benet: use do_div() for 64 bit divide
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!blk_end_request(rq, error, nr_bytes))
88                 ret = 0;
89
90         if (ret == 0 && dequeue)
91                 drive->hwif->rq = NULL;
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq = drive->hwif->rq;
111
112         if (!nr_bytes) {
113                 if (blk_pc_request(rq))
114                         nr_bytes = rq->data_len;
115                 else
116                         nr_bytes = rq->hard_cur_sectors << 9;
117         }
118
119         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124  *      ide_end_dequeued_request        -       complete an IDE I/O
125  *      @drive: IDE device for the I/O
126  *      @uptodate:
127  *      @nr_sectors: number of sectors completed
128  *
129  *      Complete an I/O that is no longer on the request queue. This
130  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
131  *      We must still finish the old request but we must not tamper with the
132  *      queue in the meantime.
133  *
134  *      NOTE: This path does not handle barrier, but barrier is not supported
135  *      on ide-cd anyway.
136  */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139                              int uptodate, int nr_sectors)
140 {
141         BUG_ON(!blk_rq_started(rq));
142
143         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 /**
148  *      ide_end_drive_cmd       -       end an explicit drive command
149  *      @drive: command 
150  *      @stat: status bits
151  *      @err: error bits
152  *
153  *      Clean up after success/failure of an explicit drive command.
154  *      These get thrown onto the queue so they are synchronized with
155  *      real I/O operations on the drive.
156  *
157  *      In LBA48 mode we have to read the register set twice to get
158  *      all the extra information out.
159  */
160  
161 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162 {
163         ide_hwif_t *hwif = drive->hwif;
164         struct request *rq = hwif->rq;
165
166         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167                 ide_task_t *task = (ide_task_t *)rq->special;
168
169                 if (task) {
170                         struct ide_taskfile *tf = &task->tf;
171
172                         tf->error = err;
173                         tf->status = stat;
174
175                         drive->hwif->tp_ops->tf_read(drive, task);
176
177                         if (task->tf_flags & IDE_TFLAG_DYN)
178                                 kfree(task);
179                 }
180         } else if (blk_pm_request(rq)) {
181                 struct request_pm_state *pm = rq->data;
182
183                 ide_complete_power_step(drive, rq);
184                 if (pm->pm_step == IDE_PM_COMPLETED)
185                         ide_complete_pm_request(drive, rq);
186                 return;
187         }
188
189         hwif->rq = NULL;
190
191         rq->errors = err;
192
193         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194                                      blk_rq_bytes(rq))))
195                 BUG();
196 }
197 EXPORT_SYMBOL(ide_end_drive_cmd);
198
199 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200 {
201         if (rq->rq_disk) {
202                 struct ide_driver *drv;
203
204                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
205                 drv->end_request(drive, 0, 0);
206         } else
207                 ide_end_request(drive, 0, 0);
208 }
209
210 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
211 {
212         tf->nsect   = drive->sect;
213         tf->lbal    = drive->sect;
214         tf->lbam    = drive->cyl;
215         tf->lbah    = drive->cyl >> 8;
216         tf->device  = (drive->head - 1) | drive->select;
217         tf->command = ATA_CMD_INIT_DEV_PARAMS;
218 }
219
220 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
221 {
222         tf->nsect   = drive->sect;
223         tf->command = ATA_CMD_RESTORE;
224 }
225
226 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
227 {
228         tf->nsect   = drive->mult_req;
229         tf->command = ATA_CMD_SET_MULTI;
230 }
231
232 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
233 {
234         special_t *s = &drive->special;
235         ide_task_t args;
236
237         memset(&args, 0, sizeof(ide_task_t));
238         args.data_phase = TASKFILE_NO_DATA;
239
240         if (s->b.set_geometry) {
241                 s->b.set_geometry = 0;
242                 ide_tf_set_specify_cmd(drive, &args.tf);
243         } else if (s->b.recalibrate) {
244                 s->b.recalibrate = 0;
245                 ide_tf_set_restore_cmd(drive, &args.tf);
246         } else if (s->b.set_multmode) {
247                 s->b.set_multmode = 0;
248                 ide_tf_set_setmult_cmd(drive, &args.tf);
249         } else if (s->all) {
250                 int special = s->all;
251                 s->all = 0;
252                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
253                 return ide_stopped;
254         }
255
256         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
257                         IDE_TFLAG_CUSTOM_HANDLER;
258
259         do_rw_taskfile(drive, &args);
260
261         return ide_started;
262 }
263
264 /**
265  *      do_special              -       issue some special commands
266  *      @drive: drive the command is for
267  *
268  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
269  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
270  *
271  *      It used to do much more, but has been scaled back.
272  */
273
274 static ide_startstop_t do_special (ide_drive_t *drive)
275 {
276         special_t *s = &drive->special;
277
278 #ifdef DEBUG
279         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
280 #endif
281         if (drive->media == ide_disk)
282                 return ide_disk_special(drive);
283
284         s->all = 0;
285         drive->mult_req = 0;
286         return ide_stopped;
287 }
288
289 void ide_map_sg(ide_drive_t *drive, struct request *rq)
290 {
291         ide_hwif_t *hwif = drive->hwif;
292         struct scatterlist *sg = hwif->sg_table;
293
294         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
295                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
296                 hwif->sg_nents = 1;
297         } else if (!rq->bio) {
298                 sg_init_one(sg, rq->data, rq->data_len);
299                 hwif->sg_nents = 1;
300         } else {
301                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
302         }
303 }
304
305 EXPORT_SYMBOL_GPL(ide_map_sg);
306
307 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
308 {
309         ide_hwif_t *hwif = drive->hwif;
310
311         hwif->nsect = hwif->nleft = rq->nr_sectors;
312         hwif->cursg_ofs = 0;
313         hwif->cursg = NULL;
314 }
315
316 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
317
318 /**
319  *      execute_drive_command   -       issue special drive command
320  *      @drive: the drive to issue the command on
321  *      @rq: the request structure holding the command
322  *
323  *      execute_drive_cmd() issues a special drive command,  usually 
324  *      initiated by ioctl() from the external hdparm program. The
325  *      command can be a drive command, drive task or taskfile 
326  *      operation. Weirdly you can call it with NULL to wait for
327  *      all commands to finish. Don't do this as that is due to change
328  */
329
330 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
331                 struct request *rq)
332 {
333         ide_hwif_t *hwif = drive->hwif;
334         ide_task_t *task = rq->special;
335
336         if (task) {
337                 hwif->data_phase = task->data_phase;
338
339                 switch (hwif->data_phase) {
340                 case TASKFILE_MULTI_OUT:
341                 case TASKFILE_OUT:
342                 case TASKFILE_MULTI_IN:
343                 case TASKFILE_IN:
344                         ide_init_sg_cmd(drive, rq);
345                         ide_map_sg(drive, rq);
346                 default:
347                         break;
348                 }
349
350                 return do_rw_taskfile(drive, task);
351         }
352
353         /*
354          * NULL is actually a valid way of waiting for
355          * all current requests to be flushed from the queue.
356          */
357 #ifdef DEBUG
358         printk("%s: DRIVE_CMD (null)\n", drive->name);
359 #endif
360         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
361                           ide_read_error(drive));
362
363         return ide_stopped;
364 }
365
366 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
367 {
368         u8 cmd = rq->cmd[0];
369
370         switch (cmd) {
371         case REQ_PARK_HEADS:
372         case REQ_UNPARK_HEADS:
373                 return ide_do_park_unpark(drive, rq);
374         case REQ_DEVSET_EXEC:
375                 return ide_do_devset(drive, rq);
376         case REQ_DRIVE_RESET:
377                 return ide_do_reset(drive);
378         default:
379                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
380                 ide_end_request(drive, 0, 0);
381                 return ide_stopped;
382         }
383 }
384
385 /**
386  *      start_request   -       start of I/O and command issuing for IDE
387  *
388  *      start_request() initiates handling of a new I/O request. It
389  *      accepts commands and I/O (read/write) requests.
390  *
391  *      FIXME: this function needs a rename
392  */
393  
394 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
395 {
396         ide_startstop_t startstop;
397
398         BUG_ON(!blk_rq_started(rq));
399
400 #ifdef DEBUG
401         printk("%s: start_request: current=0x%08lx\n",
402                 drive->hwif->name, (unsigned long) rq);
403 #endif
404
405         /* bail early if we've exceeded max_failures */
406         if (drive->max_failures && (drive->failures > drive->max_failures)) {
407                 rq->cmd_flags |= REQ_FAILED;
408                 goto kill_rq;
409         }
410
411         if (blk_pm_request(rq))
412                 ide_check_pm_state(drive, rq);
413
414         SELECT_DRIVE(drive);
415         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
416                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
417                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
418                 return startstop;
419         }
420         if (!drive->special.all) {
421                 struct ide_driver *drv;
422
423                 /*
424                  * We reset the drive so we need to issue a SETFEATURES.
425                  * Do it _after_ do_special() restored device parameters.
426                  */
427                 if (drive->current_speed == 0xff)
428                         ide_config_drive_speed(drive, drive->desired_speed);
429
430                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
431                         return execute_drive_cmd(drive, rq);
432                 else if (blk_pm_request(rq)) {
433                         struct request_pm_state *pm = rq->data;
434 #ifdef DEBUG_PM
435                         printk("%s: start_power_step(step: %d)\n",
436                                 drive->name, pm->pm_step);
437 #endif
438                         startstop = ide_start_power_step(drive, rq);
439                         if (startstop == ide_stopped &&
440                             pm->pm_step == IDE_PM_COMPLETED)
441                                 ide_complete_pm_request(drive, rq);
442                         return startstop;
443                 } else if (!rq->rq_disk && blk_special_request(rq))
444                         /*
445                          * TODO: Once all ULDs have been modified to
446                          * check for specific op codes rather than
447                          * blindly accepting any special request, the
448                          * check for ->rq_disk above may be replaced
449                          * by a more suitable mechanism or even
450                          * dropped entirely.
451                          */
452                         return ide_special_rq(drive, rq);
453
454                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
455
456                 return drv->do_request(drive, rq, rq->sector);
457         }
458         return do_special(drive);
459 kill_rq:
460         ide_kill_rq(drive, rq);
461         return ide_stopped;
462 }
463
464 /**
465  *      ide_stall_queue         -       pause an IDE device
466  *      @drive: drive to stall
467  *      @timeout: time to stall for (jiffies)
468  *
469  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
470  *      to the port by sleeping for timeout jiffies.
471  */
472  
473 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
474 {
475         if (timeout > WAIT_WORSTCASE)
476                 timeout = WAIT_WORSTCASE;
477         drive->sleep = timeout + jiffies;
478         drive->dev_flags |= IDE_DFLAG_SLEEPING;
479 }
480 EXPORT_SYMBOL(ide_stall_queue);
481
482 static inline int ide_lock_port(ide_hwif_t *hwif)
483 {
484         if (hwif->busy)
485                 return 1;
486
487         hwif->busy = 1;
488
489         return 0;
490 }
491
492 static inline void ide_unlock_port(ide_hwif_t *hwif)
493 {
494         hwif->busy = 0;
495 }
496
497 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
498 {
499         int rc = 0;
500
501         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
502                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
503                 if (rc == 0) {
504                         /* for atari only */
505                         ide_get_lock(ide_intr, hwif);
506                 }
507         }
508         return rc;
509 }
510
511 static inline void ide_unlock_host(struct ide_host *host)
512 {
513         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
514                 /* for atari only */
515                 ide_release_lock();
516                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
517         }
518 }
519
520 /*
521  * Issue a new request to a device.
522  */
523 void do_ide_request(struct request_queue *q)
524 {
525         ide_drive_t     *drive = q->queuedata;
526         ide_hwif_t      *hwif = drive->hwif;
527         struct ide_host *host = hwif->host;
528         struct request  *rq = NULL;
529         ide_startstop_t startstop;
530
531         /*
532          * drive is doing pre-flush, ordered write, post-flush sequence. even
533          * though that is 3 requests, it must be seen as a single transaction.
534          * we must not preempt this drive until that is complete
535          */
536         if (blk_queue_flushing(q))
537                 /*
538                  * small race where queue could get replugged during
539                  * the 3-request flush cycle, just yank the plug since
540                  * we want it to finish asap
541                  */
542                 blk_remove_plug(q);
543
544         spin_unlock_irq(q->queue_lock);
545
546         if (ide_lock_host(host, hwif))
547                 goto plug_device_2;
548
549         spin_lock_irq(&hwif->lock);
550
551         if (!ide_lock_port(hwif)) {
552                 ide_hwif_t *prev_port;
553 repeat:
554                 prev_port = hwif->host->cur_port;
555                 hwif->rq = NULL;
556
557                 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
558                         if (time_before(drive->sleep, jiffies)) {
559                                 ide_unlock_port(hwif);
560                                 goto plug_device;
561                         }
562                 }
563
564                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
565                     hwif != prev_port) {
566                         /*
567                          * set nIEN for previous port, drives in the
568                          * quirk_list may not like intr setups/cleanups
569                          */
570                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
571                                 prev_port->tp_ops->set_irq(prev_port, 0);
572
573                         hwif->host->cur_port = hwif;
574                 }
575                 hwif->cur_dev = drive;
576                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
577
578                 spin_unlock_irq(&hwif->lock);
579                 spin_lock_irq(q->queue_lock);
580                 /*
581                  * we know that the queue isn't empty, but this can happen
582                  * if the q->prep_rq_fn() decides to kill a request
583                  */
584                 rq = elv_next_request(drive->queue);
585                 spin_unlock_irq(q->queue_lock);
586                 spin_lock_irq(&hwif->lock);
587
588                 if (!rq) {
589                         ide_unlock_port(hwif);
590                         goto out;
591                 }
592
593                 /*
594                  * Sanity: don't accept a request that isn't a PM request
595                  * if we are currently power managed. This is very important as
596                  * blk_stop_queue() doesn't prevent the elv_next_request()
597                  * above to return us whatever is in the queue. Since we call
598                  * ide_do_request() ourselves, we end up taking requests while
599                  * the queue is blocked...
600                  * 
601                  * We let requests forced at head of queue with ide-preempt
602                  * though. I hope that doesn't happen too much, hopefully not
603                  * unless the subdriver triggers such a thing in its own PM
604                  * state machine.
605                  */
606                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
607                     blk_pm_request(rq) == 0 &&
608                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
609                         /* there should be no pending command at this point */
610                         ide_unlock_port(hwif);
611                         goto plug_device;
612                 }
613
614                 hwif->rq = rq;
615
616                 spin_unlock_irq(&hwif->lock);
617                 startstop = start_request(drive, rq);
618                 spin_lock_irq(&hwif->lock);
619
620                 if (startstop == ide_stopped)
621                         goto repeat;
622         } else
623                 goto plug_device;
624 out:
625         spin_unlock_irq(&hwif->lock);
626         if (rq == NULL)
627                 ide_unlock_host(host);
628         spin_lock_irq(q->queue_lock);
629         return;
630
631 plug_device:
632         spin_unlock_irq(&hwif->lock);
633         ide_unlock_host(host);
634 plug_device_2:
635         spin_lock_irq(q->queue_lock);
636
637         if (!elv_queue_empty(q))
638                 blk_plug_device(q);
639 }
640
641 static void ide_plug_device(ide_drive_t *drive)
642 {
643         struct request_queue *q = drive->queue;
644         unsigned long flags;
645
646         spin_lock_irqsave(q->queue_lock, flags);
647         if (!elv_queue_empty(q))
648                 blk_plug_device(q);
649         spin_unlock_irqrestore(q->queue_lock, flags);
650 }
651
652 static int drive_is_ready(ide_drive_t *drive)
653 {
654         ide_hwif_t *hwif = drive->hwif;
655         u8 stat = 0;
656
657         if (drive->waiting_for_dma)
658                 return hwif->dma_ops->dma_test_irq(drive);
659
660         if (hwif->io_ports.ctl_addr &&
661             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
662                 stat = hwif->tp_ops->read_altstatus(hwif);
663         else
664                 /* Note: this may clear a pending IRQ!! */
665                 stat = hwif->tp_ops->read_status(hwif);
666
667         if (stat & ATA_BUSY)
668                 /* drive busy: definitely not interrupting */
669                 return 0;
670
671         /* drive ready: *might* be interrupting */
672         return 1;
673 }
674
675 /**
676  *      ide_timer_expiry        -       handle lack of an IDE interrupt
677  *      @data: timer callback magic (hwif)
678  *
679  *      An IDE command has timed out before the expected drive return
680  *      occurred. At this point we attempt to clean up the current
681  *      mess. If the current handler includes an expiry handler then
682  *      we invoke the expiry handler, and providing it is happy the
683  *      work is done. If that fails we apply generic recovery rules
684  *      invoking the handler and checking the drive DMA status. We
685  *      have an excessively incestuous relationship with the DMA
686  *      logic that wants cleaning up.
687  */
688  
689 void ide_timer_expiry (unsigned long data)
690 {
691         ide_hwif_t      *hwif = (ide_hwif_t *)data;
692         ide_drive_t     *uninitialized_var(drive);
693         ide_handler_t   *handler;
694         unsigned long   flags;
695         int             wait = -1;
696         int             plug_device = 0;
697
698         spin_lock_irqsave(&hwif->lock, flags);
699
700         handler = hwif->handler;
701
702         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
703                 /*
704                  * Either a marginal timeout occurred
705                  * (got the interrupt just as timer expired),
706                  * or we were "sleeping" to give other devices a chance.
707                  * Either way, we don't really want to complain about anything.
708                  */
709         } else {
710                 ide_expiry_t *expiry = hwif->expiry;
711                 ide_startstop_t startstop = ide_stopped;
712
713                 drive = hwif->cur_dev;
714
715                 if (expiry) {
716                         wait = expiry(drive);
717                         if (wait > 0) { /* continue */
718                                 /* reset timer */
719                                 hwif->timer.expires = jiffies + wait;
720                                 hwif->req_gen_timer = hwif->req_gen;
721                                 add_timer(&hwif->timer);
722                                 spin_unlock_irqrestore(&hwif->lock, flags);
723                                 return;
724                         }
725                 }
726                 hwif->handler = NULL;
727                 /*
728                  * We need to simulate a real interrupt when invoking
729                  * the handler() function, which means we need to
730                  * globally mask the specific IRQ:
731                  */
732                 spin_unlock(&hwif->lock);
733                 /* disable_irq_nosync ?? */
734                 disable_irq(hwif->irq);
735                 /* local CPU only, as if we were handling an interrupt */
736                 local_irq_disable();
737                 if (hwif->polling) {
738                         startstop = handler(drive);
739                 } else if (drive_is_ready(drive)) {
740                         if (drive->waiting_for_dma)
741                                 hwif->dma_ops->dma_lost_irq(drive);
742                         (void)ide_ack_intr(hwif);
743                         printk(KERN_WARNING "%s: lost interrupt\n",
744                                 drive->name);
745                         startstop = handler(drive);
746                 } else {
747                         if (drive->waiting_for_dma)
748                                 startstop = ide_dma_timeout_retry(drive, wait);
749                         else
750                                 startstop = ide_error(drive, "irq timeout",
751                                         hwif->tp_ops->read_status(hwif));
752                 }
753                 spin_lock_irq(&hwif->lock);
754                 enable_irq(hwif->irq);
755                 if (startstop == ide_stopped) {
756                         ide_unlock_port(hwif);
757                         plug_device = 1;
758                 }
759         }
760         spin_unlock_irqrestore(&hwif->lock, flags);
761
762         if (plug_device) {
763                 ide_unlock_host(hwif->host);
764                 ide_plug_device(drive);
765         }
766 }
767
768 /**
769  *      unexpected_intr         -       handle an unexpected IDE interrupt
770  *      @irq: interrupt line
771  *      @hwif: port being processed
772  *
773  *      There's nothing really useful we can do with an unexpected interrupt,
774  *      other than reading the status register (to clear it), and logging it.
775  *      There should be no way that an irq can happen before we're ready for it,
776  *      so we needn't worry much about losing an "important" interrupt here.
777  *
778  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
779  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
780  *      looks "good", we just ignore the interrupt completely.
781  *
782  *      This routine assumes __cli() is in effect when called.
783  *
784  *      If an unexpected interrupt happens on irq15 while we are handling irq14
785  *      and if the two interfaces are "serialized" (CMD640), then it looks like
786  *      we could screw up by interfering with a new request being set up for 
787  *      irq15.
788  *
789  *      In reality, this is a non-issue.  The new command is not sent unless 
790  *      the drive is ready to accept one, in which case we know the drive is
791  *      not trying to interrupt us.  And ide_set_handler() is always invoked
792  *      before completing the issuance of any new drive command, so we will not
793  *      be accidentally invoked as a result of any valid command completion
794  *      interrupt.
795  */
796
797 static void unexpected_intr(int irq, ide_hwif_t *hwif)
798 {
799         u8 stat = hwif->tp_ops->read_status(hwif);
800
801         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
802                 /* Try to not flood the console with msgs */
803                 static unsigned long last_msgtime, count;
804                 ++count;
805
806                 if (time_after(jiffies, last_msgtime + HZ)) {
807                         last_msgtime = jiffies;
808                         printk(KERN_ERR "%s: unexpected interrupt, "
809                                 "status=0x%02x, count=%ld\n",
810                                 hwif->name, stat, count);
811                 }
812         }
813 }
814
815 /**
816  *      ide_intr        -       default IDE interrupt handler
817  *      @irq: interrupt number
818  *      @dev_id: hwif
819  *      @regs: unused weirdness from the kernel irq layer
820  *
821  *      This is the default IRQ handler for the IDE layer. You should
822  *      not need to override it. If you do be aware it is subtle in
823  *      places
824  *
825  *      hwif is the interface in the group currently performing
826  *      a command. hwif->cur_dev is the drive and hwif->handler is
827  *      the IRQ handler to call. As we issue a command the handlers
828  *      step through multiple states, reassigning the handler to the
829  *      next step in the process. Unlike a smart SCSI controller IDE
830  *      expects the main processor to sequence the various transfer
831  *      stages. We also manage a poll timer to catch up with most
832  *      timeout situations. There are still a few where the handlers
833  *      don't ever decide to give up.
834  *
835  *      The handler eventually returns ide_stopped to indicate the
836  *      request completed. At this point we issue the next request
837  *      on the port and the process begins again.
838  */
839
840 irqreturn_t ide_intr (int irq, void *dev_id)
841 {
842         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
843         ide_drive_t *uninitialized_var(drive);
844         ide_handler_t *handler;
845         unsigned long flags;
846         ide_startstop_t startstop;
847         irqreturn_t irq_ret = IRQ_NONE;
848         int plug_device = 0;
849
850         if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
851                 if (hwif != hwif->host->cur_port)
852                         goto out_early;
853         }
854
855         spin_lock_irqsave(&hwif->lock, flags);
856
857         if (!ide_ack_intr(hwif))
858                 goto out;
859
860         handler = hwif->handler;
861
862         if (handler == NULL || hwif->polling) {
863                 /*
864                  * Not expecting an interrupt from this drive.
865                  * That means this could be:
866                  *      (1) an interrupt from another PCI device
867                  *      sharing the same PCI INT# as us.
868                  * or   (2) a drive just entered sleep or standby mode,
869                  *      and is interrupting to let us know.
870                  * or   (3) a spurious interrupt of unknown origin.
871                  *
872                  * For PCI, we cannot tell the difference,
873                  * so in that case we just ignore it and hope it goes away.
874                  *
875                  * FIXME: unexpected_intr should be hwif-> then we can
876                  * remove all the ifdef PCI crap
877                  */
878 #ifdef CONFIG_BLK_DEV_IDEPCI
879                 if (hwif->chipset != ide_pci)
880 #endif  /* CONFIG_BLK_DEV_IDEPCI */
881                 {
882                         /*
883                          * Probably not a shared PCI interrupt,
884                          * so we can safely try to do something about it:
885                          */
886                         unexpected_intr(irq, hwif);
887 #ifdef CONFIG_BLK_DEV_IDEPCI
888                 } else {
889                         /*
890                          * Whack the status register, just in case
891                          * we have a leftover pending IRQ.
892                          */
893                         (void)hwif->tp_ops->read_status(hwif);
894 #endif /* CONFIG_BLK_DEV_IDEPCI */
895                 }
896                 goto out;
897         }
898
899         drive = hwif->cur_dev;
900
901         if (!drive_is_ready(drive))
902                 /*
903                  * This happens regularly when we share a PCI IRQ with
904                  * another device.  Unfortunately, it can also happen
905                  * with some buggy drives that trigger the IRQ before
906                  * their status register is up to date.  Hopefully we have
907                  * enough advance overhead that the latter isn't a problem.
908                  */
909                 goto out;
910
911         hwif->handler = NULL;
912         hwif->req_gen++;
913         del_timer(&hwif->timer);
914         spin_unlock(&hwif->lock);
915
916         if (hwif->port_ops && hwif->port_ops->clear_irq)
917                 hwif->port_ops->clear_irq(drive);
918
919         if (drive->dev_flags & IDE_DFLAG_UNMASK)
920                 local_irq_enable_in_hardirq();
921
922         /* service this interrupt, may set handler for next interrupt */
923         startstop = handler(drive);
924
925         spin_lock_irq(&hwif->lock);
926         /*
927          * Note that handler() may have set things up for another
928          * interrupt to occur soon, but it cannot happen until
929          * we exit from this routine, because it will be the
930          * same irq as is currently being serviced here, and Linux
931          * won't allow another of the same (on any CPU) until we return.
932          */
933         if (startstop == ide_stopped) {
934                 BUG_ON(hwif->handler);
935                 ide_unlock_port(hwif);
936                 plug_device = 1;
937         }
938         irq_ret = IRQ_HANDLED;
939 out:
940         spin_unlock_irqrestore(&hwif->lock, flags);
941 out_early:
942         if (plug_device) {
943                 ide_unlock_host(hwif->host);
944                 ide_plug_device(drive);
945         }
946
947         return irq_ret;
948 }
949 EXPORT_SYMBOL_GPL(ide_intr);
950
951 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
952 {
953         ide_hwif_t *hwif = drive->hwif;
954         u8 buf[4] = { 0 };
955
956         while (len > 0) {
957                 if (write)
958                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
959                 else
960                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
961                 len -= 4;
962         }
963 }
964 EXPORT_SYMBOL_GPL(ide_pad_transfer);