2 * Copyright (C) International Business Machines Corp., 2000-2004
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * jfs_dtree.c: directory B+-tree manager
22 * B+-tree with variable length key directory:
24 * each directory page is structured as an array of 32-byte
25 * directory entry slots initialized as a freelist
26 * to avoid search/compaction of free space at insertion.
27 * when an entry is inserted, a number of slots are allocated
28 * from the freelist as required to store variable length data
29 * of the entry; when the entry is deleted, slots of the entry
30 * are returned to freelist.
32 * leaf entry stores full name as key and file serial number
33 * (aka inode number) as data.
34 * internal/router entry stores sufffix compressed name
35 * as key and simple extent descriptor as data.
37 * each directory page maintains a sorted entry index table
38 * which stores the start slot index of sorted entries
39 * to allow binary search on the table.
41 * directory starts as a root/leaf page in on-disk inode
43 * when it becomes full, it starts a leaf of a external extent
44 * of length of 1 block. each time the first leaf becomes full,
45 * it is extended rather than split (its size is doubled),
46 * until its length becoms 4 KBytes, from then the extent is split
47 * with new 4 Kbyte extent when it becomes full
48 * to reduce external fragmentation of small directories.
50 * blah, blah, blah, for linear scan of directory in pieces by
54 * case-insensitive directory file system
56 * names are stored in case-sensitive way in leaf entry.
57 * but stored, searched and compared in case-insensitive (uppercase) order
58 * (i.e., both search key and entry key are folded for search/compare):
59 * (note that case-sensitive order is BROKEN in storage, e.g.,
60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
62 * entries which folds to the same key makes up a equivalent class
63 * whose members are stored as contiguous cluster (may cross page boundary)
64 * but whose order is arbitrary and acts as duplicate, e.g.,
67 * once match is found at leaf, requires scan forward/backward
68 * either for, in case-insensitive search, duplicate
69 * or for, in case-sensitive search, for exact match
71 * router entry must be created/stored in case-insensitive way
73 * (right most key of left page and left most key of right page
74 * are folded, and its suffix compression is propagated as router
76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77 * should be made the router key for the split)
79 * case-insensitive search:
83 * case-insensitive search of B-tree:
84 * for internal entry, router key is already folded;
85 * for leaf entry, fold the entry key before comparison.
87 * if (leaf entry case-insensitive match found)
88 * if (next entry satisfies case-insensitive match)
90 * if (prev entry satisfies case-insensitive match)
97 * target directory inode lock is being held on entry/exit
98 * of all main directory service routines.
100 * log based recovery:
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
113 /* dtree split parameter */
118 struct component_name *key;
120 struct pxdlist *pxdlist;
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
128 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
131 if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
135 jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
151 static int dtSplitUp(tid_t tid, struct inode *ip,
152 struct dtsplit * split, struct btstack * btstack);
154 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
155 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
157 static int dtExtendPage(tid_t tid, struct inode *ip,
158 struct dtsplit * split, struct btstack * btstack);
160 static int dtSplitRoot(tid_t tid, struct inode *ip,
161 struct dtsplit * split, struct metapage ** rmpp);
163 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
164 dtpage_t * fp, struct btstack * btstack);
166 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
168 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
170 static int dtReadNext(struct inode *ip,
171 loff_t * offset, struct btstack * btstack);
173 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
175 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
178 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
181 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
182 int ri, struct component_name * key, int flag);
184 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
185 ddata_t * data, struct dt_lock **);
187 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
188 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
191 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
193 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
195 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
197 #define ciToUpper(c) UniStrupr((c)->name)
202 * Reads a page of a directory's index table.
203 * Having metadata mapped into the directory inode's address space
204 * presents a multitude of problems. We avoid this by mapping to
205 * the absolute address space outside of the *_metapage routines
207 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
214 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
215 if (rc || (xaddr == 0))
218 return read_metapage(inode, xaddr, PSIZE, 1);
224 * Same as get_index_page(), but get's a new page without reading
226 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
233 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
234 if (rc || (xaddr == 0))
237 return get_metapage(inode, xaddr, PSIZE, 1);
243 * Returns dtree page containing directory table entry for specified
244 * index and pointer to its entry.
246 * mp must be released by caller.
248 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
249 struct metapage ** mp, s64 *lblock)
251 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
255 struct dir_table_slot *slot;
256 static int maxWarnings = 10;
260 jfs_warn("find_entry called with index = %d", index);
266 if (index >= jfs_ip->next_index) {
267 jfs_warn("find_entry called with index >= next_index");
271 if (jfs_dirtable_inline(ip)) {
273 * Inline directory table
276 slot = &jfs_ip->i_dirtable[index - 2];
278 offset = (index - 2) * sizeof(struct dir_table_slot);
279 page_offset = offset & (PSIZE - 1);
280 blkno = ((offset + 1) >> L2PSIZE) <<
281 JFS_SBI(ip->i_sb)->l2nbperpage;
283 if (*mp && (*lblock != blkno)) {
284 release_metapage(*mp);
289 *mp = read_index_page(ip, blkno);
292 jfs_err("free_index: error reading directory table");
297 (struct dir_table_slot *) ((char *) (*mp)->data +
303 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
307 struct linelock *llck;
310 tlck = txLock(tid, ip, mp, tlckDATA);
311 llck = (struct linelock *) tlck->lock;
313 if (llck->index >= llck->maxcnt)
314 llck = txLinelock(llck);
315 lv = &llck->lv[llck->index];
318 * Linelock slot size is twice the size of directory table
319 * slot size. 512 entries per page.
321 lv->offset = ((index - 2) & 511) >> 1;
329 * Adds an entry to the directory index table. This is used to provide
330 * each directory entry with a persistent index in which to resume
331 * directory traversals
333 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
335 struct super_block *sb = ip->i_sb;
336 struct jfs_sb_info *sbi = JFS_SBI(sb);
337 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
339 struct dir_table_slot *dirtab_slot;
341 struct linelock *llck;
349 ASSERT(DO_INDEX(ip));
351 if (jfs_ip->next_index < 2) {
352 jfs_warn("add_index: next_index = %d. Resetting!",
354 jfs_ip->next_index = 2;
357 index = jfs_ip->next_index++;
359 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
361 * i_size reflects size of index table, or 8 bytes per entry.
363 ip->i_size = (loff_t) (index - 1) << 3;
366 * dir table fits inline within inode
368 dirtab_slot = &jfs_ip->i_dirtable[index-2];
369 dirtab_slot->flag = DIR_INDEX_VALID;
370 dirtab_slot->slot = slot;
371 DTSaddress(dirtab_slot, bn);
373 set_cflag(COMMIT_Dirtable, ip);
377 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
378 struct dir_table_slot temp_table[12];
381 * It's time to move the inline table to an external
382 * page and begin to build the xtree
384 if (DQUOT_ALLOC_BLOCK(ip, sbi->nbperpage) ||
385 dbAlloc(ip, 0, sbi->nbperpage, &xaddr))
386 goto clean_up; /* No space */
389 * Save the table, we're going to overwrite it with the
392 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
395 * Initialize empty x-tree
400 * Allocate the first block & add it to the xtree
402 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
403 /* This really shouldn't fail */
404 jfs_warn("add_index: xtInsert failed!");
405 memcpy(&jfs_ip->i_dirtable, temp_table,
406 sizeof (temp_table));
411 if ((mp = get_index_page(ip, 0)) == 0) {
412 jfs_err("add_index: get_metapage failed!");
413 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
414 memcpy(&jfs_ip->i_dirtable, temp_table,
415 sizeof (temp_table));
418 tlck = txLock(tid, ip, mp, tlckDATA);
419 llck = (struct linelock *) & tlck->lock;
420 ASSERT(llck->index == 0);
424 lv->length = 6; /* tlckDATA slot size is 16 bytes */
427 memcpy(mp->data, temp_table, sizeof(temp_table));
429 mark_metapage_dirty(mp);
430 release_metapage(mp);
433 * Logging is now directed by xtree tlocks
435 clear_cflag(COMMIT_Dirtable, ip);
438 offset = (index - 2) * sizeof(struct dir_table_slot);
439 page_offset = offset & (PSIZE - 1);
440 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
441 if (page_offset == 0) {
443 * This will be the beginning of a new page
446 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
447 jfs_warn("add_index: xtInsert failed!");
452 if ((mp = get_index_page(ip, blkno)))
453 memset(mp->data, 0, PSIZE); /* Just looks better */
455 xtTruncate(tid, ip, offset, COMMIT_PWMAP);
457 mp = read_index_page(ip, blkno);
460 jfs_err("add_index: get/read_metapage failed!");
464 lock_index(tid, ip, mp, index);
467 (struct dir_table_slot *) ((char *) mp->data + page_offset);
468 dirtab_slot->flag = DIR_INDEX_VALID;
469 dirtab_slot->slot = slot;
470 DTSaddress(dirtab_slot, bn);
472 mark_metapage_dirty(mp);
473 release_metapage(mp);
479 jfs_ip->next_index--;
487 * Marks an entry to the directory index table as free.
489 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
491 struct dir_table_slot *dirtab_slot;
493 struct metapage *mp = NULL;
495 dirtab_slot = find_index(ip, index, &mp, &lblock);
497 if (dirtab_slot == 0)
500 dirtab_slot->flag = DIR_INDEX_FREE;
501 dirtab_slot->slot = dirtab_slot->addr1 = 0;
502 dirtab_slot->addr2 = cpu_to_le32(next);
505 lock_index(tid, ip, mp, index);
506 mark_metapage_dirty(mp);
507 release_metapage(mp);
509 set_cflag(COMMIT_Dirtable, ip);
515 * Changes an entry in the directory index table
517 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
518 int slot, struct metapage ** mp, u64 *lblock)
520 struct dir_table_slot *dirtab_slot;
522 dirtab_slot = find_index(ip, index, mp, lblock);
524 if (dirtab_slot == 0)
527 DTSaddress(dirtab_slot, bn);
528 dirtab_slot->slot = slot;
531 lock_index(tid, ip, *mp, index);
532 mark_metapage_dirty(*mp);
534 set_cflag(COMMIT_Dirtable, ip);
540 * reads a directory table slot
542 static int read_index(struct inode *ip, u32 index,
543 struct dir_table_slot * dirtab_slot)
546 struct metapage *mp = NULL;
547 struct dir_table_slot *slot;
549 slot = find_index(ip, index, &mp, &lblock);
554 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
557 release_metapage(mp);
566 * Search for the entry with specified key
570 * return: 0 - search result on stack, leaf page pinned;
573 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
574 struct btstack * btstack, int flag)
577 int cmp = 1; /* init for empty page */
582 int base, index, lim;
583 struct btframe *btsp;
585 int psize = 288; /* initial in-line directory */
587 struct component_name ciKey;
588 struct super_block *sb = ip->i_sb;
591 (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
593 if (ciKey.name == 0) {
599 /* uppercase search key for c-i directory */
600 UniStrcpy(ciKey.name, key->name);
601 ciKey.namlen = key->namlen;
603 /* only uppercase if case-insensitive support is on */
604 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
607 BT_CLR(btstack); /* reset stack */
609 /* init level count for max pages to split */
613 * search down tree from root:
615 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
616 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
618 * if entry with search key K is not found
619 * internal page search find the entry with largest key Ki
620 * less than K which point to the child page to search;
621 * leaf page search find the entry with smallest key Kj
622 * greater than K so that the returned index is the position of
623 * the entry to be shifted right for insertion of new entry.
624 * for empty tree, search key is greater than any key of the tree.
626 * by convention, root bn = 0.
629 /* get/pin the page to search */
630 DT_GETPAGE(ip, bn, mp, psize, p, rc);
634 /* get sorted entry table of the page */
635 stbl = DT_GETSTBL(p);
638 * binary search with search key K on the current page.
640 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
641 index = base + (lim >> 1);
643 if (p->header.flag & BT_LEAF) {
644 /* uppercase leaf name to compare */
646 ciCompare(&ciKey, p, stbl[index],
647 JFS_SBI(sb)->mntflag);
649 /* router key is in uppercase */
651 cmp = dtCompare(&ciKey, p, stbl[index]);
659 /* search hit - leaf page:
660 * return the entry found
662 if (p->header.flag & BT_LEAF) {
663 inumber = le32_to_cpu(
664 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
667 * search for JFS_LOOKUP
669 if (flag == JFS_LOOKUP) {
676 * search for JFS_CREATE
678 if (flag == JFS_CREATE) {
685 * search for JFS_REMOVE or JFS_RENAME
687 if ((flag == JFS_REMOVE ||
688 flag == JFS_RENAME) &&
695 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
697 /* save search result */
708 /* search hit - internal page:
709 * descend/search its child page
723 * base is the smallest index with key (Kj) greater than
724 * search key (K) and may be zero or (maxindex + 1) index.
727 * search miss - leaf page
729 * return location of entry (base) where new entry with
730 * search key K is to be inserted.
732 if (p->header.flag & BT_LEAF) {
734 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
736 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
737 flag == JFS_RENAME) {
743 * search for JFS_CREATE|JFS_FINDDIR:
758 * search miss - internal page
760 * if base is non-zero, decrement base by one to get the parent
761 * entry of the child page to search.
763 index = base ? base - 1 : base;
766 * go down to child page
769 /* update max. number of pages to split */
770 if (BT_STACK_FULL(btstack)) {
771 /* Something's corrupted, mark filesytem dirty so
772 * chkdsk will fix it.
774 jfs_error(sb, "stack overrun in dtSearch!");
775 BT_STACK_DUMP(btstack);
781 /* push (bn, index) of the parent page/entry */
782 BT_PUSH(btstack, bn, index);
784 /* get the child page block number */
785 pxd = (pxd_t *) & p->slot[stbl[index]];
786 bn = addressPXD(pxd);
787 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
789 /* unpin the parent page */
809 * function: insert an entry to directory tree
813 * return: 0 - success;
816 int dtInsert(tid_t tid, struct inode *ip,
817 struct component_name * name, ino_t * fsn, struct btstack * btstack)
820 struct metapage *mp; /* meta-page buffer */
821 dtpage_t *p; /* base B+-tree index page */
824 struct dtsplit split; /* split information */
826 struct dt_lock *dtlck;
832 * retrieve search result
834 * dtSearch() returns (leaf page pinned, index at which to insert).
835 * n.b. dtSearch() may return index of (maxindex + 1) of
838 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
841 * insert entry for new key
844 if (JFS_IP(ip)->next_index == DIREND) {
848 n = NDTLEAF(name->namlen);
852 n = NDTLEAF_LEGACY(name->namlen);
853 data.leaf.ip = NULL; /* signifies legacy directory format */
855 data.leaf.ino = *fsn;
858 * leaf page does not have enough room for new entry:
860 * extend/split the leaf page;
862 * dtSplitUp() will insert the entry and unpin the leaf page.
864 if (n > p->header.freecnt) {
870 rc = dtSplitUp(tid, ip, &split, btstack);
875 * leaf page does have enough room for new entry:
877 * insert the new data entry into the leaf page;
879 BT_MARK_DIRTY(mp, ip);
881 * acquire a transaction lock on the leaf page
883 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
884 dtlck = (struct dt_lock *) & tlck->lock;
885 ASSERT(dtlck->index == 0);
888 /* linelock header */
893 dtInsertEntry(p, index, name, &data, &dtlck);
895 /* linelock stbl of non-root leaf page */
896 if (!(p->header.flag & BT_ROOT)) {
897 if (dtlck->index >= dtlck->maxcnt)
898 dtlck = (struct dt_lock *) txLinelock(dtlck);
899 lv = & dtlck->lv[dtlck->index];
900 n = index >> L2DTSLOTSIZE;
901 lv->offset = p->header.stblindex + n;
903 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
907 /* unpin the leaf page */
917 * function: propagate insertion bottom up;
921 * return: 0 - success;
923 * leaf page unpinned;
925 static int dtSplitUp(tid_t tid,
926 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
928 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
930 struct metapage *smp;
931 dtpage_t *sp; /* split page */
932 struct metapage *rmp;
933 dtpage_t *rp; /* new right page split from sp */
934 pxd_t rpxd; /* new right page extent descriptor */
935 struct metapage *lmp;
936 dtpage_t *lp; /* left child page */
937 int skip; /* index of entry of insertion */
938 struct btframe *parent; /* parent page entry on traverse stack */
941 struct pxdlist pxdlist;
943 struct component_name key = { 0, NULL };
944 ddata_t *data = split->data;
946 struct dt_lock *dtlck;
949 int quota_allocation = 0;
953 sp = DT_PAGE(ip, smp);
956 (wchar_t *) kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t),
967 * The split routines insert the new entry, and
968 * acquire txLock as appropriate.
971 * split root leaf page:
973 if (sp->header.flag & BT_ROOT) {
975 * allocate a single extent child page
978 n = sbi->bsize >> L2DTSLOTSIZE;
979 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
980 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
981 if (n <= split->nslot)
983 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
990 pxd = &pxdlist.pxd[0];
991 PXDaddress(pxd, xaddr);
992 PXDlength(pxd, xlen);
993 split->pxdlist = &pxdlist;
994 rc = dtSplitRoot(tid, ip, split, &rmp);
997 dbFree(ip, xaddr, xlen);
1007 * extend first leaf page
1009 * extend the 1st extent if less than buffer page size
1010 * (dtExtendPage() reurns leaf page unpinned)
1012 pxd = &sp->header.self;
1013 xlen = lengthPXD(pxd);
1014 xsize = xlen << sbi->l2bsize;
1015 if (xsize < PSIZE) {
1016 xaddr = addressPXD(pxd);
1017 n = xsize >> L2DTSLOTSIZE;
1018 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1019 if ((n + sp->header.freecnt) <= split->nslot)
1020 n = xlen + (xlen << 1);
1024 /* Allocate blocks to quota. */
1025 if (DQUOT_ALLOC_BLOCK(ip, n)) {
1029 quota_allocation += n;
1031 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1035 pxdlist.maxnpxd = 1;
1037 pxd = &pxdlist.pxd[0];
1038 PXDaddress(pxd, nxaddr)
1039 PXDlength(pxd, xlen + n);
1040 split->pxdlist = &pxdlist;
1041 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1042 nxaddr = addressPXD(pxd);
1043 if (xaddr != nxaddr) {
1044 /* free relocated extent */
1045 xlen = lengthPXD(pxd);
1046 dbFree(ip, nxaddr, (s64) xlen);
1048 /* free extended delta */
1049 xlen = lengthPXD(pxd) - n;
1050 xaddr = addressPXD(pxd) + xlen;
1051 dbFree(ip, xaddr, (s64) n);
1061 * split leaf page <sp> into <sp> and a new right page <rp>.
1063 * return <rp> pinned and its extent descriptor <rpxd>
1066 * allocate new directory page extent and
1067 * new index page(s) to cover page split(s)
1069 * allocation hint: ?
1071 n = btstack->nsplit;
1072 pxdlist.maxnpxd = pxdlist.npxd = 0;
1073 xlen = sbi->nbperpage;
1074 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1075 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1076 PXDaddress(pxd, xaddr);
1077 PXDlength(pxd, xlen);
1084 /* undo allocation */
1088 split->pxdlist = &pxdlist;
1089 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1092 /* undo allocation */
1097 * propagate up the router entry for the leaf page just split
1099 * insert a router entry for the new page into the parent page,
1100 * propagate the insert/split up the tree by walking back the stack
1101 * of (bn of parent page, index of child page entry in parent page)
1102 * that were traversed during the search for the page that split.
1104 * the propagation of insert/split up the tree stops if the root
1105 * splits or the page inserted into doesn't have to split to hold
1108 * the parent entry for the split page remains the same, and
1109 * a new entry is inserted at its right with the first key and
1110 * block number of the new right page.
1112 * There are a maximum of 4 pages pinned at any time:
1113 * two children, left parent and right parent (when the parent splits).
1114 * keep the child pages pinned while working on the parent.
1115 * make sure that all pins are released at exit.
1117 while ((parent = BT_POP(btstack)) != NULL) {
1118 /* parent page specified by stack frame <parent> */
1120 /* keep current child pages (<lp>, <rp>) pinned */
1125 * insert router entry in parent for new right child page <rp>
1127 /* get the parent page <sp> */
1128 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1136 * The new key entry goes ONE AFTER the index of parent entry,
1137 * because the split was to the right.
1139 skip = parent->index + 1;
1142 * compute the key for the router entry
1144 * key suffix compression:
1145 * for internal pages that have leaf pages as children,
1146 * retain only what's needed to distinguish between
1147 * the new entry and the entry on the page to its left.
1148 * If the keys compare equal, retain the entire key.
1150 * note that compression is performed only at computing
1151 * router key at the lowest internal level.
1152 * further compression of the key between pairs of higher
1153 * level internal pages loses too much information and
1154 * the search may fail.
1155 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1156 * results in two adjacent parent entries (a)(xx).
1157 * if split occurs between these two entries, and
1158 * if compression is applied, the router key of parent entry
1159 * of right page (x) will divert search for x into right
1160 * subtree and miss x in the left subtree.)
1162 * the entire key must be retained for the next-to-leftmost
1163 * internal key at any level of the tree, or search may fail
1166 switch (rp->header.flag & BT_TYPE) {
1169 * compute the length of prefix for suffix compression
1170 * between last entry of left page and first entry
1173 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1174 sp->header.prev != 0 || skip > 1) {
1175 /* compute uppercase router prefix key */
1176 rc = ciGetLeafPrefixKey(lp,
1177 lp->header.nextindex-1,
1187 /* next to leftmost entry of
1188 lowest internal level */
1190 /* compute uppercase router key */
1191 dtGetKey(rp, 0, &key, sbi->mntflag);
1192 key.name[key.namlen] = 0;
1194 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1198 n = NDTINTERNAL(key.namlen);
1202 dtGetKey(rp, 0, &key, sbi->mntflag);
1203 n = NDTINTERNAL(key.namlen);
1207 jfs_err("dtSplitUp(): UFO!");
1211 /* unpin left child page */
1215 * compute the data for the router entry
1217 data->xd = rpxd; /* child page xd */
1220 * parent page is full - split the parent page
1222 if (n > sp->header.freecnt) {
1223 /* init for parent page split */
1225 split->index = skip; /* index at insert */
1228 /* split->data = data; */
1230 /* unpin right child page */
1233 /* The split routines insert the new entry,
1234 * acquire txLock as appropriate.
1235 * return <rp> pinned and its block number <rbn>.
1237 rc = (sp->header.flag & BT_ROOT) ?
1238 dtSplitRoot(tid, ip, split, &rmp) :
1239 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1245 /* smp and rmp are pinned */
1248 * parent page is not full - insert router entry in parent page
1251 BT_MARK_DIRTY(smp, ip);
1253 * acquire a transaction lock on the parent page
1255 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1256 dtlck = (struct dt_lock *) & tlck->lock;
1257 ASSERT(dtlck->index == 0);
1258 lv = & dtlck->lv[0];
1260 /* linelock header */
1265 /* linelock stbl of non-root parent page */
1266 if (!(sp->header.flag & BT_ROOT)) {
1268 n = skip >> L2DTSLOTSIZE;
1269 lv->offset = sp->header.stblindex + n;
1271 ((sp->header.nextindex -
1272 1) >> L2DTSLOTSIZE) - n + 1;
1276 dtInsertEntry(sp, skip, &key, data, &dtlck);
1278 /* exit propagate up */
1283 /* unpin current split and its right page */
1288 * free remaining extents allocated for split
1292 pxd = &pxdlist.pxd[n];
1293 for (; n < pxdlist.maxnpxd; n++, pxd++)
1294 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1299 /* Rollback quota allocation */
1300 if (rc && quota_allocation)
1301 DQUOT_FREE_BLOCK(ip, quota_allocation);
1312 * function: Split a non-root page of a btree.
1316 * return: 0 - success;
1318 * return split and new page pinned;
1320 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1321 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1324 struct metapage *smp;
1326 struct metapage *rmp;
1327 dtpage_t *rp; /* new right page allocated */
1328 s64 rbn; /* new right page block number */
1329 struct metapage *mp;
1332 struct pxdlist *pxdlist;
1334 int skip, nextindex, half, left, nxt, off, si;
1335 struct ldtentry *ldtentry;
1336 struct idtentry *idtentry;
1341 struct dt_lock *sdtlck, *rdtlck;
1343 struct dt_lock *dtlck;
1344 struct lv *slv, *rlv, *lv;
1346 /* get split page */
1348 sp = DT_PAGE(ip, smp);
1351 * allocate the new right page for the split
1353 pxdlist = split->pxdlist;
1354 pxd = &pxdlist->pxd[pxdlist->npxd];
1356 rbn = addressPXD(pxd);
1357 rmp = get_metapage(ip, rbn, PSIZE, 1);
1361 /* Allocate blocks to quota. */
1362 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1363 release_metapage(rmp);
1367 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1369 BT_MARK_DIRTY(rmp, ip);
1371 * acquire a transaction lock on the new right page
1373 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1374 rdtlck = (struct dt_lock *) & tlck->lock;
1376 rp = (dtpage_t *) rmp->data;
1378 rp->header.self = *pxd;
1380 BT_MARK_DIRTY(smp, ip);
1382 * acquire a transaction lock on the split page
1386 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1387 sdtlck = (struct dt_lock *) & tlck->lock;
1389 /* linelock header of split page */
1390 ASSERT(sdtlck->index == 0);
1391 slv = & sdtlck->lv[0];
1397 * initialize/update sibling pointers between sp and rp
1399 nextbn = le64_to_cpu(sp->header.next);
1400 rp->header.next = cpu_to_le64(nextbn);
1401 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1402 sp->header.next = cpu_to_le64(rbn);
1405 * initialize new right page
1407 rp->header.flag = sp->header.flag;
1409 /* compute sorted entry table at start of extent data area */
1410 rp->header.nextindex = 0;
1411 rp->header.stblindex = 1;
1413 n = PSIZE >> L2DTSLOTSIZE;
1414 rp->header.maxslot = n;
1415 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1418 fsi = rp->header.stblindex + stblsize;
1419 rp->header.freelist = fsi;
1420 rp->header.freecnt = rp->header.maxslot - fsi;
1423 * sequential append at tail: append without split
1425 * If splitting the last page on a level because of appending
1426 * a entry to it (skip is maxentry), it's likely that the access is
1427 * sequential. Adding an empty page on the side of the level is less
1428 * work and can push the fill factor much higher than normal.
1429 * If we're wrong it's no big deal, we'll just do the split the right
1431 * (It may look like it's equally easy to do a similar hack for
1432 * reverse sorted data, that is, split the tree left,
1433 * but it's not. Be my guest.)
1435 if (nextbn == 0 && split->index == sp->header.nextindex) {
1436 /* linelock header + stbl (first slot) of new page */
1437 rlv = & rdtlck->lv[rdtlck->index];
1443 * initialize freelist of new right page
1446 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1450 /* insert entry at the first entry of the new right page */
1451 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1457 * non-sequential insert (at possibly middle page)
1461 * update prev pointer of previous right sibling page;
1464 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1466 discard_metapage(rmp);
1470 BT_MARK_DIRTY(mp, ip);
1472 * acquire a transaction lock on the next page
1474 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1475 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1477 dtlck = (struct dt_lock *) & tlck->lock;
1479 /* linelock header of previous right sibling page */
1480 lv = & dtlck->lv[dtlck->index];
1485 p->header.prev = cpu_to_le64(rbn);
1491 * split the data between the split and right pages.
1493 skip = split->index;
1494 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1498 * compute fill factor for split pages
1500 * <nxt> traces the next entry to move to rp
1501 * <off> traces the next entry to stay in sp
1503 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1504 nextindex = sp->header.nextindex;
1505 for (nxt = off = 0; nxt < nextindex; ++off) {
1507 /* check for fill factor with new entry size */
1511 switch (sp->header.flag & BT_TYPE) {
1513 ldtentry = (struct ldtentry *) & sp->slot[si];
1515 n = NDTLEAF(ldtentry->namlen);
1517 n = NDTLEAF_LEGACY(ldtentry->
1522 idtentry = (struct idtentry *) & sp->slot[si];
1523 n = NDTINTERNAL(idtentry->namlen);
1530 ++nxt; /* advance to next entry to move in sp */
1538 /* <nxt> poins to the 1st entry to move */
1541 * move entries to right page
1543 * dtMoveEntry() initializes rp and reserves entry for insertion
1545 * split page moved out entries are linelocked;
1546 * new/right page moved in entries are linelocked;
1548 /* linelock header + stbl of new right page */
1549 rlv = & rdtlck->lv[rdtlck->index];
1554 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1556 sp->header.nextindex = nxt;
1559 * finalize freelist of new right page
1561 fsi = rp->header.freelist;
1563 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1568 * Update directory index table for entries now in right page
1570 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1574 stbl = DT_GETSTBL(rp);
1575 for (n = 0; n < rp->header.nextindex; n++) {
1576 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1577 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1578 rbn, n, &mp, &lblock);
1581 release_metapage(mp);
1585 * the skipped index was on the left page,
1588 /* insert the new entry in the split page */
1589 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1591 /* linelock stbl of split page */
1592 if (sdtlck->index >= sdtlck->maxcnt)
1593 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1594 slv = & sdtlck->lv[sdtlck->index];
1595 n = skip >> L2DTSLOTSIZE;
1596 slv->offset = sp->header.stblindex + n;
1598 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1602 * the skipped index was on the right page,
1605 /* adjust the skip index to reflect the new position */
1608 /* insert the new entry in the right page */
1609 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1623 * function: extend 1st/only directory leaf page
1627 * return: 0 - success;
1629 * return extended page pinned;
1631 static int dtExtendPage(tid_t tid,
1632 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1634 struct super_block *sb = ip->i_sb;
1636 struct metapage *smp, *pmp, *mp;
1638 struct pxdlist *pxdlist;
1641 int newstblindex, newstblsize;
1642 int oldstblindex, oldstblsize;
1645 struct btframe *parent;
1647 struct dt_lock *dtlck;
1650 struct pxd_lock *pxdlock;
1653 struct ldtentry *ldtentry;
1656 /* get page to extend */
1658 sp = DT_PAGE(ip, smp);
1660 /* get parent/root page */
1661 parent = BT_POP(btstack);
1662 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1669 pxdlist = split->pxdlist;
1670 pxd = &pxdlist->pxd[pxdlist->npxd];
1673 xaddr = addressPXD(pxd);
1674 tpxd = &sp->header.self;
1675 txaddr = addressPXD(tpxd);
1676 /* in-place extension */
1677 if (xaddr == txaddr) {
1684 /* save moved extent descriptor for later free */
1685 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1686 pxdlock = (struct pxd_lock *) & tlck->lock;
1687 pxdlock->flag = mlckFREEPXD;
1688 pxdlock->pxd = sp->header.self;
1692 * Update directory index table to reflect new page address
1698 stbl = DT_GETSTBL(sp);
1699 for (n = 0; n < sp->header.nextindex; n++) {
1701 (struct ldtentry *) & sp->slot[stbl[n]];
1702 modify_index(tid, ip,
1703 le32_to_cpu(ldtentry->index),
1704 xaddr, n, &mp, &lblock);
1707 release_metapage(mp);
1714 sp->header.self = *pxd;
1716 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1718 BT_MARK_DIRTY(smp, ip);
1720 * acquire a transaction lock on the extended/leaf page
1722 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1723 dtlck = (struct dt_lock *) & tlck->lock;
1724 lv = & dtlck->lv[0];
1726 /* update buffer extent descriptor of extended page */
1727 xlen = lengthPXD(pxd);
1728 xsize = xlen << JFS_SBI(sb)->l2bsize;
1729 #ifdef _STILL_TO_PORT
1730 bmSetXD(smp, xaddr, xsize);
1731 #endif /* _STILL_TO_PORT */
1734 * copy old stbl to new stbl at start of extended area
1736 oldstblindex = sp->header.stblindex;
1737 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1738 newstblindex = sp->header.maxslot;
1739 n = xsize >> L2DTSLOTSIZE;
1740 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1741 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1742 sp->header.nextindex);
1745 * in-line extension: linelock old area of extended page
1747 if (type == tlckEXTEND) {
1748 /* linelock header */
1754 /* linelock new stbl of extended page */
1755 lv->offset = newstblindex;
1756 lv->length = newstblsize;
1759 * relocation: linelock whole relocated area
1763 lv->length = sp->header.maxslot + newstblsize;
1768 sp->header.maxslot = n;
1769 sp->header.stblindex = newstblindex;
1770 /* sp->header.nextindex remains the same */
1773 * add old stbl region at head of freelist
1777 last = sp->header.freelist;
1778 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1782 sp->header.freelist = last;
1783 sp->header.freecnt += oldstblsize;
1786 * append free region of newly extended area at tail of freelist
1788 /* init free region of newly extended area */
1789 fsi = n = newstblindex + newstblsize;
1791 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1795 /* append new free region at tail of old freelist */
1796 fsi = sp->header.freelist;
1798 sp->header.freelist = n;
1803 } while (fsi != -1);
1808 sp->header.freecnt += sp->header.maxslot - n;
1811 * insert the new entry
1813 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1815 BT_MARK_DIRTY(pmp, ip);
1817 * linelock any freeslots residing in old extent
1819 if (type == tlckEXTEND) {
1820 n = sp->header.maxslot >> 2;
1821 if (sp->header.freelist < n)
1822 dtLinelockFreelist(sp, n, &dtlck);
1826 * update parent entry on the parent/root page
1829 * acquire a transaction lock on the parent/root page
1831 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1832 dtlck = (struct dt_lock *) & tlck->lock;
1833 lv = & dtlck->lv[dtlck->index];
1835 /* linelock parent entry - 1st slot */
1840 /* update the parent pxd for page extension */
1841 tpxd = (pxd_t *) & pp->slot[1];
1853 * split the full root page into
1854 * original/root/split page and new right page
1855 * i.e., root remains fixed in tree anchor (inode) and
1856 * the root is copied to a single new right child page
1857 * since root page << non-root page, and
1858 * the split root page contains a single entry for the
1859 * new right child page.
1863 * return: 0 - success;
1865 * return new page pinned;
1867 static int dtSplitRoot(tid_t tid,
1868 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1870 struct super_block *sb = ip->i_sb;
1871 struct metapage *smp;
1873 struct metapage *rmp;
1880 int fsi, stblsize, n;
1883 struct pxdlist *pxdlist;
1885 struct dt_lock *dtlck;
1889 /* get split root page */
1891 sp = &JFS_IP(ip)->i_dtroot;
1894 * allocate/initialize a single (right) child page
1896 * N.B. at first split, a one (or two) block to fit new entry
1897 * is allocated; at subsequent split, a full page is allocated;
1899 pxdlist = split->pxdlist;
1900 pxd = &pxdlist->pxd[pxdlist->npxd];
1902 rbn = addressPXD(pxd);
1903 xlen = lengthPXD(pxd);
1904 xsize = xlen << JFS_SBI(sb)->l2bsize;
1905 rmp = get_metapage(ip, rbn, xsize, 1);
1911 /* Allocate blocks to quota. */
1912 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1913 release_metapage(rmp);
1917 BT_MARK_DIRTY(rmp, ip);
1919 * acquire a transaction lock on the new right page
1921 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1922 dtlck = (struct dt_lock *) & tlck->lock;
1925 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1926 rp->header.self = *pxd;
1928 /* initialize sibling pointers */
1929 rp->header.next = 0;
1930 rp->header.prev = 0;
1933 * move in-line root page into new right page extent
1935 /* linelock header + copied entries + new stbl (1st slot) in new page */
1936 ASSERT(dtlck->index == 0);
1937 lv = & dtlck->lv[0];
1939 lv->length = 10; /* 1 + 8 + 1 */
1942 n = xsize >> L2DTSLOTSIZE;
1943 rp->header.maxslot = n;
1944 stblsize = (n + 31) >> L2DTSLOTSIZE;
1946 /* copy old stbl to new stbl at start of extended area */
1947 rp->header.stblindex = DTROOTMAXSLOT;
1948 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1949 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1950 rp->header.nextindex = sp->header.nextindex;
1952 /* copy old data area to start of new data area */
1953 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1956 * append free region of newly extended area at tail of freelist
1958 /* init free region of newly extended area */
1959 fsi = n = DTROOTMAXSLOT + stblsize;
1961 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1965 /* append new free region at tail of old freelist */
1966 fsi = sp->header.freelist;
1968 rp->header.freelist = n;
1970 rp->header.freelist = fsi;
1975 } while (fsi != -1);
1980 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1983 * Update directory index table for entries now in right page
1985 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1987 struct metapage *mp = NULL;
1988 struct ldtentry *ldtentry;
1990 stbl = DT_GETSTBL(rp);
1991 for (n = 0; n < rp->header.nextindex; n++) {
1992 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1993 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1994 rbn, n, &mp, &lblock);
1997 release_metapage(mp);
2000 * insert the new entry into the new right/child page
2001 * (skip index in the new right page will not change)
2003 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2006 * reset parent/root page
2008 * set the 1st entry offset to 0, which force the left-most key
2009 * at any level of the tree to be less than any search key.
2011 * The btree comparison code guarantees that the left-most key on any
2012 * level of the tree is never used, so it doesn't need to be filled in.
2014 BT_MARK_DIRTY(smp, ip);
2016 * acquire a transaction lock on the root page (in-memory inode)
2018 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2019 dtlck = (struct dt_lock *) & tlck->lock;
2022 ASSERT(dtlck->index == 0);
2023 lv = & dtlck->lv[0];
2025 lv->length = DTROOTMAXSLOT;
2028 /* update page header of root */
2029 if (sp->header.flag & BT_LEAF) {
2030 sp->header.flag &= ~BT_LEAF;
2031 sp->header.flag |= BT_INTERNAL;
2034 /* init the first entry */
2035 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2041 stbl = sp->header.stbl;
2042 stbl[0] = DTENTRYSTART;
2043 sp->header.nextindex = 1;
2046 fsi = DTENTRYSTART + 1;
2049 /* init free region of remaining area */
2050 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2054 sp->header.freelist = DTENTRYSTART + 1;
2055 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2066 * function: delete the entry(s) referenced by a key.
2072 int dtDelete(tid_t tid,
2073 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2077 struct metapage *mp, *imp;
2080 struct btstack btstack;
2081 struct dt_lock *dtlck;
2085 struct ldtentry *ldtentry;
2087 u32 table_index, next_index;
2088 struct metapage *nmp;
2092 * search for the entry to delete:
2094 * dtSearch() returns (leaf page pinned, index at which to delete).
2096 if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2099 /* retrieve search result */
2100 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2103 * We need to find put the index of the next entry into the
2104 * directory index table in order to resume a readdir from this
2108 stbl = DT_GETSTBL(p);
2109 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2110 table_index = le32_to_cpu(ldtentry->index);
2111 if (index == (p->header.nextindex - 1)) {
2113 * Last entry in this leaf page
2115 if ((p->header.flag & BT_ROOT)
2116 || (p->header.next == 0))
2119 /* Read next leaf page */
2120 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2121 nmp, PSIZE, np, rc);
2125 stbl = DT_GETSTBL(np);
2127 (struct ldtentry *) & np->
2130 le32_to_cpu(ldtentry->index);
2136 (struct ldtentry *) & p->slot[stbl[index + 1]];
2137 next_index = le32_to_cpu(ldtentry->index);
2139 free_index(tid, ip, table_index, next_index);
2142 * the leaf page becomes empty, delete the page
2144 if (p->header.nextindex == 1) {
2145 /* delete empty page */
2146 rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2149 * the leaf page has other entries remaining:
2151 * delete the entry from the leaf page.
2154 BT_MARK_DIRTY(mp, ip);
2156 * acquire a transaction lock on the leaf page
2158 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2159 dtlck = (struct dt_lock *) & tlck->lock;
2162 * Do not assume that dtlck->index will be zero. During a
2163 * rename within a directory, this transaction may have
2164 * modified this page already when adding the new entry.
2167 /* linelock header */
2168 if (dtlck->index >= dtlck->maxcnt)
2169 dtlck = (struct dt_lock *) txLinelock(dtlck);
2170 lv = & dtlck->lv[dtlck->index];
2175 /* linelock stbl of non-root leaf page */
2176 if (!(p->header.flag & BT_ROOT)) {
2177 if (dtlck->index >= dtlck->maxcnt)
2178 dtlck = (struct dt_lock *) txLinelock(dtlck);
2179 lv = & dtlck->lv[dtlck->index];
2180 i = index >> L2DTSLOTSIZE;
2181 lv->offset = p->header.stblindex + i;
2183 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2188 /* free the leaf entry */
2189 dtDeleteEntry(p, index, &dtlck);
2192 * Update directory index table for entries moved in stbl
2194 if (DO_INDEX(ip) && index < p->header.nextindex) {
2198 stbl = DT_GETSTBL(p);
2199 for (i = index; i < p->header.nextindex; i++) {
2201 (struct ldtentry *) & p->slot[stbl[i]];
2202 modify_index(tid, ip,
2203 le32_to_cpu(ldtentry->index),
2204 bn, i, &imp, &lblock);
2207 release_metapage(imp);
2221 * free empty pages as propagating deletion up the tree
2227 static int dtDeleteUp(tid_t tid, struct inode *ip,
2228 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2231 struct metapage *mp;
2233 int index, nextindex;
2235 struct btframe *parent;
2236 struct dt_lock *dtlck;
2239 struct pxd_lock *pxdlock;
2243 * keep the root leaf page which has become empty
2245 if (BT_IS_ROOT(fmp)) {
2249 * dtInitRoot() acquires txlock on the root
2251 dtInitRoot(tid, ip, PARENT(ip));
2259 * free the non-root leaf page
2262 * acquire a transaction lock on the page
2264 * write FREEXTENT|NOREDOPAGE log record
2265 * N.B. linelock is overlaid as freed extent descriptor, and
2266 * the buffer page is freed;
2268 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2269 pxdlock = (struct pxd_lock *) & tlck->lock;
2270 pxdlock->flag = mlckFREEPXD;
2271 pxdlock->pxd = fp->header.self;
2274 /* update sibling pointers */
2275 if ((rc = dtRelink(tid, ip, fp))) {
2280 xlen = lengthPXD(&fp->header.self);
2282 /* Free quota allocation. */
2283 DQUOT_FREE_BLOCK(ip, xlen);
2285 /* free/invalidate its buffer page */
2286 discard_metapage(fmp);
2289 * propagate page deletion up the directory tree
2291 * If the delete from the parent page makes it empty,
2292 * continue all the way up the tree.
2293 * stop if the root page is reached (which is never deleted) or
2294 * if the entry deletion does not empty the page.
2296 while ((parent = BT_POP(btstack)) != NULL) {
2297 /* pin the parent page <sp> */
2298 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2303 * free the extent of the child page deleted
2305 index = parent->index;
2308 * delete the entry for the child page from parent
2310 nextindex = p->header.nextindex;
2313 * the parent has the single entry being deleted:
2315 * free the parent page which has become empty.
2317 if (nextindex == 1) {
2319 * keep the root internal page which has become empty
2321 if (p->header.flag & BT_ROOT) {
2325 * dtInitRoot() acquires txlock on the root
2327 dtInitRoot(tid, ip, PARENT(ip));
2334 * free the parent page
2338 * acquire a transaction lock on the page
2340 * write FREEXTENT|NOREDOPAGE log record
2344 tlckDTREE | tlckFREE);
2345 pxdlock = (struct pxd_lock *) & tlck->lock;
2346 pxdlock->flag = mlckFREEPXD;
2347 pxdlock->pxd = p->header.self;
2350 /* update sibling pointers */
2351 if ((rc = dtRelink(tid, ip, p))) {
2356 xlen = lengthPXD(&p->header.self);
2358 /* Free quota allocation */
2359 DQUOT_FREE_BLOCK(ip, xlen);
2361 /* free/invalidate its buffer page */
2362 discard_metapage(mp);
2370 * the parent has other entries remaining:
2372 * delete the router entry from the parent page.
2374 BT_MARK_DIRTY(mp, ip);
2376 * acquire a transaction lock on the page
2378 * action: router entry deletion
2380 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2381 dtlck = (struct dt_lock *) & tlck->lock;
2383 /* linelock header */
2384 if (dtlck->index >= dtlck->maxcnt)
2385 dtlck = (struct dt_lock *) txLinelock(dtlck);
2386 lv = & dtlck->lv[dtlck->index];
2391 /* linelock stbl of non-root leaf page */
2392 if (!(p->header.flag & BT_ROOT)) {
2393 if (dtlck->index < dtlck->maxcnt)
2396 dtlck = (struct dt_lock *) txLinelock(dtlck);
2397 lv = & dtlck->lv[0];
2399 i = index >> L2DTSLOTSIZE;
2400 lv->offset = p->header.stblindex + i;
2402 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2407 /* free the router entry */
2408 dtDeleteEntry(p, index, &dtlck);
2410 /* reset key of new leftmost entry of level (for consistency) */
2412 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2413 dtTruncateEntry(p, 0, &dtlck);
2415 /* unpin the parent page */
2418 /* exit propagation up */
2427 * NAME: dtRelocate()
2429 * FUNCTION: relocate dtpage (internal or leaf) of directory;
2430 * This function is mainly used by defragfs utility.
2432 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2436 struct metapage *mp, *pmp, *lmp, *rmp;
2437 dtpage_t *p, *pp, *rp = 0, *lp= 0;
2440 struct btstack btstack;
2442 s64 oxaddr, nextbn, prevbn;
2445 struct dt_lock *dtlck;
2446 struct pxd_lock *pxdlock;
2450 oxaddr = addressPXD(opxd);
2451 xlen = lengthPXD(opxd);
2453 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2454 (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2458 * 1. get the internal parent dtpage covering
2459 * router entry for the tartget page to be relocated;
2461 rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2465 /* retrieve search result */
2466 DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2467 jfs_info("dtRelocate: parent router entry validated.");
2470 * 2. relocate the target dtpage
2472 /* read in the target page from src extent */
2473 DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2475 /* release the pinned parent page */
2481 * read in sibling pages if any to update sibling pointers;
2484 if (p->header.next) {
2485 nextbn = le64_to_cpu(p->header.next);
2486 DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2495 if (p->header.prev) {
2496 prevbn = le64_to_cpu(p->header.prev);
2497 DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2507 /* at this point, all xtpages to be updated are in memory */
2510 * update sibling pointers of sibling dtpages if any;
2513 tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2514 dtlck = (struct dt_lock *) & tlck->lock;
2515 /* linelock header */
2516 ASSERT(dtlck->index == 0);
2517 lv = & dtlck->lv[0];
2522 lp->header.next = cpu_to_le64(nxaddr);
2527 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2528 dtlck = (struct dt_lock *) & tlck->lock;
2529 /* linelock header */
2530 ASSERT(dtlck->index == 0);
2531 lv = & dtlck->lv[0];
2536 rp->header.prev = cpu_to_le64(nxaddr);
2541 * update the target dtpage to be relocated
2543 * write LOG_REDOPAGE of LOG_NEW type for dst page
2544 * for the whole target page (logredo() will apply
2545 * after image and update bmap for allocation of the
2546 * dst extent), and update bmap for allocation of
2549 tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2550 dtlck = (struct dt_lock *) & tlck->lock;
2551 /* linelock header */
2552 ASSERT(dtlck->index == 0);
2553 lv = & dtlck->lv[0];
2555 /* update the self address in the dtpage header */
2556 pxd = &p->header.self;
2557 PXDaddress(pxd, nxaddr);
2559 /* the dst page is the same as the src page, i.e.,
2560 * linelock for afterimage of the whole page;
2563 lv->length = p->header.maxslot;
2566 /* update the buffer extent descriptor of the dtpage */
2567 xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2568 #ifdef _STILL_TO_PORT
2569 bmSetXD(mp, nxaddr, xsize);
2570 #endif /* _STILL_TO_PORT */
2571 /* unpin the relocated page */
2573 jfs_info("dtRelocate: target dtpage relocated.");
2575 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2576 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2577 * will also force a bmap update ).
2581 * 3. acquire maplock for the source extent to be freed;
2583 /* for dtpage relocation, write a LOG_NOREDOPAGE record
2584 * for the source dtpage (logredo() will init NoRedoPage
2585 * filter and will also update bmap for free of the source
2586 * dtpage), and upadte bmap for free of the source dtpage;
2588 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2589 pxdlock = (struct pxd_lock *) & tlck->lock;
2590 pxdlock->flag = mlckFREEPXD;
2591 PXDaddress(&pxdlock->pxd, oxaddr);
2592 PXDlength(&pxdlock->pxd, xlen);
2596 * 4. update the parent router entry for relocation;
2598 * acquire tlck for the parent entry covering the target dtpage;
2599 * write LOG_REDOPAGE to apply after image only;
2601 jfs_info("dtRelocate: update parent router entry.");
2602 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2603 dtlck = (struct dt_lock *) & tlck->lock;
2604 lv = & dtlck->lv[dtlck->index];
2606 /* update the PXD with the new address */
2607 stbl = DT_GETSTBL(pp);
2608 pxd = (pxd_t *) & pp->slot[stbl[index]];
2609 PXDaddress(pxd, nxaddr);
2610 lv->offset = stbl[index];
2614 /* unpin the parent dtpage */
2621 * NAME: dtSearchNode()
2623 * FUNCTION: Search for an dtpage containing a specified address
2624 * This function is mainly used by defragfs utility.
2626 * NOTE: Search result on stack, the found page is pinned at exit.
2627 * The result page must be an internal dtpage.
2628 * lmxaddr give the address of the left most page of the
2629 * dtree level, in which the required dtpage resides.
2631 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2632 struct btstack * btstack)
2636 struct metapage *mp;
2638 int psize = 288; /* initial in-line directory */
2642 struct btframe *btsp;
2644 BT_CLR(btstack); /* reset stack */
2647 * descend tree to the level with specified leftmost page
2649 * by convention, root bn = 0.
2652 /* get/pin the page to search */
2653 DT_GETPAGE(ip, bn, mp, psize, p, rc);
2657 /* does the xaddr of leftmost page of the levevl
2658 * matches levevl search key ?
2660 if (p->header.flag & BT_ROOT) {
2663 } else if (addressPXD(&p->header.self) == lmxaddr)
2667 * descend down to leftmost child page
2669 if (p->header.flag & BT_LEAF) {
2674 /* get the leftmost entry */
2675 stbl = DT_GETSTBL(p);
2676 pxd = (pxd_t *) & p->slot[stbl[0]];
2678 /* get the child page block address */
2679 bn = addressPXD(pxd);
2680 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2681 /* unpin the parent page */
2686 * search each page at the current levevl
2689 stbl = DT_GETSTBL(p);
2690 for (i = 0; i < p->header.nextindex; i++) {
2691 pxd = (pxd_t *) & p->slot[stbl[i]];
2693 /* found the specified router entry */
2694 if (addressPXD(pxd) == addressPXD(kpxd) &&
2695 lengthPXD(pxd) == lengthPXD(kpxd)) {
2696 btsp = btstack->top;
2705 /* get the right sibling page if any */
2707 bn = le64_to_cpu(p->header.next);
2713 /* unpin current page */
2716 /* get the right sibling page */
2717 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2723 #endif /* _NOTYET */
2729 * link around a freed page.
2732 * fp: page to be freed
2736 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2739 struct metapage *mp;
2742 struct dt_lock *dtlck;
2745 nextbn = le64_to_cpu(p->header.next);
2746 prevbn = le64_to_cpu(p->header.prev);
2748 /* update prev pointer of the next page */
2750 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2754 BT_MARK_DIRTY(mp, ip);
2756 * acquire a transaction lock on the next page
2758 * action: update prev pointer;
2760 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2761 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2763 dtlck = (struct dt_lock *) & tlck->lock;
2765 /* linelock header */
2766 if (dtlck->index >= dtlck->maxcnt)
2767 dtlck = (struct dt_lock *) txLinelock(dtlck);
2768 lv = & dtlck->lv[dtlck->index];
2773 p->header.prev = cpu_to_le64(prevbn);
2777 /* update next pointer of the previous page */
2779 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2783 BT_MARK_DIRTY(mp, ip);
2785 * acquire a transaction lock on the prev page
2787 * action: update next pointer;
2789 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2790 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2792 dtlck = (struct dt_lock *) & tlck->lock;
2794 /* linelock header */
2795 if (dtlck->index >= dtlck->maxcnt)
2796 dtlck = (struct dt_lock *) txLinelock(dtlck);
2797 lv = & dtlck->lv[dtlck->index];
2802 p->header.next = cpu_to_le64(nextbn);
2813 * initialize directory root (inline in inode)
2815 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2817 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2822 struct dt_lock *dtlck;
2827 * If this was previously an non-empty directory, we need to remove
2828 * the old directory table.
2831 if (!jfs_dirtable_inline(ip)) {
2832 struct tblock *tblk = tid_to_tblock(tid);
2834 * We're playing games with the tid's xflag. If
2835 * we're removing a regular file, the file's xtree
2836 * is committed with COMMIT_PMAP, but we always
2837 * commit the directories xtree with COMMIT_PWMAP.
2839 xflag_save = tblk->xflag;
2842 * xtTruncate isn't guaranteed to fully truncate
2843 * the xtree. The caller needs to check i_size
2844 * after committing the transaction to see if
2845 * additional truncation is needed. The
2846 * COMMIT_Stale flag tells caller that we
2847 * initiated the truncation.
2849 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2850 set_cflag(COMMIT_Stale, ip);
2852 tblk->xflag = xflag_save;
2856 jfs_ip->next_index = 2;
2858 ip->i_size = IDATASIZE;
2861 * acquire a transaction lock on the root
2863 * action: directory initialization;
2865 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2866 tlckDTREE | tlckENTRY | tlckBTROOT);
2867 dtlck = (struct dt_lock *) & tlck->lock;
2870 ASSERT(dtlck->index == 0);
2871 lv = & dtlck->lv[0];
2873 lv->length = DTROOTMAXSLOT;
2876 p = &jfs_ip->i_dtroot;
2878 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2880 p->header.nextindex = 0;
2886 /* init data area of root */
2887 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2891 p->header.freelist = 1;
2892 p->header.freecnt = 8;
2894 /* init '..' entry */
2895 p->header.idotdot = cpu_to_le32(idotdot);
2901 * add_missing_indices()
2903 * function: Fix dtree page in which one or more entries has an invalid index.
2904 * fsck.jfs should really fix this, but it currently does not.
2905 * Called from jfs_readdir when bad index is detected.
2907 static void add_missing_indices(struct inode *inode, s64 bn)
2910 struct dt_lock *dtlck;
2914 struct metapage *mp;
2921 tid = txBegin(inode->i_sb, 0);
2923 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2926 printk(KERN_ERR "DT_GETPAGE failed!\n");
2929 BT_MARK_DIRTY(mp, inode);
2931 ASSERT(p->header.flag & BT_LEAF);
2933 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2934 dtlck = (struct dt_lock *) &tlck->lock;
2936 stbl = DT_GETSTBL(p);
2937 for (i = 0; i < p->header.nextindex; i++) {
2938 d = (struct ldtentry *) &p->slot[stbl[i]];
2939 index = le32_to_cpu(d->index);
2940 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2941 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2942 if (dtlck->index >= dtlck->maxcnt)
2943 dtlck = (struct dt_lock *) txLinelock(dtlck);
2944 lv = &dtlck->lv[dtlck->index];
2945 lv->offset = stbl[i];
2952 (void) txCommit(tid, 1, &inode, 0);
2958 * Buffer to hold directory entry info while traversing a dtree page
2959 * before being fed to the filldir function
2969 * function to determine next variable-sized jfs_dirent in buffer
2971 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2973 return (struct jfs_dirent *)
2975 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2976 sizeof (loff_t) - 1) &
2977 ~(sizeof (loff_t) - 1)));
2983 * function: read directory entries sequentially
2984 * from the specified entry offset
2988 * return: offset = (pn, index) of start entry
2989 * of next jfs_readdir()/dtRead()
2991 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
2993 struct inode *ip = filp->f_dentry->d_inode;
2994 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2996 loff_t dtpos; /* legacy OS/2 style position */
3001 } *dtoffset = (struct dtoffset *) &dtpos;
3003 struct metapage *mp;
3007 struct btstack btstack;
3011 int d_namleft, len, outlen;
3012 unsigned long dirent_buf;
3016 uint loop_count = 0;
3017 struct jfs_dirent *jfs_dirent;
3019 int overflow, fix_page, page_fixed = 0;
3020 static int unique_pos = 2; /* If we can't fix broken index */
3022 if (filp->f_pos == DIREND)
3027 * persistent index is stored in directory entries.
3028 * Special cases: 0 = .
3030 * -1 = End of directory
3034 dir_index = (u32) filp->f_pos;
3036 if (dir_index > 1) {
3037 struct dir_table_slot dirtab_slot;
3040 (dir_index >= JFS_IP(ip)->next_index)) {
3041 /* Stale position. Directory has shrunk */
3042 filp->f_pos = DIREND;
3046 rc = read_index(ip, dir_index, &dirtab_slot);
3048 filp->f_pos = DIREND;
3051 if (dirtab_slot.flag == DIR_INDEX_FREE) {
3052 if (loop_count++ > JFS_IP(ip)->next_index) {
3053 jfs_err("jfs_readdir detected "
3055 filp->f_pos = DIREND;
3058 dir_index = le32_to_cpu(dirtab_slot.addr2);
3059 if (dir_index == -1) {
3060 filp->f_pos = DIREND;
3065 bn = addressDTS(&dirtab_slot);
3066 index = dirtab_slot.slot;
3067 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3069 filp->f_pos = DIREND;
3072 if (p->header.flag & BT_INTERNAL) {
3073 jfs_err("jfs_readdir: bad index table");
3079 if (dir_index == 0) {
3084 if (filldir(dirent, ".", 1, 0, ip->i_ino,
3092 if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3096 * Find first entry of left-most leaf
3099 filp->f_pos = DIREND;
3103 if ((rc = dtReadFirst(ip, &btstack)))
3106 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3110 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3112 * pn = index = 0: First entry "."
3113 * pn = 0; index = 1: Second entry ".."
3114 * pn > 0: Real entries, pn=1 -> leftmost page
3115 * pn = index = -1: No more entries
3117 dtpos = filp->f_pos;
3119 /* build "." entry */
3121 if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3124 dtoffset->index = 1;
3125 filp->f_pos = dtpos;
3128 if (dtoffset->pn == 0) {
3129 if (dtoffset->index == 1) {
3130 /* build ".." entry */
3132 if (filldir(dirent, "..", 2, filp->f_pos,
3133 PARENT(ip), DT_DIR))
3136 jfs_err("jfs_readdir called with "
3140 dtoffset->index = 0;
3141 filp->f_pos = dtpos;
3145 filp->f_pos = DIREND;
3149 if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3150 jfs_err("jfs_readdir: unexpected rc = %d "
3151 "from dtReadNext", rc);
3152 filp->f_pos = DIREND;
3155 /* get start leaf page and index */
3156 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3158 /* offset beyond directory eof ? */
3160 filp->f_pos = DIREND;
3165 dirent_buf = __get_free_page(GFP_KERNEL);
3166 if (dirent_buf == 0) {
3168 jfs_warn("jfs_readdir: __get_free_page failed!");
3169 filp->f_pos = DIREND;
3174 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3176 overflow = fix_page = 0;
3178 stbl = DT_GETSTBL(p);
3180 for (i = index; i < p->header.nextindex; i++) {
3181 d = (struct ldtentry *) & p->slot[stbl[i]];
3183 if (((long) jfs_dirent + d->namlen + 1) >
3184 (dirent_buf + PAGE_SIZE)) {
3185 /* DBCS codepages could overrun dirent_buf */
3191 d_namleft = d->namlen;
3192 name_ptr = jfs_dirent->name;
3193 jfs_dirent->ino = le32_to_cpu(d->inumber);
3196 len = min(d_namleft, DTLHDRDATALEN);
3197 jfs_dirent->position = le32_to_cpu(d->index);
3199 * d->index should always be valid, but it
3200 * isn't. fsck.jfs doesn't create the
3201 * directory index for the lost+found
3202 * directory. Rather than let it go,
3203 * we can try to fix it.
3205 if ((jfs_dirent->position < 2) ||
3206 (jfs_dirent->position >=
3207 JFS_IP(ip)->next_index)) {
3208 if (!page_fixed && !isReadOnly(ip)) {
3211 * setting overflow and setting
3212 * index to i will cause the
3213 * same page to be processed
3214 * again starting here
3220 jfs_dirent->position = unique_pos++;
3223 jfs_dirent->position = dtpos;
3224 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3227 /* copy the name of head/only segment */
3228 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3230 jfs_dirent->name_len = outlen;
3232 /* copy name in the additional segment(s) */
3235 t = (struct dtslot *) & p->slot[next];
3239 if (d_namleft == 0) {
3241 "JFS:Dtree error: ino = "
3242 "%ld, bn=%Ld, index = %d",
3248 len = min(d_namleft, DTSLOTDATALEN);
3249 outlen = jfs_strfromUCS_le(name_ptr, t->name,
3251 jfs_dirent->name_len += outlen;
3257 jfs_dirent = next_jfs_dirent(jfs_dirent);
3264 /* Point to next leaf page */
3265 if (p->header.flag & BT_ROOT)
3268 bn = le64_to_cpu(p->header.next);
3270 /* update offset (pn:index) for new page */
3273 dtoffset->index = 0;
3279 /* unpin previous leaf page */
3282 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3283 while (jfs_dirents--) {
3284 filp->f_pos = jfs_dirent->position;
3285 if (filldir(dirent, jfs_dirent->name,
3286 jfs_dirent->name_len, filp->f_pos,
3287 jfs_dirent->ino, DT_UNKNOWN))
3289 jfs_dirent = next_jfs_dirent(jfs_dirent);
3293 add_missing_indices(ip, bn);
3297 if (!overflow && (bn == 0)) {
3298 filp->f_pos = DIREND;
3302 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3304 free_page(dirent_buf);
3310 free_page(dirent_buf);
3319 * function: get the leftmost page of the directory
3321 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3325 int psize = 288; /* initial in-line directory */
3326 struct metapage *mp;
3329 struct btframe *btsp;
3332 BT_CLR(btstack); /* reset stack */
3335 * descend leftmost path of the tree
3337 * by convention, root bn = 0.
3340 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3345 * leftmost leaf page
3347 if (p->header.flag & BT_LEAF) {
3348 /* return leftmost entry */
3349 btsp = btstack->top;
3358 * descend down to leftmost child page
3360 if (BT_STACK_FULL(btstack)) {
3362 jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3363 BT_STACK_DUMP(btstack);
3366 /* push (bn, index) of the parent page/entry */
3367 BT_PUSH(btstack, bn, 0);
3369 /* get the leftmost entry */
3370 stbl = DT_GETSTBL(p);
3371 xd = (pxd_t *) & p->slot[stbl[0]];
3373 /* get the child page block address */
3374 bn = addressPXD(xd);
3375 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3377 /* unpin the parent page */
3386 * function: get the page of the specified offset (pn:index)
3388 * return: if (offset > eof), bn = -1;
3390 * note: if index > nextindex of the target leaf page,
3391 * start with 1st entry of next leaf page;
3393 static int dtReadNext(struct inode *ip, loff_t * offset,
3394 struct btstack * btstack)
3401 } *dtoffset = (struct dtoffset *) offset;
3403 struct metapage *mp;
3408 struct btframe *btsp, *parent;
3412 * get leftmost leaf page pinned
3414 if ((rc = dtReadFirst(ip, btstack)))
3418 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3420 /* get the start offset (pn:index) */
3421 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3422 index = dtoffset->index;
3424 /* start at leftmost page ? */
3426 /* offset beyond eof ? */
3427 if (index < p->header.nextindex)
3430 if (p->header.flag & BT_ROOT) {
3435 /* start with 1st entry of next leaf page */
3437 dtoffset->index = index = 0;
3441 /* start at non-leftmost page: scan parent pages for large pn */
3442 if (p->header.flag & BT_ROOT) {
3447 /* start after next leaf page ? */
3451 /* get leaf page pn = 1 */
3453 bn = le64_to_cpu(p->header.next);
3455 /* unpin leaf page */
3458 /* offset beyond eof ? */
3467 * scan last internal page level to get target leaf page
3470 /* unpin leftmost leaf page */
3473 /* get left most parent page */
3474 btsp = btstack->top;
3477 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3481 /* scan parent pages at last internal page level */
3482 while (pn >= p->header.nextindex) {
3483 pn -= p->header.nextindex;
3485 /* get next parent page address */
3486 bn = le64_to_cpu(p->header.next);
3488 /* unpin current parent page */
3491 /* offset beyond eof ? */
3497 /* get next parent page */
3498 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3502 /* update parent page stack frame */
3506 /* get leaf page address */
3507 stbl = DT_GETSTBL(p);
3508 xd = (pxd_t *) & p->slot[stbl[pn]];
3509 bn = addressPXD(xd);
3511 /* unpin parent page */
3515 * get target leaf page
3518 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3523 * leaf page has been completed:
3524 * start with 1st entry of next leaf page
3526 if (index >= p->header.nextindex) {
3527 bn = le64_to_cpu(p->header.next);
3529 /* unpin leaf page */
3532 /* offset beyond eof ? */
3538 /* get next leaf page */
3539 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3543 /* start with 1st entry of next leaf page */
3545 dtoffset->index = 0;
3549 /* return target leaf page pinned */
3550 btsp = btstack->top;
3552 btsp->index = dtoffset->index;
3562 * function: compare search key with an internal entry
3565 * < 0 if k is < record
3566 * = 0 if k is = record
3567 * > 0 if k is > record
3569 static int dtCompare(struct component_name * key, /* search key */
3570 dtpage_t * p, /* directory page */
3572 { /* entry slot index */
3575 int klen, namlen, len, rc;
3576 struct idtentry *ih;
3580 * force the left-most key on internal pages, at any level of
3581 * the tree, to be less than any search key.
3582 * this obviates having to update the leftmost key on an internal
3583 * page when the user inserts a new key in the tree smaller than
3584 * anything that has been stored.
3586 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3587 * at any internal page at any level of the tree,
3588 * it descends to child of the entry anyway -
3589 * ? make the entry as min size dummy entry)
3591 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3598 ih = (struct idtentry *) & p->slot[si];
3601 namlen = ih->namlen;
3602 len = min(namlen, DTIHDRDATALEN);
3604 /* compare with head/only segment */
3605 len = min(klen, len);
3606 if ((rc = UniStrncmp_le(kname, name, len)))
3612 /* compare with additional segment(s) */
3614 while (klen > 0 && namlen > 0) {
3615 /* compare with next name segment */
3616 t = (struct dtslot *) & p->slot[si];
3617 len = min(namlen, DTSLOTDATALEN);
3618 len = min(klen, len);
3620 if ((rc = UniStrncmp_le(kname, name, len)))
3629 return (klen - namlen);
3638 * function: compare search key with an (leaf/internal) entry
3641 * < 0 if k is < record
3642 * = 0 if k is = record
3643 * > 0 if k is > record
3645 static int ciCompare(struct component_name * key, /* search key */
3646 dtpage_t * p, /* directory page */
3647 int si, /* entry slot index */
3652 int klen, namlen, len, rc;
3653 struct ldtentry *lh;
3654 struct idtentry *ih;
3659 * force the left-most key on internal pages, at any level of
3660 * the tree, to be less than any search key.
3661 * this obviates having to update the leftmost key on an internal
3662 * page when the user inserts a new key in the tree smaller than
3663 * anything that has been stored.
3665 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3666 * at any internal page at any level of the tree,
3667 * it descends to child of the entry anyway -
3668 * ? make the entry as min size dummy entry)
3670 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3680 if (p->header.flag & BT_LEAF) {
3681 lh = (struct ldtentry *) & p->slot[si];
3684 namlen = lh->namlen;
3685 if (flag & JFS_DIR_INDEX)
3686 len = min(namlen, DTLHDRDATALEN);
3688 len = min(namlen, DTLHDRDATALEN_LEGACY);
3691 * internal page entry
3694 ih = (struct idtentry *) & p->slot[si];
3697 namlen = ih->namlen;
3698 len = min(namlen, DTIHDRDATALEN);
3701 /* compare with head/only segment */
3702 len = min(klen, len);
3703 for (i = 0; i < len; i++, kname++, name++) {
3704 /* only uppercase if case-insensitive support is on */
3705 if ((flag & JFS_OS2) == JFS_OS2)
3706 x = UniToupper(le16_to_cpu(*name));
3708 x = le16_to_cpu(*name);
3709 if ((rc = *kname - x))
3716 /* compare with additional segment(s) */
3717 while (klen > 0 && namlen > 0) {
3718 /* compare with next name segment */
3719 t = (struct dtslot *) & p->slot[si];
3720 len = min(namlen, DTSLOTDATALEN);
3721 len = min(klen, len);
3723 for (i = 0; i < len; i++, kname++, name++) {
3724 /* only uppercase if case-insensitive support is on */
3725 if ((flag & JFS_OS2) == JFS_OS2)
3726 x = UniToupper(le16_to_cpu(*name));
3728 x = le16_to_cpu(*name);
3730 if ((rc = *kname - x))
3739 return (klen - namlen);
3744 * ciGetLeafPrefixKey()
3746 * function: compute prefix of suffix compression
3747 * from two adjacent leaf entries
3748 * across page boundary
3750 * return: non-zero on error
3753 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3754 int ri, struct component_name * key, int flag)
3757 wchar_t *pl, *pr, *kname;
3758 struct component_name lkey;
3759 struct component_name rkey;
3761 lkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3763 if (lkey.name == NULL)
3766 rkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3768 if (rkey.name == NULL) {
3773 /* get left and right key */
3774 dtGetKey(lp, li, &lkey, flag);
3775 lkey.name[lkey.namlen] = 0;
3777 if ((flag & JFS_OS2) == JFS_OS2)
3780 dtGetKey(rp, ri, &rkey, flag);
3781 rkey.name[rkey.namlen] = 0;
3784 if ((flag & JFS_OS2) == JFS_OS2)
3787 /* compute prefix */
3790 namlen = min(lkey.namlen, rkey.namlen);
3791 for (pl = lkey.name, pr = rkey.name;
3792 namlen; pl++, pr++, namlen--, klen++, kname++) {
3795 key->namlen = klen + 1;
3800 /* l->namlen <= r->namlen since l <= r */
3801 if (lkey.namlen < rkey.namlen) {
3803 key->namlen = klen + 1;
3804 } else /* l->namelen == r->namelen */
3818 * function: get key of the entry
3820 static void dtGetKey(dtpage_t * p, int i, /* entry index */
3821 struct component_name * key, int flag)
3825 struct ldtentry *lh;
3826 struct idtentry *ih;
3833 stbl = DT_GETSTBL(p);
3835 if (p->header.flag & BT_LEAF) {
3836 lh = (struct ldtentry *) & p->slot[si];
3838 namlen = lh->namlen;
3840 if (flag & JFS_DIR_INDEX)
3841 len = min(namlen, DTLHDRDATALEN);
3843 len = min(namlen, DTLHDRDATALEN_LEGACY);
3845 ih = (struct idtentry *) & p->slot[si];
3847 namlen = ih->namlen;
3849 len = min(namlen, DTIHDRDATALEN);
3852 key->namlen = namlen;
3856 * move head/only segment
3858 UniStrncpy_from_le(kname, name, len);
3861 * move additional segment(s)
3864 /* get next segment */
3868 len = min(namlen, DTSLOTDATALEN);
3869 UniStrncpy_from_le(kname, t->name, len);
3879 * function: allocate free slot(s) and
3880 * write a leaf/internal entry
3882 * return: entry slot index
3884 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3885 ddata_t * data, struct dt_lock ** dtlock)
3887 struct dtslot *h, *t;
3888 struct ldtentry *lh = NULL;
3889 struct idtentry *ih = NULL;
3890 int hsi, fsi, klen, len, nextindex;
3895 struct dt_lock *dtlck = *dtlock;
3899 struct metapage *mp = NULL;
3904 /* allocate a free slot */
3905 hsi = fsi = p->header.freelist;
3907 p->header.freelist = h->next;
3908 --p->header.freecnt;
3910 /* open new linelock */
3911 if (dtlck->index >= dtlck->maxcnt)
3912 dtlck = (struct dt_lock *) txLinelock(dtlck);
3914 lv = & dtlck->lv[dtlck->index];
3917 /* write head/only segment */
3918 if (p->header.flag & BT_LEAF) {
3919 lh = (struct ldtentry *) h;
3921 lh->inumber = cpu_to_le32(data->leaf.ino);
3924 if (data->leaf.ip) {
3925 len = min(klen, DTLHDRDATALEN);
3926 if (!(p->header.flag & BT_ROOT))
3927 bn = addressPXD(&p->header.self);
3928 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3932 len = min(klen, DTLHDRDATALEN_LEGACY);
3934 ih = (struct idtentry *) h;
3940 len = min(klen, DTIHDRDATALEN);
3943 UniStrncpy_to_le(name, kname, len);
3948 /* write additional segment(s) */
3953 fsi = p->header.freelist;
3955 p->header.freelist = t->next;
3956 --p->header.freecnt;
3958 /* is next slot contiguous ? */
3959 if (fsi != xsi + 1) {
3960 /* close current linelock */
3964 /* open new linelock */
3965 if (dtlck->index < dtlck->maxcnt)
3968 dtlck = (struct dt_lock *) txLinelock(dtlck);
3969 lv = & dtlck->lv[0];
3977 len = min(klen, DTSLOTDATALEN);
3978 UniStrncpy_to_le(t->name, kname, len);
3985 /* close current linelock */
3991 /* terminate last/only segment */
3993 /* single segment entry */
3994 if (p->header.flag & BT_LEAF)
3999 /* multi-segment entry */
4002 /* if insert into middle, shift right succeeding entries in stbl */
4003 stbl = DT_GETSTBL(p);
4004 nextindex = p->header.nextindex;
4005 if (index < nextindex) {
4006 memmove(stbl + index + 1, stbl + index, nextindex - index);
4008 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4012 * Need to update slot number for entries that moved
4016 for (n = index + 1; n <= nextindex; n++) {
4017 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4018 modify_index(data->leaf.tid, data->leaf.ip,
4019 le32_to_cpu(lh->index), bn, n,
4023 release_metapage(mp);
4029 /* advance next available entry index of stbl */
4030 ++p->header.nextindex;
4037 * function: move entries from split/left page to new/right page
4039 * nextindex of dst page and freelist/freecnt of both pages
4042 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4043 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4046 int ssi, next; /* src slot index */
4047 int di; /* dst entry index */
4048 int dsi; /* dst slot index */
4049 s8 *sstbl, *dstbl; /* sorted entry table */
4051 struct ldtentry *slh, *dlh = NULL;
4052 struct idtentry *sih, *dih = NULL;
4053 struct dtslot *h, *s, *d;
4054 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4055 struct lv *slv, *dlv;
4059 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4060 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4062 dsi = dp->header.freelist; /* first (whole page) free slot */
4063 sfsi = sp->header.freelist;
4065 /* linelock destination entry slot */
4066 dlv = & ddtlck->lv[ddtlck->index];
4069 /* linelock source entry slot */
4070 slv = & sdtlck->lv[sdtlck->index];
4071 slv->offset = sstbl[si];
4072 xssi = slv->offset - 1;
4078 for (di = 0; si < sp->header.nextindex; si++, di++) {
4082 /* is next slot contiguous ? */
4083 if (ssi != xssi + 1) {
4084 /* close current linelock */
4088 /* open new linelock */
4089 if (sdtlck->index < sdtlck->maxcnt)
4092 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4093 slv = & sdtlck->lv[0];
4101 * move head/only segment of an entry
4104 h = d = &dp->slot[dsi];
4106 /* get src slot and move */
4108 if (sp->header.flag & BT_LEAF) {
4109 /* get source entry */
4110 slh = (struct ldtentry *) s;
4111 dlh = (struct ldtentry *) h;
4112 snamlen = slh->namlen;
4115 len = min(snamlen, DTLHDRDATALEN);
4116 dlh->index = slh->index; /* little-endian */
4118 len = min(snamlen, DTLHDRDATALEN_LEGACY);
4120 memcpy(dlh, slh, 6 + len * 2);
4124 /* update dst head/only segment next field */
4128 sih = (struct idtentry *) s;
4129 snamlen = sih->namlen;
4131 len = min(snamlen, DTIHDRDATALEN);
4132 dih = (struct idtentry *) h;
4133 memcpy(dih, sih, 10 + len * 2);
4140 /* free src head/only segment */
4150 * move additional segment(s) of the entry
4153 while ((ssi = next) >= 0) {
4154 /* is next slot contiguous ? */
4155 if (ssi != xssi + 1) {
4156 /* close current linelock */
4160 /* open new linelock */
4161 if (sdtlck->index < sdtlck->maxcnt)
4167 slv = & sdtlck->lv[0];
4174 /* get next source segment */
4177 /* get next destination free slot */
4180 len = min(snamlen, DTSLOTDATALEN);
4181 UniStrncpy_le(d->name, s->name, len);
4190 /* free source segment */
4199 /* terminate dst last/only segment */
4201 /* single segment entry */
4202 if (dp->header.flag & BT_LEAF)
4207 /* multi-segment entry */
4211 /* close current linelock */
4220 /* update source header */
4221 sp->header.freelist = sfsi;
4222 sp->header.freecnt += nd;
4224 /* update destination header */
4225 dp->header.nextindex = di;
4227 dp->header.freelist = dsi;
4228 dp->header.freecnt -= nd;
4235 * function: free a (leaf/internal) entry
4237 * log freelist header, stbl, and each segment slot of entry
4238 * (even though last/only segment next field is modified,
4239 * physical image logging requires all segment slots of
4240 * the entry logged to avoid applying previous updates
4241 * to the same slots)
4243 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4245 int fsi; /* free entry slot index */
4249 struct dt_lock *dtlck = *dtlock;
4253 /* get free entry slot index */
4254 stbl = DT_GETSTBL(p);
4257 /* open new linelock */
4258 if (dtlck->index >= dtlck->maxcnt)
4259 dtlck = (struct dt_lock *) txLinelock(dtlck);
4260 lv = & dtlck->lv[dtlck->index];
4264 /* get the head/only segment */
4266 if (p->header.flag & BT_LEAF)
4267 si = ((struct ldtentry *) t)->next;
4269 si = ((struct idtentry *) t)->next;
4276 /* find the last/only segment */
4278 /* is next slot contiguous ? */
4279 if (si != xsi + 1) {
4280 /* close current linelock */
4284 /* open new linelock */
4285 if (dtlck->index < dtlck->maxcnt)
4288 dtlck = (struct dt_lock *) txLinelock(dtlck);
4289 lv = & dtlck->lv[0];
4305 /* close current linelock */
4311 /* update freelist */
4312 t->next = p->header.freelist;
4313 p->header.freelist = fsi;
4314 p->header.freecnt += freecnt;
4316 /* if delete from middle,
4317 * shift left the succedding entries in the stbl
4319 si = p->header.nextindex;
4321 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4323 p->header.nextindex--;
4330 * function: truncate a (leaf/internal) entry
4332 * log freelist header, stbl, and each segment slot of entry
4333 * (even though last/only segment next field is modified,
4334 * physical image logging requires all segment slots of
4335 * the entry logged to avoid applying previous updates
4336 * to the same slots)
4338 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4340 int tsi; /* truncate entry slot index */
4344 struct dt_lock *dtlck = *dtlock;
4348 /* get free entry slot index */
4349 stbl = DT_GETSTBL(p);
4352 /* open new linelock */
4353 if (dtlck->index >= dtlck->maxcnt)
4354 dtlck = (struct dt_lock *) txLinelock(dtlck);
4355 lv = & dtlck->lv[dtlck->index];
4359 /* get the head/only segment */
4361 ASSERT(p->header.flag & BT_INTERNAL);
4362 ((struct idtentry *) t)->namlen = 0;
4363 si = ((struct idtentry *) t)->next;
4364 ((struct idtentry *) t)->next = -1;
4371 /* find the last/only segment */
4373 /* is next slot contiguous ? */
4374 if (si != xsi + 1) {
4375 /* close current linelock */
4379 /* open new linelock */
4380 if (dtlck->index < dtlck->maxcnt)
4383 dtlck = (struct dt_lock *) txLinelock(dtlck);
4384 lv = & dtlck->lv[0];
4400 /* close current linelock */
4406 /* update freelist */
4409 t->next = p->header.freelist;
4410 p->header.freelist = fsi;
4411 p->header.freecnt += freecnt;
4416 * dtLinelockFreelist()
4418 static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4419 int m, /* max slot index */
4420 struct dt_lock ** dtlock)
4422 int fsi; /* free entry slot index */
4425 struct dt_lock *dtlck = *dtlock;
4429 /* get free entry slot index */
4430 fsi = p->header.freelist;
4432 /* open new linelock */
4433 if (dtlck->index >= dtlck->maxcnt)
4434 dtlck = (struct dt_lock *) txLinelock(dtlck);
4435 lv = & dtlck->lv[dtlck->index];
4445 /* find the last/only segment */
4446 while (si < m && si >= 0) {
4447 /* is next slot contiguous ? */
4448 if (si != xsi + 1) {
4449 /* close current linelock */
4453 /* open new linelock */
4454 if (dtlck->index < dtlck->maxcnt)
4457 dtlck = (struct dt_lock *) txLinelock(dtlck);
4458 lv = & dtlck->lv[0];
4472 /* close current linelock */
4483 * FUNCTION: Modify the inode number part of a directory entry
4486 * tid - Transaction id
4487 * ip - Inode of parent directory
4488 * key - Name of entry to be modified
4489 * orig_ino - Original inode number expected in entry
4490 * new_ino - New inode number to put into entry
4494 * -ESTALE - If entry found does not match orig_ino passed in
4495 * -ENOENT - If no entry can be found to match key
4496 * 0 - If successfully modified entry
4498 int dtModify(tid_t tid, struct inode *ip,
4499 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4503 struct metapage *mp;
4506 struct btstack btstack;
4508 struct dt_lock *dtlck;
4511 int entry_si; /* entry slot index */
4512 struct ldtentry *entry;
4515 * search for the entry to modify:
4517 * dtSearch() returns (leaf page pinned, index at which to modify).
4519 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4522 /* retrieve search result */
4523 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4525 BT_MARK_DIRTY(mp, ip);
4527 * acquire a transaction lock on the leaf page of named entry
4529 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4530 dtlck = (struct dt_lock *) & tlck->lock;
4532 /* get slot index of the entry */
4533 stbl = DT_GETSTBL(p);
4534 entry_si = stbl[index];
4536 /* linelock entry */
4537 ASSERT(dtlck->index == 0);
4538 lv = & dtlck->lv[0];
4539 lv->offset = entry_si;
4543 /* get the head/only segment */
4544 entry = (struct ldtentry *) & p->slot[entry_si];
4546 /* substitute the inode number of the entry */
4547 entry->inumber = cpu_to_le32(new_ino);
4549 /* unpin the leaf page */
4555 #ifdef _JFS_DEBUG_DTREE
4559 * function: traverse forward
4561 int dtDisplayTree(struct inode *ip)
4564 struct metapage *mp;
4567 int index, lastindex, v, h;
4569 struct btstack btstack;
4570 struct btframe *btsp;
4571 struct btframe *parent;
4575 printk("display B+-tree.\n");
4578 btsp = btstack.stack;
4583 * root resides in the inode
4589 * first access of each page:
4592 DT_GETPAGE(ip, bn, mp, psize, p, rc);
4596 /* process entries forward from first index */
4598 lastindex = p->header.nextindex - 1;
4600 if (p->header.flag & BT_INTERNAL) {
4602 * first access of each internal page
4604 printf("internal page ");
4605 dtDisplayPage(ip, bn, p);
4608 } else { /* (p->header.flag & BT_LEAF) */
4611 * first access of each leaf page
4613 printf("leaf page ");
4614 dtDisplayPage(ip, bn, p);
4617 * process leaf page entries
4619 for ( ; index <= lastindex; index++)
4624 /* unpin the leaf page */
4629 * go back up to the parent page
4632 /* pop/restore parent entry for the current child page */
4633 if ((parent = (btsp == btstack.stack ? NULL : --btsp)) == NULL)
4634 /* current page must have been root */
4638 * parent page scan completed
4640 if ((index = parent->index) == (lastindex = parent->lastindex)) {
4641 /* go back up to the parent page */
4646 * parent page has entries remaining
4648 /* get back the parent page */
4650 /* v = parent->level; */
4651 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
4655 /* get next parent entry */
4659 * internal page: go down to child page of current entry
4662 /* push/save current parent entry for the child page */
4663 btsp->bn = pbn = bn;
4664 btsp->index = index;
4665 btsp->lastindex = lastindex;
4666 /* btsp->level = v; */
4667 /* btsp->node = h; */
4670 /* get current entry for the child page */
4671 stbl = DT_GETSTBL(p);
4672 xd = (pxd_t *) & p->slot[stbl[index]];
4675 * first access of each internal entry:
4678 /* get child page */
4679 bn = addressPXD(xd);
4680 psize = lengthPXD(xd) << ip->i_ipmnt->i_l2bsize;
4682 printk("traverse down 0x%Lx[%d]->0x%Lx\n", pbn, index, bn);
4686 /* release parent page */
4689 /* process the child page */
4697 * function: display page
4699 int dtDisplayPage(struct inode *ip, s64 bn, dtpage_t * p)
4702 struct metapage *mp;
4703 struct ldtentry *lh;
4704 struct idtentry *ih;
4708 wchar_t name[JFS_NAME_MAX + 1];
4709 struct component_name key = { 0, name };
4714 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
4719 /* display page control */
4720 printk("bn:0x%Lx flag:0x%08x nextindex:%d\n",
4721 bn, p->header.flag, p->header.nextindex);
4723 /* display entries */
4724 stbl = DT_GETSTBL(p);
4725 for (i = 0, j = 1; i < p->header.nextindex; i++, j++) {
4726 dtGetKey(p, i, &key, JFS_SBI(ip->i_sb)->mntflag);
4727 key.name[key.namlen] = '\0';
4728 if (p->header.flag & BT_LEAF) {
4729 lh = (struct ldtentry *) & p->slot[stbl[i]];
4730 printf("\t[%d] %s:%d", i, key.name,
4731 le32_to_cpu(lh->inumber));
4733 ih = (struct idtentry *) & p->slot[stbl[i]];
4735 bn = addressPXD(xd);
4736 printf("\t[%d] %s:0x%Lx", i, key.name, bn);
4752 #endif /* _JFS_DEBUG_DTREE */