Merge branch 'linus' into cpumask-for-linus
[linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176
177         return e1000_has_link(adapter);
178 }
179
180 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
181 {
182         struct e1000_mac_info *mac = &adapter->hw.mac;
183
184         mac->autoneg = 0;
185
186         /* Fiber NICs only allow 1000 gbps Full duplex */
187         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
188                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
189                 e_err("Unsupported Speed/Duplex configuration\n");
190                 return -EINVAL;
191         }
192
193         switch (spddplx) {
194         case SPEED_10 + DUPLEX_HALF:
195                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
196                 break;
197         case SPEED_10 + DUPLEX_FULL:
198                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
199                 break;
200         case SPEED_100 + DUPLEX_HALF:
201                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
202                 break;
203         case SPEED_100 + DUPLEX_FULL:
204                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
205                 break;
206         case SPEED_1000 + DUPLEX_FULL:
207                 mac->autoneg = 1;
208                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
209                 break;
210         case SPEED_1000 + DUPLEX_HALF: /* not supported */
211         default:
212                 e_err("Unsupported Speed/Duplex configuration\n");
213                 return -EINVAL;
214         }
215         return 0;
216 }
217
218 static int e1000_set_settings(struct net_device *netdev,
219                               struct ethtool_cmd *ecmd)
220 {
221         struct e1000_adapter *adapter = netdev_priv(netdev);
222         struct e1000_hw *hw = &adapter->hw;
223
224         /*
225          * When SoL/IDER sessions are active, autoneg/speed/duplex
226          * cannot be changed
227          */
228         if (e1000_check_reset_block(hw)) {
229                 e_err("Cannot change link characteristics when SoL/IDER is "
230                       "active.\n");
231                 return -EINVAL;
232         }
233
234         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
235                 msleep(1);
236
237         if (ecmd->autoneg == AUTONEG_ENABLE) {
238                 hw->mac.autoneg = 1;
239                 if (hw->phy.media_type == e1000_media_type_fiber)
240                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
241                                                      ADVERTISED_FIBRE |
242                                                      ADVERTISED_Autoneg;
243                 else
244                         hw->phy.autoneg_advertised = ecmd->advertising |
245                                                      ADVERTISED_TP |
246                                                      ADVERTISED_Autoneg;
247                 ecmd->advertising = hw->phy.autoneg_advertised;
248                 if (adapter->fc_autoneg)
249                         hw->fc.requested_mode = e1000_fc_default;
250         } else {
251                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
252                         clear_bit(__E1000_RESETTING, &adapter->state);
253                         return -EINVAL;
254                 }
255         }
256
257         /* reset the link */
258
259         if (netif_running(adapter->netdev)) {
260                 e1000e_down(adapter);
261                 e1000e_up(adapter);
262         } else {
263                 e1000e_reset(adapter);
264         }
265
266         clear_bit(__E1000_RESETTING, &adapter->state);
267         return 0;
268 }
269
270 static void e1000_get_pauseparam(struct net_device *netdev,
271                                  struct ethtool_pauseparam *pause)
272 {
273         struct e1000_adapter *adapter = netdev_priv(netdev);
274         struct e1000_hw *hw = &adapter->hw;
275
276         pause->autoneg =
277                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
278
279         if (hw->fc.current_mode == e1000_fc_rx_pause) {
280                 pause->rx_pause = 1;
281         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
282                 pause->tx_pause = 1;
283         } else if (hw->fc.current_mode == e1000_fc_full) {
284                 pause->rx_pause = 1;
285                 pause->tx_pause = 1;
286         }
287 }
288
289 static int e1000_set_pauseparam(struct net_device *netdev,
290                                 struct ethtool_pauseparam *pause)
291 {
292         struct e1000_adapter *adapter = netdev_priv(netdev);
293         struct e1000_hw *hw = &adapter->hw;
294         int retval = 0;
295
296         adapter->fc_autoneg = pause->autoneg;
297
298         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
299                 msleep(1);
300
301         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
302                 hw->fc.requested_mode = e1000_fc_default;
303                 if (netif_running(adapter->netdev)) {
304                         e1000e_down(adapter);
305                         e1000e_up(adapter);
306                 } else {
307                         e1000e_reset(adapter);
308                 }
309         } else {
310                 if (pause->rx_pause && pause->tx_pause)
311                         hw->fc.requested_mode = e1000_fc_full;
312                 else if (pause->rx_pause && !pause->tx_pause)
313                         hw->fc.requested_mode = e1000_fc_rx_pause;
314                 else if (!pause->rx_pause && pause->tx_pause)
315                         hw->fc.requested_mode = e1000_fc_tx_pause;
316                 else if (!pause->rx_pause && !pause->tx_pause)
317                         hw->fc.requested_mode = e1000_fc_none;
318
319                 hw->fc.current_mode = hw->fc.requested_mode;
320
321                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
322                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
323         }
324
325         clear_bit(__E1000_RESETTING, &adapter->state);
326         return retval;
327 }
328
329 static u32 e1000_get_rx_csum(struct net_device *netdev)
330 {
331         struct e1000_adapter *adapter = netdev_priv(netdev);
332         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
333 }
334
335 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338
339         if (data)
340                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
341         else
342                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
343
344         if (netif_running(netdev))
345                 e1000e_reinit_locked(adapter);
346         else
347                 e1000e_reset(adapter);
348         return 0;
349 }
350
351 static u32 e1000_get_tx_csum(struct net_device *netdev)
352 {
353         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
354 }
355
356 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
357 {
358         if (data)
359                 netdev->features |= NETIF_F_HW_CSUM;
360         else
361                 netdev->features &= ~NETIF_F_HW_CSUM;
362
363         return 0;
364 }
365
366 static int e1000_set_tso(struct net_device *netdev, u32 data)
367 {
368         struct e1000_adapter *adapter = netdev_priv(netdev);
369
370         if (data) {
371                 netdev->features |= NETIF_F_TSO;
372                 netdev->features |= NETIF_F_TSO6;
373         } else {
374                 netdev->features &= ~NETIF_F_TSO;
375                 netdev->features &= ~NETIF_F_TSO6;
376         }
377
378         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
379         adapter->flags |= FLAG_TSO_FORCE;
380         return 0;
381 }
382
383 static u32 e1000_get_msglevel(struct net_device *netdev)
384 {
385         struct e1000_adapter *adapter = netdev_priv(netdev);
386         return adapter->msg_enable;
387 }
388
389 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
390 {
391         struct e1000_adapter *adapter = netdev_priv(netdev);
392         adapter->msg_enable = data;
393 }
394
395 static int e1000_get_regs_len(struct net_device *netdev)
396 {
397 #define E1000_REGS_LEN 32 /* overestimate */
398         return E1000_REGS_LEN * sizeof(u32);
399 }
400
401 static void e1000_get_regs(struct net_device *netdev,
402                            struct ethtool_regs *regs, void *p)
403 {
404         struct e1000_adapter *adapter = netdev_priv(netdev);
405         struct e1000_hw *hw = &adapter->hw;
406         u32 *regs_buff = p;
407         u16 phy_data;
408         u8 revision_id;
409
410         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
411
412         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
413
414         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
415
416         regs_buff[0]  = er32(CTRL);
417         regs_buff[1]  = er32(STATUS);
418
419         regs_buff[2]  = er32(RCTL);
420         regs_buff[3]  = er32(RDLEN);
421         regs_buff[4]  = er32(RDH);
422         regs_buff[5]  = er32(RDT);
423         regs_buff[6]  = er32(RDTR);
424
425         regs_buff[7]  = er32(TCTL);
426         regs_buff[8]  = er32(TDLEN);
427         regs_buff[9]  = er32(TDH);
428         regs_buff[10] = er32(TDT);
429         regs_buff[11] = er32(TIDV);
430
431         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
432
433         /* ethtool doesn't use anything past this point, so all this
434          * code is likely legacy junk for apps that may or may not
435          * exist */
436         if (hw->phy.type == e1000_phy_m88) {
437                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
438                 regs_buff[13] = (u32)phy_data; /* cable length */
439                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
443                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
444                 regs_buff[18] = regs_buff[13]; /* cable polarity */
445                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
446                 regs_buff[20] = regs_buff[17]; /* polarity correction */
447                 /* phy receive errors */
448                 regs_buff[22] = adapter->phy_stats.receive_errors;
449                 regs_buff[23] = regs_buff[13]; /* mdix mode */
450         }
451         regs_buff[21] = 0; /* was idle_errors */
452         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
453         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
454         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
455 }
456
457 static int e1000_get_eeprom_len(struct net_device *netdev)
458 {
459         struct e1000_adapter *adapter = netdev_priv(netdev);
460         return adapter->hw.nvm.word_size * 2;
461 }
462
463 static int e1000_get_eeprom(struct net_device *netdev,
464                             struct ethtool_eeprom *eeprom, u8 *bytes)
465 {
466         struct e1000_adapter *adapter = netdev_priv(netdev);
467         struct e1000_hw *hw = &adapter->hw;
468         u16 *eeprom_buff;
469         int first_word;
470         int last_word;
471         int ret_val = 0;
472         u16 i;
473
474         if (eeprom->len == 0)
475                 return -EINVAL;
476
477         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
478
479         first_word = eeprom->offset >> 1;
480         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
481
482         eeprom_buff = kmalloc(sizeof(u16) *
483                         (last_word - first_word + 1), GFP_KERNEL);
484         if (!eeprom_buff)
485                 return -ENOMEM;
486
487         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
488                 ret_val = e1000_read_nvm(hw, first_word,
489                                          last_word - first_word + 1,
490                                          eeprom_buff);
491         } else {
492                 for (i = 0; i < last_word - first_word + 1; i++) {
493                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
494                                                       &eeprom_buff[i]);
495                         if (ret_val)
496                                 break;
497                 }
498         }
499
500         if (ret_val) {
501                 /* a read error occurred, throw away the result */
502                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
503         } else {
504                 /* Device's eeprom is always little-endian, word addressable */
505                 for (i = 0; i < last_word - first_word + 1; i++)
506                         le16_to_cpus(&eeprom_buff[i]);
507         }
508
509         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
510         kfree(eeprom_buff);
511
512         return ret_val;
513 }
514
515 static int e1000_set_eeprom(struct net_device *netdev,
516                             struct ethtool_eeprom *eeprom, u8 *bytes)
517 {
518         struct e1000_adapter *adapter = netdev_priv(netdev);
519         struct e1000_hw *hw = &adapter->hw;
520         u16 *eeprom_buff;
521         void *ptr;
522         int max_len;
523         int first_word;
524         int last_word;
525         int ret_val = 0;
526         u16 i;
527
528         if (eeprom->len == 0)
529                 return -EOPNOTSUPP;
530
531         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
532                 return -EFAULT;
533
534         if (adapter->flags & FLAG_READ_ONLY_NVM)
535                 return -EINVAL;
536
537         max_len = hw->nvm.word_size * 2;
538
539         first_word = eeprom->offset >> 1;
540         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
541         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
542         if (!eeprom_buff)
543                 return -ENOMEM;
544
545         ptr = (void *)eeprom_buff;
546
547         if (eeprom->offset & 1) {
548                 /* need read/modify/write of first changed EEPROM word */
549                 /* only the second byte of the word is being modified */
550                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
551                 ptr++;
552         }
553         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
554                 /* need read/modify/write of last changed EEPROM word */
555                 /* only the first byte of the word is being modified */
556                 ret_val = e1000_read_nvm(hw, last_word, 1,
557                                   &eeprom_buff[last_word - first_word]);
558
559         if (ret_val)
560                 goto out;
561
562         /* Device's eeprom is always little-endian, word addressable */
563         for (i = 0; i < last_word - first_word + 1; i++)
564                 le16_to_cpus(&eeprom_buff[i]);
565
566         memcpy(ptr, bytes, eeprom->len);
567
568         for (i = 0; i < last_word - first_word + 1; i++)
569                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
570
571         ret_val = e1000_write_nvm(hw, first_word,
572                                   last_word - first_word + 1, eeprom_buff);
573
574         if (ret_val)
575                 goto out;
576
577         /*
578          * Update the checksum over the first part of the EEPROM if needed
579          * and flush shadow RAM for applicable controllers
580          */
581         if ((first_word <= NVM_CHECKSUM_REG) ||
582             (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
583                 ret_val = e1000e_update_nvm_checksum(hw);
584
585 out:
586         kfree(eeprom_buff);
587         return ret_val;
588 }
589
590 static void e1000_get_drvinfo(struct net_device *netdev,
591                               struct ethtool_drvinfo *drvinfo)
592 {
593         struct e1000_adapter *adapter = netdev_priv(netdev);
594         char firmware_version[32];
595
596         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
597         strncpy(drvinfo->version, e1000e_driver_version, 32);
598
599         /*
600          * EEPROM image version # is reported as firmware version # for
601          * PCI-E controllers
602          */
603         sprintf(firmware_version, "%d.%d-%d",
604                 (adapter->eeprom_vers & 0xF000) >> 12,
605                 (adapter->eeprom_vers & 0x0FF0) >> 4,
606                 (adapter->eeprom_vers & 0x000F));
607
608         strncpy(drvinfo->fw_version, firmware_version, 32);
609         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
610         drvinfo->regdump_len = e1000_get_regs_len(netdev);
611         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
612 }
613
614 static void e1000_get_ringparam(struct net_device *netdev,
615                                 struct ethtool_ringparam *ring)
616 {
617         struct e1000_adapter *adapter = netdev_priv(netdev);
618         struct e1000_ring *tx_ring = adapter->tx_ring;
619         struct e1000_ring *rx_ring = adapter->rx_ring;
620
621         ring->rx_max_pending = E1000_MAX_RXD;
622         ring->tx_max_pending = E1000_MAX_TXD;
623         ring->rx_mini_max_pending = 0;
624         ring->rx_jumbo_max_pending = 0;
625         ring->rx_pending = rx_ring->count;
626         ring->tx_pending = tx_ring->count;
627         ring->rx_mini_pending = 0;
628         ring->rx_jumbo_pending = 0;
629 }
630
631 static int e1000_set_ringparam(struct net_device *netdev,
632                                struct ethtool_ringparam *ring)
633 {
634         struct e1000_adapter *adapter = netdev_priv(netdev);
635         struct e1000_ring *tx_ring, *tx_old;
636         struct e1000_ring *rx_ring, *rx_old;
637         int err;
638
639         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
640                 return -EINVAL;
641
642         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
643                 msleep(1);
644
645         if (netif_running(adapter->netdev))
646                 e1000e_down(adapter);
647
648         tx_old = adapter->tx_ring;
649         rx_old = adapter->rx_ring;
650
651         err = -ENOMEM;
652         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
653         if (!tx_ring)
654                 goto err_alloc_tx;
655         /*
656          * use a memcpy to save any previously configured
657          * items like napi structs from having to be
658          * reinitialized
659          */
660         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
661
662         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
663         if (!rx_ring)
664                 goto err_alloc_rx;
665         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
666
667         adapter->tx_ring = tx_ring;
668         adapter->rx_ring = rx_ring;
669
670         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
671         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
672         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
673
674         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
675         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
676         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
677
678         if (netif_running(adapter->netdev)) {
679                 /* Try to get new resources before deleting old */
680                 err = e1000e_setup_rx_resources(adapter);
681                 if (err)
682                         goto err_setup_rx;
683                 err = e1000e_setup_tx_resources(adapter);
684                 if (err)
685                         goto err_setup_tx;
686
687                 /*
688                  * restore the old in order to free it,
689                  * then add in the new
690                  */
691                 adapter->rx_ring = rx_old;
692                 adapter->tx_ring = tx_old;
693                 e1000e_free_rx_resources(adapter);
694                 e1000e_free_tx_resources(adapter);
695                 kfree(tx_old);
696                 kfree(rx_old);
697                 adapter->rx_ring = rx_ring;
698                 adapter->tx_ring = tx_ring;
699                 err = e1000e_up(adapter);
700                 if (err)
701                         goto err_setup;
702         }
703
704         clear_bit(__E1000_RESETTING, &adapter->state);
705         return 0;
706 err_setup_tx:
707         e1000e_free_rx_resources(adapter);
708 err_setup_rx:
709         adapter->rx_ring = rx_old;
710         adapter->tx_ring = tx_old;
711         kfree(rx_ring);
712 err_alloc_rx:
713         kfree(tx_ring);
714 err_alloc_tx:
715         e1000e_up(adapter);
716 err_setup:
717         clear_bit(__E1000_RESETTING, &adapter->state);
718         return err;
719 }
720
721 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
722                              int reg, int offset, u32 mask, u32 write)
723 {
724         u32 pat, val;
725         static const u32 test[] =
726                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
727         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
728                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
729                                       (test[pat] & write));
730                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
731                 if (val != (test[pat] & write & mask)) {
732                         e_err("pattern test reg %04X failed: got 0x%08X "
733                               "expected 0x%08X\n", reg + offset, val,
734                               (test[pat] & write & mask));
735                         *data = reg;
736                         return 1;
737                 }
738         }
739         return 0;
740 }
741
742 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
743                               int reg, u32 mask, u32 write)
744 {
745         u32 val;
746         __ew32(&adapter->hw, reg, write & mask);
747         val = __er32(&adapter->hw, reg);
748         if ((write & mask) != (val & mask)) {
749                 e_err("set/check reg %04X test failed: got 0x%08X "
750                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
751                 *data = reg;
752                 return 1;
753         }
754         return 0;
755 }
756 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
757         do {                                                                   \
758                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
759                         return 1;                                              \
760         } while (0)
761 #define REG_PATTERN_TEST(reg, mask, write)                                     \
762         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
763
764 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
765         do {                                                                   \
766                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
767                         return 1;                                              \
768         } while (0)
769
770 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
771 {
772         struct e1000_hw *hw = &adapter->hw;
773         struct e1000_mac_info *mac = &adapter->hw.mac;
774         u32 value;
775         u32 before;
776         u32 after;
777         u32 i;
778         u32 toggle;
779
780         /*
781          * The status register is Read Only, so a write should fail.
782          * Some bits that get toggled are ignored.
783          */
784         switch (mac->type) {
785         /* there are several bits on newer hardware that are r/w */
786         case e1000_82571:
787         case e1000_82572:
788         case e1000_80003es2lan:
789                 toggle = 0x7FFFF3FF;
790                 break;
791         case e1000_82573:
792         case e1000_82574:
793         case e1000_82583:
794         case e1000_ich8lan:
795         case e1000_ich9lan:
796         case e1000_ich10lan:
797                 toggle = 0x7FFFF033;
798                 break;
799         default:
800                 toggle = 0xFFFFF833;
801                 break;
802         }
803
804         before = er32(STATUS);
805         value = (er32(STATUS) & toggle);
806         ew32(STATUS, toggle);
807         after = er32(STATUS) & toggle;
808         if (value != after) {
809                 e_err("failed STATUS register test got: 0x%08X expected: "
810                       "0x%08X\n", after, value);
811                 *data = 1;
812                 return 1;
813         }
814         /* restore previous status */
815         ew32(STATUS, before);
816
817         if (!(adapter->flags & FLAG_IS_ICH)) {
818                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
819                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
820                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
821                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
822         }
823
824         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
825         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
826         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
827         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
828         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
829         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
830         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
831         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
832         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
833         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
834
835         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
836
837         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
838         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
839         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
840
841         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
842         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
843         if (!(adapter->flags & FLAG_IS_ICH))
844                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
845         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
846         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
847         for (i = 0; i < mac->rar_entry_count; i++)
848                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
849                                        ((mac->type == e1000_ich10lan) ?
850                                            0x8007FFFF : 0x8003FFFF),
851                                        0xFFFFFFFF);
852
853         for (i = 0; i < mac->mta_reg_count; i++)
854                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
855
856         *data = 0;
857         return 0;
858 }
859
860 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
861 {
862         u16 temp;
863         u16 checksum = 0;
864         u16 i;
865
866         *data = 0;
867         /* Read and add up the contents of the EEPROM */
868         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
869                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
870                         *data = 1;
871                         return *data;
872                 }
873                 checksum += temp;
874         }
875
876         /* If Checksum is not Correct return error else test passed */
877         if ((checksum != (u16) NVM_SUM) && !(*data))
878                 *data = 2;
879
880         return *data;
881 }
882
883 static irqreturn_t e1000_test_intr(int irq, void *data)
884 {
885         struct net_device *netdev = (struct net_device *) data;
886         struct e1000_adapter *adapter = netdev_priv(netdev);
887         struct e1000_hw *hw = &adapter->hw;
888
889         adapter->test_icr |= er32(ICR);
890
891         return IRQ_HANDLED;
892 }
893
894 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
895 {
896         struct net_device *netdev = adapter->netdev;
897         struct e1000_hw *hw = &adapter->hw;
898         u32 mask;
899         u32 shared_int = 1;
900         u32 irq = adapter->pdev->irq;
901         int i;
902         int ret_val = 0;
903         int int_mode = E1000E_INT_MODE_LEGACY;
904
905         *data = 0;
906
907         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
908         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
909                 int_mode = adapter->int_mode;
910                 e1000e_reset_interrupt_capability(adapter);
911                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
912                 e1000e_set_interrupt_capability(adapter);
913         }
914         /* Hook up test interrupt handler just for this test */
915         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
916                          netdev)) {
917                 shared_int = 0;
918         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
919                  netdev->name, netdev)) {
920                 *data = 1;
921                 ret_val = -1;
922                 goto out;
923         }
924         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
925
926         /* Disable all the interrupts */
927         ew32(IMC, 0xFFFFFFFF);
928         msleep(10);
929
930         /* Test each interrupt */
931         for (i = 0; i < 10; i++) {
932                 /* Interrupt to test */
933                 mask = 1 << i;
934
935                 if (adapter->flags & FLAG_IS_ICH) {
936                         switch (mask) {
937                         case E1000_ICR_RXSEQ:
938                                 continue;
939                         case 0x00000100:
940                                 if (adapter->hw.mac.type == e1000_ich8lan ||
941                                     adapter->hw.mac.type == e1000_ich9lan)
942                                         continue;
943                                 break;
944                         default:
945                                 break;
946                         }
947                 }
948
949                 if (!shared_int) {
950                         /*
951                          * Disable the interrupt to be reported in
952                          * the cause register and then force the same
953                          * interrupt and see if one gets posted.  If
954                          * an interrupt was posted to the bus, the
955                          * test failed.
956                          */
957                         adapter->test_icr = 0;
958                         ew32(IMC, mask);
959                         ew32(ICS, mask);
960                         msleep(10);
961
962                         if (adapter->test_icr & mask) {
963                                 *data = 3;
964                                 break;
965                         }
966                 }
967
968                 /*
969                  * Enable the interrupt to be reported in
970                  * the cause register and then force the same
971                  * interrupt and see if one gets posted.  If
972                  * an interrupt was not posted to the bus, the
973                  * test failed.
974                  */
975                 adapter->test_icr = 0;
976                 ew32(IMS, mask);
977                 ew32(ICS, mask);
978                 msleep(10);
979
980                 if (!(adapter->test_icr & mask)) {
981                         *data = 4;
982                         break;
983                 }
984
985                 if (!shared_int) {
986                         /*
987                          * Disable the other interrupts to be reported in
988                          * the cause register and then force the other
989                          * interrupts and see if any get posted.  If
990                          * an interrupt was posted to the bus, the
991                          * test failed.
992                          */
993                         adapter->test_icr = 0;
994                         ew32(IMC, ~mask & 0x00007FFF);
995                         ew32(ICS, ~mask & 0x00007FFF);
996                         msleep(10);
997
998                         if (adapter->test_icr) {
999                                 *data = 5;
1000                                 break;
1001                         }
1002                 }
1003         }
1004
1005         /* Disable all the interrupts */
1006         ew32(IMC, 0xFFFFFFFF);
1007         msleep(10);
1008
1009         /* Unhook test interrupt handler */
1010         free_irq(irq, netdev);
1011
1012 out:
1013         if (int_mode == E1000E_INT_MODE_MSIX) {
1014                 e1000e_reset_interrupt_capability(adapter);
1015                 adapter->int_mode = int_mode;
1016                 e1000e_set_interrupt_capability(adapter);
1017         }
1018
1019         return ret_val;
1020 }
1021
1022 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1023 {
1024         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1025         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1026         struct pci_dev *pdev = adapter->pdev;
1027         int i;
1028
1029         if (tx_ring->desc && tx_ring->buffer_info) {
1030                 for (i = 0; i < tx_ring->count; i++) {
1031                         if (tx_ring->buffer_info[i].dma)
1032                                 pci_unmap_single(pdev,
1033                                         tx_ring->buffer_info[i].dma,
1034                                         tx_ring->buffer_info[i].length,
1035                                         PCI_DMA_TODEVICE);
1036                         if (tx_ring->buffer_info[i].skb)
1037                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1038                 }
1039         }
1040
1041         if (rx_ring->desc && rx_ring->buffer_info) {
1042                 for (i = 0; i < rx_ring->count; i++) {
1043                         if (rx_ring->buffer_info[i].dma)
1044                                 pci_unmap_single(pdev,
1045                                         rx_ring->buffer_info[i].dma,
1046                                         2048, PCI_DMA_FROMDEVICE);
1047                         if (rx_ring->buffer_info[i].skb)
1048                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1049                 }
1050         }
1051
1052         if (tx_ring->desc) {
1053                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1054                                   tx_ring->dma);
1055                 tx_ring->desc = NULL;
1056         }
1057         if (rx_ring->desc) {
1058                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1059                                   rx_ring->dma);
1060                 rx_ring->desc = NULL;
1061         }
1062
1063         kfree(tx_ring->buffer_info);
1064         tx_ring->buffer_info = NULL;
1065         kfree(rx_ring->buffer_info);
1066         rx_ring->buffer_info = NULL;
1067 }
1068
1069 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1070 {
1071         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1072         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1073         struct pci_dev *pdev = adapter->pdev;
1074         struct e1000_hw *hw = &adapter->hw;
1075         u32 rctl;
1076         int i;
1077         int ret_val;
1078
1079         /* Setup Tx descriptor ring and Tx buffers */
1080
1081         if (!tx_ring->count)
1082                 tx_ring->count = E1000_DEFAULT_TXD;
1083
1084         tx_ring->buffer_info = kcalloc(tx_ring->count,
1085                                        sizeof(struct e1000_buffer),
1086                                        GFP_KERNEL);
1087         if (!(tx_ring->buffer_info)) {
1088                 ret_val = 1;
1089                 goto err_nomem;
1090         }
1091
1092         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1093         tx_ring->size = ALIGN(tx_ring->size, 4096);
1094         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1095                                            &tx_ring->dma, GFP_KERNEL);
1096         if (!tx_ring->desc) {
1097                 ret_val = 2;
1098                 goto err_nomem;
1099         }
1100         tx_ring->next_to_use = 0;
1101         tx_ring->next_to_clean = 0;
1102
1103         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1104         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1105         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1106         ew32(TDH, 0);
1107         ew32(TDT, 0);
1108         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1109              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1110              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1111
1112         for (i = 0; i < tx_ring->count; i++) {
1113                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1114                 struct sk_buff *skb;
1115                 unsigned int skb_size = 1024;
1116
1117                 skb = alloc_skb(skb_size, GFP_KERNEL);
1118                 if (!skb) {
1119                         ret_val = 3;
1120                         goto err_nomem;
1121                 }
1122                 skb_put(skb, skb_size);
1123                 tx_ring->buffer_info[i].skb = skb;
1124                 tx_ring->buffer_info[i].length = skb->len;
1125                 tx_ring->buffer_info[i].dma =
1126                         pci_map_single(pdev, skb->data, skb->len,
1127                                        PCI_DMA_TODEVICE);
1128                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1129                         ret_val = 4;
1130                         goto err_nomem;
1131                 }
1132                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1133                 tx_desc->lower.data = cpu_to_le32(skb->len);
1134                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1135                                                    E1000_TXD_CMD_IFCS |
1136                                                    E1000_TXD_CMD_RS);
1137                 tx_desc->upper.data = 0;
1138         }
1139
1140         /* Setup Rx descriptor ring and Rx buffers */
1141
1142         if (!rx_ring->count)
1143                 rx_ring->count = E1000_DEFAULT_RXD;
1144
1145         rx_ring->buffer_info = kcalloc(rx_ring->count,
1146                                        sizeof(struct e1000_buffer),
1147                                        GFP_KERNEL);
1148         if (!(rx_ring->buffer_info)) {
1149                 ret_val = 5;
1150                 goto err_nomem;
1151         }
1152
1153         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1154         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1155                                            &rx_ring->dma, GFP_KERNEL);
1156         if (!rx_ring->desc) {
1157                 ret_val = 6;
1158                 goto err_nomem;
1159         }
1160         rx_ring->next_to_use = 0;
1161         rx_ring->next_to_clean = 0;
1162
1163         rctl = er32(RCTL);
1164         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1165         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1166         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1167         ew32(RDLEN, rx_ring->size);
1168         ew32(RDH, 0);
1169         ew32(RDT, 0);
1170         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1171                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1172                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1173                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1174                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1175         ew32(RCTL, rctl);
1176
1177         for (i = 0; i < rx_ring->count; i++) {
1178                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1179                 struct sk_buff *skb;
1180
1181                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1182                 if (!skb) {
1183                         ret_val = 7;
1184                         goto err_nomem;
1185                 }
1186                 skb_reserve(skb, NET_IP_ALIGN);
1187                 rx_ring->buffer_info[i].skb = skb;
1188                 rx_ring->buffer_info[i].dma =
1189                         pci_map_single(pdev, skb->data, 2048,
1190                                        PCI_DMA_FROMDEVICE);
1191                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1192                         ret_val = 8;
1193                         goto err_nomem;
1194                 }
1195                 rx_desc->buffer_addr =
1196                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1197                 memset(skb->data, 0x00, skb->len);
1198         }
1199
1200         return 0;
1201
1202 err_nomem:
1203         e1000_free_desc_rings(adapter);
1204         return ret_val;
1205 }
1206
1207 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1208 {
1209         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1210         e1e_wphy(&adapter->hw, 29, 0x001F);
1211         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1212         e1e_wphy(&adapter->hw, 29, 0x001A);
1213         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1214 }
1215
1216 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1217 {
1218         struct e1000_hw *hw = &adapter->hw;
1219         u32 ctrl_reg = 0;
1220         u32 stat_reg = 0;
1221         u16 phy_reg = 0;
1222
1223         hw->mac.autoneg = 0;
1224
1225         if (hw->phy.type == e1000_phy_m88) {
1226                 /* Auto-MDI/MDIX Off */
1227                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1228                 /* reset to update Auto-MDI/MDIX */
1229                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1230                 /* autoneg off */
1231                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1232         } else if (hw->phy.type == e1000_phy_gg82563)
1233                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1234
1235         ctrl_reg = er32(CTRL);
1236
1237         switch (hw->phy.type) {
1238         case e1000_phy_ife:
1239                 /* force 100, set loopback */
1240                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1241
1242                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1243                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1244                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1245                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1246                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1247                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1248                 break;
1249         case e1000_phy_bm:
1250                 /* Set Default MAC Interface speed to 1GB */
1251                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1252                 phy_reg &= ~0x0007;
1253                 phy_reg |= 0x006;
1254                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1255                 /* Assert SW reset for above settings to take effect */
1256                 e1000e_commit_phy(hw);
1257                 mdelay(1);
1258                 /* Force Full Duplex */
1259                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1260                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1261                 /* Set Link Up (in force link) */
1262                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1263                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1264                 /* Force Link */
1265                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1266                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1267                 /* Set Early Link Enable */
1268                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1269                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1270                 /* fall through */
1271         default:
1272                 /* force 1000, set loopback */
1273                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1274                 mdelay(250);
1275
1276                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1277                 ctrl_reg = er32(CTRL);
1278                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1279                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1280                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1281                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1282                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1283
1284                 if (adapter->flags & FLAG_IS_ICH)
1285                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1286         }
1287
1288         if (hw->phy.media_type == e1000_media_type_copper &&
1289             hw->phy.type == e1000_phy_m88) {
1290                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1291         } else {
1292                 /*
1293                  * Set the ILOS bit on the fiber Nic if half duplex link is
1294                  * detected.
1295                  */
1296                 stat_reg = er32(STATUS);
1297                 if ((stat_reg & E1000_STATUS_FD) == 0)
1298                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1299         }
1300
1301         ew32(CTRL, ctrl_reg);
1302
1303         /*
1304          * Disable the receiver on the PHY so when a cable is plugged in, the
1305          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1306          */
1307         if (hw->phy.type == e1000_phy_m88)
1308                 e1000_phy_disable_receiver(adapter);
1309
1310         udelay(500);
1311
1312         return 0;
1313 }
1314
1315 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1316 {
1317         struct e1000_hw *hw = &adapter->hw;
1318         u32 ctrl = er32(CTRL);
1319         int link = 0;
1320
1321         /* special requirements for 82571/82572 fiber adapters */
1322
1323         /*
1324          * jump through hoops to make sure link is up because serdes
1325          * link is hardwired up
1326          */
1327         ctrl |= E1000_CTRL_SLU;
1328         ew32(CTRL, ctrl);
1329
1330         /* disable autoneg */
1331         ctrl = er32(TXCW);
1332         ctrl &= ~(1 << 31);
1333         ew32(TXCW, ctrl);
1334
1335         link = (er32(STATUS) & E1000_STATUS_LU);
1336
1337         if (!link) {
1338                 /* set invert loss of signal */
1339                 ctrl = er32(CTRL);
1340                 ctrl |= E1000_CTRL_ILOS;
1341                 ew32(CTRL, ctrl);
1342         }
1343
1344         /*
1345          * special write to serdes control register to enable SerDes analog
1346          * loopback
1347          */
1348 #define E1000_SERDES_LB_ON 0x410
1349         ew32(SCTL, E1000_SERDES_LB_ON);
1350         msleep(10);
1351
1352         return 0;
1353 }
1354
1355 /* only call this for fiber/serdes connections to es2lan */
1356 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1357 {
1358         struct e1000_hw *hw = &adapter->hw;
1359         u32 ctrlext = er32(CTRL_EXT);
1360         u32 ctrl = er32(CTRL);
1361
1362         /*
1363          * save CTRL_EXT to restore later, reuse an empty variable (unused
1364          * on mac_type 80003es2lan)
1365          */
1366         adapter->tx_fifo_head = ctrlext;
1367
1368         /* clear the serdes mode bits, putting the device into mac loopback */
1369         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1370         ew32(CTRL_EXT, ctrlext);
1371
1372         /* force speed to 1000/FD, link up */
1373         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1374         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1375                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1376         ew32(CTRL, ctrl);
1377
1378         /* set mac loopback */
1379         ctrl = er32(RCTL);
1380         ctrl |= E1000_RCTL_LBM_MAC;
1381         ew32(RCTL, ctrl);
1382
1383         /* set testing mode parameters (no need to reset later) */
1384 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1385 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1386         ew32(KMRNCTRLSTA,
1387              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1388
1389         return 0;
1390 }
1391
1392 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1393 {
1394         struct e1000_hw *hw = &adapter->hw;
1395         u32 rctl;
1396
1397         if (hw->phy.media_type == e1000_media_type_fiber ||
1398             hw->phy.media_type == e1000_media_type_internal_serdes) {
1399                 switch (hw->mac.type) {
1400                 case e1000_80003es2lan:
1401                         return e1000_set_es2lan_mac_loopback(adapter);
1402                         break;
1403                 case e1000_82571:
1404                 case e1000_82572:
1405                         return e1000_set_82571_fiber_loopback(adapter);
1406                         break;
1407                 default:
1408                         rctl = er32(RCTL);
1409                         rctl |= E1000_RCTL_LBM_TCVR;
1410                         ew32(RCTL, rctl);
1411                         return 0;
1412                 }
1413         } else if (hw->phy.media_type == e1000_media_type_copper) {
1414                 return e1000_integrated_phy_loopback(adapter);
1415         }
1416
1417         return 7;
1418 }
1419
1420 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1421 {
1422         struct e1000_hw *hw = &adapter->hw;
1423         u32 rctl;
1424         u16 phy_reg;
1425
1426         rctl = er32(RCTL);
1427         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1428         ew32(RCTL, rctl);
1429
1430         switch (hw->mac.type) {
1431         case e1000_80003es2lan:
1432                 if (hw->phy.media_type == e1000_media_type_fiber ||
1433                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1434                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1435                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1436                         adapter->tx_fifo_head = 0;
1437                 }
1438                 /* fall through */
1439         case e1000_82571:
1440         case e1000_82572:
1441                 if (hw->phy.media_type == e1000_media_type_fiber ||
1442                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1443 #define E1000_SERDES_LB_OFF 0x400
1444                         ew32(SCTL, E1000_SERDES_LB_OFF);
1445                         msleep(10);
1446                         break;
1447                 }
1448                 /* Fall Through */
1449         default:
1450                 hw->mac.autoneg = 1;
1451                 if (hw->phy.type == e1000_phy_gg82563)
1452                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1453                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1454                 if (phy_reg & MII_CR_LOOPBACK) {
1455                         phy_reg &= ~MII_CR_LOOPBACK;
1456                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1457                         e1000e_commit_phy(hw);
1458                 }
1459                 break;
1460         }
1461 }
1462
1463 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1464                                       unsigned int frame_size)
1465 {
1466         memset(skb->data, 0xFF, frame_size);
1467         frame_size &= ~1;
1468         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1469         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1470         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1471 }
1472
1473 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1474                                     unsigned int frame_size)
1475 {
1476         frame_size &= ~1;
1477         if (*(skb->data + 3) == 0xFF)
1478                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1479                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1480                         return 0;
1481         return 13;
1482 }
1483
1484 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1485 {
1486         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1487         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1488         struct pci_dev *pdev = adapter->pdev;
1489         struct e1000_hw *hw = &adapter->hw;
1490         int i, j, k, l;
1491         int lc;
1492         int good_cnt;
1493         int ret_val = 0;
1494         unsigned long time;
1495
1496         ew32(RDT, rx_ring->count - 1);
1497
1498         /*
1499          * Calculate the loop count based on the largest descriptor ring
1500          * The idea is to wrap the largest ring a number of times using 64
1501          * send/receive pairs during each loop
1502          */
1503
1504         if (rx_ring->count <= tx_ring->count)
1505                 lc = ((tx_ring->count / 64) * 2) + 1;
1506         else
1507                 lc = ((rx_ring->count / 64) * 2) + 1;
1508
1509         k = 0;
1510         l = 0;
1511         for (j = 0; j <= lc; j++) { /* loop count loop */
1512                 for (i = 0; i < 64; i++) { /* send the packets */
1513                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1514                                                   1024);
1515                         pci_dma_sync_single_for_device(pdev,
1516                                         tx_ring->buffer_info[k].dma,
1517                                         tx_ring->buffer_info[k].length,
1518                                         PCI_DMA_TODEVICE);
1519                         k++;
1520                         if (k == tx_ring->count)
1521                                 k = 0;
1522                 }
1523                 ew32(TDT, k);
1524                 msleep(200);
1525                 time = jiffies; /* set the start time for the receive */
1526                 good_cnt = 0;
1527                 do { /* receive the sent packets */
1528                         pci_dma_sync_single_for_cpu(pdev,
1529                                         rx_ring->buffer_info[l].dma, 2048,
1530                                         PCI_DMA_FROMDEVICE);
1531
1532                         ret_val = e1000_check_lbtest_frame(
1533                                         rx_ring->buffer_info[l].skb, 1024);
1534                         if (!ret_val)
1535                                 good_cnt++;
1536                         l++;
1537                         if (l == rx_ring->count)
1538                                 l = 0;
1539                         /*
1540                          * time + 20 msecs (200 msecs on 2.4) is more than
1541                          * enough time to complete the receives, if it's
1542                          * exceeded, break and error off
1543                          */
1544                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1545                 if (good_cnt != 64) {
1546                         ret_val = 13; /* ret_val is the same as mis-compare */
1547                         break;
1548                 }
1549                 if (jiffies >= (time + 20)) {
1550                         ret_val = 14; /* error code for time out error */
1551                         break;
1552                 }
1553         } /* end loop count loop */
1554         return ret_val;
1555 }
1556
1557 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1558 {
1559         /*
1560          * PHY loopback cannot be performed if SoL/IDER
1561          * sessions are active
1562          */
1563         if (e1000_check_reset_block(&adapter->hw)) {
1564                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1565                 *data = 0;
1566                 goto out;
1567         }
1568
1569         *data = e1000_setup_desc_rings(adapter);
1570         if (*data)
1571                 goto out;
1572
1573         *data = e1000_setup_loopback_test(adapter);
1574         if (*data)
1575                 goto err_loopback;
1576
1577         *data = e1000_run_loopback_test(adapter);
1578         e1000_loopback_cleanup(adapter);
1579
1580 err_loopback:
1581         e1000_free_desc_rings(adapter);
1582 out:
1583         return *data;
1584 }
1585
1586 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1587 {
1588         struct e1000_hw *hw = &adapter->hw;
1589
1590         *data = 0;
1591         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1592                 int i = 0;
1593                 hw->mac.serdes_has_link = false;
1594
1595                 /*
1596                  * On some blade server designs, link establishment
1597                  * could take as long as 2-3 minutes
1598                  */
1599                 do {
1600                         hw->mac.ops.check_for_link(hw);
1601                         if (hw->mac.serdes_has_link)
1602                                 return *data;
1603                         msleep(20);
1604                 } while (i++ < 3750);
1605
1606                 *data = 1;
1607         } else {
1608                 hw->mac.ops.check_for_link(hw);
1609                 if (hw->mac.autoneg)
1610                         msleep(4000);
1611
1612                 if (!(er32(STATUS) &
1613                       E1000_STATUS_LU))
1614                         *data = 1;
1615         }
1616         return *data;
1617 }
1618
1619 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1620 {
1621         switch (sset) {
1622         case ETH_SS_TEST:
1623                 return E1000_TEST_LEN;
1624         case ETH_SS_STATS:
1625                 return E1000_STATS_LEN;
1626         default:
1627                 return -EOPNOTSUPP;
1628         }
1629 }
1630
1631 static void e1000_diag_test(struct net_device *netdev,
1632                             struct ethtool_test *eth_test, u64 *data)
1633 {
1634         struct e1000_adapter *adapter = netdev_priv(netdev);
1635         u16 autoneg_advertised;
1636         u8 forced_speed_duplex;
1637         u8 autoneg;
1638         bool if_running = netif_running(netdev);
1639
1640         set_bit(__E1000_TESTING, &adapter->state);
1641         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1642                 /* Offline tests */
1643
1644                 /* save speed, duplex, autoneg settings */
1645                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1646                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1647                 autoneg = adapter->hw.mac.autoneg;
1648
1649                 e_info("offline testing starting\n");
1650
1651                 /*
1652                  * Link test performed before hardware reset so autoneg doesn't
1653                  * interfere with test result
1654                  */
1655                 if (e1000_link_test(adapter, &data[4]))
1656                         eth_test->flags |= ETH_TEST_FL_FAILED;
1657
1658                 if (if_running)
1659                         /* indicate we're in test mode */
1660                         dev_close(netdev);
1661                 else
1662                         e1000e_reset(adapter);
1663
1664                 if (e1000_reg_test(adapter, &data[0]))
1665                         eth_test->flags |= ETH_TEST_FL_FAILED;
1666
1667                 e1000e_reset(adapter);
1668                 if (e1000_eeprom_test(adapter, &data[1]))
1669                         eth_test->flags |= ETH_TEST_FL_FAILED;
1670
1671                 e1000e_reset(adapter);
1672                 if (e1000_intr_test(adapter, &data[2]))
1673                         eth_test->flags |= ETH_TEST_FL_FAILED;
1674
1675                 e1000e_reset(adapter);
1676                 /* make sure the phy is powered up */
1677                 e1000e_power_up_phy(adapter);
1678                 if (e1000_loopback_test(adapter, &data[3]))
1679                         eth_test->flags |= ETH_TEST_FL_FAILED;
1680
1681                 /* restore speed, duplex, autoneg settings */
1682                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1683                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1684                 adapter->hw.mac.autoneg = autoneg;
1685
1686                 /* force this routine to wait until autoneg complete/timeout */
1687                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1688                 e1000e_reset(adapter);
1689                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1690
1691                 clear_bit(__E1000_TESTING, &adapter->state);
1692                 if (if_running)
1693                         dev_open(netdev);
1694         } else {
1695                 e_info("online testing starting\n");
1696                 /* Online tests */
1697                 if (e1000_link_test(adapter, &data[4]))
1698                         eth_test->flags |= ETH_TEST_FL_FAILED;
1699
1700                 /* Online tests aren't run; pass by default */
1701                 data[0] = 0;
1702                 data[1] = 0;
1703                 data[2] = 0;
1704                 data[3] = 0;
1705
1706                 clear_bit(__E1000_TESTING, &adapter->state);
1707         }
1708         msleep_interruptible(4 * 1000);
1709 }
1710
1711 static void e1000_get_wol(struct net_device *netdev,
1712                           struct ethtool_wolinfo *wol)
1713 {
1714         struct e1000_adapter *adapter = netdev_priv(netdev);
1715
1716         wol->supported = 0;
1717         wol->wolopts = 0;
1718
1719         if (!(adapter->flags & FLAG_HAS_WOL) ||
1720             !device_can_wakeup(&adapter->pdev->dev))
1721                 return;
1722
1723         wol->supported = WAKE_UCAST | WAKE_MCAST |
1724                          WAKE_BCAST | WAKE_MAGIC |
1725                          WAKE_PHY | WAKE_ARP;
1726
1727         /* apply any specific unsupported masks here */
1728         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1729                 wol->supported &= ~WAKE_UCAST;
1730
1731                 if (adapter->wol & E1000_WUFC_EX)
1732                         e_err("Interface does not support directed (unicast) "
1733                               "frame wake-up packets\n");
1734         }
1735
1736         if (adapter->wol & E1000_WUFC_EX)
1737                 wol->wolopts |= WAKE_UCAST;
1738         if (adapter->wol & E1000_WUFC_MC)
1739                 wol->wolopts |= WAKE_MCAST;
1740         if (adapter->wol & E1000_WUFC_BC)
1741                 wol->wolopts |= WAKE_BCAST;
1742         if (adapter->wol & E1000_WUFC_MAG)
1743                 wol->wolopts |= WAKE_MAGIC;
1744         if (adapter->wol & E1000_WUFC_LNKC)
1745                 wol->wolopts |= WAKE_PHY;
1746         if (adapter->wol & E1000_WUFC_ARP)
1747                 wol->wolopts |= WAKE_ARP;
1748 }
1749
1750 static int e1000_set_wol(struct net_device *netdev,
1751                          struct ethtool_wolinfo *wol)
1752 {
1753         struct e1000_adapter *adapter = netdev_priv(netdev);
1754
1755         if (wol->wolopts & WAKE_MAGICSECURE)
1756                 return -EOPNOTSUPP;
1757
1758         if (!(adapter->flags & FLAG_HAS_WOL) ||
1759             !device_can_wakeup(&adapter->pdev->dev))
1760                 return wol->wolopts ? -EOPNOTSUPP : 0;
1761
1762         /* these settings will always override what we currently have */
1763         adapter->wol = 0;
1764
1765         if (wol->wolopts & WAKE_UCAST)
1766                 adapter->wol |= E1000_WUFC_EX;
1767         if (wol->wolopts & WAKE_MCAST)
1768                 adapter->wol |= E1000_WUFC_MC;
1769         if (wol->wolopts & WAKE_BCAST)
1770                 adapter->wol |= E1000_WUFC_BC;
1771         if (wol->wolopts & WAKE_MAGIC)
1772                 adapter->wol |= E1000_WUFC_MAG;
1773         if (wol->wolopts & WAKE_PHY)
1774                 adapter->wol |= E1000_WUFC_LNKC;
1775         if (wol->wolopts & WAKE_ARP)
1776                 adapter->wol |= E1000_WUFC_ARP;
1777
1778         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1779
1780         return 0;
1781 }
1782
1783 /* toggle LED 4 times per second = 2 "blinks" per second */
1784 #define E1000_ID_INTERVAL       (HZ/4)
1785
1786 /* bit defines for adapter->led_status */
1787 #define E1000_LED_ON            0
1788
1789 static void e1000_led_blink_callback(unsigned long data)
1790 {
1791         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1792
1793         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1794                 adapter->hw.mac.ops.led_off(&adapter->hw);
1795         else
1796                 adapter->hw.mac.ops.led_on(&adapter->hw);
1797
1798         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1799 }
1800
1801 static int e1000_phys_id(struct net_device *netdev, u32 data)
1802 {
1803         struct e1000_adapter *adapter = netdev_priv(netdev);
1804         struct e1000_hw *hw = &adapter->hw;
1805
1806         if (!data)
1807                 data = INT_MAX;
1808
1809         if ((hw->phy.type == e1000_phy_ife) ||
1810             (hw->mac.type == e1000_82574)) {
1811                 if (!adapter->blink_timer.function) {
1812                         init_timer(&adapter->blink_timer);
1813                         adapter->blink_timer.function =
1814                                 e1000_led_blink_callback;
1815                         adapter->blink_timer.data = (unsigned long) adapter;
1816                 }
1817                 mod_timer(&adapter->blink_timer, jiffies);
1818                 msleep_interruptible(data * 1000);
1819                 del_timer_sync(&adapter->blink_timer);
1820                 if (hw->phy.type == e1000_phy_ife)
1821                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1822         } else {
1823                 e1000e_blink_led(hw);
1824                 msleep_interruptible(data * 1000);
1825         }
1826
1827         hw->mac.ops.led_off(hw);
1828         clear_bit(E1000_LED_ON, &adapter->led_status);
1829         hw->mac.ops.cleanup_led(hw);
1830
1831         return 0;
1832 }
1833
1834 static int e1000_get_coalesce(struct net_device *netdev,
1835                               struct ethtool_coalesce *ec)
1836 {
1837         struct e1000_adapter *adapter = netdev_priv(netdev);
1838
1839         if (adapter->itr_setting <= 3)
1840                 ec->rx_coalesce_usecs = adapter->itr_setting;
1841         else
1842                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1843
1844         return 0;
1845 }
1846
1847 static int e1000_set_coalesce(struct net_device *netdev,
1848                               struct ethtool_coalesce *ec)
1849 {
1850         struct e1000_adapter *adapter = netdev_priv(netdev);
1851         struct e1000_hw *hw = &adapter->hw;
1852
1853         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1854             ((ec->rx_coalesce_usecs > 3) &&
1855              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1856             (ec->rx_coalesce_usecs == 2))
1857                 return -EINVAL;
1858
1859         if (ec->rx_coalesce_usecs <= 3) {
1860                 adapter->itr = 20000;
1861                 adapter->itr_setting = ec->rx_coalesce_usecs;
1862         } else {
1863                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1864                 adapter->itr_setting = adapter->itr & ~3;
1865         }
1866
1867         if (adapter->itr_setting != 0)
1868                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1869         else
1870                 ew32(ITR, 0);
1871
1872         return 0;
1873 }
1874
1875 static int e1000_nway_reset(struct net_device *netdev)
1876 {
1877         struct e1000_adapter *adapter = netdev_priv(netdev);
1878         if (netif_running(netdev))
1879                 e1000e_reinit_locked(adapter);
1880         return 0;
1881 }
1882
1883 static void e1000_get_ethtool_stats(struct net_device *netdev,
1884                                     struct ethtool_stats *stats,
1885                                     u64 *data)
1886 {
1887         struct e1000_adapter *adapter = netdev_priv(netdev);
1888         int i;
1889
1890         e1000e_update_stats(adapter);
1891         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1892                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1893                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1894                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1895         }
1896 }
1897
1898 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1899                               u8 *data)
1900 {
1901         u8 *p = data;
1902         int i;
1903
1904         switch (stringset) {
1905         case ETH_SS_TEST:
1906                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1907                 break;
1908         case ETH_SS_STATS:
1909                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1910                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1911                                ETH_GSTRING_LEN);
1912                         p += ETH_GSTRING_LEN;
1913                 }
1914                 break;
1915         }
1916 }
1917
1918 static const struct ethtool_ops e1000_ethtool_ops = {
1919         .get_settings           = e1000_get_settings,
1920         .set_settings           = e1000_set_settings,
1921         .get_drvinfo            = e1000_get_drvinfo,
1922         .get_regs_len           = e1000_get_regs_len,
1923         .get_regs               = e1000_get_regs,
1924         .get_wol                = e1000_get_wol,
1925         .set_wol                = e1000_set_wol,
1926         .get_msglevel           = e1000_get_msglevel,
1927         .set_msglevel           = e1000_set_msglevel,
1928         .nway_reset             = e1000_nway_reset,
1929         .get_link               = e1000_get_link,
1930         .get_eeprom_len         = e1000_get_eeprom_len,
1931         .get_eeprom             = e1000_get_eeprom,
1932         .set_eeprom             = e1000_set_eeprom,
1933         .get_ringparam          = e1000_get_ringparam,
1934         .set_ringparam          = e1000_set_ringparam,
1935         .get_pauseparam         = e1000_get_pauseparam,
1936         .set_pauseparam         = e1000_set_pauseparam,
1937         .get_rx_csum            = e1000_get_rx_csum,
1938         .set_rx_csum            = e1000_set_rx_csum,
1939         .get_tx_csum            = e1000_get_tx_csum,
1940         .set_tx_csum            = e1000_set_tx_csum,
1941         .get_sg                 = ethtool_op_get_sg,
1942         .set_sg                 = ethtool_op_set_sg,
1943         .get_tso                = ethtool_op_get_tso,
1944         .set_tso                = e1000_set_tso,
1945         .self_test              = e1000_diag_test,
1946         .get_strings            = e1000_get_strings,
1947         .phys_id                = e1000_phys_id,
1948         .get_ethtool_stats      = e1000_get_ethtool_stats,
1949         .get_sset_count         = e1000e_get_sset_count,
1950         .get_coalesce           = e1000_get_coalesce,
1951         .set_coalesce           = e1000_set_coalesce,
1952 };
1953
1954 void e1000e_set_ethtool_ops(struct net_device *netdev)
1955 {
1956         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1957 }