Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
22
23 #include "tick-internal.h"
24
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
39
40 /*
41  * Debugging: see timer_list.c
42  */
43 struct tick_device *tick_get_broadcast_device(void)
44 {
45         return &tick_broadcast_device;
46 }
47
48 cpumask_t *tick_get_broadcast_mask(void)
49 {
50         return &tick_broadcast_mask;
51 }
52
53 /*
54  * Start the device in periodic mode
55  */
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
57 {
58         if (bc)
59                 tick_setup_periodic(bc, 1);
60 }
61
62 /*
63  * Check, if the device can be utilized as broadcast device:
64  */
65 int tick_check_broadcast_device(struct clock_event_device *dev)
66 {
67         if ((tick_broadcast_device.evtdev &&
68              tick_broadcast_device.evtdev->rating >= dev->rating) ||
69              (dev->features & CLOCK_EVT_FEAT_C3STOP))
70                 return 0;
71
72         clockevents_exchange_device(NULL, dev);
73         tick_broadcast_device.evtdev = dev;
74         if (!cpus_empty(tick_broadcast_mask))
75                 tick_broadcast_start_periodic(dev);
76         return 1;
77 }
78
79 /*
80  * Check, if the device is the broadcast device
81  */
82 int tick_is_broadcast_device(struct clock_event_device *dev)
83 {
84         return (dev && tick_broadcast_device.evtdev == dev);
85 }
86
87 /*
88  * Check, if the device is disfunctional and a place holder, which
89  * needs to be handled by the broadcast device.
90  */
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
92 {
93         unsigned long flags;
94         int ret = 0;
95
96         spin_lock_irqsave(&tick_broadcast_lock, flags);
97
98         /*
99          * Devices might be registered with both periodic and oneshot
100          * mode disabled. This signals, that the device needs to be
101          * operated from the broadcast device and is a placeholder for
102          * the cpu local device.
103          */
104         if (!tick_device_is_functional(dev)) {
105                 dev->event_handler = tick_handle_periodic;
106                 cpu_set(cpu, tick_broadcast_mask);
107                 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
108                 ret = 1;
109         } else {
110                 /*
111                  * When the new device is not affected by the stop
112                  * feature and the cpu is marked in the broadcast mask
113                  * then clear the broadcast bit.
114                  */
115                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116                         int cpu = smp_processor_id();
117
118                         cpu_clear(cpu, tick_broadcast_mask);
119                         tick_broadcast_clear_oneshot(cpu);
120                 }
121         }
122         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
123         return ret;
124 }
125
126 /*
127  * Broadcast the event to the cpus, which are set in the mask
128  */
129 int tick_do_broadcast(cpumask_t mask)
130 {
131         int ret = 0, cpu = smp_processor_id();
132         struct tick_device *td;
133
134         /*
135          * Check, if the current cpu is in the mask
136          */
137         if (cpu_isset(cpu, mask)) {
138                 cpu_clear(cpu, mask);
139                 td = &per_cpu(tick_cpu_device, cpu);
140                 td->evtdev->event_handler(td->evtdev);
141                 ret = 1;
142         }
143
144         if (!cpus_empty(mask)) {
145                 /*
146                  * It might be necessary to actually check whether the devices
147                  * have different broadcast functions. For now, just use the
148                  * one of the first device. This works as long as we have this
149                  * misfeature only on x86 (lapic)
150                  */
151                 cpu = first_cpu(mask);
152                 td = &per_cpu(tick_cpu_device, cpu);
153                 td->evtdev->broadcast(mask);
154                 ret = 1;
155         }
156         return ret;
157 }
158
159 /*
160  * Periodic broadcast:
161  * - invoke the broadcast handlers
162  */
163 static void tick_do_periodic_broadcast(void)
164 {
165         cpumask_t mask;
166
167         spin_lock(&tick_broadcast_lock);
168
169         cpus_and(mask, cpu_online_map, tick_broadcast_mask);
170         tick_do_broadcast(mask);
171
172         spin_unlock(&tick_broadcast_lock);
173 }
174
175 /*
176  * Event handler for periodic broadcast ticks
177  */
178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
179 {
180         tick_do_periodic_broadcast();
181
182         /*
183          * The device is in periodic mode. No reprogramming necessary:
184          */
185         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186                 return;
187
188         /*
189          * Setup the next period for devices, which do not have
190          * periodic mode:
191          */
192         for (;;) {
193                 ktime_t next = ktime_add(dev->next_event, tick_period);
194
195                 if (!clockevents_program_event(dev, next, ktime_get()))
196                         return;
197                 tick_do_periodic_broadcast();
198         }
199 }
200
201 /*
202  * Powerstate information: The system enters/leaves a state, where
203  * affected devices might stop
204  */
205 static void tick_do_broadcast_on_off(void *why)
206 {
207         struct clock_event_device *bc, *dev;
208         struct tick_device *td;
209         unsigned long flags, *reason = why;
210         int cpu;
211
212         spin_lock_irqsave(&tick_broadcast_lock, flags);
213
214         cpu = smp_processor_id();
215         td = &per_cpu(tick_cpu_device, cpu);
216         dev = td->evtdev;
217         bc = tick_broadcast_device.evtdev;
218
219         /*
220          * Is the device not affected by the powerstate ?
221          */
222         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
223                 goto out;
224
225         /*
226          * Defect device ?
227          */
228         if (!tick_device_is_functional(dev)) {
229                 /*
230                  * AMD C1E wreckage fixup:
231                  *
232                  * Device was registered functional in the first
233                  * place. Now the secondary CPU detected the C1E
234                  * misfeature and notifies us to fix it up
235                  */
236                 if (*reason != CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
237                         goto out;
238         }
239
240         switch (*reason) {
241         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
242         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
243                 if (!cpu_isset(cpu, tick_broadcast_mask)) {
244                         cpu_set(cpu, tick_broadcast_mask);
245                         if (td->mode == TICKDEV_MODE_PERIODIC)
246                                 clockevents_set_mode(dev,
247                                                      CLOCK_EVT_MODE_SHUTDOWN);
248                 }
249                 break;
250         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
251                 if (cpu_isset(cpu, tick_broadcast_mask)) {
252                         cpu_clear(cpu, tick_broadcast_mask);
253                         if (td->mode == TICKDEV_MODE_PERIODIC)
254                                 tick_setup_periodic(dev, 0);
255                 }
256                 break;
257         }
258
259         if (cpus_empty(tick_broadcast_mask))
260                 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
261         else {
262                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
263                         tick_broadcast_start_periodic(bc);
264                 else
265                         tick_broadcast_setup_oneshot(bc);
266         }
267 out:
268         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
269 }
270
271 /*
272  * Powerstate information: The system enters/leaves a state, where
273  * affected devices might stop.
274  */
275 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
276 {
277         int cpu = get_cpu();
278
279         if (!cpu_isset(*oncpu, cpu_online_map)) {
280                 printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
281                        "offline CPU #%d\n", *oncpu);
282         } else {
283
284                 if (cpu == *oncpu)
285                         tick_do_broadcast_on_off(&reason);
286                 else
287                         smp_call_function_single(*oncpu,
288                                                  tick_do_broadcast_on_off,
289                                                  &reason, 1, 1);
290         }
291         put_cpu();
292 }
293
294 /*
295  * Set the periodic handler depending on broadcast on/off
296  */
297 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
298 {
299         if (!broadcast)
300                 dev->event_handler = tick_handle_periodic;
301         else
302                 dev->event_handler = tick_handle_periodic_broadcast;
303 }
304
305 /*
306  * Remove a CPU from broadcasting
307  */
308 void tick_shutdown_broadcast(unsigned int *cpup)
309 {
310         struct clock_event_device *bc;
311         unsigned long flags;
312         unsigned int cpu = *cpup;
313
314         spin_lock_irqsave(&tick_broadcast_lock, flags);
315
316         bc = tick_broadcast_device.evtdev;
317         cpu_clear(cpu, tick_broadcast_mask);
318
319         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
320                 if (bc && cpus_empty(tick_broadcast_mask))
321                         clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
322         }
323
324         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
325 }
326
327 void tick_suspend_broadcast(void)
328 {
329         struct clock_event_device *bc;
330         unsigned long flags;
331
332         spin_lock_irqsave(&tick_broadcast_lock, flags);
333
334         bc = tick_broadcast_device.evtdev;
335         if (bc)
336                 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
337
338         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
339 }
340
341 int tick_resume_broadcast(void)
342 {
343         struct clock_event_device *bc;
344         unsigned long flags;
345         int broadcast = 0;
346
347         spin_lock_irqsave(&tick_broadcast_lock, flags);
348
349         bc = tick_broadcast_device.evtdev;
350
351         if (bc) {
352                 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
353
354                 switch (tick_broadcast_device.mode) {
355                 case TICKDEV_MODE_PERIODIC:
356                         if(!cpus_empty(tick_broadcast_mask))
357                                 tick_broadcast_start_periodic(bc);
358                         broadcast = cpu_isset(smp_processor_id(),
359                                               tick_broadcast_mask);
360                         break;
361                 case TICKDEV_MODE_ONESHOT:
362                         broadcast = tick_resume_broadcast_oneshot(bc);
363                         break;
364                 }
365         }
366         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
367
368         return broadcast;
369 }
370
371
372 #ifdef CONFIG_TICK_ONESHOT
373
374 static cpumask_t tick_broadcast_oneshot_mask;
375
376 /*
377  * Debugging: see timer_list.c
378  */
379 cpumask_t *tick_get_broadcast_oneshot_mask(void)
380 {
381         return &tick_broadcast_oneshot_mask;
382 }
383
384 static int tick_broadcast_set_event(ktime_t expires, int force)
385 {
386         struct clock_event_device *bc = tick_broadcast_device.evtdev;
387         ktime_t now = ktime_get();
388         int res;
389
390         for(;;) {
391                 res = clockevents_program_event(bc, expires, now);
392                 if (!res || !force)
393                         return res;
394                 now = ktime_get();
395                 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
396         }
397 }
398
399 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
400 {
401         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
402         return 0;
403 }
404
405 /*
406  * Reprogram the broadcast device:
407  *
408  * Called with tick_broadcast_lock held and interrupts disabled.
409  */
410 static int tick_broadcast_reprogram(void)
411 {
412         ktime_t expires = { .tv64 = KTIME_MAX };
413         struct tick_device *td;
414         int cpu;
415
416         /*
417          * Find the event which expires next:
418          */
419         for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
420              cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
421                 td = &per_cpu(tick_cpu_device, cpu);
422                 if (td->evtdev->next_event.tv64 < expires.tv64)
423                         expires = td->evtdev->next_event;
424         }
425
426         if (expires.tv64 == KTIME_MAX)
427                 return 0;
428
429         return tick_broadcast_set_event(expires, 0);
430 }
431
432 /*
433  * Handle oneshot mode broadcasting
434  */
435 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
436 {
437         struct tick_device *td;
438         cpumask_t mask;
439         ktime_t now;
440         int cpu;
441
442         spin_lock(&tick_broadcast_lock);
443 again:
444         dev->next_event.tv64 = KTIME_MAX;
445         mask = CPU_MASK_NONE;
446         now = ktime_get();
447         /* Find all expired events */
448         for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
449              cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
450                 td = &per_cpu(tick_cpu_device, cpu);
451                 if (td->evtdev->next_event.tv64 <= now.tv64)
452                         cpu_set(cpu, mask);
453         }
454
455         /*
456          * Wakeup the cpus which have an expired event. The broadcast
457          * device is reprogrammed in the return from idle code.
458          */
459         if (!tick_do_broadcast(mask)) {
460                 /*
461                  * The global event did not expire any CPU local
462                  * events. This happens in dyntick mode, as the
463                  * maximum PIT delta is quite small.
464                  */
465                 if (tick_broadcast_reprogram())
466                         goto again;
467         }
468         spin_unlock(&tick_broadcast_lock);
469 }
470
471 /*
472  * Powerstate information: The system enters/leaves a state, where
473  * affected devices might stop
474  */
475 void tick_broadcast_oneshot_control(unsigned long reason)
476 {
477         struct clock_event_device *bc, *dev;
478         struct tick_device *td;
479         unsigned long flags;
480         int cpu;
481
482         spin_lock_irqsave(&tick_broadcast_lock, flags);
483
484         /*
485          * Periodic mode does not care about the enter/exit of power
486          * states
487          */
488         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
489                 goto out;
490
491         bc = tick_broadcast_device.evtdev;
492         cpu = smp_processor_id();
493         td = &per_cpu(tick_cpu_device, cpu);
494         dev = td->evtdev;
495
496         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
497                 goto out;
498
499         if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
500                 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
501                         cpu_set(cpu, tick_broadcast_oneshot_mask);
502                         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
503                         if (dev->next_event.tv64 < bc->next_event.tv64)
504                                 tick_broadcast_set_event(dev->next_event, 1);
505                 }
506         } else {
507                 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
508                         cpu_clear(cpu, tick_broadcast_oneshot_mask);
509                         clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
510                         if (dev->next_event.tv64 != KTIME_MAX)
511                                 tick_program_event(dev->next_event, 1);
512                 }
513         }
514
515 out:
516         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
517 }
518
519 /*
520  * Reset the one shot broadcast for a cpu
521  *
522  * Called with tick_broadcast_lock held
523  */
524 static void tick_broadcast_clear_oneshot(int cpu)
525 {
526         cpu_clear(cpu, tick_broadcast_oneshot_mask);
527 }
528
529 /**
530  * tick_broadcast_setup_highres - setup the broadcast device for highres
531  */
532 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
533 {
534         bc->event_handler = tick_handle_oneshot_broadcast;
535         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
536         bc->next_event.tv64 = KTIME_MAX;
537 }
538
539 /*
540  * Select oneshot operating mode for the broadcast device
541  */
542 void tick_broadcast_switch_to_oneshot(void)
543 {
544         struct clock_event_device *bc;
545         unsigned long flags;
546
547         spin_lock_irqsave(&tick_broadcast_lock, flags);
548
549         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
550         bc = tick_broadcast_device.evtdev;
551         if (bc)
552                 tick_broadcast_setup_oneshot(bc);
553         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
554 }
555
556
557 /*
558  * Remove a dead CPU from broadcasting
559  */
560 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
561 {
562         unsigned long flags;
563         unsigned int cpu = *cpup;
564
565         spin_lock_irqsave(&tick_broadcast_lock, flags);
566
567         /*
568          * Clear the broadcast mask flag for the dead cpu, but do not
569          * stop the broadcast device!
570          */
571         cpu_clear(cpu, tick_broadcast_oneshot_mask);
572
573         spin_unlock_irqrestore(&tick_broadcast_lock, flags);
574 }
575
576 #endif