4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
65 error = uptodate ? uptodate : -EIO;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
74 if (!blk_fs_request(rq) && error && !rq->errors)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
87 if (!blk_end_request(rq, error, nr_bytes))
90 if (ret == 0 && dequeue)
91 drive->hwif->rq = NULL;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
109 unsigned int nr_bytes = nr_sectors << 9;
110 struct request *rq = drive->hwif->rq;
113 if (blk_pc_request(rq))
114 nr_bytes = rq->data_len;
116 nr_bytes = rq->hard_cur_sectors << 9;
119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
121 EXPORT_SYMBOL(ide_end_request);
124 * ide_end_dequeued_request - complete an IDE I/O
125 * @drive: IDE device for the I/O
127 * @nr_sectors: number of sectors completed
129 * Complete an I/O that is no longer on the request queue. This
130 * typically occurs when we pull the request and issue a REQUEST_SENSE.
131 * We must still finish the old request but we must not tamper with the
132 * queue in the meantime.
134 * NOTE: This path does not handle barrier, but barrier is not supported
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139 int uptodate, int nr_sectors)
141 BUG_ON(!blk_rq_started(rq));
143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
148 * ide_end_drive_cmd - end an explicit drive command
153 * Clean up after success/failure of an explicit drive command.
154 * These get thrown onto the queue so they are synchronized with
155 * real I/O operations on the drive.
157 * In LBA48 mode we have to read the register set twice to get
158 * all the extra information out.
161 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
163 ide_hwif_t *hwif = drive->hwif;
164 struct request *rq = hwif->rq;
166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167 ide_task_t *task = (ide_task_t *)rq->special;
170 struct ide_taskfile *tf = &task->tf;
175 drive->hwif->tp_ops->tf_read(drive, task);
177 if (task->tf_flags & IDE_TFLAG_DYN)
180 } else if (blk_pm_request(rq)) {
181 struct request_pm_state *pm = rq->data;
183 ide_complete_power_step(drive, rq);
184 if (pm->pm_step == IDE_PM_COMPLETED)
185 ide_complete_pm_request(drive, rq);
193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
197 EXPORT_SYMBOL(ide_end_drive_cmd);
199 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
202 struct ide_driver *drv;
204 drv = *(struct ide_driver **)rq->rq_disk->private_data;
205 drv->end_request(drive, 0, 0);
207 ide_end_request(drive, 0, 0);
210 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
212 tf->nsect = drive->sect;
213 tf->lbal = drive->sect;
214 tf->lbam = drive->cyl;
215 tf->lbah = drive->cyl >> 8;
216 tf->device = (drive->head - 1) | drive->select;
217 tf->command = ATA_CMD_INIT_DEV_PARAMS;
220 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
222 tf->nsect = drive->sect;
223 tf->command = ATA_CMD_RESTORE;
226 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
228 tf->nsect = drive->mult_req;
229 tf->command = ATA_CMD_SET_MULTI;
232 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
234 special_t *s = &drive->special;
237 memset(&args, 0, sizeof(ide_task_t));
238 args.data_phase = TASKFILE_NO_DATA;
240 if (s->b.set_geometry) {
241 s->b.set_geometry = 0;
242 ide_tf_set_specify_cmd(drive, &args.tf);
243 } else if (s->b.recalibrate) {
244 s->b.recalibrate = 0;
245 ide_tf_set_restore_cmd(drive, &args.tf);
246 } else if (s->b.set_multmode) {
247 s->b.set_multmode = 0;
248 ide_tf_set_setmult_cmd(drive, &args.tf);
250 int special = s->all;
252 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
256 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
257 IDE_TFLAG_CUSTOM_HANDLER;
259 do_rw_taskfile(drive, &args);
265 * do_special - issue some special commands
266 * @drive: drive the command is for
268 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
269 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
271 * It used to do much more, but has been scaled back.
274 static ide_startstop_t do_special (ide_drive_t *drive)
276 special_t *s = &drive->special;
279 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
281 if (drive->media == ide_disk)
282 return ide_disk_special(drive);
289 void ide_map_sg(ide_drive_t *drive, struct request *rq)
291 ide_hwif_t *hwif = drive->hwif;
292 struct scatterlist *sg = hwif->sg_table;
294 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
295 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
297 } else if (!rq->bio) {
298 sg_init_one(sg, rq->data, rq->data_len);
301 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
305 EXPORT_SYMBOL_GPL(ide_map_sg);
307 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
309 ide_hwif_t *hwif = drive->hwif;
311 hwif->nsect = hwif->nleft = rq->nr_sectors;
316 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
319 * execute_drive_command - issue special drive command
320 * @drive: the drive to issue the command on
321 * @rq: the request structure holding the command
323 * execute_drive_cmd() issues a special drive command, usually
324 * initiated by ioctl() from the external hdparm program. The
325 * command can be a drive command, drive task or taskfile
326 * operation. Weirdly you can call it with NULL to wait for
327 * all commands to finish. Don't do this as that is due to change
330 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
333 ide_hwif_t *hwif = drive->hwif;
334 ide_task_t *task = rq->special;
337 hwif->data_phase = task->data_phase;
339 switch (hwif->data_phase) {
340 case TASKFILE_MULTI_OUT:
342 case TASKFILE_MULTI_IN:
344 ide_init_sg_cmd(drive, rq);
345 ide_map_sg(drive, rq);
350 return do_rw_taskfile(drive, task);
354 * NULL is actually a valid way of waiting for
355 * all current requests to be flushed from the queue.
358 printk("%s: DRIVE_CMD (null)\n", drive->name);
360 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
361 ide_read_error(drive));
366 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
372 case REQ_UNPARK_HEADS:
373 return ide_do_park_unpark(drive, rq);
374 case REQ_DEVSET_EXEC:
375 return ide_do_devset(drive, rq);
376 case REQ_DRIVE_RESET:
377 return ide_do_reset(drive);
379 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
380 ide_end_request(drive, 0, 0);
386 * start_request - start of I/O and command issuing for IDE
388 * start_request() initiates handling of a new I/O request. It
389 * accepts commands and I/O (read/write) requests.
391 * FIXME: this function needs a rename
394 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
396 ide_startstop_t startstop;
398 BUG_ON(!blk_rq_started(rq));
401 printk("%s: start_request: current=0x%08lx\n",
402 drive->hwif->name, (unsigned long) rq);
405 /* bail early if we've exceeded max_failures */
406 if (drive->max_failures && (drive->failures > drive->max_failures)) {
407 rq->cmd_flags |= REQ_FAILED;
411 if (blk_pm_request(rq))
412 ide_check_pm_state(drive, rq);
415 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
416 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
417 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
420 if (!drive->special.all) {
421 struct ide_driver *drv;
424 * We reset the drive so we need to issue a SETFEATURES.
425 * Do it _after_ do_special() restored device parameters.
427 if (drive->current_speed == 0xff)
428 ide_config_drive_speed(drive, drive->desired_speed);
430 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
431 return execute_drive_cmd(drive, rq);
432 else if (blk_pm_request(rq)) {
433 struct request_pm_state *pm = rq->data;
435 printk("%s: start_power_step(step: %d)\n",
436 drive->name, pm->pm_step);
438 startstop = ide_start_power_step(drive, rq);
439 if (startstop == ide_stopped &&
440 pm->pm_step == IDE_PM_COMPLETED)
441 ide_complete_pm_request(drive, rq);
443 } else if (!rq->rq_disk && blk_special_request(rq))
445 * TODO: Once all ULDs have been modified to
446 * check for specific op codes rather than
447 * blindly accepting any special request, the
448 * check for ->rq_disk above may be replaced
449 * by a more suitable mechanism or even
452 return ide_special_rq(drive, rq);
454 drv = *(struct ide_driver **)rq->rq_disk->private_data;
456 return drv->do_request(drive, rq, rq->sector);
458 return do_special(drive);
460 ide_kill_rq(drive, rq);
465 * ide_stall_queue - pause an IDE device
466 * @drive: drive to stall
467 * @timeout: time to stall for (jiffies)
469 * ide_stall_queue() can be used by a drive to give excess bandwidth back
470 * to the port by sleeping for timeout jiffies.
473 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
475 if (timeout > WAIT_WORSTCASE)
476 timeout = WAIT_WORSTCASE;
477 drive->sleep = timeout + jiffies;
478 drive->dev_flags |= IDE_DFLAG_SLEEPING;
480 EXPORT_SYMBOL(ide_stall_queue);
482 static inline int ide_lock_port(ide_hwif_t *hwif)
492 static inline void ide_unlock_port(ide_hwif_t *hwif)
497 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
501 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
502 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
505 ide_get_lock(ide_intr, hwif);
511 static inline void ide_unlock_host(struct ide_host *host)
513 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
516 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
521 * Issue a new request to a device.
523 void do_ide_request(struct request_queue *q)
525 ide_drive_t *drive = q->queuedata;
526 ide_hwif_t *hwif = drive->hwif;
527 struct ide_host *host = hwif->host;
528 struct request *rq = NULL;
529 ide_startstop_t startstop;
532 * drive is doing pre-flush, ordered write, post-flush sequence. even
533 * though that is 3 requests, it must be seen as a single transaction.
534 * we must not preempt this drive until that is complete
536 if (blk_queue_flushing(q))
538 * small race where queue could get replugged during
539 * the 3-request flush cycle, just yank the plug since
540 * we want it to finish asap
544 spin_unlock_irq(q->queue_lock);
546 if (ide_lock_host(host, hwif))
549 spin_lock_irq(&hwif->lock);
551 if (!ide_lock_port(hwif)) {
552 ide_hwif_t *prev_port;
554 prev_port = hwif->host->cur_port;
557 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
558 if (time_before(drive->sleep, jiffies)) {
559 ide_unlock_port(hwif);
564 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
567 * set nIEN for previous port, drives in the
568 * quirk_list may not like intr setups/cleanups
570 if (prev_port && prev_port->cur_dev->quirk_list == 0)
571 prev_port->tp_ops->set_irq(prev_port, 0);
573 hwif->host->cur_port = hwif;
575 hwif->cur_dev = drive;
576 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
578 spin_unlock_irq(&hwif->lock);
579 spin_lock_irq(q->queue_lock);
581 * we know that the queue isn't empty, but this can happen
582 * if the q->prep_rq_fn() decides to kill a request
584 rq = elv_next_request(drive->queue);
585 spin_unlock_irq(q->queue_lock);
586 spin_lock_irq(&hwif->lock);
589 ide_unlock_port(hwif);
594 * Sanity: don't accept a request that isn't a PM request
595 * if we are currently power managed. This is very important as
596 * blk_stop_queue() doesn't prevent the elv_next_request()
597 * above to return us whatever is in the queue. Since we call
598 * ide_do_request() ourselves, we end up taking requests while
599 * the queue is blocked...
601 * We let requests forced at head of queue with ide-preempt
602 * though. I hope that doesn't happen too much, hopefully not
603 * unless the subdriver triggers such a thing in its own PM
606 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
607 blk_pm_request(rq) == 0 &&
608 (rq->cmd_flags & REQ_PREEMPT) == 0) {
609 /* there should be no pending command at this point */
610 ide_unlock_port(hwif);
616 spin_unlock_irq(&hwif->lock);
617 startstop = start_request(drive, rq);
618 spin_lock_irq(&hwif->lock);
620 if (startstop == ide_stopped)
625 spin_unlock_irq(&hwif->lock);
627 ide_unlock_host(host);
628 spin_lock_irq(q->queue_lock);
632 spin_unlock_irq(&hwif->lock);
633 ide_unlock_host(host);
635 spin_lock_irq(q->queue_lock);
637 if (!elv_queue_empty(q))
641 static void ide_plug_device(ide_drive_t *drive)
643 struct request_queue *q = drive->queue;
646 spin_lock_irqsave(q->queue_lock, flags);
647 if (!elv_queue_empty(q))
649 spin_unlock_irqrestore(q->queue_lock, flags);
652 static int drive_is_ready(ide_drive_t *drive)
654 ide_hwif_t *hwif = drive->hwif;
657 if (drive->waiting_for_dma)
658 return hwif->dma_ops->dma_test_irq(drive);
660 if (hwif->io_ports.ctl_addr &&
661 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
662 stat = hwif->tp_ops->read_altstatus(hwif);
664 /* Note: this may clear a pending IRQ!! */
665 stat = hwif->tp_ops->read_status(hwif);
668 /* drive busy: definitely not interrupting */
671 /* drive ready: *might* be interrupting */
676 * ide_timer_expiry - handle lack of an IDE interrupt
677 * @data: timer callback magic (hwif)
679 * An IDE command has timed out before the expected drive return
680 * occurred. At this point we attempt to clean up the current
681 * mess. If the current handler includes an expiry handler then
682 * we invoke the expiry handler, and providing it is happy the
683 * work is done. If that fails we apply generic recovery rules
684 * invoking the handler and checking the drive DMA status. We
685 * have an excessively incestuous relationship with the DMA
686 * logic that wants cleaning up.
689 void ide_timer_expiry (unsigned long data)
691 ide_hwif_t *hwif = (ide_hwif_t *)data;
692 ide_drive_t *uninitialized_var(drive);
693 ide_handler_t *handler;
698 spin_lock_irqsave(&hwif->lock, flags);
700 handler = hwif->handler;
702 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
704 * Either a marginal timeout occurred
705 * (got the interrupt just as timer expired),
706 * or we were "sleeping" to give other devices a chance.
707 * Either way, we don't really want to complain about anything.
710 ide_expiry_t *expiry = hwif->expiry;
711 ide_startstop_t startstop = ide_stopped;
713 drive = hwif->cur_dev;
716 wait = expiry(drive);
717 if (wait > 0) { /* continue */
719 hwif->timer.expires = jiffies + wait;
720 hwif->req_gen_timer = hwif->req_gen;
721 add_timer(&hwif->timer);
722 spin_unlock_irqrestore(&hwif->lock, flags);
726 hwif->handler = NULL;
728 * We need to simulate a real interrupt when invoking
729 * the handler() function, which means we need to
730 * globally mask the specific IRQ:
732 spin_unlock(&hwif->lock);
733 /* disable_irq_nosync ?? */
734 disable_irq(hwif->irq);
735 /* local CPU only, as if we were handling an interrupt */
738 startstop = handler(drive);
739 } else if (drive_is_ready(drive)) {
740 if (drive->waiting_for_dma)
741 hwif->dma_ops->dma_lost_irq(drive);
742 (void)ide_ack_intr(hwif);
743 printk(KERN_WARNING "%s: lost interrupt\n",
745 startstop = handler(drive);
747 if (drive->waiting_for_dma)
748 startstop = ide_dma_timeout_retry(drive, wait);
750 startstop = ide_error(drive, "irq timeout",
751 hwif->tp_ops->read_status(hwif));
753 spin_lock_irq(&hwif->lock);
754 enable_irq(hwif->irq);
755 if (startstop == ide_stopped) {
756 ide_unlock_port(hwif);
760 spin_unlock_irqrestore(&hwif->lock, flags);
763 ide_unlock_host(hwif->host);
764 ide_plug_device(drive);
769 * unexpected_intr - handle an unexpected IDE interrupt
770 * @irq: interrupt line
771 * @hwif: port being processed
773 * There's nothing really useful we can do with an unexpected interrupt,
774 * other than reading the status register (to clear it), and logging it.
775 * There should be no way that an irq can happen before we're ready for it,
776 * so we needn't worry much about losing an "important" interrupt here.
778 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
779 * the drive enters "idle", "standby", or "sleep" mode, so if the status
780 * looks "good", we just ignore the interrupt completely.
782 * This routine assumes __cli() is in effect when called.
784 * If an unexpected interrupt happens on irq15 while we are handling irq14
785 * and if the two interfaces are "serialized" (CMD640), then it looks like
786 * we could screw up by interfering with a new request being set up for
789 * In reality, this is a non-issue. The new command is not sent unless
790 * the drive is ready to accept one, in which case we know the drive is
791 * not trying to interrupt us. And ide_set_handler() is always invoked
792 * before completing the issuance of any new drive command, so we will not
793 * be accidentally invoked as a result of any valid command completion
797 static void unexpected_intr(int irq, ide_hwif_t *hwif)
799 u8 stat = hwif->tp_ops->read_status(hwif);
801 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
802 /* Try to not flood the console with msgs */
803 static unsigned long last_msgtime, count;
806 if (time_after(jiffies, last_msgtime + HZ)) {
807 last_msgtime = jiffies;
808 printk(KERN_ERR "%s: unexpected interrupt, "
809 "status=0x%02x, count=%ld\n",
810 hwif->name, stat, count);
816 * ide_intr - default IDE interrupt handler
817 * @irq: interrupt number
819 * @regs: unused weirdness from the kernel irq layer
821 * This is the default IRQ handler for the IDE layer. You should
822 * not need to override it. If you do be aware it is subtle in
825 * hwif is the interface in the group currently performing
826 * a command. hwif->cur_dev is the drive and hwif->handler is
827 * the IRQ handler to call. As we issue a command the handlers
828 * step through multiple states, reassigning the handler to the
829 * next step in the process. Unlike a smart SCSI controller IDE
830 * expects the main processor to sequence the various transfer
831 * stages. We also manage a poll timer to catch up with most
832 * timeout situations. There are still a few where the handlers
833 * don't ever decide to give up.
835 * The handler eventually returns ide_stopped to indicate the
836 * request completed. At this point we issue the next request
837 * on the port and the process begins again.
840 irqreturn_t ide_intr (int irq, void *dev_id)
842 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
843 ide_drive_t *uninitialized_var(drive);
844 ide_handler_t *handler;
846 ide_startstop_t startstop;
847 irqreturn_t irq_ret = IRQ_NONE;
850 if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
851 if (hwif != hwif->host->cur_port)
855 spin_lock_irqsave(&hwif->lock, flags);
857 if (!ide_ack_intr(hwif))
860 handler = hwif->handler;
862 if (handler == NULL || hwif->polling) {
864 * Not expecting an interrupt from this drive.
865 * That means this could be:
866 * (1) an interrupt from another PCI device
867 * sharing the same PCI INT# as us.
868 * or (2) a drive just entered sleep or standby mode,
869 * and is interrupting to let us know.
870 * or (3) a spurious interrupt of unknown origin.
872 * For PCI, we cannot tell the difference,
873 * so in that case we just ignore it and hope it goes away.
875 * FIXME: unexpected_intr should be hwif-> then we can
876 * remove all the ifdef PCI crap
878 #ifdef CONFIG_BLK_DEV_IDEPCI
879 if (hwif->chipset != ide_pci)
880 #endif /* CONFIG_BLK_DEV_IDEPCI */
883 * Probably not a shared PCI interrupt,
884 * so we can safely try to do something about it:
886 unexpected_intr(irq, hwif);
887 #ifdef CONFIG_BLK_DEV_IDEPCI
890 * Whack the status register, just in case
891 * we have a leftover pending IRQ.
893 (void)hwif->tp_ops->read_status(hwif);
894 #endif /* CONFIG_BLK_DEV_IDEPCI */
899 drive = hwif->cur_dev;
901 if (!drive_is_ready(drive))
903 * This happens regularly when we share a PCI IRQ with
904 * another device. Unfortunately, it can also happen
905 * with some buggy drives that trigger the IRQ before
906 * their status register is up to date. Hopefully we have
907 * enough advance overhead that the latter isn't a problem.
911 hwif->handler = NULL;
913 del_timer(&hwif->timer);
914 spin_unlock(&hwif->lock);
916 if (hwif->port_ops && hwif->port_ops->clear_irq)
917 hwif->port_ops->clear_irq(drive);
919 if (drive->dev_flags & IDE_DFLAG_UNMASK)
920 local_irq_enable_in_hardirq();
922 /* service this interrupt, may set handler for next interrupt */
923 startstop = handler(drive);
925 spin_lock_irq(&hwif->lock);
927 * Note that handler() may have set things up for another
928 * interrupt to occur soon, but it cannot happen until
929 * we exit from this routine, because it will be the
930 * same irq as is currently being serviced here, and Linux
931 * won't allow another of the same (on any CPU) until we return.
933 if (startstop == ide_stopped) {
934 BUG_ON(hwif->handler);
935 ide_unlock_port(hwif);
938 irq_ret = IRQ_HANDLED;
940 spin_unlock_irqrestore(&hwif->lock, flags);
943 ide_unlock_host(hwif->host);
944 ide_plug_device(drive);
949 EXPORT_SYMBOL_GPL(ide_intr);
951 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
953 ide_hwif_t *hwif = drive->hwif;
958 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
960 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
964 EXPORT_SYMBOL_GPL(ide_pad_transfer);