Merge branch 'linus' into cpumask-for-linus
[linux-2.6] / sound / pci / sis7019.c
1 /*
2  *  Driver for SiS7019 Audio Accelerator
3  *
4  *  Copyright (C) 2004-2007, David Dillow
5  *  Written by David Dillow <dave@thedillows.org>
6  *  Inspired by the Trident 4D-WaveDX/NX driver.
7  *
8  *  All rights reserved.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation, version 2.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22  */
23
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/moduleparam.h>
28 #include <linux/interrupt.h>
29 #include <linux/delay.h>
30 #include <sound/core.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/initval.h>
33 #include "sis7019.h"
34
35 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
36 MODULE_DESCRIPTION("SiS7019");
37 MODULE_LICENSE("GPL");
38 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
39
40 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
41 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
42 static int enable = 1;
43
44 module_param(index, int, 0444);
45 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
46 module_param(id, charp, 0444);
47 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
48 module_param(enable, bool, 0444);
49 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
50
51 static struct pci_device_id snd_sis7019_ids[] = {
52         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
53         { 0, }
54 };
55
56 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
57
58 /* There are three timing modes for the voices.
59  *
60  * For both playback and capture, when the buffer is one or two periods long,
61  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
62  * to let us know when the periods have ended.
63  *
64  * When performing playback with more than two periods per buffer, we set
65  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
66  * reach it. We then update the offset and continue on until we are
67  * interrupted for the next period.
68  *
69  * Capture channels do not have a SSO, so we allocate a playback channel to
70  * use as a timer for the capture periods. We use the SSO on the playback
71  * channel to clock out virtual periods, and adjust the virtual period length
72  * to maintain synchronization. This algorithm came from the Trident driver.
73  *
74  * FIXME: It'd be nice to make use of some of the synth features in the
75  * hardware, but a woeful lack of documentation is a significant roadblock.
76  */
77 struct voice {
78         u16 flags;
79 #define         VOICE_IN_USE            1
80 #define         VOICE_CAPTURE           2
81 #define         VOICE_SSO_TIMING        4
82 #define         VOICE_SYNC_TIMING       8
83         u16 sync_cso;
84         u16 period_size;
85         u16 buffer_size;
86         u16 sync_period_size;
87         u16 sync_buffer_size;
88         u32 sso;
89         u32 vperiod;
90         struct snd_pcm_substream *substream;
91         struct voice *timing;
92         void __iomem *ctrl_base;
93         void __iomem *wave_base;
94         void __iomem *sync_base;
95         int num;
96 };
97
98 /* We need four pages to store our wave parameters during a suspend. If
99  * we're not doing power management, we still need to allocate a page
100  * for the silence buffer.
101  */
102 #ifdef CONFIG_PM
103 #define SIS_SUSPEND_PAGES       4
104 #else
105 #define SIS_SUSPEND_PAGES       1
106 #endif
107
108 struct sis7019 {
109         unsigned long ioport;
110         void __iomem *ioaddr;
111         int irq;
112         int codecs_present;
113
114         struct pci_dev *pci;
115         struct snd_pcm *pcm;
116         struct snd_card *card;
117         struct snd_ac97 *ac97[3];
118
119         /* Protect against more than one thread hitting the AC97
120          * registers (in a more polite manner than pounding the hardware
121          * semaphore)
122          */
123         struct mutex ac97_mutex;
124
125         /* voice_lock protects allocation/freeing of the voice descriptions
126          */
127         spinlock_t voice_lock;
128
129         struct voice voices[64];
130         struct voice capture_voice;
131
132         /* Allocate pages to store the internal wave state during
133          * suspends. When we're operating, this can be used as a silence
134          * buffer for a timing channel.
135          */
136         void *suspend_state[SIS_SUSPEND_PAGES];
137
138         int silence_users;
139         dma_addr_t silence_dma_addr;
140 };
141
142 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
143 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
144 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
145
146 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
147  * documented range of 8-0xfff8 samples. Given that they are 0-based,
148  * that places our period/buffer range at 9-0xfff9 samples. That makes the
149  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
150  * max samples / min samples gives us the max periods in a buffer.
151  *
152  * We'll add a constraint upon open that limits the period and buffer sample
153  * size to values that are legal for the hardware.
154  */
155 static struct snd_pcm_hardware sis_playback_hw_info = {
156         .info = (SNDRV_PCM_INFO_MMAP |
157                  SNDRV_PCM_INFO_MMAP_VALID |
158                  SNDRV_PCM_INFO_INTERLEAVED |
159                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
160                  SNDRV_PCM_INFO_SYNC_START |
161                  SNDRV_PCM_INFO_RESUME),
162         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
163                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
164         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
165         .rate_min = 4000,
166         .rate_max = 48000,
167         .channels_min = 1,
168         .channels_max = 2,
169         .buffer_bytes_max = (0xfff9 * 4),
170         .period_bytes_min = 9,
171         .period_bytes_max = (0xfff9 * 4),
172         .periods_min = 1,
173         .periods_max = (0xfff9 / 9),
174 };
175
176 static struct snd_pcm_hardware sis_capture_hw_info = {
177         .info = (SNDRV_PCM_INFO_MMAP |
178                  SNDRV_PCM_INFO_MMAP_VALID |
179                  SNDRV_PCM_INFO_INTERLEAVED |
180                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
181                  SNDRV_PCM_INFO_SYNC_START |
182                  SNDRV_PCM_INFO_RESUME),
183         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
184                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
185         .rates = SNDRV_PCM_RATE_48000,
186         .rate_min = 4000,
187         .rate_max = 48000,
188         .channels_min = 1,
189         .channels_max = 2,
190         .buffer_bytes_max = (0xfff9 * 4),
191         .period_bytes_min = 9,
192         .period_bytes_max = (0xfff9 * 4),
193         .periods_min = 1,
194         .periods_max = (0xfff9 / 9),
195 };
196
197 static void sis_update_sso(struct voice *voice, u16 period)
198 {
199         void __iomem *base = voice->ctrl_base;
200
201         voice->sso += period;
202         if (voice->sso >= voice->buffer_size)
203                 voice->sso -= voice->buffer_size;
204
205         /* Enforce the documented hardware minimum offset */
206         if (voice->sso < 8)
207                 voice->sso = 8;
208
209         /* The SSO is in the upper 16 bits of the register. */
210         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
211 }
212
213 static void sis_update_voice(struct voice *voice)
214 {
215         if (voice->flags & VOICE_SSO_TIMING) {
216                 sis_update_sso(voice, voice->period_size);
217         } else if (voice->flags & VOICE_SYNC_TIMING) {
218                 int sync;
219
220                 /* If we've not hit the end of the virtual period, update
221                  * our records and keep going.
222                  */
223                 if (voice->vperiod > voice->period_size) {
224                         voice->vperiod -= voice->period_size;
225                         if (voice->vperiod < voice->period_size)
226                                 sis_update_sso(voice, voice->vperiod);
227                         else
228                                 sis_update_sso(voice, voice->period_size);
229                         return;
230                 }
231
232                 /* Calculate our relative offset between the target and
233                  * the actual CSO value. Since we're operating in a loop,
234                  * if the value is more than half way around, we can
235                  * consider ourselves wrapped.
236                  */
237                 sync = voice->sync_cso;
238                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
239                 if (sync > (voice->sync_buffer_size / 2))
240                         sync -= voice->sync_buffer_size;
241
242                 /* If sync is positive, then we interrupted too early, and
243                  * we'll need to come back in a few samples and try again.
244                  * There's a minimum wait, as it takes some time for the DMA
245                  * engine to startup, etc...
246                  */
247                 if (sync > 0) {
248                         if (sync < 16)
249                                 sync = 16;
250                         sis_update_sso(voice, sync);
251                         return;
252                 }
253
254                 /* Ok, we interrupted right on time, or (hopefully) just
255                  * a bit late. We'll adjst our next waiting period based
256                  * on how close we got.
257                  *
258                  * We need to stay just behind the actual channel to ensure
259                  * it really is past a period when we get our interrupt --
260                  * otherwise we'll fall into the early code above and have
261                  * a minimum wait time, which makes us quite late here,
262                  * eating into the user's time to refresh the buffer, esp.
263                  * if using small periods.
264                  *
265                  * If we're less than 9 samples behind, we're on target.
266                  */
267                 if (sync > -9)
268                         voice->vperiod = voice->sync_period_size + 1;
269                 else
270                         voice->vperiod = voice->sync_period_size - 4;
271
272                 if (voice->vperiod < voice->buffer_size) {
273                         sis_update_sso(voice, voice->vperiod);
274                         voice->vperiod = 0;
275                 } else
276                         sis_update_sso(voice, voice->period_size);
277
278                 sync = voice->sync_cso + voice->sync_period_size;
279                 if (sync >= voice->sync_buffer_size)
280                         sync -= voice->sync_buffer_size;
281                 voice->sync_cso = sync;
282         }
283
284         snd_pcm_period_elapsed(voice->substream);
285 }
286
287 static void sis_voice_irq(u32 status, struct voice *voice)
288 {
289         int bit;
290
291         while (status) {
292                 bit = __ffs(status);
293                 status >>= bit + 1;
294                 voice += bit;
295                 sis_update_voice(voice);
296                 voice++;
297         }
298 }
299
300 static irqreturn_t sis_interrupt(int irq, void *dev)
301 {
302         struct sis7019 *sis = dev;
303         unsigned long io = sis->ioport;
304         struct voice *voice;
305         u32 intr, status;
306
307         /* We only use the DMA interrupts, and we don't enable any other
308          * source of interrupts. But, it is possible to see an interupt
309          * status that didn't actually interrupt us, so eliminate anything
310          * we're not expecting to avoid falsely claiming an IRQ, and an
311          * ensuing endless loop.
312          */
313         intr = inl(io + SIS_GISR);
314         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
315                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
316         if (!intr)
317                 return IRQ_NONE;
318
319         do {
320                 status = inl(io + SIS_PISR_A);
321                 if (status) {
322                         sis_voice_irq(status, sis->voices);
323                         outl(status, io + SIS_PISR_A);
324                 }
325
326                 status = inl(io + SIS_PISR_B);
327                 if (status) {
328                         sis_voice_irq(status, &sis->voices[32]);
329                         outl(status, io + SIS_PISR_B);
330                 }
331
332                 status = inl(io + SIS_RISR);
333                 if (status) {
334                         voice = &sis->capture_voice;
335                         if (!voice->timing)
336                                 snd_pcm_period_elapsed(voice->substream);
337
338                         outl(status, io + SIS_RISR);
339                 }
340
341                 outl(intr, io + SIS_GISR);
342                 intr = inl(io + SIS_GISR);
343                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
344                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
345         } while (intr);
346
347         return IRQ_HANDLED;
348 }
349
350 static u32 sis_rate_to_delta(unsigned int rate)
351 {
352         u32 delta;
353
354         /* This was copied from the trident driver, but it seems its gotten
355          * around a bit... nevertheless, it works well.
356          *
357          * We special case 44100 and 8000 since rounding with the equation
358          * does not give us an accurate enough value. For 11025 and 22050
359          * the equation gives us the best answer. All other frequencies will
360          * also use the equation. JDW
361          */
362         if (rate == 44100)
363                 delta = 0xeb3;
364         else if (rate == 8000)
365                 delta = 0x2ab;
366         else if (rate == 48000)
367                 delta = 0x1000;
368         else
369                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
370         return delta;
371 }
372
373 static void __sis_map_silence(struct sis7019 *sis)
374 {
375         /* Helper function: must hold sis->voice_lock on entry */
376         if (!sis->silence_users)
377                 sis->silence_dma_addr = pci_map_single(sis->pci,
378                                                 sis->suspend_state[0],
379                                                 4096, PCI_DMA_TODEVICE);
380         sis->silence_users++;
381 }
382
383 static void __sis_unmap_silence(struct sis7019 *sis)
384 {
385         /* Helper function: must hold sis->voice_lock on entry */
386         sis->silence_users--;
387         if (!sis->silence_users)
388                 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
389                                         PCI_DMA_TODEVICE);
390 }
391
392 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
393 {
394         unsigned long flags;
395
396         spin_lock_irqsave(&sis->voice_lock, flags);
397         if (voice->timing) {
398                 __sis_unmap_silence(sis);
399                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
400                                                 VOICE_SYNC_TIMING);
401                 voice->timing = NULL;
402         }
403         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
404         spin_unlock_irqrestore(&sis->voice_lock, flags);
405 }
406
407 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
408 {
409         /* Must hold the voice_lock on entry */
410         struct voice *voice;
411         int i;
412
413         for (i = 0; i < 64; i++) {
414                 voice = &sis->voices[i];
415                 if (voice->flags & VOICE_IN_USE)
416                         continue;
417                 voice->flags |= VOICE_IN_USE;
418                 goto found_one;
419         }
420         voice = NULL;
421
422 found_one:
423         return voice;
424 }
425
426 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
427 {
428         struct voice *voice;
429         unsigned long flags;
430
431         spin_lock_irqsave(&sis->voice_lock, flags);
432         voice = __sis_alloc_playback_voice(sis);
433         spin_unlock_irqrestore(&sis->voice_lock, flags);
434
435         return voice;
436 }
437
438 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
439                                         struct snd_pcm_hw_params *hw_params)
440 {
441         struct sis7019 *sis = snd_pcm_substream_chip(substream);
442         struct snd_pcm_runtime *runtime = substream->runtime;
443         struct voice *voice = runtime->private_data;
444         unsigned int period_size, buffer_size;
445         unsigned long flags;
446         int needed;
447
448         /* If there are one or two periods per buffer, we don't need a
449          * timing voice, as we can use the capture channel's interrupts
450          * to clock out the periods.
451          */
452         period_size = params_period_size(hw_params);
453         buffer_size = params_buffer_size(hw_params);
454         needed = (period_size != buffer_size &&
455                         period_size != (buffer_size / 2));
456
457         if (needed && !voice->timing) {
458                 spin_lock_irqsave(&sis->voice_lock, flags);
459                 voice->timing = __sis_alloc_playback_voice(sis);
460                 if (voice->timing)
461                         __sis_map_silence(sis);
462                 spin_unlock_irqrestore(&sis->voice_lock, flags);
463                 if (!voice->timing)
464                         return -ENOMEM;
465                 voice->timing->substream = substream;
466         } else if (!needed && voice->timing) {
467                 sis_free_voice(sis, voice);
468                 voice->timing = NULL;
469         }
470
471         return 0;
472 }
473
474 static int sis_playback_open(struct snd_pcm_substream *substream)
475 {
476         struct sis7019 *sis = snd_pcm_substream_chip(substream);
477         struct snd_pcm_runtime *runtime = substream->runtime;
478         struct voice *voice;
479
480         voice = sis_alloc_playback_voice(sis);
481         if (!voice)
482                 return -EAGAIN;
483
484         voice->substream = substream;
485         runtime->private_data = voice;
486         runtime->hw = sis_playback_hw_info;
487         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
488                                                 9, 0xfff9);
489         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
490                                                 9, 0xfff9);
491         snd_pcm_set_sync(substream);
492         return 0;
493 }
494
495 static int sis_substream_close(struct snd_pcm_substream *substream)
496 {
497         struct sis7019 *sis = snd_pcm_substream_chip(substream);
498         struct snd_pcm_runtime *runtime = substream->runtime;
499         struct voice *voice = runtime->private_data;
500
501         sis_free_voice(sis, voice);
502         return 0;
503 }
504
505 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
506                                         struct snd_pcm_hw_params *hw_params)
507 {
508         return snd_pcm_lib_malloc_pages(substream,
509                                         params_buffer_bytes(hw_params));
510 }
511
512 static int sis_hw_free(struct snd_pcm_substream *substream)
513 {
514         return snd_pcm_lib_free_pages(substream);
515 }
516
517 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
518 {
519         struct snd_pcm_runtime *runtime = substream->runtime;
520         struct voice *voice = runtime->private_data;
521         void __iomem *ctrl_base = voice->ctrl_base;
522         void __iomem *wave_base = voice->wave_base;
523         u32 format, dma_addr, control, sso_eso, delta, reg;
524         u16 leo;
525
526         /* We rely on the PCM core to ensure that the parameters for this
527          * substream do not change on us while we're programming the HW.
528          */
529         format = 0;
530         if (snd_pcm_format_width(runtime->format) == 8)
531                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
532         if (!snd_pcm_format_signed(runtime->format))
533                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
534         if (runtime->channels == 1)
535                 format |= SIS_PLAY_DMA_FORMAT_MONO;
536
537         /* The baseline setup is for a single period per buffer, and
538          * we add bells and whistles as needed from there.
539          */
540         dma_addr = runtime->dma_addr;
541         leo = runtime->buffer_size - 1;
542         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
543         sso_eso = leo;
544
545         if (runtime->period_size == (runtime->buffer_size / 2)) {
546                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
547         } else if (runtime->period_size != runtime->buffer_size) {
548                 voice->flags |= VOICE_SSO_TIMING;
549                 voice->sso = runtime->period_size - 1;
550                 voice->period_size = runtime->period_size;
551                 voice->buffer_size = runtime->buffer_size;
552
553                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
554                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
555                 sso_eso |= (runtime->period_size - 1) << 16;
556         }
557
558         delta = sis_rate_to_delta(runtime->rate);
559
560         /* Ok, we're ready to go, set up the channel.
561          */
562         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
563         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
564         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
565         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
566
567         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
568                 writel(0, wave_base + reg);
569
570         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
571         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
572         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
573                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
574                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
575                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
576
577         /* Force PCI writes to post. */
578         readl(ctrl_base);
579
580         return 0;
581 }
582
583 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
584 {
585         struct sis7019 *sis = snd_pcm_substream_chip(substream);
586         unsigned long io = sis->ioport;
587         struct snd_pcm_substream *s;
588         struct voice *voice;
589         void *chip;
590         int starting;
591         u32 record = 0;
592         u32 play[2] = { 0, 0 };
593
594         /* No locks needed, as the PCM core will hold the locks on the
595          * substreams, and the HW will only start/stop the indicated voices
596          * without changing the state of the others.
597          */
598         switch (cmd) {
599         case SNDRV_PCM_TRIGGER_START:
600         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
601         case SNDRV_PCM_TRIGGER_RESUME:
602                 starting = 1;
603                 break;
604         case SNDRV_PCM_TRIGGER_STOP:
605         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
606         case SNDRV_PCM_TRIGGER_SUSPEND:
607                 starting = 0;
608                 break;
609         default:
610                 return -EINVAL;
611         }
612
613         snd_pcm_group_for_each_entry(s, substream) {
614                 /* Make sure it is for us... */
615                 chip = snd_pcm_substream_chip(s);
616                 if (chip != sis)
617                         continue;
618
619                 voice = s->runtime->private_data;
620                 if (voice->flags & VOICE_CAPTURE) {
621                         record |= 1 << voice->num;
622                         voice = voice->timing;
623                 }
624
625                 /* voice could be NULL if this a recording stream, and it
626                  * doesn't have an external timing channel.
627                  */
628                 if (voice)
629                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
630
631                 snd_pcm_trigger_done(s, substream);
632         }
633
634         if (starting) {
635                 if (record)
636                         outl(record, io + SIS_RECORD_START_REG);
637                 if (play[0])
638                         outl(play[0], io + SIS_PLAY_START_A_REG);
639                 if (play[1])
640                         outl(play[1], io + SIS_PLAY_START_B_REG);
641         } else {
642                 if (record)
643                         outl(record, io + SIS_RECORD_STOP_REG);
644                 if (play[0])
645                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
646                 if (play[1])
647                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
648         }
649         return 0;
650 }
651
652 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
653 {
654         struct snd_pcm_runtime *runtime = substream->runtime;
655         struct voice *voice = runtime->private_data;
656         u32 cso;
657
658         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
659         cso &= 0xffff;
660         return cso;
661 }
662
663 static int sis_capture_open(struct snd_pcm_substream *substream)
664 {
665         struct sis7019 *sis = snd_pcm_substream_chip(substream);
666         struct snd_pcm_runtime *runtime = substream->runtime;
667         struct voice *voice = &sis->capture_voice;
668         unsigned long flags;
669
670         /* FIXME: The driver only supports recording from one channel
671          * at the moment, but it could support more.
672          */
673         spin_lock_irqsave(&sis->voice_lock, flags);
674         if (voice->flags & VOICE_IN_USE)
675                 voice = NULL;
676         else
677                 voice->flags |= VOICE_IN_USE;
678         spin_unlock_irqrestore(&sis->voice_lock, flags);
679
680         if (!voice)
681                 return -EAGAIN;
682
683         voice->substream = substream;
684         runtime->private_data = voice;
685         runtime->hw = sis_capture_hw_info;
686         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
687         snd_pcm_limit_hw_rates(runtime);
688         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
689                                                 9, 0xfff9);
690         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
691                                                 9, 0xfff9);
692         snd_pcm_set_sync(substream);
693         return 0;
694 }
695
696 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
697                                         struct snd_pcm_hw_params *hw_params)
698 {
699         struct sis7019 *sis = snd_pcm_substream_chip(substream);
700         int rc;
701
702         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
703                                                 params_rate(hw_params));
704         if (rc)
705                 goto out;
706
707         rc = snd_pcm_lib_malloc_pages(substream,
708                                         params_buffer_bytes(hw_params));
709         if (rc < 0)
710                 goto out;
711
712         rc = sis_alloc_timing_voice(substream, hw_params);
713
714 out:
715         return rc;
716 }
717
718 static void sis_prepare_timing_voice(struct voice *voice,
719                                         struct snd_pcm_substream *substream)
720 {
721         struct sis7019 *sis = snd_pcm_substream_chip(substream);
722         struct snd_pcm_runtime *runtime = substream->runtime;
723         struct voice *timing = voice->timing;
724         void __iomem *play_base = timing->ctrl_base;
725         void __iomem *wave_base = timing->wave_base;
726         u16 buffer_size, period_size;
727         u32 format, control, sso_eso, delta;
728         u32 vperiod, sso, reg;
729
730         /* Set our initial buffer and period as large as we can given a
731          * single page of silence.
732          */
733         buffer_size = 4096 / runtime->channels;
734         buffer_size /= snd_pcm_format_size(runtime->format, 1);
735         period_size = buffer_size;
736
737         /* Initially, we want to interrupt just a bit behind the end of
738          * the period we're clocking out. 10 samples seems to give a good
739          * delay.
740          *
741          * We want to spread our interrupts throughout the virtual period,
742          * so that we don't end up with two interrupts back to back at the
743          * end -- this helps minimize the effects of any jitter. Adjust our
744          * clocking period size so that the last period is at least a fourth
745          * of a full period.
746          *
747          * This is all moot if we don't need to use virtual periods.
748          */
749         vperiod = runtime->period_size + 10;
750         if (vperiod > period_size) {
751                 u16 tail = vperiod % period_size;
752                 u16 quarter_period = period_size / 4;
753
754                 if (tail && tail < quarter_period) {
755                         u16 loops = vperiod / period_size;
756
757                         tail = quarter_period - tail;
758                         tail += loops - 1;
759                         tail /= loops;
760                         period_size -= tail;
761                 }
762
763                 sso = period_size - 1;
764         } else {
765                 /* The initial period will fit inside the buffer, so we
766                  * don't need to use virtual periods -- disable them.
767                  */
768                 period_size = runtime->period_size;
769                 sso = vperiod - 1;
770                 vperiod = 0;
771         }
772
773         /* The interrupt handler implements the timing syncronization, so
774          * setup its state.
775          */
776         timing->flags |= VOICE_SYNC_TIMING;
777         timing->sync_base = voice->ctrl_base;
778         timing->sync_cso = runtime->period_size - 1;
779         timing->sync_period_size = runtime->period_size;
780         timing->sync_buffer_size = runtime->buffer_size;
781         timing->period_size = period_size;
782         timing->buffer_size = buffer_size;
783         timing->sso = sso;
784         timing->vperiod = vperiod;
785
786         /* Using unsigned samples with the all-zero silence buffer
787          * forces the output to the lower rail, killing playback.
788          * So ignore unsigned vs signed -- it doesn't change the timing.
789          */
790         format = 0;
791         if (snd_pcm_format_width(runtime->format) == 8)
792                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
793         if (runtime->channels == 1)
794                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
795
796         control = timing->buffer_size - 1;
797         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
798         sso_eso = timing->buffer_size - 1;
799         sso_eso |= timing->sso << 16;
800
801         delta = sis_rate_to_delta(runtime->rate);
802
803         /* We've done the math, now configure the channel.
804          */
805         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
806         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
807         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
808         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
809
810         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
811                 writel(0, wave_base + reg);
812
813         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
814         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
815         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
816                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
817                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
818                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
819 }
820
821 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
822 {
823         struct snd_pcm_runtime *runtime = substream->runtime;
824         struct voice *voice = runtime->private_data;
825         void __iomem *rec_base = voice->ctrl_base;
826         u32 format, dma_addr, control;
827         u16 leo;
828
829         /* We rely on the PCM core to ensure that the parameters for this
830          * substream do not change on us while we're programming the HW.
831          */
832         format = 0;
833         if (snd_pcm_format_width(runtime->format) == 8)
834                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
835         if (!snd_pcm_format_signed(runtime->format))
836                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
837         if (runtime->channels == 1)
838                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
839
840         dma_addr = runtime->dma_addr;
841         leo = runtime->buffer_size - 1;
842         control = leo | SIS_CAPTURE_DMA_LOOP;
843
844         /* If we've got more than two periods per buffer, then we have
845          * use a timing voice to clock out the periods. Otherwise, we can
846          * use the capture channel's interrupts.
847          */
848         if (voice->timing) {
849                 sis_prepare_timing_voice(voice, substream);
850         } else {
851                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
852                 if (runtime->period_size != runtime->buffer_size)
853                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
854         }
855
856         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
857         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
858         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
859
860         /* Force the writes to post. */
861         readl(rec_base);
862
863         return 0;
864 }
865
866 static struct snd_pcm_ops sis_playback_ops = {
867         .open = sis_playback_open,
868         .close = sis_substream_close,
869         .ioctl = snd_pcm_lib_ioctl,
870         .hw_params = sis_playback_hw_params,
871         .hw_free = sis_hw_free,
872         .prepare = sis_pcm_playback_prepare,
873         .trigger = sis_pcm_trigger,
874         .pointer = sis_pcm_pointer,
875 };
876
877 static struct snd_pcm_ops sis_capture_ops = {
878         .open = sis_capture_open,
879         .close = sis_substream_close,
880         .ioctl = snd_pcm_lib_ioctl,
881         .hw_params = sis_capture_hw_params,
882         .hw_free = sis_hw_free,
883         .prepare = sis_pcm_capture_prepare,
884         .trigger = sis_pcm_trigger,
885         .pointer = sis_pcm_pointer,
886 };
887
888 static int __devinit sis_pcm_create(struct sis7019 *sis)
889 {
890         struct snd_pcm *pcm;
891         int rc;
892
893         /* We have 64 voices, and the driver currently records from
894          * only one channel, though that could change in the future.
895          */
896         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
897         if (rc)
898                 return rc;
899
900         pcm->private_data = sis;
901         strcpy(pcm->name, "SiS7019");
902         sis->pcm = pcm;
903
904         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
905         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
906
907         /* Try to preallocate some memory, but it's not the end of the
908          * world if this fails.
909          */
910         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
911                                 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
912
913         return 0;
914 }
915
916 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
917 {
918         unsigned long io = sis->ioport;
919         unsigned short val = 0xffff;
920         u16 status;
921         u16 rdy;
922         int count;
923         static const u16 codec_ready[3] = {
924                 SIS_AC97_STATUS_CODEC_READY,
925                 SIS_AC97_STATUS_CODEC2_READY,
926                 SIS_AC97_STATUS_CODEC3_READY,
927         };
928
929         rdy = codec_ready[codec];
930
931
932         /* Get the AC97 semaphore -- software first, so we don't spin
933          * pounding out IO reads on the hardware semaphore...
934          */
935         mutex_lock(&sis->ac97_mutex);
936
937         count = 0xffff;
938         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
939                 udelay(1);
940
941         if (!count)
942                 goto timeout;
943
944         /* ... and wait for any outstanding commands to complete ...
945          */
946         count = 0xffff;
947         do {
948                 status = inw(io + SIS_AC97_STATUS);
949                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
950                         break;
951
952                 udelay(1);
953         } while (--count);
954
955         if (!count)
956                 goto timeout_sema;
957
958         /* ... before sending our command and waiting for it to finish ...
959          */
960         outl(cmd, io + SIS_AC97_CMD);
961         udelay(10);
962
963         count = 0xffff;
964         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
965                 udelay(1);
966
967         /* ... and reading the results (if any).
968          */
969         val = inl(io + SIS_AC97_CMD) >> 16;
970
971 timeout_sema:
972         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
973 timeout:
974         mutex_unlock(&sis->ac97_mutex);
975
976         if (!count) {
977                 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
978                                         codec, cmd);
979         }
980
981         return val;
982 }
983
984 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
985                                 unsigned short val)
986 {
987         static const u32 cmd[3] = {
988                 SIS_AC97_CMD_CODEC_WRITE,
989                 SIS_AC97_CMD_CODEC2_WRITE,
990                 SIS_AC97_CMD_CODEC3_WRITE,
991         };
992         sis_ac97_rw(ac97->private_data, ac97->num,
993                         (val << 16) | (reg << 8) | cmd[ac97->num]);
994 }
995
996 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
997 {
998         static const u32 cmd[3] = {
999                 SIS_AC97_CMD_CODEC_READ,
1000                 SIS_AC97_CMD_CODEC2_READ,
1001                 SIS_AC97_CMD_CODEC3_READ,
1002         };
1003         return sis_ac97_rw(ac97->private_data, ac97->num,
1004                                         (reg << 8) | cmd[ac97->num]);
1005 }
1006
1007 static int __devinit sis_mixer_create(struct sis7019 *sis)
1008 {
1009         struct snd_ac97_bus *bus;
1010         struct snd_ac97_template ac97;
1011         static struct snd_ac97_bus_ops ops = {
1012                 .write = sis_ac97_write,
1013                 .read = sis_ac97_read,
1014         };
1015         int rc;
1016
1017         memset(&ac97, 0, sizeof(ac97));
1018         ac97.private_data = sis;
1019
1020         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1021         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1022                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1023         ac97.num = 1;
1024         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1025                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1026         ac97.num = 2;
1027         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1028                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1029
1030         /* If we return an error here, then snd_card_free() should
1031          * free up any ac97 codecs that got created, as well as the bus.
1032          */
1033         return rc;
1034 }
1035
1036 static void sis_free_suspend(struct sis7019 *sis)
1037 {
1038         int i;
1039
1040         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1041                 kfree(sis->suspend_state[i]);
1042 }
1043
1044 static int sis_chip_free(struct sis7019 *sis)
1045 {
1046         /* Reset the chip, and disable all interrputs.
1047          */
1048         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1049         udelay(10);
1050         outl(0, sis->ioport + SIS_GCR);
1051         outl(0, sis->ioport + SIS_GIER);
1052
1053         /* Now, free everything we allocated.
1054          */
1055         if (sis->irq >= 0)
1056                 free_irq(sis->irq, sis);
1057
1058         if (sis->ioaddr)
1059                 iounmap(sis->ioaddr);
1060
1061         pci_release_regions(sis->pci);
1062         pci_disable_device(sis->pci);
1063
1064         sis_free_suspend(sis);
1065         return 0;
1066 }
1067
1068 static int sis_dev_free(struct snd_device *dev)
1069 {
1070         struct sis7019 *sis = dev->device_data;
1071         return sis_chip_free(sis);
1072 }
1073
1074 static int sis_chip_init(struct sis7019 *sis)
1075 {
1076         unsigned long io = sis->ioport;
1077         void __iomem *ioaddr = sis->ioaddr;
1078         u16 status;
1079         int count;
1080         int i;
1081
1082         /* Reset the audio controller
1083          */
1084         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1085         udelay(10);
1086         outl(0, io + SIS_GCR);
1087
1088         /* Get the AC-link semaphore, and reset the codecs
1089          */
1090         count = 0xffff;
1091         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1092                 udelay(1);
1093
1094         if (!count)
1095                 return -EIO;
1096
1097         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1098         udelay(10);
1099
1100         count = 0xffff;
1101         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1102                 udelay(1);
1103
1104         /* Now that we've finished the reset, find out what's attached.
1105          */
1106         status = inl(io + SIS_AC97_STATUS);
1107         if (status & SIS_AC97_STATUS_CODEC_READY)
1108                 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1109         if (status & SIS_AC97_STATUS_CODEC2_READY)
1110                 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1111         if (status & SIS_AC97_STATUS_CODEC3_READY)
1112                 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1113
1114         /* All done, let go of the semaphore, and check for errors
1115          */
1116         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1117         if (!sis->codecs_present || !count)
1118                 return -EIO;
1119
1120         /* Let the hardware know that the audio driver is alive,
1121          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1122          * record channels. We're going to want to use Variable Rate Audio
1123          * for recording, to avoid needlessly resampling from 48kHZ.
1124          */
1125         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1126         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1127                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1128                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1129                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1130
1131         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1132          */
1133         outl(0, io + SIS_AC97_PSR);
1134
1135         /* There is only one valid DMA setup for a PCI environment.
1136          */
1137         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1138
1139         /* Reset the syncronization groups for all of the channels
1140          * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1141          * we'll need to change how we handle these. Until then, we just
1142          * assign sub-mixer 0 to all playback channels, and avoid any
1143          * attenuation on the audio.
1144          */
1145         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1146         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1147         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1148         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1149         outl(0, io + SIS_MIXER_SYNC_GROUP);
1150
1151         for (i = 0; i < 64; i++) {
1152                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1153                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1154                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1155         }
1156
1157         /* Don't attenuate any audio set for the wave amplifier.
1158          *
1159          * FIXME: Maximum attenuation is set for the music amp, which will
1160          * need to change if we start using the synth engine.
1161          */
1162         outl(0xffff0000, io + SIS_WEVCR);
1163
1164         /* Ensure that the wave engine is in normal operating mode.
1165          */
1166         outl(0, io + SIS_WECCR);
1167
1168         /* Go ahead and enable the DMA interrupts. They won't go live
1169          * until we start a channel.
1170          */
1171         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1172                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1173
1174         return 0;
1175 }
1176
1177 #ifdef CONFIG_PM
1178 static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1179 {
1180         struct snd_card *card = pci_get_drvdata(pci);
1181         struct sis7019 *sis = card->private_data;
1182         void __iomem *ioaddr = sis->ioaddr;
1183         int i;
1184
1185         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1186         snd_pcm_suspend_all(sis->pcm);
1187         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1188                 snd_ac97_suspend(sis->ac97[0]);
1189         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1190                 snd_ac97_suspend(sis->ac97[1]);
1191         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1192                 snd_ac97_suspend(sis->ac97[2]);
1193
1194         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1195          */
1196         if (sis->irq >= 0) {
1197                 free_irq(sis->irq, sis);
1198                 sis->irq = -1;
1199         }
1200
1201         /* Save the internal state away
1202          */
1203         for (i = 0; i < 4; i++) {
1204                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1205                 ioaddr += 4096;
1206         }
1207
1208         pci_disable_device(pci);
1209         pci_save_state(pci);
1210         pci_set_power_state(pci, pci_choose_state(pci, state));
1211         return 0;
1212 }
1213
1214 static int sis_resume(struct pci_dev *pci)
1215 {
1216         struct snd_card *card = pci_get_drvdata(pci);
1217         struct sis7019 *sis = card->private_data;
1218         void __iomem *ioaddr = sis->ioaddr;
1219         int i;
1220
1221         pci_set_power_state(pci, PCI_D0);
1222         pci_restore_state(pci);
1223
1224         if (pci_enable_device(pci) < 0) {
1225                 printk(KERN_ERR "sis7019: unable to re-enable device\n");
1226                 goto error;
1227         }
1228
1229         if (sis_chip_init(sis)) {
1230                 printk(KERN_ERR "sis7019: unable to re-init controller\n");
1231                 goto error;
1232         }
1233
1234         if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1235                                 card->shortname, sis)) {
1236                 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1237                 goto error;
1238         }
1239
1240         /* Restore saved state, then clear out the page we use for the
1241          * silence buffer.
1242          */
1243         for (i = 0; i < 4; i++) {
1244                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1245                 ioaddr += 4096;
1246         }
1247
1248         memset(sis->suspend_state[0], 0, 4096);
1249
1250         sis->irq = pci->irq;
1251         pci_set_master(pci);
1252
1253         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1254                 snd_ac97_resume(sis->ac97[0]);
1255         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1256                 snd_ac97_resume(sis->ac97[1]);
1257         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1258                 snd_ac97_resume(sis->ac97[2]);
1259
1260         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1261         return 0;
1262
1263 error:
1264         snd_card_disconnect(card);
1265         return -EIO;
1266 }
1267 #endif /* CONFIG_PM */
1268
1269 static int sis_alloc_suspend(struct sis7019 *sis)
1270 {
1271         int i;
1272
1273         /* We need 16K to store the internal wave engine state during a
1274          * suspend, but we don't need it to be contiguous, so play nice
1275          * with the memory system. We'll also use this area for a silence
1276          * buffer.
1277          */
1278         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1279                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1280                 if (!sis->suspend_state[i])
1281                         return -ENOMEM;
1282         }
1283         memset(sis->suspend_state[0], 0, 4096);
1284
1285         return 0;
1286 }
1287
1288 static int __devinit sis_chip_create(struct snd_card *card,
1289                                         struct pci_dev *pci)
1290 {
1291         struct sis7019 *sis = card->private_data;
1292         struct voice *voice;
1293         static struct snd_device_ops ops = {
1294                 .dev_free = sis_dev_free,
1295         };
1296         int rc;
1297         int i;
1298
1299         rc = pci_enable_device(pci);
1300         if (rc)
1301                 goto error_out;
1302
1303         if (pci_set_dma_mask(pci, DMA_30BIT_MASK) < 0) {
1304                 printk(KERN_ERR "sis7019: architecture does not support "
1305                                         "30-bit PCI busmaster DMA");
1306                 goto error_out_enabled;
1307         }
1308
1309         memset(sis, 0, sizeof(*sis));
1310         mutex_init(&sis->ac97_mutex);
1311         spin_lock_init(&sis->voice_lock);
1312         sis->card = card;
1313         sis->pci = pci;
1314         sis->irq = -1;
1315         sis->ioport = pci_resource_start(pci, 0);
1316
1317         rc = pci_request_regions(pci, "SiS7019");
1318         if (rc) {
1319                 printk(KERN_ERR "sis7019: unable request regions\n");
1320                 goto error_out_enabled;
1321         }
1322
1323         rc = -EIO;
1324         sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1325         if (!sis->ioaddr) {
1326                 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1327                 goto error_out_cleanup;
1328         }
1329
1330         rc = sis_alloc_suspend(sis);
1331         if (rc < 0) {
1332                 printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1333                 goto error_out_cleanup;
1334         }
1335
1336         rc = sis_chip_init(sis);
1337         if (rc)
1338                 goto error_out_cleanup;
1339
1340         if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED,
1341                                 card->shortname, sis)) {
1342                 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1343                 goto error_out_cleanup;
1344         }
1345
1346         sis->irq = pci->irq;
1347         pci_set_master(pci);
1348
1349         for (i = 0; i < 64; i++) {
1350                 voice = &sis->voices[i];
1351                 voice->num = i;
1352                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1353                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1354         }
1355
1356         voice = &sis->capture_voice;
1357         voice->flags = VOICE_CAPTURE;
1358         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1359         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1360
1361         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1362         if (rc)
1363                 goto error_out_cleanup;
1364
1365         snd_card_set_dev(card, &pci->dev);
1366
1367         return 0;
1368
1369 error_out_cleanup:
1370         sis_chip_free(sis);
1371
1372 error_out_enabled:
1373         pci_disable_device(pci);
1374
1375 error_out:
1376         return rc;
1377 }
1378
1379 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1380                                         const struct pci_device_id *pci_id)
1381 {
1382         struct snd_card *card;
1383         struct sis7019 *sis;
1384         int rc;
1385
1386         rc = -ENOENT;
1387         if (!enable)
1388                 goto error_out;
1389
1390         rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1391         if (rc < 0)
1392                 goto error_out;
1393
1394         strcpy(card->driver, "SiS7019");
1395         strcpy(card->shortname, "SiS7019");
1396         rc = sis_chip_create(card, pci);
1397         if (rc)
1398                 goto card_error_out;
1399
1400         sis = card->private_data;
1401
1402         rc = sis_mixer_create(sis);
1403         if (rc)
1404                 goto card_error_out;
1405
1406         rc = sis_pcm_create(sis);
1407         if (rc)
1408                 goto card_error_out;
1409
1410         snprintf(card->longname, sizeof(card->longname),
1411                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1412                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1413                         sis->ioport, sis->irq);
1414
1415         rc = snd_card_register(card);
1416         if (rc)
1417                 goto card_error_out;
1418
1419         pci_set_drvdata(pci, card);
1420         return 0;
1421
1422 card_error_out:
1423         snd_card_free(card);
1424
1425 error_out:
1426         return rc;
1427 }
1428
1429 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1430 {
1431         snd_card_free(pci_get_drvdata(pci));
1432         pci_set_drvdata(pci, NULL);
1433 }
1434
1435 static struct pci_driver sis7019_driver = {
1436         .name = "SiS7019",
1437         .id_table = snd_sis7019_ids,
1438         .probe = snd_sis7019_probe,
1439         .remove = __devexit_p(snd_sis7019_remove),
1440
1441 #ifdef CONFIG_PM
1442         .suspend = sis_suspend,
1443         .resume = sis_resume,
1444 #endif
1445 };
1446
1447 static int __init sis7019_init(void)
1448 {
1449         return pci_register_driver(&sis7019_driver);
1450 }
1451
1452 static void __exit sis7019_exit(void)
1453 {
1454         pci_unregister_driver(&sis7019_driver);
1455 }
1456
1457 module_init(sis7019_init);
1458 module_exit(sis7019_exit);