
322 out_be16(ace->baseaddr + 0x40, *src++);
326 static struct ace_reg_ops ace_reg_be16_ops = {
329 .datain = ace_datain_be16,
330 .dataout = ace_dataout_be16,
333 static struct ace_reg_ops ace_reg_le16_ops = {
336 .datain = ace_datain_le16,
337 .dataout = ace_dataout_le16,
340 static inline u16 ace_in(struct ace_device *ace, int reg)
342 return ace->reg_ops->in(ace, reg);
345 static inline u32 ace_in32(struct ace_device *ace, int reg)
347 return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
350 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
352 ace->reg_ops->out(ace, reg, val);
355 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
357 ace_out(ace, reg, val);
358 ace_out(ace, reg + 2, val >> 16);
361 /* ---------------------------------------------------------------------
362 * Debug support functions
366 static void ace_dump_mem(void *base, int len)
368 const char *ptr = base;
371 for (i = 0; i < len; i += 16) {
372 printk(KERN_INFO "%.8x:", i);
373 for (j = 0; j < 16; j++) {
376 printk("%.2x", ptr[i + j]);
379 for (j = 0; j < 16; j++)
380 printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
385 static inline void ace_dump_mem(void *base, int len)
390 static void ace_dump_regs(struct ace_device *ace)
392 dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
393 KERN_INFO " status:%.8x mpu_lba:%.8x busmode:%4x\n"
394 KERN_INFO " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
395 ace_in32(ace, ACE_CTRL),
396 ace_in(ace, ACE_SECCNTCMD),
397 ace_in(ace, ACE_VERSION),
398 ace_in32(ace, ACE_STATUS),
399 ace_in32(ace, ACE_MPULBA),
400 ace_in(ace, ACE_BUSMODE),
401 ace_in32(ace, ACE_ERROR),
402 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
405 void ace_fix_driveid(struct hd_driveid *id)
407 #if defined(__BIG_ENDIAN)
408 u16 *buf = (void *)id;
411 /* All half words have wrong byte order; swap the bytes */
412 for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++)
413 *buf = le16_to_cpu(*buf);
415 /* Some of the data values are 32bit; swap the half words */
416 id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) |
417 ((id->lba_capacity << 16) & 0xFFFF0000);
418 id->spg = ((id->spg >> 16) & 0x0000FFFF) |
419 ((id->spg << 16) & 0xFFFF0000);
423 /* ---------------------------------------------------------------------
424 * Finite State Machine (FSM) implementation
427 /* FSM tasks; used to direct state transitions */
428 #define ACE_TASK_IDLE 0
429 #define ACE_TASK_IDENTIFY 1
430 #define ACE_TASK_READ 2
431 #define ACE_TASK_WRITE 3
432 #define ACE_FSM_NUM_TASKS 4
434 /* FSM state definitions */
435 #define ACE_FSM_STATE_IDLE 0
436 #define ACE_FSM_STATE_REQ_LOCK 1
437 #define ACE_FSM_STATE_WAIT_LOCK 2
438 #define ACE_FSM_STATE_WAIT_CFREADY 3
439 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
440 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
441 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
442 #define ACE_FSM_STATE_REQ_PREPARE 7
443 #define ACE_FSM_STATE_REQ_TRANSFER 8
444 #define ACE_FSM_STATE_REQ_COMPLETE 9
445 #define ACE_FSM_STATE_ERROR 10
446 #define ACE_FSM_NUM_STATES 11
448 /* Set flag to exit FSM loop and reschedule tasklet */
449 static inline void ace_fsm_yield(struct ace_device *ace)
451 dev_dbg(ace->dev, "ace_fsm_yield()\n");
452 tasklet_schedule(&ace->fsm_tasklet);
453 ace->fsm_continue_flag = 0;
456 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
457 static inline void ace_fsm_yieldirq(struct ace_device *ace)
459 dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
461 if (ace->irq == NO_IRQ)
462 /* No IRQ assigned, so need to poll */
463 tasklet_schedule(&ace->fsm_tasklet);
464 ace->fsm_continue_flag = 0;
467 /* Get the next read/write request; ending requests that we don't handle */
468 struct request *ace_get_next_request(struct request_queue * q)
472 while ((req = elv_next_request(q)) != NULL) {
473 if (blk_fs_request(req))
480 static void ace_fsm_dostate(struct ace_device *ace)
488 dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
489 ace->fsm_state, ace->id_req_count);
492 switch (ace->fsm_state) {
493 case ACE_FSM_STATE_IDLE:
494 /* See if there is anything to do */
495 if (ace->id_req_count || ace_get_next_request(ace->queue)) {
497 ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
498 mod_timer(&ace->stall_timer, jiffies + HZ);
499 if (!timer_pending(&ace->stall_timer))
500 add_timer(&ace->stall_timer);
503 del_timer(&ace->stall_timer);
504 ace->fsm_continue_flag = 0;
507 case ACE_FSM_STATE_REQ_LOCK:
508 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
509 /* Already have the lock, jump to next state */
510 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
514 /* Request the lock */
515 val = ace_in(ace, ACE_CTRL);
516 ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
517 ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
520 case ACE_FSM_STATE_WAIT_LOCK:
521 if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
522 /* got the lock; move to next state */
523 ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
527 /* wait a bit for the lock */
531 case ACE_FSM_STATE_WAIT_CFREADY:
532 status = ace_in32(ace, ACE_STATUS);
533 if (!(status & ACE_STATUS_RDYFORCFCMD) ||
534 (status & ACE_STATUS_CFBSY)) {
535 /* CF card isn't ready; it needs to be polled */
540 /* Device is ready for command; determine what to do next */
541 if (ace->id_req_count)
542 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
544 ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
547 case ACE_FSM_STATE_IDENTIFY_PREPARE:
548 /* Send identify command */
549 ace->fsm_task = ACE_TASK_IDENTIFY;
550 ace->data_ptr = &ace->cf_id;
551 ace->data_count = ACE_BUF_PER_SECTOR;
552 ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
554 /* As per datasheet, put config controller in reset */
555 val = ace_in(ace, ACE_CTRL);
556 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
558 /* irq handler takes over from this point; wait for the
559 * transfer to complete */
560 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
561 ace_fsm_yieldirq(ace);
564 case ACE_FSM_STATE_IDENTIFY_TRANSFER:
565 /* Check that the sysace is ready to receive data */
566 status = ace_in32(ace, ACE_STATUS);
567 if (status & ACE_STATUS_CFBSY) {
568 dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
569 ace->fsm_task, ace->fsm_iter_num,
574 if (!(status & ACE_STATUS_DATABUFRDY)) {
579 /* Transfer the next buffer */
580 ace->reg_ops->datain(ace);
583 /* If there are still buffers to be transfers; jump out here */
584 if (ace->data_count != 0) {
585 ace_fsm_yieldirq(ace);
589 /* transfer finished; kick state machine */
590 dev_dbg(ace->dev, "identify finished\n");
591 ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
594 case ACE_FSM_STATE_IDENTIFY_COMPLETE:
595 ace_fix_driveid(&ace->cf_id);
596 ace_dump_mem(&ace->cf_id, 512); /* Debug: Dump out disk ID */
598 if (ace->data_result) {
599 /* Error occured, disable the disk */
600 ace->media_change = 1;
601 set_capacity(ace->gd, 0);
602 dev_err(ace->dev, "error fetching CF id (%i)\n",
605 ace->media_change = 0;
607 /* Record disk parameters */
608 set_capacity(ace->gd, ace->cf_id.lba_capacity);
609 dev_info(ace->dev, "capacity: %i sectors\n",
610 ace->cf_id.lba_capacity);
613 /* We're done, drop to IDLE state and notify waiters */
614 ace->fsm_state = ACE_FSM_STATE_IDLE;
615 ace->id_result = ace->data_result;
616 while (ace->id_req_count) {
617 complete(&ace->id_completion);
622 case ACE_FSM_STATE_REQ_PREPARE:
623 req = ace_get_next_request(ace->queue);
625 ace->fsm_state = ACE_FSM_STATE_IDLE;
629 /* Okay, it's a data request, set it up for transfer */
631 "request: sec=%lx hcnt=%lx, ccnt=%x, dir=%i\n",
632 req->sector, req->hard_nr_sectors,
633 req->current_nr_sectors, rq_data_dir(req));
636 ace->data_ptr = req->buffer;
637 ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
638 ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);
640 count = req->hard_nr_sectors;
641 if (rq_data_dir(req)) {
642 /* Kick off write request */
643 dev_dbg(ace->dev, "write data\n");
644 ace->fsm_task = ACE_TASK_WRITE;
645 ace_out(ace, ACE_SECCNTCMD,
646 count | ACE_SECCNTCMD_WRITE_DATA);
648 /* Kick off read request */
649 dev_dbg(ace->dev, "read data\n");
650 ace->fsm_task = ACE_TASK_READ;
651 ace_out(ace, ACE_SECCNTCMD,
652 count | ACE_SECCNTCMD_READ_DATA);
655 /* As per datasheet, put config controller in reset */
656 val = ace_in(ace, ACE_CTRL);
657 ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
659 /* Move to the transfer state. The systemace will raise
660 * an interrupt once there is something to do
662 ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
663 if (ace->fsm_task == ACE_TASK_READ)
664 ace_fsm_yieldirq(ace); /* wait for data ready */
667 case ACE_FSM_STATE_REQ_TRANSFER:
668 /* Check that the sysace is ready to receive data */
669 status = ace_in32(ace, ACE_STATUS);
670 if (status & ACE_STATUS_CFBSY) {
672 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
673 ace->fsm_task, ace->fsm_iter_num,
674 ace->req->current_nr_sectors * 16,
675 ace->data_count, ace->in_irq);
676 ace_fsm_yield(ace); /* need to poll CFBSY bit */
679 if (!(status & ACE_STATUS_DATABUFRDY)) {
681 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
682 ace->fsm_task, ace->fsm_iter_num,
683 ace->req->current_nr_sectors * 16,
684 ace->data_count, ace->in_irq);
685 ace_fsm_yieldirq(ace);
689 /* Transfer the next buffer */
690 if (ace->fsm_task == ACE_TASK_WRITE)
691 ace->reg_ops->dataout(ace);
693 ace->reg_ops->datain(ace);
696 /* If there are still buffers to be transfers; jump out here */
697 if (ace->data_count != 0) {
698 ace_fsm_yieldirq(ace);
702 /* bio finished; is there another one? */
703 if (__blk_end_request(ace->req, 0,
704 blk_rq_cur_bytes(ace->req))) {
705 /* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
706 * ace->req->hard_nr_sectors,
707 * ace->req->current_nr_sectors);
709 ace->data_ptr = ace->req->buffer;
710 ace->data_count = ace->req->current_nr_sectors * 16;
711 ace_fsm_yieldirq(ace);
715 ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
718 case ACE_FSM_STATE_REQ_COMPLETE:
721 /* Finished request; go to idle state */
722 ace->fsm_state = ACE_FSM_STATE_IDLE;
726 ace->fsm_state = ACE_FSM_STATE_IDLE;
731 static void ace_fsm_tasklet(unsigned long data)
733 struct ace_device *ace = (void *)data;
736 spin_lock_irqsave(&ace->lock, flags);
738 /* Loop over state machine until told to stop */
739 ace->fsm_continue_flag = 1;
740 while (ace->fsm_continue_flag)
741 ace_fsm_dostate(ace);
743 spin_unlock_irqrestore(&ace->lock, flags);
746 static void ace_stall_timer(unsigned long data)
748 struct ace_device *ace = (void *)data;
752 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
753 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
755 spin_lock_irqsave(&ace->lock, flags);
757 /* Rearm the stall timer *before* entering FSM (which may then
758 * delete the timer) */
759 mod_timer(&ace->stall_timer, jiffies + HZ);
761 /* Loop over state machine until told to stop */
762 ace->fsm_continue_flag = 1;
763 while (ace->fsm_continue_flag)
764 ace_fsm_dostate(ace);
766 spin_unlock_irqrestore(&ace->lock, flags);
769 /* ---------------------------------------------------------------------
770 * Interrupt handling routines
772 static int ace_interrupt_checkstate(struct ace_device *ace)
774 u32 sreg = ace_in32(ace, ACE_STATUS);
775 u16 creg = ace_in(ace, ACE_CTRL);
777 /* Check for error occurance */
778 if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
779 (creg & ACE_CTRL_ERRORIRQ)) {
780 dev_err(ace->dev, "transfer failure\n");
788 static irqreturn_t ace_interrupt(int irq, void *dev_id)
791 struct ace_device *ace = dev_id;
793 /* be safe and get the lock */
794 spin_lock(&ace->lock);
797 /* clear the interrupt */
798 creg = ace_in(ace, ACE_CTRL);
799 ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
800 ace_out(ace, ACE_CTRL, creg);
802 /* check for IO failures */
803 if (ace_interrupt_checkstate(ace))
804 ace->data_result = -EIO;
806 if (ace->fsm_task == 0) {
808 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
809 ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
810 ace_in(ace, ACE_SECCNTCMD));
811 dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
812 ace->fsm_task, ace->fsm_state, ace->data_count);
815 /* Loop over state machine until told to stop */
816 ace->fsm_continue_flag = 1;
817 while (ace->fsm_continue_flag)
818 ace_fsm_dostate(ace);
820 /* done with interrupt; drop the lock */
822 spin_unlock(&ace->lock);
827 /* ---------------------------------------------------------------------
830 static void ace_request(struct request_queue * q)
833 struct ace_device *ace;
835 req = ace_get_next_request(q);
838 ace = req->rq_disk->private_data;
839 tasklet_schedule(&ace->fsm_tasklet);
843 static int ace_media_changed(struct gendisk *gd)
845 struct ace_device *ace = gd->private_data;
846 dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
848 return ace->media_change;
851 static int ace_revalidate_disk(struct gendisk *gd)
853 struct ace_device *ace = gd->private_data;
856 dev_dbg(ace->dev, "ace_revalidate_disk()\n");
858 if (ace->media_change) {
859 dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
861 spin_lock_irqsave(&ace->lock, flags);
863 spin_unlock_irqrestore(&ace->lock, flags);
865 tasklet_schedule(&ace->fsm_tasklet);
866 wait_for_completion(&ace->id_completion);
869 dev_dbg(ace->dev, "revalidate complete\n");
870 return ace->id_result;
873 static int ace_open(struct block_device *bdev, fmode_t mode)
875 struct ace_device *ace = bdev->bd_disk->private_data;
878 dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
880 spin_lock_irqsave(&ace->lock, flags);
882 spin_unlock_irqrestore(&ace->lock, flags);
884 check_disk_change(bdev);
888 static int ace_release(struct gendisk *disk, fmode_t mode)
890 struct ace_device *ace = disk->private_data;
894 dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
896 spin_lock_irqsave(&ace->lock, flags);
898 if (ace->users == 0) {
899 val = ace_in(ace, ACE_CTRL);
900 ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
902 spin_unlock_irqrestore(&ace->lock, flags);
906 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
908 struct ace_device *ace = bdev->bd_disk->private_data;
910 dev_dbg(ace->dev, "ace_getgeo()\n");
912 geo->heads = ace->cf_id.heads;
913 geo->sectors = ace->cf_id.sectors;
914 geo->cylinders = ace->cf_id.cyls;
919 static struct block_device_operations ace_fops = {
920 .owner = THIS_MODULE,
922 .release = ace_release,
923 .media_changed = ace_media_changed,
924 .revalidate_disk = ace_revalidate_disk,
925 .getgeo = ace_getgeo,
928 /* --------------------------------------------------------------------
929 * SystemACE device setup/teardown code
931 static int __devinit ace_setup(struct ace_device *ace)
937 dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
938 dev_dbg(ace->dev, "physaddr=0x%lx irq=%i\n", ace->physaddr, ace->irq);
940 spin_lock_init(&ace->lock);
941 init_completion(&ace->id_completion);
946 ace->baseaddr = ioremap(ace->physaddr, 0x80);
951 * Initialize the state machine tasklet and stall timer
953 tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
954 setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
957 * Initialize the request queue
959 ace->queue = blk_init_queue(ace_request, &ace->lock);
960 if (ace->queue == NULL)
962 blk_queue_hardsect_size(ace->queue, 512);
965 * Allocate and initialize GD structure
967 ace->gd = alloc_disk(ACE_NUM_MINORS);
971 ace->gd->major = ace_major;
972 ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
973 ace->gd->fops = &ace_fops;
974 ace->gd->queue = ace->queue;
975 ace->gd->private_data = ace;
976 snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
979 if (ace->bus_width == ACE_BUS_WIDTH_16) {
980 /* 0x0101 should work regardless of endianess */
981 ace_out_le16(ace, ACE_BUSMODE, 0x0101);
983 /* read it back to determine endianess */
984 if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
985 ace->reg_ops = &ace_reg_le16_ops;
987 ace->reg_ops = &ace_reg_be16_ops;
989 ace_out_8(ace, ACE_BUSMODE, 0x00);
990 ace->reg_ops = &ace_reg_8_ops;
993 /* Make sure version register is sane */
994 version = ace_in(ace, ACE_VERSION);
995 if ((version == 0) || (version == 0xFFFF))
998 /* Put sysace in a sane state by clearing most control reg bits */
999 ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1000 ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1002 /* Now we can hook up the irq handler */
1003 if (ace->irq != NO_IRQ) {
1004 rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1006 /* Failure - fall back to polled mode */
1007 dev_err(ace->dev, "request_irq failed\n");
1012 /* Enable interrupts */
1013 val = ace_in(ace, ACE_CTRL);
1014 val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1015 ace_out(ace, ACE_CTRL, val);
1017 /* Print the identification */
1018 dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1019 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1020 dev_dbg(ace->dev, "physaddr 0x%lx, mapped to 0x%p, irq=%i\n",
1021 ace->physaddr, ace->baseaddr, ace->irq);
1023 ace->media_change = 1;
1024 ace_revalidate_disk(ace->gd);
1026 /* Make the sysace device 'live' */
1034 blk_cleanup_queue(ace->queue);
1036 iounmap(ace->baseaddr);
1038 dev_info(ace->dev, "xsysace: error initializing device at 0x%lx\n",
1043 static void __devexit ace_teardown(struct ace_device *ace)
1046 del_gendisk(ace->gd);
1051 blk_cleanup_queue(ace->queue);
1053 tasklet_kill(&ace->fsm_tasklet);
1055 if (ace->irq != NO_IRQ)
1056 free_irq(ace->irq, ace);
1058 iounmap(ace->baseaddr);
1061 static int __devinit
1062 ace_alloc(struct device *dev, int id, unsigned long physaddr,
1063 int irq, int bus_width)
1065 struct ace_device *ace;
1067 dev_dbg(dev, "ace_alloc(%p)\n", dev);
1074 /* Allocate and initialize the ace device structure */
1075 ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1083 ace->physaddr = physaddr;
1085 ace->bus_width = bus_width;
1087 /* Call the setup code */
1088 rc = ace_setup(ace);
1092 dev_set_drvdata(dev, ace);
1096 dev_set_drvdata(dev, NULL);
1100 dev_err(dev, "could not initialize device, err=%i\n", rc);
1104 static void __devexit ace_free(struct device *dev)
1106 struct ace_device *ace = dev_get_drvdata(dev);
1107 dev_dbg(dev, "ace_free(%p)\n", dev);
1111 dev_set_drvdata(dev, NULL);
1116 /* ---------------------------------------------------------------------
1117 * Platform Bus Support
1120 static int __devinit ace_probe(struct platform_device *dev)
1122 unsigned long physaddr = 0;
1123 int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1128 dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1130 for (i = 0; i < dev->num_resources; i++) {
1131 if (dev->resource[i].flags & IORESOURCE_MEM)
1132 physaddr = dev->resource[i].start;
1133 if (dev->resource[i].flags & IORESOURCE_IRQ)
1134 irq = dev->resource[i].start;
1137 /* Call the bus-independant setup code */
1138 return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1142 * Platform bus remove() method
1144 static int __devexit ace_remove(struct platform_device *dev)
1146 ace_free(&dev->dev);
1150 static struct platform_driver ace_platform_driver = {
1152 .remove = __devexit_p(ace_remove),
1154 .owner = THIS_MODULE,
1159 /* ---------------------------------------------------------------------
1160 * OF_Platform Bus Support
1163 #if defined(CONFIG_OF)
1164 static int __devinit
1165 ace_of_probe(struct of_device *op, const struct of_device_id *match)
1167 struct resource res;
1168 unsigned long physaddr;
1170 int irq, bus_width, rc;
1172 dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
1175 id = of_get_property(op->node, "port-number", NULL);
1178 rc = of_address_to_resource(op->node, 0, &res);
1180 dev_err(&op->dev, "invalid address\n");
1183 physaddr = res.start;
1186 irq = irq_of_parse_and_map(op->node, 0);
1189 bus_width = ACE_BUS_WIDTH_16;
1190 if (of_find_property(op->node, "8-bit", NULL))
1191 bus_width = ACE_BUS_WIDTH_8;
1193 /* Call the bus-independant setup code */
1194 return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
1197 static int __devexit ace_of_remove(struct of_device *op)
1203 /* Match table for of_platform binding */
1204 static struct of_device_id ace_of_match[] __devinitdata = {
1205 { .compatible = "xlnx,opb-sysace-1.00.b", },
1206 { .compatible = "xlnx,opb-sysace-1.00.c", },
1207 { .compatible = "xlnx,xps-sysace-1.00.a", },
1210 MODULE_DEVICE_TABLE(of, ace_of_match);
1212 static struct of_platform_driver ace_of_driver = {
1213 .owner = THIS_MODULE,
1215 .match_table = ace_of_match,
1216 .probe = ace_of_probe,
1217 .remove = __devexit_p(ace_of_remove),
1223 /* Registration helpers to keep the number of #ifdefs to a minimum */
1224 static inline int __init ace_of_register(void)
1226 pr_debug("xsysace: registering OF binding\n");
1227 return of_register_platform_driver(&ace_of_driver);
1230 static inline void __exit ace_of_unregister(void)
1232 of_unregister_platform_driver(&ace_of_driver);
1234 #else /* CONFIG_OF */
1235 /* CONFIG_OF not enabled; do nothing helpers */
1236 static inline int __init ace_of_register(void) { return 0; }
1237 static inline void __exit ace_of_unregister(void) { }
1238 #endif /* CONFIG_OF */
1240 /* ---------------------------------------------------------------------
1241 * Module init/exit routines
1243 static int __init ace_init(void)
1247 ace_major = register_blkdev(ace_major, "xsysace");
1248 if (ace_major <= 0) {
1253 rc = ace_of_register();
1257 pr_debug("xsysace: registering platform binding\n");
1258 rc = platform_driver_register(&ace_platform_driver);
1262 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1266 ace_of_unregister();
1268 unregister_blkdev(ace_major, "xsysace");
1270 printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1274 static void __exit ace_exit(void)
1276 pr_debug("Unregistering Xilinx SystemACE driver\n");
1277 platform_driver_unregister(&ace_platform_driver);
1278 ace_of_unregister();
1279 unregister_blkdev(ace_major, "xsysace");
1282 module_init(ace_init);
1283 module_exit(ace_exit);