microblaze: Typo fix for cpu param inconsistency
[linux-2.6] / fs / ext4 / mballoc.c
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18
19
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23
24 #include "mballoc.h"
25 #include <trace/events/ext4.h>
26
27 /*
28  * MUSTDO:
29  *   - test ext4_ext_search_left() and ext4_ext_search_right()
30  *   - search for metadata in few groups
31  *
32  * TODO v4:
33  *   - normalization should take into account whether file is still open
34  *   - discard preallocations if no free space left (policy?)
35  *   - don't normalize tails
36  *   - quota
37  *   - reservation for superuser
38  *
39  * TODO v3:
40  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
41  *   - track min/max extents in each group for better group selection
42  *   - mb_mark_used() may allocate chunk right after splitting buddy
43  *   - tree of groups sorted by number of free blocks
44  *   - error handling
45  */
46
47 /*
48  * The allocation request involve request for multiple number of blocks
49  * near to the goal(block) value specified.
50  *
51  * During initialization phase of the allocator we decide to use the
52  * group preallocation or inode preallocation depending on the size of
53  * the file. The size of the file could be the resulting file size we
54  * would have after allocation, or the current file size, which ever
55  * is larger. If the size is less than sbi->s_mb_stream_request we
56  * select to use the group preallocation. The default value of
57  * s_mb_stream_request is 16 blocks. This can also be tuned via
58  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
59  * terms of number of blocks.
60  *
61  * The main motivation for having small file use group preallocation is to
62  * ensure that we have small files closer together on the disk.
63  *
64  * First stage the allocator looks at the inode prealloc list,
65  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
66  * spaces for this particular inode. The inode prealloc space is
67  * represented as:
68  *
69  * pa_lstart -> the logical start block for this prealloc space
70  * pa_pstart -> the physical start block for this prealloc space
71  * pa_len    -> lenght for this prealloc space
72  * pa_free   ->  free space available in this prealloc space
73  *
74  * The inode preallocation space is used looking at the _logical_ start
75  * block. If only the logical file block falls within the range of prealloc
76  * space we will consume the particular prealloc space. This make sure that
77  * that the we have contiguous physical blocks representing the file blocks
78  *
79  * The important thing to be noted in case of inode prealloc space is that
80  * we don't modify the values associated to inode prealloc space except
81  * pa_free.
82  *
83  * If we are not able to find blocks in the inode prealloc space and if we
84  * have the group allocation flag set then we look at the locality group
85  * prealloc space. These are per CPU prealloc list repreasented as
86  *
87  * ext4_sb_info.s_locality_groups[smp_processor_id()]
88  *
89  * The reason for having a per cpu locality group is to reduce the contention
90  * between CPUs. It is possible to get scheduled at this point.
91  *
92  * The locality group prealloc space is used looking at whether we have
93  * enough free space (pa_free) withing the prealloc space.
94  *
95  * If we can't allocate blocks via inode prealloc or/and locality group
96  * prealloc then we look at the buddy cache. The buddy cache is represented
97  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
98  * mapped to the buddy and bitmap information regarding different
99  * groups. The buddy information is attached to buddy cache inode so that
100  * we can access them through the page cache. The information regarding
101  * each group is loaded via ext4_mb_load_buddy.  The information involve
102  * block bitmap and buddy information. The information are stored in the
103  * inode as:
104  *
105  *  {                        page                        }
106  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
107  *
108  *
109  * one block each for bitmap and buddy information.  So for each group we
110  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
111  * blocksize) blocks.  So it can have information regarding groups_per_page
112  * which is blocks_per_page/2
113  *
114  * The buddy cache inode is not stored on disk. The inode is thrown
115  * away when the filesystem is unmounted.
116  *
117  * We look for count number of blocks in the buddy cache. If we were able
118  * to locate that many free blocks we return with additional information
119  * regarding rest of the contiguous physical block available
120  *
121  * Before allocating blocks via buddy cache we normalize the request
122  * blocks. This ensure we ask for more blocks that we needed. The extra
123  * blocks that we get after allocation is added to the respective prealloc
124  * list. In case of inode preallocation we follow a list of heuristics
125  * based on file size. This can be found in ext4_mb_normalize_request. If
126  * we are doing a group prealloc we try to normalize the request to
127  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
128  * 512 blocks. This can be tuned via
129  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
130  * terms of number of blocks. If we have mounted the file system with -O
131  * stripe=<value> option the group prealloc request is normalized to the
132  * stripe value (sbi->s_stripe)
133  *
134  * The regular allocator(using the buddy cache) supports few tunables.
135  *
136  * /sys/fs/ext4/<partition>/mb_min_to_scan
137  * /sys/fs/ext4/<partition>/mb_max_to_scan
138  * /sys/fs/ext4/<partition>/mb_order2_req
139  *
140  * The regular allocator uses buddy scan only if the request len is power of
141  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
142  * value of s_mb_order2_reqs can be tuned via
143  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
144  * stripe size (sbi->s_stripe), we try to search for contigous block in
145  * stripe size. This should result in better allocation on RAID setups. If
146  * not, we search in the specific group using bitmap for best extents. The
147  * tunable min_to_scan and max_to_scan control the behaviour here.
148  * min_to_scan indicate how long the mballoc __must__ look for a best
149  * extent and max_to_scan indicates how long the mballoc __can__ look for a
150  * best extent in the found extents. Searching for the blocks starts with
151  * the group specified as the goal value in allocation context via
152  * ac_g_ex. Each group is first checked based on the criteria whether it
153  * can used for allocation. ext4_mb_good_group explains how the groups are
154  * checked.
155  *
156  * Both the prealloc space are getting populated as above. So for the first
157  * request we will hit the buddy cache which will result in this prealloc
158  * space getting filled. The prealloc space is then later used for the
159  * subsequent request.
160  */
161
162 /*
163  * mballoc operates on the following data:
164  *  - on-disk bitmap
165  *  - in-core buddy (actually includes buddy and bitmap)
166  *  - preallocation descriptors (PAs)
167  *
168  * there are two types of preallocations:
169  *  - inode
170  *    assiged to specific inode and can be used for this inode only.
171  *    it describes part of inode's space preallocated to specific
172  *    physical blocks. any block from that preallocated can be used
173  *    independent. the descriptor just tracks number of blocks left
174  *    unused. so, before taking some block from descriptor, one must
175  *    make sure corresponded logical block isn't allocated yet. this
176  *    also means that freeing any block within descriptor's range
177  *    must discard all preallocated blocks.
178  *  - locality group
179  *    assigned to specific locality group which does not translate to
180  *    permanent set of inodes: inode can join and leave group. space
181  *    from this type of preallocation can be used for any inode. thus
182  *    it's consumed from the beginning to the end.
183  *
184  * relation between them can be expressed as:
185  *    in-core buddy = on-disk bitmap + preallocation descriptors
186  *
187  * this mean blocks mballoc considers used are:
188  *  - allocated blocks (persistent)
189  *  - preallocated blocks (non-persistent)
190  *
191  * consistency in mballoc world means that at any time a block is either
192  * free or used in ALL structures. notice: "any time" should not be read
193  * literally -- time is discrete and delimited by locks.
194  *
195  *  to keep it simple, we don't use block numbers, instead we count number of
196  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
197  *
198  * all operations can be expressed as:
199  *  - init buddy:                       buddy = on-disk + PAs
200  *  - new PA:                           buddy += N; PA = N
201  *  - use inode PA:                     on-disk += N; PA -= N
202  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
203  *  - use locality group PA             on-disk += N; PA -= N
204  *  - discard locality group PA         buddy -= PA; PA = 0
205  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
206  *        is used in real operation because we can't know actual used
207  *        bits from PA, only from on-disk bitmap
208  *
209  * if we follow this strict logic, then all operations above should be atomic.
210  * given some of them can block, we'd have to use something like semaphores
211  * killing performance on high-end SMP hardware. let's try to relax it using
212  * the following knowledge:
213  *  1) if buddy is referenced, it's already initialized
214  *  2) while block is used in buddy and the buddy is referenced,
215  *     nobody can re-allocate that block
216  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
217  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
218  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
219  *     block
220  *
221  * so, now we're building a concurrency table:
222  *  - init buddy vs.
223  *    - new PA
224  *      blocks for PA are allocated in the buddy, buddy must be referenced
225  *      until PA is linked to allocation group to avoid concurrent buddy init
226  *    - use inode PA
227  *      we need to make sure that either on-disk bitmap or PA has uptodate data
228  *      given (3) we care that PA-=N operation doesn't interfere with init
229  *    - discard inode PA
230  *      the simplest way would be to have buddy initialized by the discard
231  *    - use locality group PA
232  *      again PA-=N must be serialized with init
233  *    - discard locality group PA
234  *      the simplest way would be to have buddy initialized by the discard
235  *  - new PA vs.
236  *    - use inode PA
237  *      i_data_sem serializes them
238  *    - discard inode PA
239  *      discard process must wait until PA isn't used by another process
240  *    - use locality group PA
241  *      some mutex should serialize them
242  *    - discard locality group PA
243  *      discard process must wait until PA isn't used by another process
244  *  - use inode PA
245  *    - use inode PA
246  *      i_data_sem or another mutex should serializes them
247  *    - discard inode PA
248  *      discard process must wait until PA isn't used by another process
249  *    - use locality group PA
250  *      nothing wrong here -- they're different PAs covering different blocks
251  *    - discard locality group PA
252  *      discard process must wait until PA isn't used by another process
253  *
254  * now we're ready to make few consequences:
255  *  - PA is referenced and while it is no discard is possible
256  *  - PA is referenced until block isn't marked in on-disk bitmap
257  *  - PA changes only after on-disk bitmap
258  *  - discard must not compete with init. either init is done before
259  *    any discard or they're serialized somehow
260  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
261  *
262  * a special case when we've used PA to emptiness. no need to modify buddy
263  * in this case, but we should care about concurrent init
264  *
265  */
266
267  /*
268  * Logic in few words:
269  *
270  *  - allocation:
271  *    load group
272  *    find blocks
273  *    mark bits in on-disk bitmap
274  *    release group
275  *
276  *  - use preallocation:
277  *    find proper PA (per-inode or group)
278  *    load group
279  *    mark bits in on-disk bitmap
280  *    release group
281  *    release PA
282  *
283  *  - free:
284  *    load group
285  *    mark bits in on-disk bitmap
286  *    release group
287  *
288  *  - discard preallocations in group:
289  *    mark PAs deleted
290  *    move them onto local list
291  *    load on-disk bitmap
292  *    load group
293  *    remove PA from object (inode or locality group)
294  *    mark free blocks in-core
295  *
296  *  - discard inode's preallocations:
297  */
298
299 /*
300  * Locking rules
301  *
302  * Locks:
303  *  - bitlock on a group        (group)
304  *  - object (inode/locality)   (object)
305  *  - per-pa lock               (pa)
306  *
307  * Paths:
308  *  - new pa
309  *    object
310  *    group
311  *
312  *  - find and use pa:
313  *    pa
314  *
315  *  - release consumed pa:
316  *    pa
317  *    group
318  *    object
319  *
320  *  - generate in-core bitmap:
321  *    group
322  *        pa
323  *
324  *  - discard all for given object (inode, locality group):
325  *    object
326  *        pa
327  *    group
328  *
329  *  - discard all for given group:
330  *    group
331  *        pa
332  *    group
333  *        object
334  *
335  */
336 static struct kmem_cache *ext4_pspace_cachep;
337 static struct kmem_cache *ext4_ac_cachep;
338 static struct kmem_cache *ext4_free_ext_cachep;
339 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
340                                         ext4_group_t group);
341 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
342                                                 ext4_group_t group);
343 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
344
345 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
346 {
347 #if BITS_PER_LONG == 64
348         *bit += ((unsigned long) addr & 7UL) << 3;
349         addr = (void *) ((unsigned long) addr & ~7UL);
350 #elif BITS_PER_LONG == 32
351         *bit += ((unsigned long) addr & 3UL) << 3;
352         addr = (void *) ((unsigned long) addr & ~3UL);
353 #else
354 #error "how many bits you are?!"
355 #endif
356         return addr;
357 }
358
359 static inline int mb_test_bit(int bit, void *addr)
360 {
361         /*
362          * ext4_test_bit on architecture like powerpc
363          * needs unsigned long aligned address
364          */
365         addr = mb_correct_addr_and_bit(&bit, addr);
366         return ext4_test_bit(bit, addr);
367 }
368
369 static inline void mb_set_bit(int bit, void *addr)
370 {
371         addr = mb_correct_addr_and_bit(&bit, addr);
372         ext4_set_bit(bit, addr);
373 }
374
375 static inline void mb_clear_bit(int bit, void *addr)
376 {
377         addr = mb_correct_addr_and_bit(&bit, addr);
378         ext4_clear_bit(bit, addr);
379 }
380
381 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
382 {
383         int fix = 0, ret, tmpmax;
384         addr = mb_correct_addr_and_bit(&fix, addr);
385         tmpmax = max + fix;
386         start += fix;
387
388         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
389         if (ret > max)
390                 return max;
391         return ret;
392 }
393
394 static inline int mb_find_next_bit(void *addr, int max, int start)
395 {
396         int fix = 0, ret, tmpmax;
397         addr = mb_correct_addr_and_bit(&fix, addr);
398         tmpmax = max + fix;
399         start += fix;
400
401         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
402         if (ret > max)
403                 return max;
404         return ret;
405 }
406
407 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
408 {
409         char *bb;
410
411         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
412         BUG_ON(max == NULL);
413
414         if (order > e4b->bd_blkbits + 1) {
415                 *max = 0;
416                 return NULL;
417         }
418
419         /* at order 0 we see each particular block */
420         *max = 1 << (e4b->bd_blkbits + 3);
421         if (order == 0)
422                 return EXT4_MB_BITMAP(e4b);
423
424         bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
425         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
426
427         return bb;
428 }
429
430 #ifdef DOUBLE_CHECK
431 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
432                            int first, int count)
433 {
434         int i;
435         struct super_block *sb = e4b->bd_sb;
436
437         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
438                 return;
439         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
440         for (i = 0; i < count; i++) {
441                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
442                         ext4_fsblk_t blocknr;
443                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
444                         blocknr += first + i;
445                         blocknr +=
446                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
447                         ext4_grp_locked_error(sb, e4b->bd_group,
448                                    __func__, "double-free of inode"
449                                    " %lu's block %llu(bit %u in group %u)",
450                                    inode ? inode->i_ino : 0, blocknr,
451                                    first + i, e4b->bd_group);
452                 }
453                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
454         }
455 }
456
457 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
458 {
459         int i;
460
461         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
462                 return;
463         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
464         for (i = 0; i < count; i++) {
465                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
466                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
467         }
468 }
469
470 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
471 {
472         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
473                 unsigned char *b1, *b2;
474                 int i;
475                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
476                 b2 = (unsigned char *) bitmap;
477                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
478                         if (b1[i] != b2[i]) {
479                                 printk(KERN_ERR "corruption in group %u "
480                                        "at byte %u(%u): %x in copy != %x "
481                                        "on disk/prealloc\n",
482                                        e4b->bd_group, i, i * 8, b1[i], b2[i]);
483                                 BUG();
484                         }
485                 }
486         }
487 }
488
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491                                 struct ext4_buddy *e4b, int first, int count)
492 {
493         return;
494 }
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496                                                 int first, int count)
497 {
498         return;
499 }
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
501 {
502         return;
503 }
504 #endif
505
506 #ifdef AGGRESSIVE_CHECK
507
508 #define MB_CHECK_ASSERT(assert)                                         \
509 do {                                                                    \
510         if (!(assert)) {                                                \
511                 printk(KERN_EMERG                                       \
512                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
513                         function, file, line, # assert);                \
514                 BUG();                                                  \
515         }                                                               \
516 } while (0)
517
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519                                 const char *function, int line)
520 {
521         struct super_block *sb = e4b->bd_sb;
522         int order = e4b->bd_blkbits + 1;
523         int max;
524         int max2;
525         int i;
526         int j;
527         int k;
528         int count;
529         struct ext4_group_info *grp;
530         int fragments = 0;
531         int fstart;
532         struct list_head *cur;
533         void *buddy;
534         void *buddy2;
535
536         {
537                 static int mb_check_counter;
538                 if (mb_check_counter++ % 100 != 0)
539                         return 0;
540         }
541
542         while (order > 1) {
543                 buddy = mb_find_buddy(e4b, order, &max);
544                 MB_CHECK_ASSERT(buddy);
545                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
546                 MB_CHECK_ASSERT(buddy2);
547                 MB_CHECK_ASSERT(buddy != buddy2);
548                 MB_CHECK_ASSERT(max * 2 == max2);
549
550                 count = 0;
551                 for (i = 0; i < max; i++) {
552
553                         if (mb_test_bit(i, buddy)) {
554                                 /* only single bit in buddy2 may be 1 */
555                                 if (!mb_test_bit(i << 1, buddy2)) {
556                                         MB_CHECK_ASSERT(
557                                                 mb_test_bit((i<<1)+1, buddy2));
558                                 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
559                                         MB_CHECK_ASSERT(
560                                                 mb_test_bit(i << 1, buddy2));
561                                 }
562                                 continue;
563                         }
564
565                         /* both bits in buddy2 must be 0 */
566                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
567                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
568
569                         for (j = 0; j < (1 << order); j++) {
570                                 k = (i * (1 << order)) + j;
571                                 MB_CHECK_ASSERT(
572                                         !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
573                         }
574                         count++;
575                 }
576                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
577                 order--;
578         }
579
580         fstart = -1;
581         buddy = mb_find_buddy(e4b, 0, &max);
582         for (i = 0; i < max; i++) {
583                 if (!mb_test_bit(i, buddy)) {
584                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
585                         if (fstart == -1) {
586                                 fragments++;
587                                 fstart = i;
588                         }
589                         continue;
590                 }
591                 fstart = -1;
592                 /* check used bits only */
593                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
594                         buddy2 = mb_find_buddy(e4b, j, &max2);
595                         k = i >> j;
596                         MB_CHECK_ASSERT(k < max2);
597                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
598                 }
599         }
600         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
601         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
602
603         grp = ext4_get_group_info(sb, e4b->bd_group);
604         buddy = mb_find_buddy(e4b, 0, &max);
605         list_for_each(cur, &grp->bb_prealloc_list) {
606                 ext4_group_t groupnr;
607                 struct ext4_prealloc_space *pa;
608                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
609                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
610                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
611                 for (i = 0; i < pa->pa_len; i++)
612                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
613         }
614         return 0;
615 }
616 #undef MB_CHECK_ASSERT
617 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
618                                         __FILE__, __func__, __LINE__)
619 #else
620 #define mb_check_buddy(e4b)
621 #endif
622
623 /* FIXME!! need more doc */
624 static void ext4_mb_mark_free_simple(struct super_block *sb,
625                                 void *buddy, unsigned first, int len,
626                                         struct ext4_group_info *grp)
627 {
628         struct ext4_sb_info *sbi = EXT4_SB(sb);
629         unsigned short min;
630         unsigned short max;
631         unsigned short chunk;
632         unsigned short border;
633
634         BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
635
636         border = 2 << sb->s_blocksize_bits;
637
638         while (len > 0) {
639                 /* find how many blocks can be covered since this position */
640                 max = ffs(first | border) - 1;
641
642                 /* find how many blocks of power 2 we need to mark */
643                 min = fls(len) - 1;
644
645                 if (max < min)
646                         min = max;
647                 chunk = 1 << min;
648
649                 /* mark multiblock chunks only */
650                 grp->bb_counters[min]++;
651                 if (min > 0)
652                         mb_clear_bit(first >> min,
653                                      buddy + sbi->s_mb_offsets[min]);
654
655                 len -= chunk;
656                 first += chunk;
657         }
658 }
659
660 static noinline_for_stack
661 void ext4_mb_generate_buddy(struct super_block *sb,
662                                 void *buddy, void *bitmap, ext4_group_t group)
663 {
664         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
665         unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
666         unsigned short i = 0;
667         unsigned short first;
668         unsigned short len;
669         unsigned free = 0;
670         unsigned fragments = 0;
671         unsigned long long period = get_cycles();
672
673         /* initialize buddy from bitmap which is aggregation
674          * of on-disk bitmap and preallocations */
675         i = mb_find_next_zero_bit(bitmap, max, 0);
676         grp->bb_first_free = i;
677         while (i < max) {
678                 fragments++;
679                 first = i;
680                 i = mb_find_next_bit(bitmap, max, i);
681                 len = i - first;
682                 free += len;
683                 if (len > 1)
684                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
685                 else
686                         grp->bb_counters[0]++;
687                 if (i < max)
688                         i = mb_find_next_zero_bit(bitmap, max, i);
689         }
690         grp->bb_fragments = fragments;
691
692         if (free != grp->bb_free) {
693                 ext4_grp_locked_error(sb, group,  __func__,
694                         "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
695                         group, free, grp->bb_free);
696                 /*
697                  * If we intent to continue, we consider group descritor
698                  * corrupt and update bb_free using bitmap value
699                  */
700                 grp->bb_free = free;
701         }
702
703         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
704
705         period = get_cycles() - period;
706         spin_lock(&EXT4_SB(sb)->s_bal_lock);
707         EXT4_SB(sb)->s_mb_buddies_generated++;
708         EXT4_SB(sb)->s_mb_generation_time += period;
709         spin_unlock(&EXT4_SB(sb)->s_bal_lock);
710 }
711
712 /* The buddy information is attached the buddy cache inode
713  * for convenience. The information regarding each group
714  * is loaded via ext4_mb_load_buddy. The information involve
715  * block bitmap and buddy information. The information are
716  * stored in the inode as
717  *
718  * {                        page                        }
719  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
720  *
721  *
722  * one block each for bitmap and buddy information.
723  * So for each group we take up 2 blocks. A page can
724  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
725  * So it can have information regarding groups_per_page which
726  * is blocks_per_page/2
727  */
728
729 static int ext4_mb_init_cache(struct page *page, char *incore)
730 {
731         ext4_group_t ngroups;
732         int blocksize;
733         int blocks_per_page;
734         int groups_per_page;
735         int err = 0;
736         int i;
737         ext4_group_t first_group;
738         int first_block;
739         struct super_block *sb;
740         struct buffer_head *bhs;
741         struct buffer_head **bh;
742         struct inode *inode;
743         char *data;
744         char *bitmap;
745
746         mb_debug("init page %lu\n", page->index);
747
748         inode = page->mapping->host;
749         sb = inode->i_sb;
750         ngroups = ext4_get_groups_count(sb);
751         blocksize = 1 << inode->i_blkbits;
752         blocks_per_page = PAGE_CACHE_SIZE / blocksize;
753
754         groups_per_page = blocks_per_page >> 1;
755         if (groups_per_page == 0)
756                 groups_per_page = 1;
757
758         /* allocate buffer_heads to read bitmaps */
759         if (groups_per_page > 1) {
760                 err = -ENOMEM;
761                 i = sizeof(struct buffer_head *) * groups_per_page;
762                 bh = kzalloc(i, GFP_NOFS);
763                 if (bh == NULL)
764                         goto out;
765         } else
766                 bh = &bhs;
767
768         first_group = page->index * blocks_per_page / 2;
769
770         /* read all groups the page covers into the cache */
771         for (i = 0; i < groups_per_page; i++) {
772                 struct ext4_group_desc *desc;
773
774                 if (first_group + i >= ngroups)
775                         break;
776
777                 err = -EIO;
778                 desc = ext4_get_group_desc(sb, first_group + i, NULL);
779                 if (desc == NULL)
780                         goto out;
781
782                 err = -ENOMEM;
783                 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
784                 if (bh[i] == NULL)
785                         goto out;
786
787                 if (bitmap_uptodate(bh[i]))
788                         continue;
789
790                 lock_buffer(bh[i]);
791                 if (bitmap_uptodate(bh[i])) {
792                         unlock_buffer(bh[i]);
793                         continue;
794                 }
795                 ext4_lock_group(sb, first_group + i);
796                 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
797                         ext4_init_block_bitmap(sb, bh[i],
798                                                 first_group + i, desc);
799                         set_bitmap_uptodate(bh[i]);
800                         set_buffer_uptodate(bh[i]);
801                         ext4_unlock_group(sb, first_group + i);
802                         unlock_buffer(bh[i]);
803                         continue;
804                 }
805                 ext4_unlock_group(sb, first_group + i);
806                 if (buffer_uptodate(bh[i])) {
807                         /*
808                          * if not uninit if bh is uptodate,
809                          * bitmap is also uptodate
810                          */
811                         set_bitmap_uptodate(bh[i]);
812                         unlock_buffer(bh[i]);
813                         continue;
814                 }
815                 get_bh(bh[i]);
816                 /*
817                  * submit the buffer_head for read. We can
818                  * safely mark the bitmap as uptodate now.
819                  * We do it here so the bitmap uptodate bit
820                  * get set with buffer lock held.
821                  */
822                 set_bitmap_uptodate(bh[i]);
823                 bh[i]->b_end_io = end_buffer_read_sync;
824                 submit_bh(READ, bh[i]);
825                 mb_debug("read bitmap for group %u\n", first_group + i);
826         }
827
828         /* wait for I/O completion */
829         for (i = 0; i < groups_per_page && bh[i]; i++)
830                 wait_on_buffer(bh[i]);
831
832         err = -EIO;
833         for (i = 0; i < groups_per_page && bh[i]; i++)
834                 if (!buffer_uptodate(bh[i]))
835                         goto out;
836
837         err = 0;
838         first_block = page->index * blocks_per_page;
839         /* init the page  */
840         memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
841         for (i = 0; i < blocks_per_page; i++) {
842                 int group;
843                 struct ext4_group_info *grinfo;
844
845                 group = (first_block + i) >> 1;
846                 if (group >= ngroups)
847                         break;
848
849                 /*
850                  * data carry information regarding this
851                  * particular group in the format specified
852                  * above
853                  *
854                  */
855                 data = page_address(page) + (i * blocksize);
856                 bitmap = bh[group - first_group]->b_data;
857
858                 /*
859                  * We place the buddy block and bitmap block
860                  * close together
861                  */
862                 if ((first_block + i) & 1) {
863                         /* this is block of buddy */
864                         BUG_ON(incore == NULL);
865                         mb_debug("put buddy for group %u in page %lu/%x\n",
866                                 group, page->index, i * blocksize);
867                         grinfo = ext4_get_group_info(sb, group);
868                         grinfo->bb_fragments = 0;
869                         memset(grinfo->bb_counters, 0,
870                                sizeof(unsigned short)*(sb->s_blocksize_bits+2));
871                         /*
872                          * incore got set to the group block bitmap below
873                          */
874                         ext4_lock_group(sb, group);
875                         ext4_mb_generate_buddy(sb, data, incore, group);
876                         ext4_unlock_group(sb, group);
877                         incore = NULL;
878                 } else {
879                         /* this is block of bitmap */
880                         BUG_ON(incore != NULL);
881                         mb_debug("put bitmap for group %u in page %lu/%x\n",
882                                 group, page->index, i * blocksize);
883
884                         /* see comments in ext4_mb_put_pa() */
885                         ext4_lock_group(sb, group);
886                         memcpy(data, bitmap, blocksize);
887
888                         /* mark all preallocated blks used in in-core bitmap */
889                         ext4_mb_generate_from_pa(sb, data, group);
890                         ext4_mb_generate_from_freelist(sb, data, group);
891                         ext4_unlock_group(sb, group);
892
893                         /* set incore so that the buddy information can be
894                          * generated using this
895                          */
896                         incore = data;
897                 }
898         }
899         SetPageUptodate(page);
900
901 out:
902         if (bh) {
903                 for (i = 0; i < groups_per_page && bh[i]; i++)
904                         brelse(bh[i]);
905                 if (bh != &bhs)
906                         kfree(bh);
907         }
908         return err;
909 }
910
911 static noinline_for_stack int
912 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
913                                         struct ext4_buddy *e4b)
914 {
915         int blocks_per_page;
916         int block;
917         int pnum;
918         int poff;
919         struct page *page;
920         int ret;
921         struct ext4_group_info *grp;
922         struct ext4_sb_info *sbi = EXT4_SB(sb);
923         struct inode *inode = sbi->s_buddy_cache;
924
925         mb_debug("load group %u\n", group);
926
927         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
928         grp = ext4_get_group_info(sb, group);
929
930         e4b->bd_blkbits = sb->s_blocksize_bits;
931         e4b->bd_info = ext4_get_group_info(sb, group);
932         e4b->bd_sb = sb;
933         e4b->bd_group = group;
934         e4b->bd_buddy_page = NULL;
935         e4b->bd_bitmap_page = NULL;
936         e4b->alloc_semp = &grp->alloc_sem;
937
938         /* Take the read lock on the group alloc
939          * sem. This would make sure a parallel
940          * ext4_mb_init_group happening on other
941          * groups mapped by the page is blocked
942          * till we are done with allocation
943          */
944         down_read(e4b->alloc_semp);
945
946         /*
947          * the buddy cache inode stores the block bitmap
948          * and buddy information in consecutive blocks.
949          * So for each group we need two blocks.
950          */
951         block = group * 2;
952         pnum = block / blocks_per_page;
953         poff = block % blocks_per_page;
954
955         /* we could use find_or_create_page(), but it locks page
956          * what we'd like to avoid in fast path ... */
957         page = find_get_page(inode->i_mapping, pnum);
958         if (page == NULL || !PageUptodate(page)) {
959                 if (page)
960                         /*
961                          * drop the page reference and try
962                          * to get the page with lock. If we
963                          * are not uptodate that implies
964                          * somebody just created the page but
965                          * is yet to initialize the same. So
966                          * wait for it to initialize.
967                          */
968                         page_cache_release(page);
969                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
970                 if (page) {
971                         BUG_ON(page->mapping != inode->i_mapping);
972                         if (!PageUptodate(page)) {
973                                 ret = ext4_mb_init_cache(page, NULL);
974                                 if (ret) {
975                                         unlock_page(page);
976                                         goto err;
977                                 }
978                                 mb_cmp_bitmaps(e4b, page_address(page) +
979                                                (poff * sb->s_blocksize));
980                         }
981                         unlock_page(page);
982                 }
983         }
984         if (page == NULL || !PageUptodate(page)) {
985                 ret = -EIO;
986                 goto err;
987         }
988         e4b->bd_bitmap_page = page;
989         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
990         mark_page_accessed(page);
991
992         block++;
993         pnum = block / blocks_per_page;
994         poff = block % blocks_per_page;
995
996         page = find_get_page(inode->i_mapping, pnum);
997         if (page == NULL || !PageUptodate(page)) {
998                 if (page)
999                         page_cache_release(page);
1000                 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1001                 if (page) {
1002                         BUG_ON(page->mapping != inode->i_mapping);
1003                         if (!PageUptodate(page)) {
1004                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1005                                 if (ret) {
1006                                         unlock_page(page);
1007                                         goto err;
1008                                 }
1009                         }
1010                         unlock_page(page);
1011                 }
1012         }
1013         if (page == NULL || !PageUptodate(page)) {
1014                 ret = -EIO;
1015                 goto err;
1016         }
1017         e4b->bd_buddy_page = page;
1018         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1019         mark_page_accessed(page);
1020
1021         BUG_ON(e4b->bd_bitmap_page == NULL);
1022         BUG_ON(e4b->bd_buddy_page == NULL);
1023
1024         return 0;
1025
1026 err:
1027         if (e4b->bd_bitmap_page)
1028                 page_cache_release(e4b->bd_bitmap_page);
1029         if (e4b->bd_buddy_page)
1030                 page_cache_release(e4b->bd_buddy_page);
1031         e4b->bd_buddy = NULL;
1032         e4b->bd_bitmap = NULL;
1033
1034         /* Done with the buddy cache */
1035         up_read(e4b->alloc_semp);
1036         return ret;
1037 }
1038
1039 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1040 {
1041         if (e4b->bd_bitmap_page)
1042                 page_cache_release(e4b->bd_bitmap_page);
1043         if (e4b->bd_buddy_page)
1044                 page_cache_release(e4b->bd_buddy_page);
1045         /* Done with the buddy cache */
1046         if (e4b->alloc_semp)
1047                 up_read(e4b->alloc_semp);
1048 }
1049
1050
1051 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1052 {
1053         int order = 1;
1054         void *bb;
1055
1056         BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1057         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1058
1059         bb = EXT4_MB_BUDDY(e4b);
1060         while (order <= e4b->bd_blkbits + 1) {
1061                 block = block >> 1;
1062                 if (!mb_test_bit(block, bb)) {
1063                         /* this block is part of buddy of order 'order' */
1064                         return order;
1065                 }
1066                 bb += 1 << (e4b->bd_blkbits - order);
1067                 order++;
1068         }
1069         return 0;
1070 }
1071
1072 static void mb_clear_bits(void *bm, int cur, int len)
1073 {
1074         __u32 *addr;
1075
1076         len = cur + len;
1077         while (cur < len) {
1078                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1079                         /* fast path: clear whole word at once */
1080                         addr = bm + (cur >> 3);
1081                         *addr = 0;
1082                         cur += 32;
1083                         continue;
1084                 }
1085                 mb_clear_bit(cur, bm);
1086                 cur++;
1087         }
1088 }
1089
1090 static void mb_set_bits(void *bm, int cur, int len)
1091 {
1092         __u32 *addr;
1093
1094         len = cur + len;
1095         while (cur < len) {
1096                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1097                         /* fast path: set whole word at once */
1098                         addr = bm + (cur >> 3);
1099                         *addr = 0xffffffff;
1100                         cur += 32;
1101                         continue;
1102                 }
1103                 mb_set_bit(cur, bm);
1104                 cur++;
1105         }
1106 }
1107
1108 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1109                           int first, int count)
1110 {
1111         int block = 0;
1112         int max = 0;
1113         int order;
1114         void *buddy;
1115         void *buddy2;
1116         struct super_block *sb = e4b->bd_sb;
1117
1118         BUG_ON(first + count > (sb->s_blocksize << 3));
1119         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1120         mb_check_buddy(e4b);
1121         mb_free_blocks_double(inode, e4b, first, count);
1122
1123         e4b->bd_info->bb_free += count;
1124         if (first < e4b->bd_info->bb_first_free)
1125                 e4b->bd_info->bb_first_free = first;
1126
1127         /* let's maintain fragments counter */
1128         if (first != 0)
1129                 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1130         if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1131                 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1132         if (block && max)
1133                 e4b->bd_info->bb_fragments--;
1134         else if (!block && !max)
1135                 e4b->bd_info->bb_fragments++;
1136
1137         /* let's maintain buddy itself */
1138         while (count-- > 0) {
1139                 block = first++;
1140                 order = 0;
1141
1142                 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1143                         ext4_fsblk_t blocknr;
1144                         blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1145                         blocknr += block;
1146                         blocknr +=
1147                             le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1148                         ext4_grp_locked_error(sb, e4b->bd_group,
1149                                    __func__, "double-free of inode"
1150                                    " %lu's block %llu(bit %u in group %u)",
1151                                    inode ? inode->i_ino : 0, blocknr, block,
1152                                    e4b->bd_group);
1153                 }
1154                 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1155                 e4b->bd_info->bb_counters[order]++;
1156
1157                 /* start of the buddy */
1158                 buddy = mb_find_buddy(e4b, order, &max);
1159
1160                 do {
1161                         block &= ~1UL;
1162                         if (mb_test_bit(block, buddy) ||
1163                                         mb_test_bit(block + 1, buddy))
1164                                 break;
1165
1166                         /* both the buddies are free, try to coalesce them */
1167                         buddy2 = mb_find_buddy(e4b, order + 1, &max);
1168
1169                         if (!buddy2)
1170                                 break;
1171
1172                         if (order > 0) {
1173                                 /* for special purposes, we don't set
1174                                  * free bits in bitmap */
1175                                 mb_set_bit(block, buddy);
1176                                 mb_set_bit(block + 1, buddy);
1177                         }
1178                         e4b->bd_info->bb_counters[order]--;
1179                         e4b->bd_info->bb_counters[order]--;
1180
1181                         block = block >> 1;
1182                         order++;
1183                         e4b->bd_info->bb_counters[order]++;
1184
1185                         mb_clear_bit(block, buddy2);
1186                         buddy = buddy2;
1187                 } while (1);
1188         }
1189         mb_check_buddy(e4b);
1190 }
1191
1192 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1193                                 int needed, struct ext4_free_extent *ex)
1194 {
1195         int next = block;
1196         int max;
1197         int ord;
1198         void *buddy;
1199
1200         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1201         BUG_ON(ex == NULL);
1202
1203         buddy = mb_find_buddy(e4b, order, &max);
1204         BUG_ON(buddy == NULL);
1205         BUG_ON(block >= max);
1206         if (mb_test_bit(block, buddy)) {
1207                 ex->fe_len = 0;
1208                 ex->fe_start = 0;
1209                 ex->fe_group = 0;
1210                 return 0;
1211         }
1212
1213         /* FIXME dorp order completely ? */
1214         if (likely(order == 0)) {
1215                 /* find actual order */
1216                 order = mb_find_order_for_block(e4b, block);
1217                 block = block >> order;
1218         }
1219
1220         ex->fe_len = 1 << order;
1221         ex->fe_start = block << order;
1222         ex->fe_group = e4b->bd_group;
1223
1224         /* calc difference from given start */
1225         next = next - ex->fe_start;
1226         ex->fe_len -= next;
1227         ex->fe_start += next;
1228
1229         while (needed > ex->fe_len &&
1230                (buddy = mb_find_buddy(e4b, order, &max))) {
1231
1232                 if (block + 1 >= max)
1233                         break;
1234
1235                 next = (block + 1) * (1 << order);
1236                 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1237                         break;
1238
1239                 ord = mb_find_order_for_block(e4b, next);
1240
1241                 order = ord;
1242                 block = next >> order;
1243                 ex->fe_len += 1 << order;
1244         }
1245
1246         BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1247         return ex->fe_len;
1248 }
1249
1250 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1251 {
1252         int ord;
1253         int mlen = 0;
1254         int max = 0;
1255         int cur;
1256         int start = ex->fe_start;
1257         int len = ex->fe_len;
1258         unsigned ret = 0;
1259         int len0 = len;
1260         void *buddy;
1261
1262         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1263         BUG_ON(e4b->bd_group != ex->fe_group);
1264         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1265         mb_check_buddy(e4b);
1266         mb_mark_used_double(e4b, start, len);
1267
1268         e4b->bd_info->bb_free -= len;
1269         if (e4b->bd_info->bb_first_free == start)
1270                 e4b->bd_info->bb_first_free += len;
1271
1272         /* let's maintain fragments counter */
1273         if (start != 0)
1274                 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1275         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1276                 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1277         if (mlen && max)
1278                 e4b->bd_info->bb_fragments++;
1279         else if (!mlen && !max)
1280                 e4b->bd_info->bb_fragments--;
1281
1282         /* let's maintain buddy itself */
1283         while (len) {
1284                 ord = mb_find_order_for_block(e4b, start);
1285
1286                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1287                         /* the whole chunk may be allocated at once! */
1288                         mlen = 1 << ord;
1289                         buddy = mb_find_buddy(e4b, ord, &max);
1290                         BUG_ON((start >> ord) >= max);
1291                         mb_set_bit(start >> ord, buddy);
1292                         e4b->bd_info->bb_counters[ord]--;
1293                         start += mlen;
1294                         len -= mlen;
1295                         BUG_ON(len < 0);
1296                         continue;
1297                 }
1298
1299                 /* store for history */
1300                 if (ret == 0)
1301                         ret = len | (ord << 16);
1302
1303                 /* we have to split large buddy */
1304                 BUG_ON(ord <= 0);
1305                 buddy = mb_find_buddy(e4b, ord, &max);
1306                 mb_set_bit(start >> ord, buddy);
1307                 e4b->bd_info->bb_counters[ord]--;
1308
1309                 ord--;
1310                 cur = (start >> ord) & ~1U;
1311                 buddy = mb_find_buddy(e4b, ord, &max);
1312                 mb_clear_bit(cur, buddy);
1313                 mb_clear_bit(cur + 1, buddy);
1314                 e4b->bd_info->bb_counters[ord]++;
1315                 e4b->bd_info->bb_counters[ord]++;
1316         }
1317
1318         mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1319         mb_check_buddy(e4b);
1320
1321         return ret;
1322 }
1323
1324 /*
1325  * Must be called under group lock!
1326  */
1327 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1328                                         struct ext4_buddy *e4b)
1329 {
1330         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1331         int ret;
1332
1333         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1334         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1335
1336         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1337         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1338         ret = mb_mark_used(e4b, &ac->ac_b_ex);
1339
1340         /* preallocation can change ac_b_ex, thus we store actually
1341          * allocated blocks for history */
1342         ac->ac_f_ex = ac->ac_b_ex;
1343
1344         ac->ac_status = AC_STATUS_FOUND;
1345         ac->ac_tail = ret & 0xffff;
1346         ac->ac_buddy = ret >> 16;
1347
1348         /*
1349          * take the page reference. We want the page to be pinned
1350          * so that we don't get a ext4_mb_init_cache_call for this
1351          * group until we update the bitmap. That would mean we
1352          * double allocate blocks. The reference is dropped
1353          * in ext4_mb_release_context
1354          */
1355         ac->ac_bitmap_page = e4b->bd_bitmap_page;
1356         get_page(ac->ac_bitmap_page);
1357         ac->ac_buddy_page = e4b->bd_buddy_page;
1358         get_page(ac->ac_buddy_page);
1359         /* on allocation we use ac to track the held semaphore */
1360         ac->alloc_semp =  e4b->alloc_semp;
1361         e4b->alloc_semp = NULL;
1362         /* store last allocated for subsequent stream allocation */
1363         if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1364                 spin_lock(&sbi->s_md_lock);
1365                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1366                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1367                 spin_unlock(&sbi->s_md_lock);
1368         }
1369 }
1370
1371 /*
1372  * regular allocator, for general purposes allocation
1373  */
1374
1375 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1376                                         struct ext4_buddy *e4b,
1377                                         int finish_group)
1378 {
1379         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1380         struct ext4_free_extent *bex = &ac->ac_b_ex;
1381         struct ext4_free_extent *gex = &ac->ac_g_ex;
1382         struct ext4_free_extent ex;
1383         int max;
1384
1385         if (ac->ac_status == AC_STATUS_FOUND)
1386                 return;
1387         /*
1388          * We don't want to scan for a whole year
1389          */
1390         if (ac->ac_found > sbi->s_mb_max_to_scan &&
1391                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1392                 ac->ac_status = AC_STATUS_BREAK;
1393                 return;
1394         }
1395
1396         /*
1397          * Haven't found good chunk so far, let's continue
1398          */
1399         if (bex->fe_len < gex->fe_len)
1400                 return;
1401
1402         if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1403                         && bex->fe_group == e4b->bd_group) {
1404                 /* recheck chunk's availability - we don't know
1405                  * when it was found (within this lock-unlock
1406                  * period or not) */
1407                 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1408                 if (max >= gex->fe_len) {
1409                         ext4_mb_use_best_found(ac, e4b);
1410                         return;
1411                 }
1412         }
1413 }
1414
1415 /*
1416  * The routine checks whether found extent is good enough. If it is,
1417  * then the extent gets marked used and flag is set to the context
1418  * to stop scanning. Otherwise, the extent is compared with the
1419  * previous found extent and if new one is better, then it's stored
1420  * in the context. Later, the best found extent will be used, if
1421  * mballoc can't find good enough extent.
1422  *
1423  * FIXME: real allocation policy is to be designed yet!
1424  */
1425 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1426                                         struct ext4_free_extent *ex,
1427                                         struct ext4_buddy *e4b)
1428 {
1429         struct ext4_free_extent *bex = &ac->ac_b_ex;
1430         struct ext4_free_extent *gex = &ac->ac_g_ex;
1431
1432         BUG_ON(ex->fe_len <= 0);
1433         BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1434         BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1435         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1436
1437         ac->ac_found++;
1438
1439         /*
1440          * The special case - take what you catch first
1441          */
1442         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1443                 *bex = *ex;
1444                 ext4_mb_use_best_found(ac, e4b);
1445                 return;
1446         }
1447
1448         /*
1449          * Let's check whether the chuck is good enough
1450          */
1451         if (ex->fe_len == gex->fe_len) {
1452                 *bex = *ex;
1453                 ext4_mb_use_best_found(ac, e4b);
1454                 return;
1455         }
1456
1457         /*
1458          * If this is first found extent, just store it in the context
1459          */
1460         if (bex->fe_len == 0) {
1461                 *bex = *ex;
1462                 return;
1463         }
1464
1465         /*
1466          * If new found extent is better, store it in the context
1467          */
1468         if (bex->fe_len < gex->fe_len) {
1469                 /* if the request isn't satisfied, any found extent
1470                  * larger than previous best one is better */
1471                 if (ex->fe_len > bex->fe_len)
1472                         *bex = *ex;
1473         } else if (ex->fe_len > gex->fe_len) {
1474                 /* if the request is satisfied, then we try to find
1475                  * an extent that still satisfy the request, but is
1476                  * smaller than previous one */
1477                 if (ex->fe_len < bex->fe_len)
1478                         *bex = *ex;
1479         }
1480
1481         ext4_mb_check_limits(ac, e4b, 0);
1482 }
1483
1484 static noinline_for_stack
1485 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1486                                         struct ext4_buddy *e4b)
1487 {
1488         struct ext4_free_extent ex = ac->ac_b_ex;
1489         ext4_group_t group = ex.fe_group;
1490         int max;
1491         int err;
1492
1493         BUG_ON(ex.fe_len <= 0);
1494         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1495         if (err)
1496                 return err;
1497
1498         ext4_lock_group(ac->ac_sb, group);
1499         max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1500
1501         if (max > 0) {
1502                 ac->ac_b_ex = ex;
1503                 ext4_mb_use_best_found(ac, e4b);
1504         }
1505
1506         ext4_unlock_group(ac->ac_sb, group);
1507         ext4_mb_release_desc(e4b);
1508
1509         return 0;
1510 }
1511
1512 static noinline_for_stack
1513 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1514                                 struct ext4_buddy *e4b)
1515 {
1516         ext4_group_t group = ac->ac_g_ex.fe_group;
1517         int max;
1518         int err;
1519         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1520         struct ext4_super_block *es = sbi->s_es;
1521         struct ext4_free_extent ex;
1522
1523         if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1524                 return 0;
1525
1526         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1527         if (err)
1528                 return err;
1529
1530         ext4_lock_group(ac->ac_sb, group);
1531         max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1532                              ac->ac_g_ex.fe_len, &ex);
1533
1534         if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1535                 ext4_fsblk_t start;
1536
1537                 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1538                         ex.fe_start + le32_to_cpu(es->s_first_data_block);
1539                 /* use do_div to get remainder (would be 64-bit modulo) */
1540                 if (do_div(start, sbi->s_stripe) == 0) {
1541                         ac->ac_found++;
1542                         ac->ac_b_ex = ex;
1543                         ext4_mb_use_best_found(ac, e4b);
1544                 }
1545         } else if (max >= ac->ac_g_ex.fe_len) {
1546                 BUG_ON(ex.fe_len <= 0);
1547                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1548                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1549                 ac->ac_found++;
1550                 ac->ac_b_ex = ex;
1551                 ext4_mb_use_best_found(ac, e4b);
1552         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1553                 /* Sometimes, caller may want to merge even small
1554                  * number of blocks to an existing extent */
1555                 BUG_ON(ex.fe_len <= 0);
1556                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1557                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1558                 ac->ac_found++;
1559                 ac->ac_b_ex = ex;
1560                 ext4_mb_use_best_found(ac, e4b);
1561         }
1562         ext4_unlock_group(ac->ac_sb, group);
1563         ext4_mb_release_desc(e4b);
1564
1565         return 0;
1566 }
1567
1568 /*
1569  * The routine scans buddy structures (not bitmap!) from given order
1570  * to max order and tries to find big enough chunk to satisfy the req
1571  */
1572 static noinline_for_stack
1573 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1574                                         struct ext4_buddy *e4b)
1575 {
1576         struct super_block *sb = ac->ac_sb;
1577         struct ext4_group_info *grp = e4b->bd_info;
1578         void *buddy;
1579         int i;
1580         int k;
1581         int max;
1582
1583         BUG_ON(ac->ac_2order <= 0);
1584         for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1585                 if (grp->bb_counters[i] == 0)
1586                         continue;
1587
1588                 buddy = mb_find_buddy(e4b, i, &max);
1589                 BUG_ON(buddy == NULL);
1590
1591                 k = mb_find_next_zero_bit(buddy, max, 0);
1592                 BUG_ON(k >= max);
1593
1594                 ac->ac_found++;
1595
1596                 ac->ac_b_ex.fe_len = 1 << i;
1597                 ac->ac_b_ex.fe_start = k << i;
1598                 ac->ac_b_ex.fe_group = e4b->bd_group;
1599
1600                 ext4_mb_use_best_found(ac, e4b);
1601
1602                 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1603
1604                 if (EXT4_SB(sb)->s_mb_stats)
1605                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1606
1607                 break;
1608         }
1609 }
1610
1611 /*
1612  * The routine scans the group and measures all found extents.
1613  * In order to optimize scanning, caller must pass number of
1614  * free blocks in the group, so the routine can know upper limit.
1615  */
1616 static noinline_for_stack
1617 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1618                                         struct ext4_buddy *e4b)
1619 {
1620         struct super_block *sb = ac->ac_sb;
1621         void *bitmap = EXT4_MB_BITMAP(e4b);
1622         struct ext4_free_extent ex;
1623         int i;
1624         int free;
1625
1626         free = e4b->bd_info->bb_free;
1627         BUG_ON(free <= 0);
1628
1629         i = e4b->bd_info->bb_first_free;
1630
1631         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1632                 i = mb_find_next_zero_bit(bitmap,
1633                                                 EXT4_BLOCKS_PER_GROUP(sb), i);
1634                 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1635                         /*
1636                          * IF we have corrupt bitmap, we won't find any
1637                          * free blocks even though group info says we
1638                          * we have free blocks
1639                          */
1640                         ext4_grp_locked_error(sb, e4b->bd_group,
1641                                         __func__, "%d free blocks as per "
1642                                         "group info. But bitmap says 0",
1643                                         free);
1644                         break;
1645                 }
1646
1647                 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1648                 BUG_ON(ex.fe_len <= 0);
1649                 if (free < ex.fe_len) {
1650                         ext4_grp_locked_error(sb, e4b->bd_group,
1651                                         __func__, "%d free blocks as per "
1652                                         "group info. But got %d blocks",
1653                                         free, ex.fe_len);
1654                         /*
1655                          * The number of free blocks differs. This mostly
1656                          * indicate that the bitmap is corrupt. So exit
1657                          * without claiming the space.
1658                          */
1659                         break;
1660                 }
1661
1662                 ext4_mb_measure_extent(ac, &ex, e4b);
1663
1664                 i += ex.fe_len;
1665                 free -= ex.fe_len;
1666         }
1667
1668         ext4_mb_check_limits(ac, e4b, 1);
1669 }
1670
1671 /*
1672  * This is a special case for storages like raid5
1673  * we try to find stripe-aligned chunks for stripe-size requests
1674  * XXX should do so at least for multiples of stripe size as well
1675  */
1676 static noinline_for_stack
1677 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1678                                  struct ext4_buddy *e4b)
1679 {
1680         struct super_block *sb = ac->ac_sb;
1681         struct ext4_sb_info *sbi = EXT4_SB(sb);
1682         void *bitmap = EXT4_MB_BITMAP(e4b);
1683         struct ext4_free_extent ex;
1684         ext4_fsblk_t first_group_block;
1685         ext4_fsblk_t a;
1686         ext4_grpblk_t i;
1687         int max;
1688
1689         BUG_ON(sbi->s_stripe == 0);
1690
1691         /* find first stripe-aligned block in group */
1692         first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1693                 + le32_to_cpu(sbi->s_es->s_first_data_block);
1694         a = first_group_block + sbi->s_stripe - 1;
1695         do_div(a, sbi->s_stripe);
1696         i = (a * sbi->s_stripe) - first_group_block;
1697
1698         while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1699                 if (!mb_test_bit(i, bitmap)) {
1700                         max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1701                         if (max >= sbi->s_stripe) {
1702                                 ac->ac_found++;
1703                                 ac->ac_b_ex = ex;
1704                                 ext4_mb_use_best_found(ac, e4b);
1705                                 break;
1706                         }
1707                 }
1708                 i += sbi->s_stripe;
1709         }
1710 }
1711
1712 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1713                                 ext4_group_t group, int cr)
1714 {
1715         unsigned free, fragments;
1716         unsigned i, bits;
1717         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1718         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1719
1720         BUG_ON(cr < 0 || cr >= 4);
1721         BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1722
1723         free = grp->bb_free;
1724         fragments = grp->bb_fragments;
1725         if (free == 0)
1726                 return 0;
1727         if (fragments == 0)
1728                 return 0;
1729
1730         switch (cr) {
1731         case 0:
1732                 BUG_ON(ac->ac_2order == 0);
1733
1734                 /* Avoid using the first bg of a flexgroup for data files */
1735                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1736                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1737                     ((group % flex_size) == 0))
1738                         return 0;
1739
1740                 bits = ac->ac_sb->s_blocksize_bits + 1;
1741                 for (i = ac->ac_2order; i <= bits; i++)
1742                         if (grp->bb_counters[i] > 0)
1743                                 return 1;
1744                 break;
1745         case 1:
1746                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1747                         return 1;
1748                 break;
1749         case 2:
1750                 if (free >= ac->ac_g_ex.fe_len)
1751                         return 1;
1752                 break;
1753         case 3:
1754                 return 1;
1755         default:
1756                 BUG();
1757         }
1758
1759         return 0;
1760 }
1761
1762 /*
1763  * lock the group_info alloc_sem of all the groups
1764  * belonging to the same buddy cache page. This
1765  * make sure other parallel operation on the buddy
1766  * cache doesn't happen  whild holding the buddy cache
1767  * lock
1768  */
1769 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1770 {
1771         int i;
1772         int block, pnum;
1773         int blocks_per_page;
1774         int groups_per_page;
1775         ext4_group_t ngroups = ext4_get_groups_count(sb);
1776         ext4_group_t first_group;
1777         struct ext4_group_info *grp;
1778
1779         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1780         /*
1781          * the buddy cache inode stores the block bitmap
1782          * and buddy information in consecutive blocks.
1783          * So for each group we need two blocks.
1784          */
1785         block = group * 2;
1786         pnum = block / blocks_per_page;
1787         first_group = pnum * blocks_per_page / 2;
1788
1789         groups_per_page = blocks_per_page >> 1;
1790         if (groups_per_page == 0)
1791                 groups_per_page = 1;
1792         /* read all groups the page covers into the cache */
1793         for (i = 0; i < groups_per_page; i++) {
1794
1795                 if ((first_group + i) >= ngroups)
1796                         break;
1797                 grp = ext4_get_group_info(sb, first_group + i);
1798                 /* take all groups write allocation
1799                  * semaphore. This make sure there is
1800                  * no block allocation going on in any
1801                  * of that groups
1802                  */
1803                 down_write_nested(&grp->alloc_sem, i);
1804         }
1805         return i;
1806 }
1807
1808 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1809                                         ext4_group_t group, int locked_group)
1810 {
1811         int i;
1812         int block, pnum;
1813         int blocks_per_page;
1814         ext4_group_t first_group;
1815         struct ext4_group_info *grp;
1816
1817         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1818         /*
1819          * the buddy cache inode stores the block bitmap
1820          * and buddy information in consecutive blocks.
1821          * So for each group we need two blocks.
1822          */
1823         block = group * 2;
1824         pnum = block / blocks_per_page;
1825         first_group = pnum * blocks_per_page / 2;
1826         /* release locks on all the groups */
1827         for (i = 0; i < locked_group; i++) {
1828
1829                 grp = ext4_get_group_info(sb, first_group + i);
1830                 /* take all groups write allocation
1831                  * semaphore. This make sure there is
1832                  * no block allocation going on in any
1833                  * of that groups
1834                  */
1835                 up_write(&grp->alloc_sem);
1836         }
1837
1838 }
1839
1840 static noinline_for_stack
1841 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1842 {
1843
1844         int ret;
1845         void *bitmap;
1846         int blocks_per_page;
1847         int block, pnum, poff;
1848         int num_grp_locked = 0;
1849         struct ext4_group_info *this_grp;
1850         struct ext4_sb_info *sbi = EXT4_SB(sb);
1851         struct inode *inode = sbi->s_buddy_cache;
1852         struct page *page = NULL, *bitmap_page = NULL;
1853
1854         mb_debug("init group %lu\n", group);
1855         blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1856         this_grp = ext4_get_group_info(sb, group);
1857         /*
1858          * This ensures we don't add group
1859          * to this buddy cache via resize
1860          */
1861         num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
1862         if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1863                 /*
1864                  * somebody initialized the group
1865                  * return without doing anything
1866                  */
1867                 ret = 0;
1868                 goto err;
1869         }
1870         /*
1871          * the buddy cache inode stores the block bitmap
1872          * and buddy information in consecutive blocks.
1873          * So for each group we need two blocks.
1874          */
1875         block = group * 2;
1876         pnum = block / blocks_per_page;
1877         poff = block % blocks_per_page;
1878         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1879         if (page) {
1880                 BUG_ON(page->mapping != inode->i_mapping);
1881                 ret = ext4_mb_init_cache(page, NULL);
1882                 if (ret) {
1883                         unlock_page(page);
1884                         goto err;
1885                 }
1886                 unlock_page(page);
1887         }
1888         if (page == NULL || !PageUptodate(page)) {
1889                 ret = -EIO;
1890                 goto err;
1891         }
1892         mark_page_accessed(page);
1893         bitmap_page = page;
1894         bitmap = page_address(page) + (poff * sb->s_blocksize);
1895
1896         /* init buddy cache */
1897         block++;
1898         pnum = block / blocks_per_page;
1899         poff = block % blocks_per_page;
1900         page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1901         if (page == bitmap_page) {
1902                 /*
1903                  * If both the bitmap and buddy are in
1904                  * the same page we don't need to force
1905                  * init the buddy
1906                  */
1907                 unlock_page(page);
1908         } else if (page) {
1909                 BUG_ON(page->mapping != inode->i_mapping);
1910                 ret = ext4_mb_init_cache(page, bitmap);
1911                 if (ret) {
1912                         unlock_page(page);
1913                         goto err;
1914                 }
1915                 unlock_page(page);
1916         }
1917         if (page == NULL || !PageUptodate(page)) {
1918                 ret = -EIO;
1919                 goto err;
1920         }
1921         mark_page_accessed(page);
1922 err:
1923         ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1924         if (bitmap_page)
1925                 page_cache_release(bitmap_page);
1926         if (page)
1927                 page_cache_release(page);
1928         return ret;
1929 }
1930
1931 static noinline_for_stack int
1932 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1933 {
1934         ext4_group_t ngroups, group, i;
1935         int cr;
1936         int err = 0;
1937         int bsbits;
1938         struct ext4_sb_info *sbi;
1939         struct super_block *sb;
1940         struct ext4_buddy e4b;
1941         loff_t size, isize;
1942
1943         sb = ac->ac_sb;
1944         sbi = EXT4_SB(sb);
1945         ngroups = ext4_get_groups_count(sb);
1946         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1947
1948         /* first, try the goal */
1949         err = ext4_mb_find_by_goal(ac, &e4b);
1950         if (err || ac->ac_status == AC_STATUS_FOUND)
1951                 goto out;
1952
1953         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1954                 goto out;
1955
1956         /*
1957          * ac->ac2_order is set only if the fe_len is a power of 2
1958          * if ac2_order is set we also set criteria to 0 so that we
1959          * try exact allocation using buddy.
1960          */
1961         i = fls(ac->ac_g_ex.fe_len);
1962         ac->ac_2order = 0;
1963         /*
1964          * We search using buddy data only if the order of the request
1965          * is greater than equal to the sbi_s_mb_order2_reqs
1966          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1967          */
1968         if (i >= sbi->s_mb_order2_reqs) {
1969                 /*
1970                  * This should tell if fe_len is exactly power of 2
1971                  */
1972                 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1973                         ac->ac_2order = i - 1;
1974         }
1975
1976         bsbits = ac->ac_sb->s_blocksize_bits;
1977         /* if stream allocation is enabled, use global goal */
1978         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1979         isize = i_size_read(ac->ac_inode) >> bsbits;
1980         if (size < isize)
1981                 size = isize;
1982
1983         if (size < sbi->s_mb_stream_request &&
1984                         (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1985                 /* TBD: may be hot point */
1986                 spin_lock(&sbi->s_md_lock);
1987                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1988                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1989                 spin_unlock(&sbi->s_md_lock);
1990         }
1991         /* Let's just scan groups to find more-less suitable blocks */
1992         cr = ac->ac_2order ? 0 : 1;
1993         /*
1994          * cr == 0 try to get exact allocation,
1995          * cr == 3  try to get anything
1996          */
1997 repeat:
1998         for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1999                 ac->ac_criteria = cr;
2000                 /*
2001                  * searching for the right group start
2002                  * from the goal value specified
2003                  */
2004                 group = ac->ac_g_ex.fe_group;
2005
2006                 for (i = 0; i < ngroups; group++, i++) {
2007                         struct ext4_group_info *grp;
2008                         struct ext4_group_desc *desc;
2009
2010                         if (group == ngroups)
2011                                 group = 0;
2012
2013                         /* quick check to skip empty groups */
2014                         grp = ext4_get_group_info(sb, group);
2015                         if (grp->bb_free == 0)
2016                                 continue;
2017
2018                         /*
2019                          * if the group is already init we check whether it is
2020                          * a good group and if not we don't load the buddy
2021                          */
2022                         if (EXT4_MB_GRP_NEED_INIT(grp)) {
2023                                 /*
2024                                  * we need full data about the group
2025                                  * to make a good selection
2026                                  */
2027                                 err = ext4_mb_init_group(sb, group);
2028                                 if (err)
2029                                         goto out;
2030                         }
2031
2032                         /*
2033                          * If the particular group doesn't satisfy our
2034                          * criteria we continue with the next group
2035                          */
2036                         if (!ext4_mb_good_group(ac, group, cr))
2037                                 continue;
2038
2039                         err = ext4_mb_load_buddy(sb, group, &e4b);
2040                         if (err)
2041                                 goto out;
2042
2043                         ext4_lock_group(sb, group);
2044                         if (!ext4_mb_good_group(ac, group, cr)) {
2045                                 /* someone did allocation from this group */
2046                                 ext4_unlock_group(sb, group);
2047                                 ext4_mb_release_desc(&e4b);
2048                                 continue;
2049                         }
2050
2051                         ac->ac_groups_scanned++;
2052                         desc = ext4_get_group_desc(sb, group, NULL);
2053                         if (cr == 0)
2054                                 ext4_mb_simple_scan_group(ac, &e4b);
2055                         else if (cr == 1 &&
2056                                         ac->ac_g_ex.fe_len == sbi->s_stripe)
2057                                 ext4_mb_scan_aligned(ac, &e4b);
2058                         else
2059                                 ext4_mb_complex_scan_group(ac, &e4b);
2060
2061                         ext4_unlock_group(sb, group);
2062                         ext4_mb_release_desc(&e4b);
2063
2064                         if (ac->ac_status != AC_STATUS_CONTINUE)
2065                                 break;
2066                 }
2067         }
2068
2069         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2070             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2071                 /*
2072                  * We've been searching too long. Let's try to allocate
2073                  * the best chunk we've found so far
2074                  */
2075
2076                 ext4_mb_try_best_found(ac, &e4b);
2077                 if (ac->ac_status != AC_STATUS_FOUND) {
2078                         /*
2079                          * Someone more lucky has already allocated it.
2080                          * The only thing we can do is just take first
2081                          * found block(s)
2082                         printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2083                          */
2084                         ac->ac_b_ex.fe_group = 0;
2085                         ac->ac_b_ex.fe_start = 0;
2086                         ac->ac_b_ex.fe_len = 0;
2087                         ac->ac_status = AC_STATUS_CONTINUE;
2088                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2089                         cr = 3;
2090                         atomic_inc(&sbi->s_mb_lost_chunks);
2091                         goto repeat;
2092                 }
2093         }
2094 out:
2095         return err;
2096 }
2097
2098 #ifdef EXT4_MB_HISTORY
2099 struct ext4_mb_proc_session {
2100         struct ext4_mb_history *history;
2101         struct super_block *sb;
2102         int start;
2103         int max;
2104 };
2105
2106 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2107                                         struct ext4_mb_history *hs,
2108                                         int first)
2109 {
2110         if (hs == s->history + s->max)
2111                 hs = s->history;
2112         if (!first && hs == s->history + s->start)
2113                 return NULL;
2114         while (hs->orig.fe_len == 0) {
2115                 hs++;
2116                 if (hs == s->history + s->max)
2117                         hs = s->history;
2118                 if (hs == s->history + s->start)
2119                         return NULL;
2120         }
2121         return hs;
2122 }
2123
2124 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2125 {
2126         struct ext4_mb_proc_session *s = seq->private;
2127         struct ext4_mb_history *hs;
2128         int l = *pos;
2129
2130         if (l == 0)
2131                 return SEQ_START_TOKEN;
2132         hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2133         if (!hs)
2134                 return NULL;
2135         while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2136         return hs;
2137 }
2138
2139 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2140                                       loff_t *pos)
2141 {
2142         struct ext4_mb_proc_session *s = seq->private;
2143         struct ext4_mb_history *hs = v;
2144
2145         ++*pos;
2146         if (v == SEQ_START_TOKEN)
2147                 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2148         else
2149                 return ext4_mb_history_skip_empty(s, ++hs, 0);
2150 }
2151
2152 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2153 {
2154         char buf[25], buf2[25], buf3[25], *fmt;
2155         struct ext4_mb_history *hs = v;
2156
2157         if (v == SEQ_START_TOKEN) {
2158                 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2159                                 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2160                           "pid", "inode", "original", "goal", "result", "found",
2161                            "grps", "cr", "flags", "merge", "tail", "broken");
2162                 return 0;
2163         }
2164
2165         if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2166                 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2167                         "%-5u %-5s %-5u %-6u\n";
2168                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2169                         hs->result.fe_start, hs->result.fe_len,
2170                         hs->result.fe_logical);
2171                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2172                         hs->orig.fe_start, hs->orig.fe_len,
2173                         hs->orig.fe_logical);
2174                 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2175                         hs->goal.fe_start, hs->goal.fe_len,
2176                         hs->goal.fe_logical);
2177                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2178                                 hs->found, hs->groups, hs->cr, hs->flags,
2179                                 hs->merged ? "M" : "", hs->tail,
2180                                 hs->buddy ? 1 << hs->buddy : 0);
2181         } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2182                 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2183                 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2184                         hs->result.fe_start, hs->result.fe_len,
2185                         hs->result.fe_logical);
2186                 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2187                         hs->orig.fe_start, hs->orig.fe_len,
2188                         hs->orig.fe_logical);
2189                 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2190         } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2191                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2192                         hs->result.fe_start, hs->result.fe_len);
2193                 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2194                                 hs->pid, hs->ino, buf2);
2195         } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2196                 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2197                         hs->result.fe_start, hs->result.fe_len);
2198                 seq_printf(seq, "%-5u %-8u %-23s free\n",
2199                                 hs->pid, hs->ino, buf2);
2200         }
2201         return 0;
2202 }
2203
2204 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2205 {
2206 }
2207
2208 static struct seq_operations ext4_mb_seq_history_ops = {
2209         .start  = ext4_mb_seq_history_start,
2210         .next   = ext4_mb_seq_history_next,
2211         .stop   = ext4_mb_seq_history_stop,
2212         .show   = ext4_mb_seq_history_show,
2213 };
2214
2215 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2216 {
2217         struct super_block *sb = PDE(inode)->data;
2218         struct ext4_sb_info *sbi = EXT4_SB(sb);
2219         struct ext4_mb_proc_session *s;
2220         int rc;
2221         int size;
2222
2223         if (unlikely(sbi->s_mb_history == NULL))
2224                 return -ENOMEM;
2225         s = kmalloc(sizeof(*s), GFP_KERNEL);
2226         if (s == NULL)
2227                 return -ENOMEM;
2228         s->sb = sb;
2229         size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2230         s->history = kmalloc(size, GFP_KERNEL);
2231         if (s->history == NULL) {
2232                 kfree(s);
2233                 return -ENOMEM;
2234         }
2235
2236         spin_lock(&sbi->s_mb_history_lock);
2237         memcpy(s->history, sbi->s_mb_history, size);
2238         s->max = sbi->s_mb_history_max;
2239         s->start = sbi->s_mb_history_cur % s->max;
2240         spin_unlock(&sbi->s_mb_history_lock);
2241
2242         rc = seq_open(file, &ext4_mb_seq_history_ops);
2243         if (rc == 0) {
2244                 struct seq_file *m = (struct seq_file *)file->private_data;
2245                 m->private = s;
2246         } else {
2247                 kfree(s->history);
2248                 kfree(s);
2249         }
2250         return rc;
2251
2252 }
2253
2254 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2255 {
2256         struct seq_file *seq = (struct seq_file *)file->private_data;
2257         struct ext4_mb_proc_session *s = seq->private;
2258         kfree(s->history);
2259         kfree(s);
2260         return seq_release(inode, file);
2261 }
2262
2263 static ssize_t ext4_mb_seq_history_write(struct file *file,
2264                                 const char __user *buffer,
2265                                 size_t count, loff_t *ppos)
2266 {
2267         struct seq_file *seq = (struct seq_file *)file->private_data;
2268         struct ext4_mb_proc_session *s = seq->private;
2269         struct super_block *sb = s->sb;
2270         char str[32];
2271         int value;
2272
2273         if (count >= sizeof(str)) {
2274                 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2275                                 "mb_history", (int)sizeof(str));
2276                 return -EOVERFLOW;
2277         }
2278
2279         if (copy_from_user(str, buffer, count))
2280                 return -EFAULT;
2281
2282         value = simple_strtol(str, NULL, 0);
2283         if (value < 0)
2284                 return -ERANGE;
2285         EXT4_SB(sb)->s_mb_history_filter = value;
2286
2287         return count;
2288 }
2289
2290 static struct file_operations ext4_mb_seq_history_fops = {
2291         .owner          = THIS_MODULE,
2292         .open           = ext4_mb_seq_history_open,
2293         .read           = seq_read,
2294         .write          = ext4_mb_seq_history_write,
2295         .llseek         = seq_lseek,
2296         .release        = ext4_mb_seq_history_release,
2297 };
2298
2299 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2300 {
2301         struct super_block *sb = seq->private;
2302         ext4_group_t group;
2303
2304         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2305                 return NULL;
2306         group = *pos + 1;
2307         return (void *) ((unsigned long) group);
2308 }
2309
2310 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2311 {
2312         struct super_block *sb = seq->private;
2313         ext4_group_t group;
2314
2315         ++*pos;
2316         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2317                 return NULL;
2318         group = *pos + 1;
2319         return (void *) ((unsigned long) group);
2320 }
2321
2322 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2323 {
2324         struct super_block *sb = seq->private;
2325         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2326         int i;
2327         int err;
2328         struct ext4_buddy e4b;
2329         struct sg {
2330                 struct ext4_group_info info;
2331                 unsigned short counters[16];
2332         } sg;
2333
2334         group--;
2335         if (group == 0)
2336                 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2337                                 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2338                                   "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2339                            "group", "free", "frags", "first",
2340                            "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2341                            "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2342
2343         i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2344                 sizeof(struct ext4_group_info);
2345         err = ext4_mb_load_buddy(sb, group, &e4b);
2346         if (err) {
2347                 seq_printf(seq, "#%-5u: I/O error\n", group);
2348                 return 0;
2349         }
2350         ext4_lock_group(sb, group);
2351         memcpy(&sg, ext4_get_group_info(sb, group), i);
2352         ext4_unlock_group(sb, group);
2353         ext4_mb_release_desc(&e4b);
2354
2355         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2356                         sg.info.bb_fragments, sg.info.bb_first_free);
2357         for (i = 0; i <= 13; i++)
2358                 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2359                                 sg.info.bb_counters[i] : 0);
2360         seq_printf(seq, " ]\n");
2361
2362         return 0;
2363 }
2364
2365 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2366 {
2367 }
2368
2369 static struct seq_operations ext4_mb_seq_groups_ops = {
2370         .start  = ext4_mb_seq_groups_start,
2371         .next   = ext4_mb_seq_groups_next,
2372         .stop   = ext4_mb_seq_groups_stop,
2373         .show   = ext4_mb_seq_groups_show,
2374 };
2375
2376 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2377 {
2378         struct super_block *sb = PDE(inode)->data;
2379         int rc;
2380
2381         rc = seq_open(file, &ext4_mb_seq_groups_ops);
2382         if (rc == 0) {
2383                 struct seq_file *m = (struct seq_file *)file->private_data;
2384                 m->private = sb;
2385         }
2386         return rc;
2387
2388 }
2389
2390 static struct file_operations ext4_mb_seq_groups_fops = {
2391         .owner          = THIS_MODULE,
2392         .open           = ext4_mb_seq_groups_open,
2393         .read           = seq_read,
2394         .llseek         = seq_lseek,
2395         .release        = seq_release,
2396 };
2397
2398 static void ext4_mb_history_release(struct super_block *sb)
2399 {
2400         struct ext4_sb_info *sbi = EXT4_SB(sb);
2401
2402         if (sbi->s_proc != NULL) {
2403                 remove_proc_entry("mb_groups", sbi->s_proc);
2404                 if (sbi->s_mb_history_max)
2405                         remove_proc_entry("mb_history", sbi->s_proc);
2406         }
2407         kfree(sbi->s_mb_history);
2408 }
2409
2410 static void ext4_mb_history_init(struct super_block *sb)
2411 {
2412         struct ext4_sb_info *sbi = EXT4_SB(sb);
2413         int i;
2414
2415         if (sbi->s_proc != NULL) {
2416                 if (sbi->s_mb_history_max)
2417                         proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2418                                          &ext4_mb_seq_history_fops, sb);
2419                 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2420                                  &ext4_mb_seq_groups_fops, sb);
2421         }
2422
2423         sbi->s_mb_history_cur = 0;
2424         spin_lock_init(&sbi->s_mb_history_lock);
2425         i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2426         sbi->s_mb_history = i ? kzalloc(i, GFP_KERNEL) : NULL;
2427         /* if we can't allocate history, then we simple won't use it */
2428 }
2429
2430 static noinline_for_stack void
2431 ext4_mb_store_history(struct ext4_allocation_context *ac)
2432 {
2433         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2434         struct ext4_mb_history h;
2435
2436         if (sbi->s_mb_history == NULL)
2437                 return;
2438
2439         if (!(ac->ac_op & sbi->s_mb_history_filter))
2440                 return;
2441
2442         h.op = ac->ac_op;
2443         h.pid = current->pid;
2444         h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2445         h.orig = ac->ac_o_ex;
2446         h.result = ac->ac_b_ex;
2447         h.flags = ac->ac_flags;
2448         h.found = ac->ac_found;
2449         h.groups = ac->ac_groups_scanned;
2450         h.cr = ac->ac_criteria;
2451         h.tail = ac->ac_tail;
2452         h.buddy = ac->ac_buddy;
2453         h.merged = 0;
2454         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2455                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2456                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2457                         h.merged = 1;
2458                 h.goal = ac->ac_g_ex;
2459                 h.result = ac->ac_f_ex;
2460         }
2461
2462         spin_lock(&sbi->s_mb_history_lock);
2463         memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2464         if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2465                 sbi->s_mb_history_cur = 0;
2466         spin_unlock(&sbi->s_mb_history_lock);
2467 }
2468
2469 #else
2470 #define ext4_mb_history_release(sb)
2471 #define ext4_mb_history_init(sb)
2472 #endif
2473
2474
2475 /* Create and initialize ext4_group_info data for the given group. */
2476 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2477                           struct ext4_group_desc *desc)
2478 {
2479         int i, len;
2480         int metalen = 0;
2481         struct ext4_sb_info *sbi = EXT4_SB(sb);
2482         struct ext4_group_info **meta_group_info;
2483
2484         /*
2485          * First check if this group is the first of a reserved block.
2486          * If it's true, we have to allocate a new table of pointers
2487          * to ext4_group_info structures
2488          */
2489         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2490                 metalen = sizeof(*meta_group_info) <<
2491                         EXT4_DESC_PER_BLOCK_BITS(sb);
2492                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2493                 if (meta_group_info == NULL) {
2494                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2495                                "buddy group\n");
2496                         goto exit_meta_group_info;
2497                 }
2498                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2499                         meta_group_info;
2500         }
2501
2502         /*
2503          * calculate needed size. if change bb_counters size,
2504          * don't forget about ext4_mb_generate_buddy()
2505          */
2506         len = offsetof(typeof(**meta_group_info),
2507                        bb_counters[sb->s_blocksize_bits + 2]);
2508
2509         meta_group_info =
2510                 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2511         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2512
2513         meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2514         if (meta_group_info[i] == NULL) {
2515                 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2516                 goto exit_group_info;
2517         }
2518         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2519                 &(meta_group_info[i]->bb_state));
2520
2521         /*
2522          * initialize bb_free to be able to skip
2523          * empty groups without initialization
2524          */
2525         if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2526                 meta_group_info[i]->bb_free =
2527                         ext4_free_blocks_after_init(sb, group, desc);
2528         } else {
2529                 meta_group_info[i]->bb_free =
2530                         ext4_free_blks_count(sb, desc);
2531         }
2532
2533         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2534         init_rwsem(&meta_group_info[i]->alloc_sem);
2535         meta_group_info[i]->bb_free_root.rb_node = NULL;;
2536
2537 #ifdef DOUBLE_CHECK
2538         {
2539                 struct buffer_head *bh;
2540                 meta_group_info[i]->bb_bitmap =
2541                         kmalloc(sb->s_blocksize, GFP_KERNEL);
2542                 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2543                 bh = ext4_read_block_bitmap(sb, group);
2544                 BUG_ON(bh == NULL);
2545                 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2546                         sb->s_blocksize);
2547                 put_bh(bh);
2548         }
2549 #endif
2550
2551         return 0;
2552
2553 exit_group_info:
2554         /* If a meta_group_info table has been allocated, release it now */
2555         if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2556                 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2557 exit_meta_group_info:
2558         return -ENOMEM;
2559 } /* ext4_mb_add_groupinfo */
2560
2561 /*
2562  * Update an existing group.
2563  * This function is used for online resize
2564  */
2565 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2566 {
2567         grp->bb_free += add;
2568 }
2569
2570 static int ext4_mb_init_backend(struct super_block *sb)
2571 {
2572         ext4_group_t ngroups = ext4_get_groups_count(sb);
2573         ext4_group_t i;
2574         int metalen;
2575         struct ext4_sb_info *sbi = EXT4_SB(sb);
2576         struct ext4_super_block *es = sbi->s_es;
2577         int num_meta_group_infos;
2578         int num_meta_group_infos_max;
2579         int array_size;
2580         struct ext4_group_info **meta_group_info;
2581         struct ext4_group_desc *desc;
2582
2583         /* This is the number of blocks used by GDT */
2584         num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2585                                 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2586
2587         /*
2588          * This is the total number of blocks used by GDT including
2589          * the number of reserved blocks for GDT.
2590          * The s_group_info array is allocated with this value
2591          * to allow a clean online resize without a complex
2592          * manipulation of pointer.
2593          * The drawback is the unused memory when no resize
2594          * occurs but it's very low in terms of pages
2595          * (see comments below)
2596          * Need to handle this properly when META_BG resizing is allowed
2597          */
2598         num_meta_group_infos_max = num_meta_group_infos +
2599                                 le16_to_cpu(es->s_reserved_gdt_blocks);
2600
2601         /*
2602          * array_size is the size of s_group_info array. We round it
2603          * to the next power of two because this approximation is done
2604          * internally by kmalloc so we can have some more memory
2605          * for free here (e.g. may be used for META_BG resize).
2606          */
2607         array_size = 1;
2608         while (array_size < sizeof(*sbi->s_group_info) *
2609                num_meta_group_infos_max)
2610                 array_size = array_size << 1;
2611         /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2612          * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2613          * So a two level scheme suffices for now. */
2614         sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2615         if (sbi->s_group_info == NULL) {
2616                 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2617                 return -ENOMEM;
2618         }
2619         sbi->s_buddy_cache = new_inode(sb);
2620         if (sbi->s_buddy_cache == NULL) {
2621                 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2622                 goto err_freesgi;
2623         }
2624         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2625
2626         metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2627         for (i = 0; i < num_meta_group_infos; i++) {
2628                 if ((i + 1) == num_meta_group_infos)
2629                         metalen = sizeof(*meta_group_info) *
2630                                 (ngroups -
2631                                         (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2632                 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2633                 if (meta_group_info == NULL) {
2634                         printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2635                                "buddy group\n");
2636                         goto err_freemeta;
2637                 }
2638                 sbi->s_group_info[i] = meta_group_info;
2639         }
2640
2641         for (i = 0; i < ngroups; i++) {
2642                 desc = ext4_get_group_desc(sb, i, NULL);
2643                 if (desc == NULL) {
2644                         printk(KERN_ERR
2645                                 "EXT4-fs: can't read descriptor %u\n", i);
2646                         goto err_freebuddy;
2647                 }
2648                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2649                         goto err_freebuddy;
2650         }
2651
2652         return 0;
2653
2654 err_freebuddy:
2655         while (i-- > 0)
2656                 kfree(ext4_get_group_info(sb, i));
2657         i = num_meta_group_infos;
2658 err_freemeta:
2659         while (i-- > 0)
2660                 kfree(sbi->s_group_info[i]);
2661         iput(sbi->s_buddy_cache);
2662 err_freesgi:
2663         kfree(sbi->s_group_info);
2664         return -ENOMEM;
2665 }
2666
2667 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2668 {
2669         struct ext4_sb_info *sbi = EXT4_SB(sb);
2670         unsigned i, j;
2671         unsigned offset;
2672         unsigned max;
2673         int ret;
2674
2675         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2676
2677         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2678         if (sbi->s_mb_offsets == NULL) {
2679                 return -ENOMEM;
2680         }
2681
2682         i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2683         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2684         if (sbi->s_mb_maxs == NULL) {
2685                 kfree(sbi->s_mb_offsets);
2686                 return -ENOMEM;
2687         }
2688
2689         /* order 0 is regular bitmap */
2690         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2691         sbi->s_mb_offsets[0] = 0;
2692
2693         i = 1;
2694         offset = 0;
2695         max = sb->s_blocksize << 2;
2696         do {
2697                 sbi->s_mb_offsets[i] = offset;
2698                 sbi->s_mb_maxs[i] = max;
2699                 offset += 1 << (sb->s_blocksize_bits - i);
2700                 max = max >> 1;
2701                 i++;
2702         } while (i <= sb->s_blocksize_bits + 1);
2703
2704         /* init file for buddy data */
2705         ret = ext4_mb_init_backend(sb);
2706         if (ret != 0) {
2707                 kfree(sbi->s_mb_offsets);
2708                 kfree(sbi->s_mb_maxs);
2709                 return ret;
2710         }
2711
2712         spin_lock_init(&sbi->s_md_lock);
2713         spin_lock_init(&sbi->s_bal_lock);
2714
2715         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2716         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2717         sbi->s_mb_stats = MB_DEFAULT_STATS;
2718         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2719         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2720         sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2721         sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2722
2723         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2724         if (sbi->s_locality_groups == NULL) {
2725                 kfree(sbi->s_mb_offsets);
2726                 kfree(sbi->s_mb_maxs);
2727                 return -ENOMEM;
2728         }
2729         for_each_possible_cpu(i) {
2730                 struct ext4_locality_group *lg;
2731                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2732                 mutex_init(&lg->lg_mutex);
2733                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2734                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2735                 spin_lock_init(&lg->lg_prealloc_lock);
2736         }
2737
2738         ext4_mb_history_init(sb);
2739
2740         if (sbi->s_journal)
2741                 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2742
2743         printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2744         return 0;
2745 }
2746
2747 /* need to called with the ext4 group lock held */
2748 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2749 {
2750         struct ext4_prealloc_space *pa;
2751         struct list_head *cur, *tmp;
2752         int count = 0;
2753
2754         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2755                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2756                 list_del(&pa->pa_group_list);
2757                 count++;
2758                 kmem_cache_free(ext4_pspace_cachep, pa);
2759         }
2760         if (count)
2761                 mb_debug("mballoc: %u PAs left\n", count);
2762
2763 }
2764
2765 int ext4_mb_release(struct super_block *sb)
2766 {
2767         ext4_group_t ngroups = ext4_get_groups_count(sb);
2768         ext4_group_t i;
2769         int num_meta_group_infos;
2770         struct ext4_group_info *grinfo;
2771         struct ext4_sb_info *sbi = EXT4_SB(sb);
2772
2773         if (sbi->s_group_info) {
2774                 for (i = 0; i < ngroups; i++) {
2775                         grinfo = ext4_get_group_info(sb, i);
2776 #ifdef DOUBLE_CHECK
2777                         kfree(grinfo->bb_bitmap);
2778 #endif
2779                         ext4_lock_group(sb, i);
2780                         ext4_mb_cleanup_pa(grinfo);
2781                         ext4_unlock_group(sb, i);
2782                         kfree(grinfo);
2783                 }
2784                 num_meta_group_infos = (ngroups +
2785                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2786                         EXT4_DESC_PER_BLOCK_BITS(sb);
2787                 for (i = 0; i < num_meta_group_infos; i++)
2788                         kfree(sbi->s_group_info[i]);
2789                 kfree(sbi->s_group_info);
2790         }
2791         kfree(sbi->s_mb_offsets);
2792         kfree(sbi->s_mb_maxs);
2793         if (sbi->s_buddy_cache)
2794                 iput(sbi->s_buddy_cache);
2795         if (sbi->s_mb_stats) {
2796                 printk(KERN_INFO
2797                        "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2798                                 atomic_read(&sbi->s_bal_allocated),
2799                                 atomic_read(&sbi->s_bal_reqs),
2800                                 atomic_read(&sbi->s_bal_success));
2801                 printk(KERN_INFO
2802                       "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2803                                 "%u 2^N hits, %u breaks, %u lost\n",
2804                                 atomic_read(&sbi->s_bal_ex_scanned),
2805                                 atomic_read(&sbi->s_bal_goals),
2806                                 atomic_read(&sbi->s_bal_2orders),
2807                                 atomic_read(&sbi->s_bal_breaks),
2808                                 atomic_read(&sbi->s_mb_lost_chunks));
2809                 printk(KERN_INFO
2810                        "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2811                                 sbi->s_mb_buddies_generated++,
2812                                 sbi->s_mb_generation_time);
2813                 printk(KERN_INFO
2814                        "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2815                                 atomic_read(&sbi->s_mb_preallocated),
2816                                 atomic_read(&sbi->s_mb_discarded));
2817         }
2818
2819         free_percpu(sbi->s_locality_groups);
2820         ext4_mb_history_release(sb);
2821
2822         return 0;
2823 }
2824
2825 /*
2826  * This function is called by the jbd2 layer once the commit has finished,
2827  * so we know we can free the blocks that were released with that commit.
2828  */
2829 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2830 {
2831         struct super_block *sb = journal->j_private;
2832         struct ext4_buddy e4b;
2833         struct ext4_group_info *db;
2834         int err, count = 0, count2 = 0;
2835         struct ext4_free_data *entry;
2836         ext4_fsblk_t discard_block;
2837         struct list_head *l, *ltmp;
2838
2839         list_for_each_safe(l, ltmp, &txn->t_private_list) {
2840                 entry = list_entry(l, struct ext4_free_data, list);
2841
2842                 mb_debug("gonna free %u blocks in group %u (0x%p):",
2843                          entry->count, entry->group, entry);
2844
2845                 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2846                 /* we expect to find existing buddy because it's pinned */
2847                 BUG_ON(err != 0);
2848
2849                 db = e4b.bd_info;
2850                 /* there are blocks to put in buddy to make them really free */
2851                 count += entry->count;
2852                 count2++;
2853                 ext4_lock_group(sb, entry->group);
2854                 /* Take it out of per group rb tree */
2855                 rb_erase(&entry->node, &(db->bb_free_root));
2856                 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2857
2858                 if (!db->bb_free_root.rb_node) {
2859                         /* No more items in the per group rb tree
2860                          * balance refcounts from ext4_mb_free_metadata()
2861                          */
2862                         page_cache_release(e4b.bd_buddy_page);
2863                         page_cache_release(e4b.bd_bitmap_page);
2864                 }
2865                 ext4_unlock_group(sb, entry->group);
2866                 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2867                         + entry->start_blk
2868                         + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2869                 trace_ext4_discard_blocks(sb, (unsigned long long)discard_block,
2870                                           entry->count);
2871                 sb_issue_discard(sb, discard_block, entry->count);
2872
2873                 kmem_cache_free(ext4_free_ext_cachep, entry);
2874                 ext4_mb_release_desc(&e4b);
2875         }
2876
2877         mb_debug("freed %u blocks in %u structures\n", count, count2);
2878 }
2879
2880 int __init init_ext4_mballoc(void)
2881 {
2882         ext4_pspace_cachep =
2883                 kmem_cache_create("ext4_prealloc_space",
2884                                      sizeof(struct ext4_prealloc_space),
2885                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2886         if (ext4_pspace_cachep == NULL)
2887                 return -ENOMEM;
2888
2889         ext4_ac_cachep =
2890                 kmem_cache_create("ext4_alloc_context",
2891                                      sizeof(struct ext4_allocation_context),
2892                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2893         if (ext4_ac_cachep == NULL) {
2894                 kmem_cache_destroy(ext4_pspace_cachep);
2895                 return -ENOMEM;
2896         }
2897
2898         ext4_free_ext_cachep =
2899                 kmem_cache_create("ext4_free_block_extents",
2900                                      sizeof(struct ext4_free_data),
2901                                      0, SLAB_RECLAIM_ACCOUNT, NULL);
2902         if (ext4_free_ext_cachep == NULL) {
2903                 kmem_cache_destroy(ext4_pspace_cachep);
2904                 kmem_cache_destroy(ext4_ac_cachep);
2905                 return -ENOMEM;
2906         }
2907         return 0;
2908 }
2909
2910 void exit_ext4_mballoc(void)
2911 {
2912         /* 
2913          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2914          * before destroying the slab cache.
2915          */
2916         rcu_barrier();
2917         kmem_cache_destroy(ext4_pspace_cachep);
2918         kmem_cache_destroy(ext4_ac_cachep);
2919         kmem_cache_destroy(ext4_free_ext_cachep);
2920 }
2921
2922
2923 /*
2924  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2925  * Returns 0 if success or error code
2926  */
2927 static noinline_for_stack int
2928 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2929                                 handle_t *handle, unsigned int reserv_blks)
2930 {
2931         struct buffer_head *bitmap_bh = NULL;
2932         struct ext4_super_block *es;
2933         struct ext4_group_desc *gdp;
2934         struct buffer_head *gdp_bh;
2935         struct ext4_sb_info *sbi;
2936         struct super_block *sb;
2937         ext4_fsblk_t block;
2938         int err, len;
2939
2940         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2941         BUG_ON(ac->ac_b_ex.fe_len <= 0);
2942
2943         sb = ac->ac_sb;
2944         sbi = EXT4_SB(sb);
2945         es = sbi->s_es;
2946
2947
2948         err = -EIO;
2949         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2950         if (!bitmap_bh)
2951                 goto out_err;
2952
2953         err = ext4_journal_get_write_access(handle, bitmap_bh);
2954         if (err)
2955                 goto out_err;
2956
2957         err = -EIO;
2958         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2959         if (!gdp)
2960                 goto out_err;
2961
2962         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2963                         ext4_free_blks_count(sb, gdp));
2964
2965         err = ext4_journal_get_write_access(handle, gdp_bh);
2966         if (err)
2967                 goto out_err;
2968
2969         block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2970                 + ac->ac_b_ex.fe_start
2971                 + le32_to_cpu(es->s_first_data_block);
2972
2973         len = ac->ac_b_ex.fe_len;
2974         if (!ext4_data_block_valid(sbi, block, len)) {
2975                 ext4_error(sb, __func__,
2976                            "Allocating blocks %llu-%llu which overlap "
2977                            "fs metadata\n", block, block+len);
2978                 /* File system mounted not to panic on error
2979                  * Fix the bitmap and repeat the block allocation
2980                  * We leak some of the blocks here.
2981                  */
2982                 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2983                 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2984                             ac->ac_b_ex.fe_len);
2985                 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2986                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2987                 if (!err)
2988                         err = -EAGAIN;
2989                 goto out_err;
2990         }
2991
2992         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2993 #ifdef AGGRESSIVE_CHECK
2994         {
2995                 int i;
2996                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2997                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2998                                                 bitmap_bh->b_data));
2999                 }
3000         }
3001 #endif
3002         mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
3003         if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3004                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3005                 ext4_free_blks_set(sb, gdp,
3006                                         ext4_free_blocks_after_init(sb,
3007                                         ac->ac_b_ex.fe_group, gdp));
3008         }
3009         len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3010         ext4_free_blks_set(sb, gdp, len);
3011         gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3012
3013         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3014         percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3015         /*
3016          * Now reduce the dirty block count also. Should not go negative
3017          */
3018         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3019                 /* release all the reserved blocks if non delalloc */
3020                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3021         else {
3022                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3023                                                 ac->ac_b_ex.fe_len);
3024                 /* convert reserved quota blocks to real quota blocks */
3025                 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3026         }
3027
3028         if (sbi->s_log_groups_per_flex) {
3029                 ext4_group_t flex_group = ext4_flex_group(sbi,
3030                                                           ac->ac_b_ex.fe_group);
3031                 atomic_sub(ac->ac_b_ex.fe_len,
3032                            &sbi->s_flex_groups[flex_group].free_blocks);
3033         }
3034
3035         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3036         if (err)
3037                 goto out_err;
3038         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3039
3040 out_err:
3041         sb->s_dirt = 1;
3042         brelse(bitmap_bh);
3043         return err;
3044 }
3045
3046 /*
3047  * here we normalize request for locality group
3048  * Group request are normalized to s_strip size if we set the same via mount
3049  * option. If not we set it to s_mb_group_prealloc which can be configured via
3050  * /sys/fs/ext4/<partition>/mb_group_prealloc
3051  *
3052  * XXX: should we try to preallocate more than the group has now?
3053  */
3054 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3055 {
3056         struct super_block *sb = ac->ac_sb;
3057         struct ext4_locality_group *lg = ac->ac_lg;
3058
3059         BUG_ON(lg == NULL);
3060         if (EXT4_SB(sb)->s_stripe)
3061                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3062         else
3063                 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3064         mb_debug("#%u: goal %u blocks for locality group\n",
3065                 current->pid, ac->ac_g_ex.fe_len);
3066 }
3067
3068 /*
3069  * Normalization means making request better in terms of
3070  * size and alignment
3071  */
3072 static noinline_for_stack void
3073 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3074                                 struct ext4_allocation_request *ar)
3075 {
3076         int bsbits, max;
3077         ext4_lblk_t end;
3078         loff_t size, orig_size, start_off;
3079         ext4_lblk_t start, orig_start;
3080         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3081         struct ext4_prealloc_space *pa;
3082
3083         /* do normalize only data requests, metadata requests
3084            do not need preallocation */
3085         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3086                 return;
3087
3088         /* sometime caller may want exact blocks */
3089         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3090                 return;
3091
3092         /* caller may indicate that preallocation isn't
3093          * required (it's a tail, for example) */
3094         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3095                 return;
3096
3097         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3098                 ext4_mb_normalize_group_request(ac);
3099                 return ;
3100         }
3101
3102         bsbits = ac->ac_sb->s_blocksize_bits;
3103
3104         /* first, let's learn actual file size
3105          * given current request is allocated */
3106         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3107         size = size << bsbits;
3108         if (size < i_size_read(ac->ac_inode))
3109                 size = i_size_read(ac->ac_inode);
3110
3111         /* max size of free chunks */
3112         max = 2 << bsbits;
3113
3114 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
3115                 (req <= (size) || max <= (chunk_size))
3116
3117         /* first, try to predict filesize */
3118         /* XXX: should this table be tunable? */
3119         start_off = 0;
3120         if (size <= 16 * 1024) {
3121                 size = 16 * 1024;
3122         } else if (size <= 32 * 1024) {
3123                 size = 32 * 1024;
3124         } else if (size <= 64 * 1024) {
3125                 size = 64 * 1024;
3126         } else if (size <= 128 * 1024) {
3127                 size = 128 * 1024;
3128         } else if (size <= 256 * 1024) {
3129                 size = 256 * 1024;
3130         } else if (size <= 512 * 1024) {
3131                 size = 512 * 1024;
3132         } else if (size <= 1024 * 1024) {
3133                 size = 1024 * 1024;
3134         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3135                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3136                                                 (21 - bsbits)) << 21;
3137                 size = 2 * 1024 * 1024;
3138         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3139                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3140                                                         (22 - bsbits)) << 22;
3141                 size = 4 * 1024 * 1024;
3142         } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3143                                         (8<<20)>>bsbits, max, 8 * 1024)) {
3144                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3145                                                         (23 - bsbits)) << 23;
3146                 size = 8 * 1024 * 1024;
3147         } else {
3148                 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3149                 size      = ac->ac_o_ex.fe_len << bsbits;
3150         }
3151         orig_size = size = size >> bsbits;
3152         orig_start = start = start_off >> bsbits;
3153
3154         /* don't cover already allocated blocks in selected range */
3155         if (ar->pleft && start <= ar->lleft) {
3156                 size -= ar->lleft + 1 - start;
3157                 start = ar->lleft + 1;
3158         }
3159         if (ar->pright && start + size - 1 >= ar->lright)
3160                 size -= start + size - ar->lright;
3161
3162         end = start + size;
3163
3164         /* check we don't cross already preallocated blocks */
3165         rcu_read_lock();
3166         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3167                 ext4_lblk_t pa_end;
3168
3169                 if (pa->pa_deleted)
3170                         continue;
3171                 spin_lock(&pa->pa_lock);
3172                 if (pa->pa_deleted) {
3173                         spin_unlock(&pa->pa_lock);
3174                         continue;
3175                 }
3176
3177                 pa_end = pa->pa_lstart + pa->pa_len;
3178
3179                 /* PA must not overlap original request */
3180                 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3181                         ac->ac_o_ex.fe_logical < pa->pa_lstart));
3182
3183                 /* skip PA normalized request doesn't overlap with */
3184                 if (pa->pa_lstart >= end) {
3185                         spin_unlock(&pa->pa_lock);
3186                         continue;
3187                 }
3188                 if (pa_end <= start) {
3189                         spin_unlock(&pa->pa_lock);
3190                         continue;
3191                 }
3192                 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3193
3194                 if (pa_end <= ac->ac_o_ex.fe_logical) {
3195                         BUG_ON(pa_end < start);
3196                         start = pa_end;
3197                 }
3198
3199                 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3200                         BUG_ON(pa->pa_lstart > end);
3201                         end = pa->pa_lstart;
3202                 }
3203                 spin_unlock(&pa->pa_lock);
3204         }
3205         rcu_read_unlock();
3206         size = end - start;
3207
3208         /* XXX: extra loop to check we really don't overlap preallocations */
3209         rcu_read_lock();
3210         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3211                 ext4_lblk_t pa_end;
3212                 spin_lock(&pa->pa_lock);
3213                 if (pa->pa_deleted == 0) {
3214                         pa_end = pa->pa_lstart + pa->pa_len;
3215                         BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3216                 }
3217                 spin_unlock(&pa->pa_lock);
3218         }
3219         rcu_read_unlock();
3220
3221         if (start + size <= ac->ac_o_ex.fe_logical &&
3222                         start > ac->ac_o_ex.fe_logical) {
3223                 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3224                         (unsigned long) start, (unsigned long) size,
3225                         (unsigned long) ac->ac_o_ex.fe_logical);
3226         }
3227         BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3228                         start > ac->ac_o_ex.fe_logical);
3229         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3230
3231         /* now prepare goal request */
3232
3233         /* XXX: is it better to align blocks WRT to logical
3234          * placement or satisfy big request as is */
3235         ac->ac_g_ex.fe_logical = start;
3236         ac->ac_g_ex.fe_len = size;
3237
3238         /* define goal start in order to merge */
3239         if (ar->pright && (ar->lright == (start + size))) {
3240                 /* merge to the right */
3241                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3242                                                 &ac->ac_f_ex.fe_group,
3243                                                 &ac->ac_f_ex.fe_start);
3244                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3245         }
3246         if (ar->pleft && (ar->lleft + 1 == start)) {
3247                 /* merge to the left */
3248                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3249                                                 &ac->ac_f_ex.fe_group,
3250                                                 &ac->ac_f_ex.fe_start);
3251                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3252         }
3253
3254         mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3255                 (unsigned) orig_size, (unsigned) start);
3256 }
3257
3258 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3259 {
3260         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3261
3262         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3263                 atomic_inc(&sbi->s_bal_reqs);
3264                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3265                 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3266                         atomic_inc(&sbi->s_bal_success);
3267                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3268                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3269                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3270                         atomic_inc(&sbi->s_bal_goals);
3271                 if (ac->ac_found > sbi->s_mb_max_to_scan)
3272                         atomic_inc(&sbi->s_bal_breaks);
3273         }
3274
3275         ext4_mb_store_history(ac);
3276 }
3277
3278 /*
3279  * use blocks preallocated to inode
3280  */
3281 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3282                                 struct ext4_prealloc_space *pa)
3283 {
3284         ext4_fsblk_t start;
3285         ext4_fsblk_t end;
3286         int len;
3287
3288         /* found preallocated blocks, use them */
3289         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3290         end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3291         len = end - start;
3292         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3293                                         &ac->ac_b_ex.fe_start);
3294         ac->ac_b_ex.fe_len = len;
3295         ac->ac_status = AC_STATUS_FOUND;
3296         ac->ac_pa = pa;
3297
3298         BUG_ON(start < pa->pa_pstart);
3299         BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3300         BUG_ON(pa->pa_free < len);
3301         pa->pa_free -= len;
3302
3303         mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3304 }
3305
3306 /*
3307  * use blocks preallocated to locality group
3308  */
3309 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3310                                 struct ext4_prealloc_space *pa)
3311 {
3312         unsigned int len = ac->ac_o_ex.fe_len;
3313
3314         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3315                                         &ac->ac_b_ex.fe_group,
3316                                         &ac->ac_b_ex.fe_start);
3317         ac->ac_b_ex.fe_len = len;
3318         ac->ac_status = AC_STATUS_FOUND;
3319         ac->ac_pa = pa;
3320
3321         /* we don't correct pa_pstart or pa_plen here to avoid
3322          * possible race when the group is being loaded concurrently
3323          * instead we correct pa later, after blocks are marked
3324          * in on-disk bitmap -- see ext4_mb_release_context()
3325          * Other CPUs are prevented from allocating from this pa by lg_mutex
3326          */
3327         mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3328 }
3329
3330 /*
3331  * Return the prealloc space that have minimal distance
3332  * from the goal block. @cpa is the prealloc
3333  * space that is having currently known minimal distance
3334  * from the goal block.
3335  */
3336 static struct ext4_prealloc_space *
3337 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3338                         struct ext4_prealloc_space *pa,
3339                         struct ext4_prealloc_space *cpa)
3340 {
3341         ext4_fsblk_t cur_distance, new_distance;
3342
3343         if (cpa == NULL) {
3344                 atomic_inc(&pa->pa_count);
3345                 return pa;
3346         }
3347         cur_distance = abs(goal_block - cpa->pa_pstart);
3348         new_distance = abs(goal_block - pa->pa_pstart);
3349
3350         if (cur_distance < new_distance)
3351                 return cpa;
3352
3353         /* drop the previous reference */
3354         atomic_dec(&cpa->pa_count);
3355         atomic_inc(&pa->pa_count);
3356         return pa;
3357 }
3358
3359 /*
3360  * search goal blocks in preallocated space
3361  */
3362 static noinline_for_stack int
3363 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3364 {
3365         int order, i;
3366         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3367         struct ext4_locality_group *lg;
3368         struct ext4_prealloc_space *pa, *cpa = NULL;
3369         ext4_fsblk_t goal_block;
3370
3371         /* only data can be preallocated */
3372         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3373                 return 0;
3374
3375         /* first, try per-file preallocation */
3376         rcu_read_lock();
3377         list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3378
3379                 /* all fields in this condition don't change,
3380                  * so we can skip locking for them */
3381                 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3382                         ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3383                         continue;
3384
3385                 /* found preallocated blocks, use them */
3386                 spin_lock(&pa->pa_lock);
3387                 if (pa->pa_deleted == 0 && pa->pa_free) {
3388                         atomic_inc(&pa->pa_count);
3389                         ext4_mb_use_inode_pa(ac, pa);
3390                         spin_unlock(&pa->pa_lock);
3391                         ac->ac_criteria = 10;
3392                         rcu_read_unlock();
3393                         return 1;
3394                 }
3395                 spin_unlock(&pa->pa_lock);
3396         }
3397         rcu_read_unlock();
3398
3399         /* can we use group allocation? */
3400         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3401                 return 0;
3402
3403         /* inode may have no locality group for some reason */
3404         lg = ac->ac_lg;
3405         if (lg == NULL)
3406                 return 0;
3407         order  = fls(ac->ac_o_ex.fe_len) - 1;
3408         if (order > PREALLOC_TB_SIZE - 1)
3409                 /* The max size of hash table is PREALLOC_TB_SIZE */
3410                 order = PREALLOC_TB_SIZE - 1;
3411
3412         goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3413                      ac->ac_g_ex.fe_start +
3414                      le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3415         /*
3416          * search for the prealloc space that is having
3417          * minimal distance from the goal block.
3418          */
3419         for (i = order; i < PREALLOC_TB_SIZE; i++) {
3420                 rcu_read_lock();
3421                 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3422                                         pa_inode_list) {
3423                         spin_lock(&pa->pa_lock);
3424                         if (pa->pa_deleted == 0 &&
3425                                         pa->pa_free >= ac->ac_o_ex.fe_len) {
3426
3427                                 cpa = ext4_mb_check_group_pa(goal_block,
3428                                                                 pa, cpa);
3429                         }
3430                         spin_unlock(&pa->pa_lock);
3431                 }
3432                 rcu_read_unlock();
3433         }
3434         if (cpa) {
3435                 ext4_mb_use_group_pa(ac, cpa);
3436                 ac->ac_criteria = 20;
3437                 return 1;
3438         }
3439         return 0;
3440 }
3441
3442 /*
3443  * the function goes through all block freed in the group
3444  * but not yet committed and marks them used in in-core bitmap.
3445  * buddy must be generated from this bitmap
3446  * Need to be called with the ext4 group lock held
3447  */
3448 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3449                                                 ext4_group_t group)
3450 {
3451         struct rb_node *n;
3452         struct ext4_group_info *grp;
3453         struct ext4_free_data *entry;
3454
3455         grp = ext4_get_group_info(sb, group);
3456         n = rb_first(&(grp->bb_free_root));
3457
3458         while (n) {
3459                 entry = rb_entry(n, struct ext4_free_data, node);
3460                 mb_set_bits(bitmap, entry->start_blk, entry->count);
3461                 n = rb_next(n);
3462         }
3463         return;
3464 }
3465
3466 /*
3467  * the function goes through all preallocation in this group and marks them
3468  * used in in-core bitmap. buddy must be generated from this bitmap
3469  * Need to be called with ext4 group lock held
3470  */
3471 static noinline_for_stack
3472 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3473                                         ext4_group_t group)
3474 {
3475         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3476         struct ext4_prealloc_space *pa;
3477         struct list_head *cur;
3478         ext4_group_t groupnr;
3479         ext4_grpblk_t start;
3480         int preallocated = 0;
3481         int count = 0;
3482         int len;
3483
3484         /* all form of preallocation discards first load group,
3485          * so the only competing code is preallocation use.
3486          * we don't need any locking here
3487          * notice we do NOT ignore preallocations with pa_deleted
3488          * otherwise we could leave used blocks available for
3489          * allocation in buddy when concurrent ext4_mb_put_pa()
3490          * is dropping preallocation
3491          */
3492         list_for_each(cur, &grp->bb_prealloc_list) {
3493                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3494                 spin_lock(&pa->pa_lock);
3495                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3496                                              &groupnr, &start);
3497                 len = pa->pa_len;
3498                 spin_unlock(&pa->pa_lock);
3499                 if (unlikely(len == 0))
3500                         continue;
3501                 BUG_ON(groupnr != group);
3502                 mb_set_bits(bitmap, start, len);
3503                 preallocated += len;
3504                 count++;
3505         }
3506         mb_debug("prellocated %u for group %u\n", preallocated, group);
3507 }
3508
3509 static void ext4_mb_pa_callback(struct rcu_head *head)
3510 {
3511         struct ext4_prealloc_space *pa;
3512         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3513         kmem_cache_free(ext4_pspace_cachep, pa);
3514 }
3515
3516 /*
3517  * drops a reference to preallocated space descriptor
3518  * if this was the last reference and the space is consumed
3519  */
3520 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3521                         struct super_block *sb, struct ext4_prealloc_space *pa)
3522 {
3523         ext4_group_t grp;
3524         ext4_fsblk_t grp_blk;
3525
3526         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3527                 return;
3528
3529         /* in this short window concurrent discard can set pa_deleted */
3530         spin_lock(&pa->pa_lock);
3531         if (pa->pa_deleted == 1) {
3532                 spin_unlock(&pa->pa_lock);
3533                 return;
3534         }
3535
3536         pa->pa_deleted = 1;
3537         spin_unlock(&pa->pa_lock);
3538
3539         grp_blk = pa->pa_pstart;
3540         /* 
3541          * If doing group-based preallocation, pa_pstart may be in the
3542          * next group when pa is used up
3543          */
3544         if (pa->pa_type == MB_GROUP_PA)
3545                 grp_blk--;
3546
3547         ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3548
3549         /*
3550          * possible race:
3551          *
3552          *  P1 (buddy init)                     P2 (regular allocation)
3553          *                                      find block B in PA
3554          *  copy on-disk bitmap to buddy
3555          *                                      mark B in on-disk bitmap
3556          *                                      drop PA from group
3557          *  mark all PAs in buddy
3558          *
3559          * thus, P1 initializes buddy with B available. to prevent this
3560          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3561          * against that pair
3562          */
3563         ext4_lock_group(sb, grp);
3564         list_del(&pa->pa_group_list);
3565         ext4_unlock_group(sb, grp);
3566
3567         spin_lock(pa->pa_obj_lock);
3568         list_del_rcu(&pa->pa_inode_list);
3569         spin_unlock(pa->pa_obj_lock);
3570
3571         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3572 }
3573
3574 /*
3575  * creates new preallocated space for given inode
3576  */
3577 static noinline_for_stack int
3578 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3579 {
3580         struct super_block *sb = ac->ac_sb;
3581         struct ext4_prealloc_space *pa;
3582         struct ext4_group_info *grp;
3583         struct ext4_inode_info *ei;
3584
3585         /* preallocate only when found space is larger then requested */
3586         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3587         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3588         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3589
3590         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3591         if (pa == NULL)
3592                 return -ENOMEM;
3593
3594         if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3595                 int winl;
3596                 int wins;
3597                 int win;
3598                 int offs;
3599
3600                 /* we can't allocate as much as normalizer wants.
3601                  * so, found space must get proper lstart
3602                  * to cover original request */
3603                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3604                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3605
3606                 /* we're limited by original request in that
3607                  * logical block must be covered any way
3608                  * winl is window we can move our chunk within */
3609                 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3610
3611                 /* also, we should cover whole original request */
3612                 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3613
3614                 /* the smallest one defines real window */
3615                 win = min(winl, wins);
3616
3617                 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3618                 if (offs && offs < win)
3619                         win = offs;
3620
3621                 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3622                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3623                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3624         }
3625
3626         /* preallocation can change ac_b_ex, thus we store actually
3627          * allocated blocks for history */
3628         ac->ac_f_ex = ac->ac_b_ex;
3629
3630         pa->pa_lstart = ac->ac_b_ex.fe_logical;
3631         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3632         pa->pa_len = ac->ac_b_ex.fe_len;
3633         pa->pa_free = pa->pa_len;
3634         atomic_set(&pa->pa_count, 1);
3635         spin_lock_init(&pa->pa_lock);
3636         INIT_LIST_HEAD(&pa->pa_inode_list);
3637         INIT_LIST_HEAD(&pa->pa_group_list);
3638         pa->pa_deleted = 0;
3639         pa->pa_type = MB_INODE_PA;
3640
3641         mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3642                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3643         trace_ext4_mb_new_inode_pa(ac, pa);
3644
3645         ext4_mb_use_inode_pa(ac, pa);
3646         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3647
3648         ei = EXT4_I(ac->ac_inode);
3649         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3650
3651         pa->pa_obj_lock = &ei->i_prealloc_lock;
3652         pa->pa_inode = ac->ac_inode;
3653
3654         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3655         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3656         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3657
3658         spin_lock(pa->pa_obj_lock);
3659         list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3660         spin_unlock(pa->pa_obj_lock);
3661
3662         return 0;
3663 }
3664
3665 /*
3666  * creates new preallocated space for locality group inodes belongs to
3667  */
3668 static noinline_for_stack int
3669 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3670 {
3671         struct super_block *sb = ac->ac_sb;
3672         struct ext4_locality_group *lg;
3673         struct ext4_prealloc_space *pa;
3674         struct ext4_group_info *grp;
3675
3676         /* preallocate only when found space is larger then requested */
3677         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3678         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3679         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3680
3681         BUG_ON(ext4_pspace_cachep == NULL);
3682         pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3683         if (pa == NULL)
3684                 return -ENOMEM;
3685
3686         /* preallocation can change ac_b_ex, thus we store actually
3687          * allocated blocks for history */
3688         ac->ac_f_ex = ac->ac_b_ex;
3689
3690         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3691         pa->pa_lstart = pa->pa_pstart;
3692         pa->pa_len = ac->ac_b_ex.fe_len;
3693         pa->pa_free = pa->pa_len;
3694         atomic_set(&pa->pa_count, 1);
3695         spin_lock_init(&pa->pa_lock);
3696         INIT_LIST_HEAD(&pa->pa_inode_list);
3697         INIT_LIST_HEAD(&pa->pa_group_list);
3698         pa->pa_deleted = 0;
3699         pa->pa_type = MB_GROUP_PA;
3700
3701         mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3702                         pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3703         trace_ext4_mb_new_group_pa(ac, pa);
3704
3705         ext4_mb_use_group_pa(ac, pa);
3706         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3707
3708         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3709         lg = ac->ac_lg;
3710         BUG_ON(lg == NULL);
3711
3712         pa->pa_obj_lock = &lg->lg_prealloc_lock;
3713         pa->pa_inode = NULL;
3714
3715         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3716         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3717         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3718
3719         /*
3720          * We will later add the new pa to the right bucket
3721          * after updating the pa_free in ext4_mb_release_context
3722          */
3723         return 0;
3724 }
3725
3726 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3727 {
3728         int err;
3729
3730         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3731                 err = ext4_mb_new_group_pa(ac);
3732         else
3733                 err = ext4_mb_new_inode_pa(ac);
3734         return err;
3735 }
3736
3737 /*
3738  * finds all unused blocks in on-disk bitmap, frees them in
3739  * in-core bitmap and buddy.
3740  * @pa must be unlinked from inode and group lists, so that
3741  * nobody else can find/use it.
3742  * the caller MUST hold group/inode locks.
3743  * TODO: optimize the case when there are no in-core structures yet
3744  */
3745 static noinline_for_stack int
3746 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3747                         struct ext4_prealloc_space *pa,
3748                         struct ext4_allocation_context *ac)
3749 {
3750         struct super_block *sb = e4b->bd_sb;
3751         struct ext4_sb_info *sbi = EXT4_SB(sb);
3752         unsigned int end;
3753         unsigned int next;
3754         ext4_group_t group;
3755         ext4_grpblk_t bit;
3756         unsigned long long grp_blk_start;
3757         sector_t start;
3758         int err = 0;
3759         int free = 0;
3760
3761         BUG_ON(pa->pa_deleted == 0);
3762         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3763         grp_blk_start = pa->pa_pstart - bit;
3764         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3765         end = bit + pa->pa_len;
3766
3767         if (ac) {
3768                 ac->ac_sb = sb;
3769                 ac->ac_inode = pa->pa_inode;
3770                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3771         }
3772
3773         while (bit < end) {
3774                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3775                 if (bit >= end)
3776                         break;
3777                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3778                 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3779                                 le32_to_cpu(sbi->s_es->s_first_data_block);
3780                 mb_debug("    free preallocated %u/%u in group %u\n",
3781                                 (unsigned) start, (unsigned) next - bit,
3782                                 (unsigned) group);
3783                 free += next - bit;
3784
3785                 if (ac) {
3786                         ac->ac_b_ex.fe_group = group;
3787                         ac->ac_b_ex.fe_start = bit;
3788                         ac->ac_b_ex.fe_len = next - bit;
3789                         ac->ac_b_ex.fe_logical = 0;
3790                         ext4_mb_store_history(ac);
3791                 }
3792
3793                 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3794                                                next - bit);
3795                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3796                 bit = next + 1;
3797         }
3798         if (free != pa->pa_free) {
3799                 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3800                         pa, (unsigned long) pa->pa_lstart,
3801                         (unsigned long) pa->pa_pstart,
3802                         (unsigned long) pa->pa_len);
3803                 ext4_grp_locked_error(sb, group,
3804                                         __func__, "free %u, pa_free %u",
3805                                         free, pa->pa_free);
3806                 /*
3807                  * pa is already deleted so we use the value obtained
3808                  * from the bitmap and continue.
3809                  */
3810         }
3811         atomic_add(free, &sbi->s_mb_discarded);
3812
3813         return err;
3814 }
3815
3816 static noinline_for_stack int
3817 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3818                                 struct ext4_prealloc_space *pa,
3819                                 struct ext4_allocation_context *ac)
3820 {
3821         struct super_block *sb = e4b->bd_sb;
3822         ext4_group_t group;
3823         ext4_grpblk_t bit;
3824
3825         if (ac)
3826                 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3827
3828         trace_ext4_mb_release_group_pa(ac, pa);
3829         BUG_ON(pa->pa_deleted == 0);
3830         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3831         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3832         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3833         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3834
3835         if (ac) {
3836                 ac->ac_sb = sb;
3837                 ac->ac_inode = NULL;
3838                 ac->ac_b_ex.fe_group = group;
3839                 ac->ac_b_ex.fe_start = bit;
3840                 ac->ac_b_ex.fe_len = pa->pa_len;
3841                 ac->ac_b_ex.fe_logical = 0;
3842                 ext4_mb_store_history(ac);
3843         }
3844
3845         return 0;
3846 }
3847
3848 /*
3849  * releases all preallocations in given group
3850  *
3851  * first, we need to decide discard policy:
3852  * - when do we discard
3853  *   1) ENOSPC
3854  * - how many do we discard
3855  *   1) how many requested
3856  */
3857 static noinline_for_stack int
3858 ext4_mb_discard_group_preallocations(struct super_block *sb,
3859                                         ext4_group_t group, int needed)
3860 {
3861         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3862         struct buffer_head *bitmap_bh = NULL;
3863         struct ext4_prealloc_space *pa, *tmp;
3864         struct ext4_allocation_context *ac;
3865         struct list_head list;
3866         struct ext4_buddy e4b;
3867         int err;
3868         int busy = 0;
3869         int free = 0;
3870
3871         mb_debug("discard preallocation for group %u\n", group);
3872
3873         if (list_empty(&grp->bb_prealloc_list))
3874                 return 0;
3875
3876         bitmap_bh = ext4_read_block_bitmap(sb, group);
3877         if (bitmap_bh == NULL) {
3878                 ext4_error(sb, __func__, "Error in reading block "
3879                                 "bitmap for %u", group);
3880                 return 0;
3881         }
3882
3883         err = ext4_mb_load_buddy(sb, group, &e4b);
3884         if (err) {
3885                 ext4_error(sb, __func__, "Error in loading buddy "
3886                                 "information for %u", group);
3887                 put_bh(bitmap_bh);
3888                 return 0;
3889         }
3890
3891         if (needed == 0)
3892                 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3893
3894         INIT_LIST_HEAD(&list);
3895         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3896         if (ac)
3897                 ac->ac_sb = sb;
3898 repeat:
3899         ext4_lock_group(sb, group);
3900         list_for_each_entry_safe(pa, tmp,
3901                                 &grp->bb_prealloc_list, pa_group_list) {
3902                 spin_lock(&pa->pa_lock);
3903                 if (atomic_read(&pa->pa_count)) {
3904                         spin_unlock(&pa->pa_lock);
3905                         busy = 1;
3906                         continue;
3907                 }
3908                 if (pa->pa_deleted) {
3909                         spin_unlock(&pa->pa_lock);
3910                         continue;
3911                 }
3912
3913                 /* seems this one can be freed ... */
3914                 pa->pa_deleted = 1;
3915
3916                 /* we can trust pa_free ... */
3917                 free += pa->pa_free;
3918
3919                 spin_unlock(&pa->pa_lock);
3920
3921                 list_del(&pa->pa_group_list);
3922                 list_add(&pa->u.pa_tmp_list, &list);
3923         }
3924
3925         /* if we still need more blocks and some PAs were used, try again */
3926         if (free < needed && busy) {
3927                 busy = 0;
3928                 ext4_unlock_group(sb, group);
3929                 /*
3930                  * Yield the CPU here so that we don't get soft lockup
3931                  * in non preempt case.
3932                  */
3933                 yield();
3934                 goto repeat;
3935         }
3936
3937         /* found anything to free? */
3938         if (list_empty(&list)) {
3939                 BUG_ON(free != 0);
3940                 goto out;
3941         }
3942
3943         /* now free all selected PAs */
3944         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3945
3946                 /* remove from object (inode or locality group) */
3947                 spin_lock(pa->pa_obj_lock);
3948                 list_del_rcu(&pa->pa_inode_list);
3949                 spin_unlock(pa->pa_obj_lock);
3950
3951                 if (pa->pa_type == MB_GROUP_PA)
3952                         ext4_mb_release_group_pa(&e4b, pa, ac);
3953                 else
3954                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3955
3956                 list_del(&pa->u.pa_tmp_list);
3957                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3958         }
3959
3960 out:
3961         ext4_unlock_group(sb, group);
3962         if (ac)
3963                 kmem_cache_free(ext4_ac_cachep, ac);
3964         ext4_mb_release_desc(&e4b);
3965         put_bh(bitmap_bh);
3966         return free;
3967 }
3968
3969 /*
3970  * releases all non-used preallocated blocks for given inode
3971  *
3972  * It's important to discard preallocations under i_data_sem
3973  * We don't want another block to be served from the prealloc
3974  * space when we are discarding the inode prealloc space.
3975  *
3976  * FIXME!! Make sure it is valid at all the call sites
3977  */
3978 void ext4_discard_preallocations(struct inode *inode)
3979 {
3980         struct ext4_inode_info *ei = EXT4_I(inode);
3981         struct super_block *sb = inode->i_sb;
3982         struct buffer_head *bitmap_bh = NULL;
3983         struct ext4_prealloc_space *pa, *tmp;
3984         struct ext4_allocation_context *ac;
3985         ext4_group_t group = 0;
3986         struct list_head list;
3987         struct ext4_buddy e4b;
3988         int err;
3989
3990         if (!S_ISREG(inode->i_mode)) {
3991                 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3992                 return;
3993         }
3994
3995         mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3996         trace_ext4_discard_preallocations(inode);
3997
3998         INIT_LIST_HEAD(&list);
3999
4000         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4001         if (ac) {
4002                 ac->ac_sb = sb;
4003                 ac->ac_inode = inode;
4004         }
4005 repeat:
4006         /* first, collect all pa's in the inode */
4007         spin_lock(&ei->i_prealloc_lock);
4008         while (!list_empty(&ei->i_prealloc_list)) {
4009                 pa = list_entry(ei->i_prealloc_list.next,
4010                                 struct ext4_prealloc_space, pa_inode_list);
4011                 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4012                 spin_lock(&pa->pa_lock);
4013                 if (atomic_read(&pa->pa_count)) {
4014                         /* this shouldn't happen often - nobody should
4015                          * use preallocation while we're discarding it */
4016                         spin_unlock(&pa->pa_lock);
4017                         spin_unlock(&ei->i_prealloc_lock);
4018                         printk(KERN_ERR "uh-oh! used pa while discarding\n");
4019                         WARN_ON(1);
4020                         schedule_timeout_uninterruptible(HZ);
4021                         goto repeat;
4022
4023                 }
4024                 if (pa->pa_deleted == 0) {
4025                         pa->pa_deleted = 1;
4026                         spin_unlock(&pa->pa_lock);
4027                         list_del_rcu(&pa->pa_inode_list);
4028                         list_add(&pa->u.pa_tmp_list, &list);
4029                         continue;
4030                 }
4031
4032                 /* someone is deleting pa right now */
4033                 spin_unlock(&pa->pa_lock);
4034                 spin_unlock(&ei->i_prealloc_lock);
4035
4036                 /* we have to wait here because pa_deleted
4037                  * doesn't mean pa is already unlinked from
4038                  * the list. as we might be called from
4039                  * ->clear_inode() the inode will get freed
4040                  * and concurrent thread which is unlinking
4041                  * pa from inode's list may access already
4042                  * freed memory, bad-bad-bad */
4043
4044                 /* XXX: if this happens too often, we can
4045                  * add a flag to force wait only in case
4046                  * of ->clear_inode(), but not in case of
4047                  * regular truncate */
4048                 schedule_timeout_uninterruptible(HZ);
4049                 goto repeat;
4050         }
4051         spin_unlock(&ei->i_prealloc_lock);
4052
4053         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4054                 BUG_ON(pa->pa_type != MB_INODE_PA);
4055                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4056
4057                 err = ext4_mb_load_buddy(sb, group, &e4b);
4058                 if (err) {
4059                         ext4_error(sb, __func__, "Error in loading buddy "
4060                                         "information for %u", group);
4061                         continue;
4062                 }
4063
4064                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4065                 if (bitmap_bh == NULL) {
4066                         ext4_error(sb, __func__, "Error in reading block "
4067                                         "bitmap for %u", group);
4068                         ext4_mb_release_desc(&e4b);
4069                         continue;
4070                 }
4071
4072                 ext4_lock_group(sb, group);
4073                 list_del(&pa->pa_group_list);
4074                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4075                 ext4_unlock_group(sb, group);
4076
4077                 ext4_mb_release_desc(&e4b);
4078                 put_bh(bitmap_bh);
4079
4080                 list_del(&pa->u.pa_tmp_list);
4081                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4082         }
4083         if (ac)
4084                 kmem_cache_free(ext4_ac_cachep, ac);
4085 }
4086
4087 /*
4088  * finds all preallocated spaces and return blocks being freed to them
4089  * if preallocated space becomes full (no block is used from the space)
4090  * then the function frees space in buddy
4091  * XXX: at the moment, truncate (which is the only way to free blocks)
4092  * discards all preallocations
4093  */
4094 static void ext4_mb_return_to_preallocation(struct inode *inode,
4095                                         struct ext4_buddy *e4b,
4096                                         sector_t block, int count)
4097 {
4098         BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4099 }
4100 #ifdef MB_DEBUG
4101 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4102 {
4103         struct super_block *sb = ac->ac_sb;
4104         ext4_group_t ngroups, i;
4105
4106         printk(KERN_ERR "EXT4-fs: Can't allocate:"
4107                         " Allocation context details:\n");
4108         printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4109                         ac->ac_status, ac->ac_flags);
4110         printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4111                         "best %lu/%lu/%lu@%lu cr %d\n",
4112                         (unsigned long)ac->ac_o_ex.fe_group,
4113                         (unsigned long)ac->ac_o_ex.fe_start,
4114                         (unsigned long)ac->ac_o_ex.fe_len,
4115                         (unsigned long)ac->ac_o_ex.fe_logical,
4116                         (unsigned long)ac->ac_g_ex.fe_group,
4117                         (unsigned long)ac->ac_g_ex.fe_start,
4118                         (unsigned long)ac->ac_g_ex.fe_len,
4119                         (unsigned long)ac->ac_g_ex.fe_logical,
4120                         (unsigned long)ac->ac_b_ex.fe_group,
4121                         (unsigned long)ac->ac_b_ex.fe_start,
4122                         (unsigned long)ac->ac_b_ex.fe_len,
4123                         (unsigned long)ac->ac_b_ex.fe_logical,
4124                         (int)ac->ac_criteria);
4125         printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4126                 ac->ac_found);
4127         printk(KERN_ERR "EXT4-fs: groups: \n");
4128         ngroups = ext4_get_groups_count(sb);
4129         for (i = 0; i < ngroups; i++) {
4130                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4131                 struct ext4_prealloc_space *pa;
4132                 ext4_grpblk_t start;
4133                 struct list_head *cur;
4134                 ext4_lock_group(sb, i);
4135                 list_for_each(cur, &grp->bb_prealloc_list) {
4136                         pa = list_entry(cur, struct ext4_prealloc_space,
4137                                         pa_group_list);
4138                         spin_lock(&pa->pa_lock);
4139                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4140                                                      NULL, &start);
4141                         spin_unlock(&pa->pa_lock);
4142                         printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4143                                                         start, pa->pa_len);
4144                 }
4145                 ext4_unlock_group(sb, i);
4146
4147                 if (grp->bb_free == 0)
4148                         continue;
4149                 printk(KERN_ERR "%lu: %d/%d \n",
4150                        i, grp->bb_free, grp->bb_fragments);
4151         }
4152         printk(KERN_ERR "\n");
4153 }
4154 #else
4155 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4156 {
4157         return;
4158 }
4159 #endif
4160
4161 /*
4162  * We use locality group preallocation for small size file. The size of the
4163  * file is determined by the current size or the resulting size after
4164  * allocation which ever is larger
4165  *
4166  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4167  */
4168 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4169 {
4170         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4171         int bsbits = ac->ac_sb->s_blocksize_bits;
4172         loff_t size, isize;
4173
4174         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4175                 return;
4176
4177         size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4178         isize = i_size_read(ac->ac_inode) >> bsbits;
4179         size = max(size, isize);
4180
4181         /* don't use group allocation for large files */
4182         if (size >= sbi->s_mb_stream_request)
4183                 return;
4184
4185         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4186                 return;
4187
4188         BUG_ON(ac->ac_lg != NULL);
4189         /*
4190          * locality group prealloc space are per cpu. The reason for having
4191          * per cpu locality group is to reduce the contention between block
4192          * request from multiple CPUs.
4193          */
4194         ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4195
4196         /* we're going to use group allocation */
4197         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4198
4199         /* serialize all allocations in the group */
4200         mutex_lock(&ac->ac_lg->lg_mutex);
4201 }
4202
4203 static noinline_for_stack int
4204 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4205                                 struct ext4_allocation_request *ar)
4206 {
4207         struct super_block *sb = ar->inode->i_sb;
4208         struct ext4_sb_info *sbi = EXT4_SB(sb);
4209         struct ext4_super_block *es = sbi->s_es;
4210         ext4_group_t group;
4211         unsigned int len;
4212         ext4_fsblk_t goal;
4213         ext4_grpblk_t block;
4214
4215         /* we can't allocate > group size */
4216         len = ar->len;
4217
4218         /* just a dirty hack to filter too big requests  */
4219         if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4220                 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4221
4222         /* start searching from the goal */
4223         goal = ar->goal;
4224         if (goal < le32_to_cpu(es->s_first_data_block) ||
4225                         goal >= ext4_blocks_count(es))
4226                 goal = le32_to_cpu(es->s_first_data_block);
4227         ext4_get_group_no_and_offset(sb, goal, &group, &block);
4228
4229         /* set up allocation goals */
4230         memset(ac, 0, sizeof(struct ext4_allocation_context));
4231         ac->ac_b_ex.fe_logical = ar->logical;
4232         ac->ac_status = AC_STATUS_CONTINUE;
4233         ac->ac_sb = sb;
4234         ac->ac_inode = ar->inode;
4235         ac->ac_o_ex.fe_logical = ar->logical;
4236         ac->ac_o_ex.fe_group = group;
4237         ac->ac_o_ex.fe_start = block;
4238         ac->ac_o_ex.fe_len = len;
4239         ac->ac_g_ex.fe_logical = ar->logical;
4240         ac->ac_g_ex.fe_group = group;
4241         ac->ac_g_ex.fe_start = block;
4242         ac->ac_g_ex.fe_len = len;
4243         ac->ac_flags = ar->flags;
4244
4245         /* we have to define context: we'll we work with a file or
4246          * locality group. this is a policy, actually */
4247         ext4_mb_group_or_file(ac);
4248
4249         mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4250                         "left: %u/%u, right %u/%u to %swritable\n",
4251                         (unsigned) ar->len, (unsigned) ar->logical,
4252                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4253                         (unsigned) ar->lleft, (unsigned) ar->pleft,
4254                         (unsigned) ar->lright, (unsigned) ar->pright,
4255                         atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4256         return 0;
4257
4258 }
4259
4260 static noinline_for_stack void
4261 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4262                                         struct ext4_locality_group *lg,
4263                                         int order, int total_entries)
4264 {
4265         ext4_group_t group = 0;
4266         struct ext4_buddy e4b;
4267         struct list_head discard_list;
4268         struct ext4_prealloc_space *pa, *tmp;
4269         struct ext4_allocation_context *ac;
4270
4271         mb_debug("discard locality group preallocation\n");
4272
4273         INIT_LIST_HEAD(&discard_list);
4274         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4275         if (ac)
4276                 ac->ac_sb = sb;
4277
4278         spin_lock(&lg->lg_prealloc_lock);
4279         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4280                                                 pa_inode_list) {
4281                 spin_lock(&pa->pa_lock);
4282                 if (atomic_read(&pa->pa_count)) {
4283                         /*
4284                          * This is the pa that we just used
4285                          * for block allocation. So don't
4286                          * free that
4287                          */
4288                         spin_unlock(&pa->pa_lock);
4289                         continue;
4290                 }
4291                 if (pa->pa_deleted) {
4292                         spin_unlock(&pa->pa_lock);
4293                         continue;
4294                 }
4295                 /* only lg prealloc space */
4296                 BUG_ON(pa->pa_type != MB_GROUP_PA);
4297
4298                 /* seems this one can be freed ... */
4299                 pa->pa_deleted = 1;
4300                 spin_unlock(&pa->pa_lock);
4301
4302                 list_del_rcu(&pa->pa_inode_list);
4303                 list_add(&pa->u.pa_tmp_list, &discard_list);
4304
4305                 total_entries--;
4306                 if (total_entries <= 5) {
4307                         /*
4308                          * we want to keep only 5 entries
4309                          * allowing it to grow to 8. This
4310                          * mak sure we don't call discard
4311                          * soon for this list.
4312                          */
4313                         break;
4314                 }
4315         }
4316         spin_unlock(&lg->lg_prealloc_lock);
4317
4318         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4319
4320                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4321                 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4322                         ext4_error(sb, __func__, "Error in loading buddy "
4323                                         "information for %u", group);
4324                         continue;
4325                 }
4326                 ext4_lock_group(sb, group);
4327                 list_del(&pa->pa_group_list);
4328                 ext4_mb_release_group_pa(&e4b, pa, ac);
4329                 ext4_unlock_group(sb, group);
4330
4331                 ext4_mb_release_desc(&e4b);
4332                 list_del(&pa->u.pa_tmp_list);
4333                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4334         }
4335         if (ac)
4336                 kmem_cache_free(ext4_ac_cachep, ac);
4337 }
4338
4339 /*
4340  * We have incremented pa_count. So it cannot be freed at this
4341  * point. Also we hold lg_mutex. So no parallel allocation is
4342  * possible from this lg. That means pa_free cannot be updated.
4343  *
4344  * A parallel ext4_mb_discard_group_preallocations is possible.
4345  * which can cause the lg_prealloc_list to be updated.
4346  */
4347
4348 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4349 {
4350         int order, added = 0, lg_prealloc_count = 1;
4351         struct super_block *sb = ac->ac_sb;
4352         struct ext4_locality_group *lg = ac->ac_lg;
4353         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4354
4355         order = fls(pa->pa_free) - 1;
4356         if (order > PREALLOC_TB_SIZE - 1)
4357                 /* The max size of hash table is PREALLOC_TB_SIZE */
4358                 order = PREALLOC_TB_SIZE - 1;
4359         /* Add the prealloc space to lg */
4360         rcu_read_lock();
4361         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4362                                                 pa_inode_list) {
4363                 spin_lock(&tmp_pa->pa_lock);
4364                 if (tmp_pa->pa_deleted) {
4365                         spin_unlock(&tmp_pa->pa_lock);
4366                         continue;
4367                 }
4368                 if (!added && pa->pa_free < tmp_pa->pa_free) {
4369                         /* Add to the tail of the previous entry */
4370                         list_add_tail_rcu(&pa->pa_inode_list,
4371                                                 &tmp_pa->pa_inode_list);
4372                         added = 1;
4373                         /*
4374                          * we want to count the total
4375                          * number of entries in the list
4376                          */
4377                 }
4378                 spin_unlock(&tmp_pa->pa_lock);
4379                 lg_prealloc_count++;
4380         }
4381         if (!added)
4382                 list_add_tail_rcu(&pa->pa_inode_list,
4383                                         &lg->lg_prealloc_list[order]);
4384         rcu_read_unlock();
4385
4386         /* Now trim the list to be not more than 8 elements */
4387         if (lg_prealloc_count > 8) {
4388                 ext4_mb_discard_lg_preallocations(sb, lg,
4389                                                 order, lg_prealloc_count);
4390                 return;
4391         }
4392         return ;
4393 }
4394
4395 /*
4396  * release all resource we used in allocation
4397  */
4398 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4399 {
4400         struct ext4_prealloc_space *pa = ac->ac_pa;
4401         if (pa) {
4402                 if (pa->pa_type == MB_GROUP_PA) {
4403                         /* see comment in ext4_mb_use_group_pa() */
4404                         spin_lock(&pa->pa_lock);
4405                         pa->pa_pstart += ac->ac_b_ex.fe_len;
4406                         pa->pa_lstart += ac->ac_b_ex.fe_len;
4407                         pa->pa_free -= ac->ac_b_ex.fe_len;
4408                         pa->pa_len -= ac->ac_b_ex.fe_len;
4409                         spin_unlock(&pa->pa_lock);
4410                 }
4411         }
4412         if (ac->alloc_semp)
4413                 up_read(ac->alloc_semp);
4414         if (pa) {
4415                 /*
4416                  * We want to add the pa to the right bucket.
4417                  * Remove it from the list and while adding
4418                  * make sure the list to which we are adding
4419                  * doesn't grow big.  We need to release
4420                  * alloc_semp before calling ext4_mb_add_n_trim()
4421                  */
4422                 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4423                         spin_lock(pa->pa_obj_lock);
4424                         list_del_rcu(&pa->pa_inode_list);
4425                         spin_unlock(pa->pa_obj_lock);
4426                         ext4_mb_add_n_trim(ac);
4427                 }
4428                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4429         }
4430         if (ac->ac_bitmap_page)
4431                 page_cache_release(ac->ac_bitmap_page);
4432         if (ac->ac_buddy_page)
4433                 page_cache_release(ac->ac_buddy_page);
4434         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4435                 mutex_unlock(&ac->ac_lg->lg_mutex);
4436         ext4_mb_collect_stats(ac);
4437         return 0;
4438 }
4439
4440 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4441 {
4442         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4443         int ret;
4444         int freed = 0;
4445
4446         trace_ext4_mb_discard_preallocations(sb, needed);
4447         for (i = 0; i < ngroups && needed > 0; i++) {
4448                 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4449                 freed += ret;
4450                 needed -= ret;
4451         }
4452
4453         return freed;
4454 }
4455
4456 /*
4457  * Main entry point into mballoc to allocate blocks
4458  * it tries to use preallocation first, then falls back
4459  * to usual allocation
4460  */
4461 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4462                                  struct ext4_allocation_request *ar, int *errp)
4463 {
4464         int freed;
4465         struct ext4_allocation_context *ac = NULL;
4466         struct ext4_sb_info *sbi;
4467         struct super_block *sb;
4468         ext4_fsblk_t block = 0;
4469         unsigned int inquota = 0;
4470         unsigned int reserv_blks = 0;
4471
4472         sb = ar->inode->i_sb;
4473         sbi = EXT4_SB(sb);
4474
4475         trace_ext4_request_blocks(ar);
4476
4477         /*
4478          * For delayed allocation, we could skip the ENOSPC and
4479          * EDQUOT check, as blocks and quotas have been already
4480          * reserved when data being copied into pagecache.
4481          */
4482         if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4483                 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4484         else {
4485                 /* Without delayed allocation we need to verify
4486                  * there is enough free blocks to do block allocation
4487                  * and verify allocation doesn't exceed the quota limits.
4488                  */
4489                 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4490                         /* let others to free the space */
4491                         yield();
4492                         ar->len = ar->len >> 1;
4493                 }
4494                 if (!ar->len) {
4495                         *errp = -ENOSPC;
4496                         return 0;
4497                 }
4498                 reserv_blks = ar->len;
4499                 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4500                         ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4501                         ar->len--;
4502                 }
4503                 inquota = ar->len;
4504                 if (ar->len == 0) {
4505                         *errp = -EDQUOT;
4506                         goto out3;
4507                 }
4508         }
4509
4510         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4511         if (!ac) {
4512                 ar->len = 0;
4513                 *errp = -ENOMEM;
4514                 goto out1;
4515         }
4516
4517         *errp = ext4_mb_initialize_context(ac, ar);
4518         if (*errp) {
4519                 ar->len = 0;
4520                 goto out2;
4521         }
4522
4523         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4524         if (!ext4_mb_use_preallocated(ac)) {
4525                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4526                 ext4_mb_normalize_request(ac, ar);
4527 repeat:
4528                 /* allocate space in core */
4529                 ext4_mb_regular_allocator(ac);
4530
4531                 /* as we've just preallocated more space than
4532                  * user requested orinally, we store allocated
4533                  * space in a special descriptor */
4534                 if (ac->ac_status == AC_STATUS_FOUND &&
4535                                 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4536                         ext4_mb_new_preallocation(ac);
4537         }
4538         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4539                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4540                 if (*errp ==  -EAGAIN) {
4541                         /*
4542                          * drop the reference that we took
4543                          * in ext4_mb_use_best_found
4544                          */
4545                         ext4_mb_release_context(ac);
4546                         ac->ac_b_ex.fe_group = 0;
4547                         ac->ac_b_ex.fe_start = 0;
4548                         ac->ac_b_ex.fe_len = 0;
4549                         ac->ac_status = AC_STATUS_CONTINUE;
4550                         goto repeat;
4551                 } else if (*errp) {
4552                         ac->ac_b_ex.fe_len = 0;
4553                         ar->len = 0;
4554                         ext4_mb_show_ac(ac);
4555                 } else {
4556                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4557                         ar->len = ac->ac_b_ex.fe_len;
4558                 }
4559         } else {
4560                 freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4561                 if (freed)
4562                         goto repeat;
4563                 *errp = -ENOSPC;
4564                 ac->ac_b_ex.fe_len = 0;
4565                 ar->len = 0;
4566                 ext4_mb_show_ac(ac);
4567         }
4568
4569         ext4_mb_release_context(ac);
4570
4571 out2:
4572         kmem_cache_free(ext4_ac_cachep, ac);
4573 out1:
4574         if (inquota && ar->len < inquota)
4575                 vfs_dq_free_block(ar->inode, inquota - ar->len);
4576 out3:
4577         if (!ar->len) {
4578                 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4579                         /* release all the reserved blocks if non delalloc */
4580                         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4581                                                 reserv_blks);
4582         }
4583
4584         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4585
4586         return block;
4587 }
4588
4589 /*
4590  * We can merge two free data extents only if the physical blocks
4591  * are contiguous, AND the extents were freed by the same transaction,
4592  * AND the blocks are associated with the same group.
4593  */
4594 static int can_merge(struct ext4_free_data *entry1,
4595                         struct ext4_free_data *entry2)
4596 {
4597         if ((entry1->t_tid == entry2->t_tid) &&
4598             (entry1->group == entry2->group) &&
4599             ((entry1->start_blk + entry1->count) == entry2->start_blk))
4600                 return 1;
4601         return 0;
4602 }
4603
4604 static noinline_for_stack int
4605 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4606                       struct ext4_free_data *new_entry)
4607 {
4608         ext4_grpblk_t block;
4609         struct ext4_free_data *entry;
4610         struct ext4_group_info *db = e4b->bd_info;
4611         struct super_block *sb = e4b->bd_sb;
4612         struct ext4_sb_info *sbi = EXT4_SB(sb);
4613         struct rb_node **n = &db->bb_free_root.rb_node, *node;
4614         struct rb_node *parent = NULL, *new_node;
4615
4616         BUG_ON(!ext4_handle_valid(handle));
4617         BUG_ON(e4b->bd_bitmap_page == NULL);
4618         BUG_ON(e4b->bd_buddy_page == NULL);
4619
4620         new_node = &new_entry->node;
4621         block = new_entry->start_blk;
4622
4623         if (!*n) {
4624                 /* first free block exent. We need to
4625                    protect buddy cache from being freed,
4626                  * otherwise we'll refresh it from
4627                  * on-disk bitmap and lose not-yet-available
4628                  * blocks */
4629                 page_cache_get(e4b->bd_buddy_page);
4630                 page_cache_get(e4b->bd_bitmap_page);
4631         }
4632         while (*n) {
4633                 parent = *n;
4634                 entry = rb_entry(parent, struct ext4_free_data, node);
4635                 if (block < entry->start_blk)
4636                         n = &(*n)->rb_left;
4637                 else if (block >= (entry->start_blk + entry->count))
4638                         n = &(*n)->rb_right;
4639                 else {
4640                         ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4641                                         "Double free of blocks %d (%d %d)",
4642                                         block, entry->start_blk, entry->count);
4643                         return 0;
4644                 }
4645         }
4646
4647         rb_link_node(new_node, parent, n);
4648         rb_insert_color(new_node, &db->bb_free_root);
4649
4650         /* Now try to see the extent can be merged to left and right */
4651         node = rb_prev(new_node);
4652         if (node) {
4653                 entry = rb_entry(node, struct ext4_free_data, node);
4654                 if (can_merge(entry, new_entry)) {
4655                         new_entry->start_blk = entry->start_blk;
4656                         new_entry->count += entry->count;
4657                         rb_erase(node, &(db->bb_free_root));
4658                         spin_lock(&sbi->s_md_lock);
4659                         list_del(&entry->list);
4660                         spin_unlock(&sbi->s_md_lock);
4661                         kmem_cache_free(ext4_free_ext_cachep, entry);
4662                 }
4663         }
4664
4665         node = rb_next(new_node);
4666         if (node) {
4667                 entry = rb_entry(node, struct ext4_free_data, node);
4668                 if (can_merge(new_entry, entry)) {
4669                         new_entry->count += entry->count;
4670                         rb_erase(node, &(db->bb_free_root));
4671                         spin_lock(&sbi->s_md_lock);
4672                         list_del(&entry->list);
4673                         spin_unlock(&sbi->s_md_lock);
4674                         kmem_cache_free(ext4_free_ext_cachep, entry);
4675                 }
4676         }
4677         /* Add the extent to transaction's private list */
4678         spin_lock(&sbi->s_md_lock);
4679         list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4680         spin_unlock(&sbi->s_md_lock);
4681         return 0;
4682 }
4683
4684 /*
4685  * Main entry point into mballoc to free blocks
4686  */
4687 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4688                         ext4_fsblk_t block, unsigned long count,
4689                         int metadata, unsigned long *freed)
4690 {
4691         struct buffer_head *bitmap_bh = NULL;
4692         struct super_block *sb = inode->i_sb;
4693         struct ext4_allocation_context *ac = NULL;
4694         struct ext4_group_desc *gdp;
4695         struct ext4_super_block *es;
4696         unsigned int overflow;
4697         ext4_grpblk_t bit;
4698         struct buffer_head *gd_bh;
4699         ext4_group_t block_group;
4700         struct ext4_sb_info *sbi;
4701         struct ext4_buddy e4b;
4702         int err = 0;
4703         int ret;
4704
4705         *freed = 0;
4706
4707         sbi = EXT4_SB(sb);
4708         es = EXT4_SB(sb)->s_es;
4709         if (block < le32_to_cpu(es->s_first_data_block) ||
4710             block + count < block ||
4711             block + count > ext4_blocks_count(es)) {
4712                 ext4_error(sb, __func__,
4713                             "Freeing blocks not in datazone - "
4714                             "block = %llu, count = %lu", block, count);
4715                 goto error_return;
4716         }
4717
4718         ext4_debug("freeing block %llu\n", block);
4719         trace_ext4_free_blocks(inode, block, count, metadata);
4720
4721         ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4722         if (ac) {
4723                 ac->ac_op = EXT4_MB_HISTORY_FREE;
4724                 ac->ac_inode = inode;
4725                 ac->ac_sb = sb;
4726         }
4727
4728 do_more:
4729         overflow = 0;
4730         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4731
4732         /*
4733          * Check to see if we are freeing blocks across a group
4734          * boundary.
4735          */
4736         if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4737                 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4738                 count -= overflow;
4739         }
4740         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4741         if (!bitmap_bh) {
4742                 err = -EIO;
4743                 goto error_return;
4744         }
4745         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4746         if (!gdp) {
4747                 err = -EIO;
4748                 goto error_return;
4749         }
4750
4751         if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4752             in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4753             in_range(block, ext4_inode_table(sb, gdp),
4754                       EXT4_SB(sb)->s_itb_per_group) ||
4755             in_range(block + count - 1, ext4_inode_table(sb, gdp),
4756                       EXT4_SB(sb)->s_itb_per_group)) {
4757
4758                 ext4_error(sb, __func__,
4759                            "Freeing blocks in system zone - "
4760                            "Block = %llu, count = %lu", block, count);
4761                 /* err = 0. ext4_std_error should be a no op */
4762                 goto error_return;
4763         }
4764
4765         BUFFER_TRACE(bitmap_bh, "getting write access");
4766         err = ext4_journal_get_write_access(handle, bitmap_bh);
4767         if (err)
4768                 goto error_return;
4769
4770         /*
4771          * We are about to modify some metadata.  Call the journal APIs
4772          * to unshare ->b_data if a currently-committing transaction is
4773          * using it
4774          */
4775         BUFFER_TRACE(gd_bh, "get_write_access");
4776         err = ext4_journal_get_write_access(handle, gd_bh);
4777         if (err)
4778                 goto error_return;
4779 #ifdef AGGRESSIVE_CHECK
4780         {
4781                 int i;
4782                 for (i = 0; i < count; i++)
4783                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4784         }
4785 #endif
4786         if (ac) {
4787                 ac->ac_b_ex.fe_group = block_group;
4788                 ac->ac_b_ex.fe_start = bit;
4789                 ac->ac_b_ex.fe_len = count;
4790                 ext4_mb_store_history(ac);
4791         }
4792
4793         err = ext4_mb_load_buddy(sb, block_group, &e4b);
4794         if (err)
4795                 goto error_return;
4796         if (metadata && ext4_handle_valid(handle)) {
4797                 struct ext4_free_data *new_entry;
4798                 /*
4799                  * blocks being freed are metadata. these blocks shouldn't
4800                  * be used until this transaction is committed
4801                  */
4802                 new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4803                 new_entry->start_blk = bit;
4804                 new_entry->group  = block_group;
4805                 new_entry->count = count;
4806                 new_entry->t_tid = handle->h_transaction->t_tid;
4807
4808                 ext4_lock_group(sb, block_group);
4809                 mb_clear_bits(bitmap_bh->b_data, bit, count);
4810                 ext4_mb_free_metadata(handle, &e4b, new_entry);
4811         } else {
4812                 /* need to update group_info->bb_free and bitmap
4813                  * with group lock held. generate_buddy look at
4814                  * them with group lock_held
4815                  */
4816                 ext4_lock_group(sb, block_group);
4817                 mb_clear_bits(bitmap_bh->b_data, bit, count);
4818                 mb_free_blocks(inode, &e4b, bit, count);
4819                 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4820         }
4821
4822         ret = ext4_free_blks_count(sb, gdp) + count;
4823         ext4_free_blks_set(sb, gdp, ret);
4824         gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4825         ext4_unlock_group(sb, block_group);
4826         percpu_counter_add(&sbi->s_freeblocks_counter, count);
4827
4828         if (sbi->s_log_groups_per_flex) {
4829                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4830                 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4831         }
4832
4833         ext4_mb_release_desc(&e4b);
4834
4835         *freed += count;
4836
4837         /* We dirtied the bitmap block */
4838         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4839         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4840
4841         /* And the group descriptor block */
4842         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4843         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4844         if (!err)
4845                 err = ret;
4846
4847         if (overflow && !err) {
4848                 block += count;
4849                 count = overflow;
4850                 put_bh(bitmap_bh);
4851                 goto do_more;
4852         }
4853         sb->s_dirt = 1;
4854 error_return:
4855         brelse(bitmap_bh);
4856         ext4_std_error(sb, err);
4857         if (ac)
4858                 kmem_cache_free(ext4_ac_cachep, ac);
4859         return;
4860 }