2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
38 static DEFINE_MUTEX(pcm_mutex);
39 static DEFINE_MUTEX(io_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
65 * This function forces any delayed work to be queued and run.
67 static int run_delayed_work(struct delayed_work *dwork)
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
83 #ifdef CONFIG_SND_SOC_AC97_BUS
84 /* unregister ac97 codec */
85 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
87 if (codec->ac97->dev.bus)
88 device_unregister(&codec->ac97->dev);
92 /* stop no dev release warning */
93 static void soc_ac97_device_release(struct device *dev){}
95 /* register ac97 codec to bus */
96 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
100 codec->ac97->dev.bus = &ac97_bus_type;
101 codec->ac97->dev.parent = NULL;
102 codec->ac97->dev.release = soc_ac97_device_release;
104 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
105 codec->card->number, 0, codec->name);
106 err = device_register(&codec->ac97->dev);
108 snd_printk(KERN_ERR "Can't register ac97 bus\n");
109 codec->ac97->dev.bus = NULL;
117 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
118 * then initialized and any private data can be allocated. This also calls
119 * startup for the cpu DAI, platform, machine and codec DAI.
121 static int soc_pcm_open(struct snd_pcm_substream *substream)
123 struct snd_soc_pcm_runtime *rtd = substream->private_data;
124 struct snd_soc_device *socdev = rtd->socdev;
125 struct snd_soc_card *card = socdev->card;
126 struct snd_pcm_runtime *runtime = substream->runtime;
127 struct snd_soc_dai_link *machine = rtd->dai;
128 struct snd_soc_platform *platform = card->platform;
129 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
130 struct snd_soc_dai *codec_dai = machine->codec_dai;
133 mutex_lock(&pcm_mutex);
135 /* startup the audio subsystem */
136 if (cpu_dai->ops.startup) {
137 ret = cpu_dai->ops.startup(substream, cpu_dai);
139 printk(KERN_ERR "asoc: can't open interface %s\n",
145 if (platform->pcm_ops->open) {
146 ret = platform->pcm_ops->open(substream);
148 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
153 if (codec_dai->ops.startup) {
154 ret = codec_dai->ops.startup(substream, codec_dai);
156 printk(KERN_ERR "asoc: can't open codec %s\n",
162 if (machine->ops && machine->ops->startup) {
163 ret = machine->ops->startup(substream);
165 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
170 /* Check that the codec and cpu DAI's are compatible */
171 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
172 runtime->hw.rate_min =
173 max(codec_dai->playback.rate_min,
174 cpu_dai->playback.rate_min);
175 runtime->hw.rate_max =
176 min(codec_dai->playback.rate_max,
177 cpu_dai->playback.rate_max);
178 runtime->hw.channels_min =
179 max(codec_dai->playback.channels_min,
180 cpu_dai->playback.channels_min);
181 runtime->hw.channels_max =
182 min(codec_dai->playback.channels_max,
183 cpu_dai->playback.channels_max);
184 runtime->hw.formats =
185 codec_dai->playback.formats & cpu_dai->playback.formats;
187 codec_dai->playback.rates & cpu_dai->playback.rates;
189 runtime->hw.rate_min =
190 max(codec_dai->capture.rate_min,
191 cpu_dai->capture.rate_min);
192 runtime->hw.rate_max =
193 min(codec_dai->capture.rate_max,
194 cpu_dai->capture.rate_max);
195 runtime->hw.channels_min =
196 max(codec_dai->capture.channels_min,
197 cpu_dai->capture.channels_min);
198 runtime->hw.channels_max =
199 min(codec_dai->capture.channels_max,
200 cpu_dai->capture.channels_max);
201 runtime->hw.formats =
202 codec_dai->capture.formats & cpu_dai->capture.formats;
204 codec_dai->capture.rates & cpu_dai->capture.rates;
207 snd_pcm_limit_hw_rates(runtime);
208 if (!runtime->hw.rates) {
209 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
210 codec_dai->name, cpu_dai->name);
213 if (!runtime->hw.formats) {
214 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
215 codec_dai->name, cpu_dai->name);
218 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
219 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
220 codec_dai->name, cpu_dai->name);
224 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
225 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
226 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
227 runtime->hw.channels_max);
228 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
229 runtime->hw.rate_max);
231 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
232 cpu_dai->playback.active = codec_dai->playback.active = 1;
234 cpu_dai->capture.active = codec_dai->capture.active = 1;
235 cpu_dai->active = codec_dai->active = 1;
236 cpu_dai->runtime = runtime;
237 socdev->codec->active++;
238 mutex_unlock(&pcm_mutex);
242 if (machine->ops && machine->ops->shutdown)
243 machine->ops->shutdown(substream);
246 if (platform->pcm_ops->close)
247 platform->pcm_ops->close(substream);
250 if (cpu_dai->ops.shutdown)
251 cpu_dai->ops.shutdown(substream, cpu_dai);
253 mutex_unlock(&pcm_mutex);
258 * Power down the audio subsystem pmdown_time msecs after close is called.
259 * This is to ensure there are no pops or clicks in between any music tracks
260 * due to DAPM power cycling.
262 static void close_delayed_work(struct work_struct *work)
264 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
266 struct snd_soc_device *socdev = card->socdev;
267 struct snd_soc_codec *codec = socdev->codec;
268 struct snd_soc_dai *codec_dai;
271 mutex_lock(&pcm_mutex);
272 for (i = 0; i < codec->num_dai; i++) {
273 codec_dai = &codec->dai[i];
275 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
276 codec_dai->playback.stream_name,
277 codec_dai->playback.active ? "active" : "inactive",
278 codec_dai->pop_wait ? "yes" : "no");
280 /* are we waiting on this codec DAI stream */
281 if (codec_dai->pop_wait == 1) {
283 /* Reduce power if no longer active */
284 if (codec->active == 0) {
285 pr_debug("pop wq D1 %s %s\n", codec->name,
286 codec_dai->playback.stream_name);
287 snd_soc_dapm_set_bias_level(socdev,
288 SND_SOC_BIAS_PREPARE);
291 codec_dai->pop_wait = 0;
292 snd_soc_dapm_stream_event(codec,
293 codec_dai->playback.stream_name,
294 SND_SOC_DAPM_STREAM_STOP);
296 /* Fall into standby if no longer active */
297 if (codec->active == 0) {
298 pr_debug("pop wq D3 %s %s\n", codec->name,
299 codec_dai->playback.stream_name);
300 snd_soc_dapm_set_bias_level(socdev,
301 SND_SOC_BIAS_STANDBY);
305 mutex_unlock(&pcm_mutex);
309 * Called by ALSA when a PCM substream is closed. Private data can be
310 * freed here. The cpu DAI, codec DAI, machine and platform are also
313 static int soc_codec_close(struct snd_pcm_substream *substream)
315 struct snd_soc_pcm_runtime *rtd = substream->private_data;
316 struct snd_soc_device *socdev = rtd->socdev;
317 struct snd_soc_card *card = socdev->card;
318 struct snd_soc_dai_link *machine = rtd->dai;
319 struct snd_soc_platform *platform = card->platform;
320 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
321 struct snd_soc_dai *codec_dai = machine->codec_dai;
322 struct snd_soc_codec *codec = socdev->codec;
324 mutex_lock(&pcm_mutex);
326 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
327 cpu_dai->playback.active = codec_dai->playback.active = 0;
329 cpu_dai->capture.active = codec_dai->capture.active = 0;
331 if (codec_dai->playback.active == 0 &&
332 codec_dai->capture.active == 0) {
333 cpu_dai->active = codec_dai->active = 0;
337 /* Muting the DAC suppresses artifacts caused during digital
338 * shutdown, for example from stopping clocks.
340 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
341 snd_soc_dai_digital_mute(codec_dai, 1);
343 if (cpu_dai->ops.shutdown)
344 cpu_dai->ops.shutdown(substream, cpu_dai);
346 if (codec_dai->ops.shutdown)
347 codec_dai->ops.shutdown(substream, codec_dai);
349 if (machine->ops && machine->ops->shutdown)
350 machine->ops->shutdown(substream);
352 if (platform->pcm_ops->close)
353 platform->pcm_ops->close(substream);
354 cpu_dai->runtime = NULL;
356 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
357 /* start delayed pop wq here for playback streams */
358 codec_dai->pop_wait = 1;
359 schedule_delayed_work(&card->delayed_work,
360 msecs_to_jiffies(pmdown_time));
362 /* capture streams can be powered down now */
363 snd_soc_dapm_stream_event(codec,
364 codec_dai->capture.stream_name,
365 SND_SOC_DAPM_STREAM_STOP);
367 if (codec->active == 0 && codec_dai->pop_wait == 0)
368 snd_soc_dapm_set_bias_level(socdev,
369 SND_SOC_BIAS_STANDBY);
372 mutex_unlock(&pcm_mutex);
377 * Called by ALSA when the PCM substream is prepared, can set format, sample
378 * rate, etc. This function is non atomic and can be called multiple times,
379 * it can refer to the runtime info.
381 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
383 struct snd_soc_pcm_runtime *rtd = substream->private_data;
384 struct snd_soc_device *socdev = rtd->socdev;
385 struct snd_soc_card *card = socdev->card;
386 struct snd_soc_dai_link *machine = rtd->dai;
387 struct snd_soc_platform *platform = card->platform;
388 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
389 struct snd_soc_dai *codec_dai = machine->codec_dai;
390 struct snd_soc_codec *codec = socdev->codec;
393 mutex_lock(&pcm_mutex);
395 if (machine->ops && machine->ops->prepare) {
396 ret = machine->ops->prepare(substream);
398 printk(KERN_ERR "asoc: machine prepare error\n");
403 if (platform->pcm_ops->prepare) {
404 ret = platform->pcm_ops->prepare(substream);
406 printk(KERN_ERR "asoc: platform prepare error\n");
411 if (codec_dai->ops.prepare) {
412 ret = codec_dai->ops.prepare(substream, codec_dai);
414 printk(KERN_ERR "asoc: codec DAI prepare error\n");
419 if (cpu_dai->ops.prepare) {
420 ret = cpu_dai->ops.prepare(substream, cpu_dai);
422 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
427 /* cancel any delayed stream shutdown that is pending */
428 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
429 codec_dai->pop_wait) {
430 codec_dai->pop_wait = 0;
431 cancel_delayed_work(&card->delayed_work);
434 /* do we need to power up codec */
435 if (codec->bias_level != SND_SOC_BIAS_ON) {
436 snd_soc_dapm_set_bias_level(socdev,
437 SND_SOC_BIAS_PREPARE);
439 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440 snd_soc_dapm_stream_event(codec,
441 codec_dai->playback.stream_name,
442 SND_SOC_DAPM_STREAM_START);
444 snd_soc_dapm_stream_event(codec,
445 codec_dai->capture.stream_name,
446 SND_SOC_DAPM_STREAM_START);
448 snd_soc_dapm_set_bias_level(socdev, SND_SOC_BIAS_ON);
449 snd_soc_dai_digital_mute(codec_dai, 0);
452 /* codec already powered - power on widgets */
453 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
454 snd_soc_dapm_stream_event(codec,
455 codec_dai->playback.stream_name,
456 SND_SOC_DAPM_STREAM_START);
458 snd_soc_dapm_stream_event(codec,
459 codec_dai->capture.stream_name,
460 SND_SOC_DAPM_STREAM_START);
462 snd_soc_dai_digital_mute(codec_dai, 0);
466 mutex_unlock(&pcm_mutex);
471 * Called by ALSA when the hardware params are set by application. This
472 * function can also be called multiple times and can allocate buffers
473 * (using snd_pcm_lib_* ). It's non-atomic.
475 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
476 struct snd_pcm_hw_params *params)
478 struct snd_soc_pcm_runtime *rtd = substream->private_data;
479 struct snd_soc_device *socdev = rtd->socdev;
480 struct snd_soc_dai_link *machine = rtd->dai;
481 struct snd_soc_card *card = socdev->card;
482 struct snd_soc_platform *platform = card->platform;
483 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
484 struct snd_soc_dai *codec_dai = machine->codec_dai;
487 mutex_lock(&pcm_mutex);
489 if (machine->ops && machine->ops->hw_params) {
490 ret = machine->ops->hw_params(substream, params);
492 printk(KERN_ERR "asoc: machine hw_params failed\n");
497 if (codec_dai->ops.hw_params) {
498 ret = codec_dai->ops.hw_params(substream, params, codec_dai);
500 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
506 if (cpu_dai->ops.hw_params) {
507 ret = cpu_dai->ops.hw_params(substream, params, cpu_dai);
509 printk(KERN_ERR "asoc: interface %s hw params failed\n",
515 if (platform->pcm_ops->hw_params) {
516 ret = platform->pcm_ops->hw_params(substream, params);
518 printk(KERN_ERR "asoc: platform %s hw params failed\n",
525 mutex_unlock(&pcm_mutex);
529 if (cpu_dai->ops.hw_free)
530 cpu_dai->ops.hw_free(substream, cpu_dai);
533 if (codec_dai->ops.hw_free)
534 codec_dai->ops.hw_free(substream, codec_dai);
537 if (machine->ops && machine->ops->hw_free)
538 machine->ops->hw_free(substream);
540 mutex_unlock(&pcm_mutex);
545 * Free's resources allocated by hw_params, can be called multiple times
547 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
549 struct snd_soc_pcm_runtime *rtd = substream->private_data;
550 struct snd_soc_device *socdev = rtd->socdev;
551 struct snd_soc_dai_link *machine = rtd->dai;
552 struct snd_soc_card *card = socdev->card;
553 struct snd_soc_platform *platform = card->platform;
554 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
555 struct snd_soc_dai *codec_dai = machine->codec_dai;
556 struct snd_soc_codec *codec = socdev->codec;
558 mutex_lock(&pcm_mutex);
560 /* apply codec digital mute */
562 snd_soc_dai_digital_mute(codec_dai, 1);
564 /* free any machine hw params */
565 if (machine->ops && machine->ops->hw_free)
566 machine->ops->hw_free(substream);
568 /* free any DMA resources */
569 if (platform->pcm_ops->hw_free)
570 platform->pcm_ops->hw_free(substream);
572 /* now free hw params for the DAI's */
573 if (codec_dai->ops.hw_free)
574 codec_dai->ops.hw_free(substream, codec_dai);
576 if (cpu_dai->ops.hw_free)
577 cpu_dai->ops.hw_free(substream, cpu_dai);
579 mutex_unlock(&pcm_mutex);
583 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
585 struct snd_soc_pcm_runtime *rtd = substream->private_data;
586 struct snd_soc_device *socdev = rtd->socdev;
587 struct snd_soc_card *card= socdev->card;
588 struct snd_soc_dai_link *machine = rtd->dai;
589 struct snd_soc_platform *platform = card->platform;
590 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
591 struct snd_soc_dai *codec_dai = machine->codec_dai;
594 if (codec_dai->ops.trigger) {
595 ret = codec_dai->ops.trigger(substream, cmd, codec_dai);
600 if (platform->pcm_ops->trigger) {
601 ret = platform->pcm_ops->trigger(substream, cmd);
606 if (cpu_dai->ops.trigger) {
607 ret = cpu_dai->ops.trigger(substream, cmd, cpu_dai);
614 /* ASoC PCM operations */
615 static struct snd_pcm_ops soc_pcm_ops = {
616 .open = soc_pcm_open,
617 .close = soc_codec_close,
618 .hw_params = soc_pcm_hw_params,
619 .hw_free = soc_pcm_hw_free,
620 .prepare = soc_pcm_prepare,
621 .trigger = soc_pcm_trigger,
625 /* powers down audio subsystem for suspend */
626 static int soc_suspend(struct platform_device *pdev, pm_message_t state)
628 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
629 struct snd_soc_card *card = socdev->card;
630 struct snd_soc_platform *platform = card->platform;
631 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
632 struct snd_soc_codec *codec = socdev->codec;
635 /* Due to the resume being scheduled into a workqueue we could
636 * suspend before that's finished - wait for it to complete.
638 snd_power_lock(codec->card);
639 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
640 snd_power_unlock(codec->card);
642 /* we're going to block userspace touching us until resume completes */
643 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
645 /* mute any active DAC's */
646 for (i = 0; i < card->num_links; i++) {
647 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
648 if (dai->ops.digital_mute && dai->playback.active)
649 dai->ops.digital_mute(dai, 1);
652 /* suspend all pcms */
653 for (i = 0; i < card->num_links; i++)
654 snd_pcm_suspend_all(card->dai_link[i].pcm);
656 if (card->suspend_pre)
657 card->suspend_pre(pdev, state);
659 for (i = 0; i < card->num_links; i++) {
660 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
661 if (cpu_dai->suspend && !cpu_dai->ac97_control)
662 cpu_dai->suspend(cpu_dai);
663 if (platform->suspend)
664 platform->suspend(cpu_dai);
667 /* close any waiting streams and save state */
668 run_delayed_work(&card->delayed_work);
669 codec->suspend_bias_level = codec->bias_level;
671 for (i = 0; i < codec->num_dai; i++) {
672 char *stream = codec->dai[i].playback.stream_name;
674 snd_soc_dapm_stream_event(codec, stream,
675 SND_SOC_DAPM_STREAM_SUSPEND);
676 stream = codec->dai[i].capture.stream_name;
678 snd_soc_dapm_stream_event(codec, stream,
679 SND_SOC_DAPM_STREAM_SUSPEND);
682 if (codec_dev->suspend)
683 codec_dev->suspend(pdev, state);
685 for (i = 0; i < card->num_links; i++) {
686 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
687 if (cpu_dai->suspend && cpu_dai->ac97_control)
688 cpu_dai->suspend(cpu_dai);
691 if (card->suspend_post)
692 card->suspend_post(pdev, state);
697 /* deferred resume work, so resume can complete before we finished
698 * setting our codec back up, which can be very slow on I2C
700 static void soc_resume_deferred(struct work_struct *work)
702 struct snd_soc_card *card = container_of(work,
704 deferred_resume_work);
705 struct snd_soc_device *socdev = card->socdev;
706 struct snd_soc_platform *platform = card->platform;
707 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
708 struct snd_soc_codec *codec = socdev->codec;
709 struct platform_device *pdev = to_platform_device(socdev->dev);
712 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
713 * so userspace apps are blocked from touching us
716 dev_dbg(socdev->dev, "starting resume work\n");
718 if (card->resume_pre)
719 card->resume_pre(pdev);
721 for (i = 0; i < card->num_links; i++) {
722 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
723 if (cpu_dai->resume && cpu_dai->ac97_control)
724 cpu_dai->resume(cpu_dai);
727 if (codec_dev->resume)
728 codec_dev->resume(pdev);
730 for (i = 0; i < codec->num_dai; i++) {
731 char *stream = codec->dai[i].playback.stream_name;
733 snd_soc_dapm_stream_event(codec, stream,
734 SND_SOC_DAPM_STREAM_RESUME);
735 stream = codec->dai[i].capture.stream_name;
737 snd_soc_dapm_stream_event(codec, stream,
738 SND_SOC_DAPM_STREAM_RESUME);
741 /* unmute any active DACs */
742 for (i = 0; i < card->num_links; i++) {
743 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
744 if (dai->ops.digital_mute && dai->playback.active)
745 dai->ops.digital_mute(dai, 0);
748 for (i = 0; i < card->num_links; i++) {
749 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
750 if (cpu_dai->resume && !cpu_dai->ac97_control)
751 cpu_dai->resume(cpu_dai);
752 if (platform->resume)
753 platform->resume(cpu_dai);
756 if (card->resume_post)
757 card->resume_post(pdev);
759 dev_dbg(socdev->dev, "resume work completed\n");
761 /* userspace can access us now we are back as we were before */
762 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
765 /* powers up audio subsystem after a suspend */
766 static int soc_resume(struct platform_device *pdev)
768 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
769 struct snd_soc_card *card = socdev->card;
771 dev_dbg(socdev->dev, "scheduling resume work\n");
773 if (!schedule_work(&card->deferred_resume_work))
774 dev_err(socdev->dev, "resume work item may be lost\n");
780 #define soc_suspend NULL
781 #define soc_resume NULL
784 static void snd_soc_instantiate_card(struct snd_soc_card *card)
786 struct platform_device *pdev = container_of(card->dev,
787 struct platform_device,
789 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
790 struct snd_soc_platform *platform;
791 struct snd_soc_dai *dai;
792 int i, found, ret, ac97;
794 if (card->instantiated)
798 list_for_each_entry(platform, &platform_list, list)
799 if (card->platform == platform) {
804 dev_dbg(card->dev, "Platform %s not registered\n",
805 card->platform->name);
810 for (i = 0; i < card->num_links; i++) {
812 list_for_each_entry(dai, &dai_list, list)
813 if (card->dai_link[i].cpu_dai == dai) {
818 dev_dbg(card->dev, "DAI %s not registered\n",
819 card->dai_link[i].cpu_dai->name);
823 if (card->dai_link[i].cpu_dai->ac97_control)
827 /* If we have AC97 in the system then don't wait for the
828 * codec. This will need revisiting if we have to handle
829 * systems with mixed AC97 and non-AC97 parts. Only check for
830 * DAIs currently; we can't do this per link since some AC97
831 * codecs have non-AC97 DAIs.
834 for (i = 0; i < card->num_links; i++) {
836 list_for_each_entry(dai, &dai_list, list)
837 if (card->dai_link[i].codec_dai == dai) {
842 dev_dbg(card->dev, "DAI %s not registered\n",
843 card->dai_link[i].codec_dai->name);
848 /* Note that we do not current check for codec components */
850 dev_dbg(card->dev, "All components present, instantiating\n");
852 /* Found everything, bring it up */
854 ret = card->probe(pdev);
859 for (i = 0; i < card->num_links; i++) {
860 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
861 if (cpu_dai->probe) {
862 ret = cpu_dai->probe(pdev, cpu_dai);
868 if (codec_dev->probe) {
869 ret = codec_dev->probe(pdev);
874 if (platform->probe) {
875 ret = platform->probe(pdev);
880 /* DAPM stream work */
881 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
883 /* deferred resume work */
884 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
887 card->instantiated = 1;
892 if (codec_dev->remove)
893 codec_dev->remove(pdev);
896 for (i--; i >= 0; i--) {
897 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
899 cpu_dai->remove(pdev, cpu_dai);
907 * Attempt to initialise any uninitalised cards. Must be called with
910 static void snd_soc_instantiate_cards(void)
912 struct snd_soc_card *card;
913 list_for_each_entry(card, &card_list, list)
914 snd_soc_instantiate_card(card);
917 /* probes a new socdev */
918 static int soc_probe(struct platform_device *pdev)
921 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
922 struct snd_soc_card *card = socdev->card;
924 /* Bodge while we push things out of socdev */
925 card->socdev = socdev;
927 /* Bodge while we unpick instantiation */
928 card->dev = &pdev->dev;
929 ret = snd_soc_register_card(card);
931 dev_err(&pdev->dev, "Failed to register card\n");
938 /* removes a socdev */
939 static int soc_remove(struct platform_device *pdev)
942 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
943 struct snd_soc_card *card = socdev->card;
944 struct snd_soc_platform *platform = card->platform;
945 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
947 run_delayed_work(&card->delayed_work);
949 if (platform->remove)
950 platform->remove(pdev);
952 if (codec_dev->remove)
953 codec_dev->remove(pdev);
955 for (i = 0; i < card->num_links; i++) {
956 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
958 cpu_dai->remove(pdev, cpu_dai);
964 snd_soc_unregister_card(card);
969 /* ASoC platform driver */
970 static struct platform_driver soc_driver = {
973 .owner = THIS_MODULE,
976 .remove = soc_remove,
977 .suspend = soc_suspend,
978 .resume = soc_resume,
981 /* create a new pcm */
982 static int soc_new_pcm(struct snd_soc_device *socdev,
983 struct snd_soc_dai_link *dai_link, int num)
985 struct snd_soc_codec *codec = socdev->codec;
986 struct snd_soc_card *card = socdev->card;
987 struct snd_soc_platform *platform = card->platform;
988 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
989 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
990 struct snd_soc_pcm_runtime *rtd;
993 int ret = 0, playback = 0, capture = 0;
995 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1000 rtd->socdev = socdev;
1001 codec_dai->codec = socdev->codec;
1003 /* check client and interface hw capabilities */
1004 sprintf(new_name, "%s %s-%d", dai_link->stream_name, codec_dai->name,
1007 if (codec_dai->playback.channels_min)
1009 if (codec_dai->capture.channels_min)
1012 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1015 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1021 dai_link->pcm = pcm;
1022 pcm->private_data = rtd;
1023 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1024 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1025 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1026 soc_pcm_ops.copy = platform->pcm_ops->copy;
1027 soc_pcm_ops.silence = platform->pcm_ops->silence;
1028 soc_pcm_ops.ack = platform->pcm_ops->ack;
1029 soc_pcm_ops.page = platform->pcm_ops->page;
1032 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1035 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1037 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1039 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1044 pcm->private_free = platform->pcm_free;
1045 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1050 /* codec register dump */
1051 static ssize_t soc_codec_reg_show(struct snd_soc_device *devdata, char *buf)
1053 struct snd_soc_codec *codec = devdata->codec;
1054 int i, step = 1, count = 0;
1056 if (!codec->reg_cache_size)
1059 if (codec->reg_cache_step)
1060 step = codec->reg_cache_step;
1062 count += sprintf(buf, "%s registers\n", codec->name);
1063 for (i = 0; i < codec->reg_cache_size; i += step) {
1064 count += sprintf(buf + count, "%2x: ", i);
1065 if (count >= PAGE_SIZE - 1)
1068 if (codec->display_register)
1069 count += codec->display_register(codec, buf + count,
1070 PAGE_SIZE - count, i);
1072 count += snprintf(buf + count, PAGE_SIZE - count,
1073 "%4x", codec->read(codec, i));
1075 if (count >= PAGE_SIZE - 1)
1078 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
1079 if (count >= PAGE_SIZE - 1)
1083 /* Truncate count; min() would cause a warning */
1084 if (count >= PAGE_SIZE)
1085 count = PAGE_SIZE - 1;
1089 static ssize_t codec_reg_show(struct device *dev,
1090 struct device_attribute *attr, char *buf)
1092 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1093 return soc_codec_reg_show(devdata, buf);
1096 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1098 #ifdef CONFIG_DEBUG_FS
1099 static int codec_reg_open_file(struct inode *inode, struct file *file)
1101 file->private_data = inode->i_private;
1105 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
1106 size_t count, loff_t *ppos)
1109 struct snd_soc_codec *codec = file->private_data;
1110 struct device *card_dev = codec->card->dev;
1111 struct snd_soc_device *devdata = card_dev->driver_data;
1112 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1115 ret = soc_codec_reg_show(devdata, buf);
1117 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1122 static ssize_t codec_reg_write_file(struct file *file,
1123 const char __user *user_buf, size_t count, loff_t *ppos)
1128 unsigned long reg, value;
1130 struct snd_soc_codec *codec = file->private_data;
1132 buf_size = min(count, (sizeof(buf)-1));
1133 if (copy_from_user(buf, user_buf, buf_size))
1137 if (codec->reg_cache_step)
1138 step = codec->reg_cache_step;
1140 while (*start == ' ')
1142 reg = simple_strtoul(start, &start, 16);
1143 if ((reg >= codec->reg_cache_size) || (reg % step))
1145 while (*start == ' ')
1147 if (strict_strtoul(start, 16, &value))
1149 codec->write(codec, reg, value);
1153 static const struct file_operations codec_reg_fops = {
1154 .open = codec_reg_open_file,
1155 .read = codec_reg_read_file,
1156 .write = codec_reg_write_file,
1159 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1161 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
1162 debugfs_root, codec,
1164 if (!codec->debugfs_reg)
1166 "ASoC: Failed to create codec register debugfs file\n");
1168 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
1171 if (!codec->debugfs_pop_time)
1173 "Failed to create pop time debugfs file\n");
1176 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1178 debugfs_remove(codec->debugfs_pop_time);
1179 debugfs_remove(codec->debugfs_reg);
1184 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
1188 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
1194 * snd_soc_new_ac97_codec - initailise AC97 device
1195 * @codec: audio codec
1196 * @ops: AC97 bus operations
1197 * @num: AC97 codec number
1199 * Initialises AC97 codec resources for use by ad-hoc devices only.
1201 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1202 struct snd_ac97_bus_ops *ops, int num)
1204 mutex_lock(&codec->mutex);
1206 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1207 if (codec->ac97 == NULL) {
1208 mutex_unlock(&codec->mutex);
1212 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1213 if (codec->ac97->bus == NULL) {
1216 mutex_unlock(&codec->mutex);
1220 codec->ac97->bus->ops = ops;
1221 codec->ac97->num = num;
1222 mutex_unlock(&codec->mutex);
1225 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1228 * snd_soc_free_ac97_codec - free AC97 codec device
1229 * @codec: audio codec
1231 * Frees AC97 codec device resources.
1233 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1235 mutex_lock(&codec->mutex);
1236 kfree(codec->ac97->bus);
1239 mutex_unlock(&codec->mutex);
1241 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1244 * snd_soc_update_bits - update codec register bits
1245 * @codec: audio codec
1246 * @reg: codec register
1247 * @mask: register mask
1250 * Writes new register value.
1252 * Returns 1 for change else 0.
1254 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1255 unsigned short mask, unsigned short value)
1258 unsigned short old, new;
1260 mutex_lock(&io_mutex);
1261 old = snd_soc_read(codec, reg);
1262 new = (old & ~mask) | value;
1263 change = old != new;
1265 snd_soc_write(codec, reg, new);
1267 mutex_unlock(&io_mutex);
1270 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1273 * snd_soc_test_bits - test register for change
1274 * @codec: audio codec
1275 * @reg: codec register
1276 * @mask: register mask
1279 * Tests a register with a new value and checks if the new value is
1280 * different from the old value.
1282 * Returns 1 for change else 0.
1284 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1285 unsigned short mask, unsigned short value)
1288 unsigned short old, new;
1290 mutex_lock(&io_mutex);
1291 old = snd_soc_read(codec, reg);
1292 new = (old & ~mask) | value;
1293 change = old != new;
1294 mutex_unlock(&io_mutex);
1298 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1301 * snd_soc_new_pcms - create new sound card and pcms
1302 * @socdev: the SoC audio device
1303 * @idx: ALSA card index
1304 * @xid: card identification
1306 * Create a new sound card based upon the codec and interface pcms.
1308 * Returns 0 for success, else error.
1310 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1312 struct snd_soc_codec *codec = socdev->codec;
1313 struct snd_soc_card *card = socdev->card;
1316 mutex_lock(&codec->mutex);
1318 /* register a sound card */
1319 codec->card = snd_card_new(idx, xid, codec->owner, 0);
1321 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1323 mutex_unlock(&codec->mutex);
1327 codec->card->dev = socdev->dev;
1328 codec->card->private_data = codec;
1329 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1331 /* create the pcms */
1332 for (i = 0; i < card->num_links; i++) {
1333 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1335 printk(KERN_ERR "asoc: can't create pcm %s\n",
1336 card->dai_link[i].stream_name);
1337 mutex_unlock(&codec->mutex);
1342 mutex_unlock(&codec->mutex);
1345 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1348 * snd_soc_init_card - register sound card
1349 * @socdev: the SoC audio device
1351 * Register a SoC sound card. Also registers an AC97 device if the
1352 * codec is AC97 for ad hoc devices.
1354 * Returns 0 for success, else error.
1356 int snd_soc_init_card(struct snd_soc_device *socdev)
1358 struct snd_soc_codec *codec = socdev->codec;
1359 struct snd_soc_card *card = socdev->card;
1360 int ret = 0, i, ac97 = 0, err = 0;
1362 for (i = 0; i < card->num_links; i++) {
1363 if (card->dai_link[i].init) {
1364 err = card->dai_link[i].init(codec);
1366 printk(KERN_ERR "asoc: failed to init %s\n",
1367 card->dai_link[i].stream_name);
1371 if (card->dai_link[i].codec_dai->ac97_control)
1374 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1376 snprintf(codec->card->longname, sizeof(codec->card->longname),
1377 "%s (%s)", card->name, codec->name);
1379 ret = snd_card_register(codec->card);
1381 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1386 mutex_lock(&codec->mutex);
1387 #ifdef CONFIG_SND_SOC_AC97_BUS
1389 ret = soc_ac97_dev_register(codec);
1391 printk(KERN_ERR "asoc: AC97 device register failed\n");
1392 snd_card_free(codec->card);
1393 mutex_unlock(&codec->mutex);
1399 err = snd_soc_dapm_sys_add(socdev->dev);
1401 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1403 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1405 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1407 soc_init_codec_debugfs(socdev->codec);
1408 mutex_unlock(&codec->mutex);
1413 EXPORT_SYMBOL_GPL(snd_soc_init_card);
1416 * snd_soc_free_pcms - free sound card and pcms
1417 * @socdev: the SoC audio device
1419 * Frees sound card and pcms associated with the socdev.
1420 * Also unregister the codec if it is an AC97 device.
1422 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1424 struct snd_soc_codec *codec = socdev->codec;
1425 #ifdef CONFIG_SND_SOC_AC97_BUS
1426 struct snd_soc_dai *codec_dai;
1430 mutex_lock(&codec->mutex);
1431 soc_cleanup_codec_debugfs(socdev->codec);
1432 #ifdef CONFIG_SND_SOC_AC97_BUS
1433 for (i = 0; i < codec->num_dai; i++) {
1434 codec_dai = &codec->dai[i];
1435 if (codec_dai->ac97_control && codec->ac97) {
1436 soc_ac97_dev_unregister(codec);
1444 snd_card_free(codec->card);
1445 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1446 mutex_unlock(&codec->mutex);
1448 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1451 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1452 * @substream: the pcm substream
1453 * @hw: the hardware parameters
1455 * Sets the substream runtime hardware parameters.
1457 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1458 const struct snd_pcm_hardware *hw)
1460 struct snd_pcm_runtime *runtime = substream->runtime;
1461 runtime->hw.info = hw->info;
1462 runtime->hw.formats = hw->formats;
1463 runtime->hw.period_bytes_min = hw->period_bytes_min;
1464 runtime->hw.period_bytes_max = hw->period_bytes_max;
1465 runtime->hw.periods_min = hw->periods_min;
1466 runtime->hw.periods_max = hw->periods_max;
1467 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1468 runtime->hw.fifo_size = hw->fifo_size;
1471 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1474 * snd_soc_cnew - create new control
1475 * @_template: control template
1476 * @data: control private data
1477 * @long_name: control long name
1479 * Create a new mixer control from a template control.
1481 * Returns 0 for success, else error.
1483 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1484 void *data, char *long_name)
1486 struct snd_kcontrol_new template;
1488 memcpy(&template, _template, sizeof(template));
1490 template.name = long_name;
1493 return snd_ctl_new1(&template, data);
1495 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1498 * snd_soc_info_enum_double - enumerated double mixer info callback
1499 * @kcontrol: mixer control
1500 * @uinfo: control element information
1502 * Callback to provide information about a double enumerated
1505 * Returns 0 for success.
1507 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1508 struct snd_ctl_elem_info *uinfo)
1510 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1512 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1513 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1514 uinfo->value.enumerated.items = e->max;
1516 if (uinfo->value.enumerated.item > e->max - 1)
1517 uinfo->value.enumerated.item = e->max - 1;
1518 strcpy(uinfo->value.enumerated.name,
1519 e->texts[uinfo->value.enumerated.item]);
1522 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1525 * snd_soc_get_enum_double - enumerated double mixer get callback
1526 * @kcontrol: mixer control
1527 * @ucontrol: control element information
1529 * Callback to get the value of a double enumerated mixer.
1531 * Returns 0 for success.
1533 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1534 struct snd_ctl_elem_value *ucontrol)
1536 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1537 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1538 unsigned short val, bitmask;
1540 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1542 val = snd_soc_read(codec, e->reg);
1543 ucontrol->value.enumerated.item[0]
1544 = (val >> e->shift_l) & (bitmask - 1);
1545 if (e->shift_l != e->shift_r)
1546 ucontrol->value.enumerated.item[1] =
1547 (val >> e->shift_r) & (bitmask - 1);
1551 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1554 * snd_soc_put_enum_double - enumerated double mixer put callback
1555 * @kcontrol: mixer control
1556 * @ucontrol: control element information
1558 * Callback to set the value of a double enumerated mixer.
1560 * Returns 0 for success.
1562 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1563 struct snd_ctl_elem_value *ucontrol)
1565 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1566 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1568 unsigned short mask, bitmask;
1570 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1572 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1574 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1575 mask = (bitmask - 1) << e->shift_l;
1576 if (e->shift_l != e->shift_r) {
1577 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1579 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1580 mask |= (bitmask - 1) << e->shift_r;
1583 return snd_soc_update_bits(codec, e->reg, mask, val);
1585 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1588 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1589 * @kcontrol: mixer control
1590 * @ucontrol: control element information
1592 * Callback to get the value of a double semi enumerated mixer.
1594 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1595 * used for handling bitfield coded enumeration for example.
1597 * Returns 0 for success.
1599 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1600 struct snd_ctl_elem_value *ucontrol)
1602 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1603 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1604 unsigned short reg_val, val, mux;
1606 reg_val = snd_soc_read(codec, e->reg);
1607 val = (reg_val >> e->shift_l) & e->mask;
1608 for (mux = 0; mux < e->max; mux++) {
1609 if (val == e->values[mux])
1612 ucontrol->value.enumerated.item[0] = mux;
1613 if (e->shift_l != e->shift_r) {
1614 val = (reg_val >> e->shift_r) & e->mask;
1615 for (mux = 0; mux < e->max; mux++) {
1616 if (val == e->values[mux])
1619 ucontrol->value.enumerated.item[1] = mux;
1624 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1627 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1628 * @kcontrol: mixer control
1629 * @ucontrol: control element information
1631 * Callback to set the value of a double semi enumerated mixer.
1633 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1634 * used for handling bitfield coded enumeration for example.
1636 * Returns 0 for success.
1638 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1639 struct snd_ctl_elem_value *ucontrol)
1641 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1642 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1644 unsigned short mask;
1646 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1648 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1649 mask = e->mask << e->shift_l;
1650 if (e->shift_l != e->shift_r) {
1651 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1653 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1654 mask |= e->mask << e->shift_r;
1657 return snd_soc_update_bits(codec, e->reg, mask, val);
1659 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1662 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1663 * @kcontrol: mixer control
1664 * @uinfo: control element information
1666 * Callback to provide information about an external enumerated
1669 * Returns 0 for success.
1671 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1672 struct snd_ctl_elem_info *uinfo)
1674 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1676 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1678 uinfo->value.enumerated.items = e->max;
1680 if (uinfo->value.enumerated.item > e->max - 1)
1681 uinfo->value.enumerated.item = e->max - 1;
1682 strcpy(uinfo->value.enumerated.name,
1683 e->texts[uinfo->value.enumerated.item]);
1686 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1689 * snd_soc_info_volsw_ext - external single mixer info callback
1690 * @kcontrol: mixer control
1691 * @uinfo: control element information
1693 * Callback to provide information about a single external mixer control.
1695 * Returns 0 for success.
1697 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1698 struct snd_ctl_elem_info *uinfo)
1700 int max = kcontrol->private_value;
1703 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1705 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1708 uinfo->value.integer.min = 0;
1709 uinfo->value.integer.max = max;
1712 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1715 * snd_soc_info_volsw - single mixer info callback
1716 * @kcontrol: mixer control
1717 * @uinfo: control element information
1719 * Callback to provide information about a single mixer control.
1721 * Returns 0 for success.
1723 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1724 struct snd_ctl_elem_info *uinfo)
1726 struct soc_mixer_control *mc =
1727 (struct soc_mixer_control *)kcontrol->private_value;
1729 unsigned int shift = mc->shift;
1730 unsigned int rshift = mc->rshift;
1733 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1735 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1737 uinfo->count = shift == rshift ? 1 : 2;
1738 uinfo->value.integer.min = 0;
1739 uinfo->value.integer.max = max;
1742 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1745 * snd_soc_get_volsw - single mixer get callback
1746 * @kcontrol: mixer control
1747 * @ucontrol: control element information
1749 * Callback to get the value of a single mixer control.
1751 * Returns 0 for success.
1753 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1754 struct snd_ctl_elem_value *ucontrol)
1756 struct soc_mixer_control *mc =
1757 (struct soc_mixer_control *)kcontrol->private_value;
1758 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1759 unsigned int reg = mc->reg;
1760 unsigned int shift = mc->shift;
1761 unsigned int rshift = mc->rshift;
1763 unsigned int mask = (1 << fls(max)) - 1;
1764 unsigned int invert = mc->invert;
1766 ucontrol->value.integer.value[0] =
1767 (snd_soc_read(codec, reg) >> shift) & mask;
1768 if (shift != rshift)
1769 ucontrol->value.integer.value[1] =
1770 (snd_soc_read(codec, reg) >> rshift) & mask;
1772 ucontrol->value.integer.value[0] =
1773 max - ucontrol->value.integer.value[0];
1774 if (shift != rshift)
1775 ucontrol->value.integer.value[1] =
1776 max - ucontrol->value.integer.value[1];
1781 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1784 * snd_soc_put_volsw - single mixer put callback
1785 * @kcontrol: mixer control
1786 * @ucontrol: control element information
1788 * Callback to set the value of a single mixer control.
1790 * Returns 0 for success.
1792 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1793 struct snd_ctl_elem_value *ucontrol)
1795 struct soc_mixer_control *mc =
1796 (struct soc_mixer_control *)kcontrol->private_value;
1797 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1798 unsigned int reg = mc->reg;
1799 unsigned int shift = mc->shift;
1800 unsigned int rshift = mc->rshift;
1802 unsigned int mask = (1 << fls(max)) - 1;
1803 unsigned int invert = mc->invert;
1804 unsigned short val, val2, val_mask;
1806 val = (ucontrol->value.integer.value[0] & mask);
1809 val_mask = mask << shift;
1811 if (shift != rshift) {
1812 val2 = (ucontrol->value.integer.value[1] & mask);
1815 val_mask |= mask << rshift;
1816 val |= val2 << rshift;
1818 return snd_soc_update_bits(codec, reg, val_mask, val);
1820 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1823 * snd_soc_info_volsw_2r - double mixer info callback
1824 * @kcontrol: mixer control
1825 * @uinfo: control element information
1827 * Callback to provide information about a double mixer control that
1828 * spans 2 codec registers.
1830 * Returns 0 for success.
1832 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1833 struct snd_ctl_elem_info *uinfo)
1835 struct soc_mixer_control *mc =
1836 (struct soc_mixer_control *)kcontrol->private_value;
1840 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1842 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1845 uinfo->value.integer.min = 0;
1846 uinfo->value.integer.max = max;
1849 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1852 * snd_soc_get_volsw_2r - double mixer get callback
1853 * @kcontrol: mixer control
1854 * @ucontrol: control element information
1856 * Callback to get the value of a double mixer control that spans 2 registers.
1858 * Returns 0 for success.
1860 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1861 struct snd_ctl_elem_value *ucontrol)
1863 struct soc_mixer_control *mc =
1864 (struct soc_mixer_control *)kcontrol->private_value;
1865 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1866 unsigned int reg = mc->reg;
1867 unsigned int reg2 = mc->rreg;
1868 unsigned int shift = mc->shift;
1870 unsigned int mask = (1<<fls(max))-1;
1871 unsigned int invert = mc->invert;
1873 ucontrol->value.integer.value[0] =
1874 (snd_soc_read(codec, reg) >> shift) & mask;
1875 ucontrol->value.integer.value[1] =
1876 (snd_soc_read(codec, reg2) >> shift) & mask;
1878 ucontrol->value.integer.value[0] =
1879 max - ucontrol->value.integer.value[0];
1880 ucontrol->value.integer.value[1] =
1881 max - ucontrol->value.integer.value[1];
1886 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
1889 * snd_soc_put_volsw_2r - double mixer set callback
1890 * @kcontrol: mixer control
1891 * @ucontrol: control element information
1893 * Callback to set the value of a double mixer control that spans 2 registers.
1895 * Returns 0 for success.
1897 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
1898 struct snd_ctl_elem_value *ucontrol)
1900 struct soc_mixer_control *mc =
1901 (struct soc_mixer_control *)kcontrol->private_value;
1902 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1903 unsigned int reg = mc->reg;
1904 unsigned int reg2 = mc->rreg;
1905 unsigned int shift = mc->shift;
1907 unsigned int mask = (1 << fls(max)) - 1;
1908 unsigned int invert = mc->invert;
1910 unsigned short val, val2, val_mask;
1912 val_mask = mask << shift;
1913 val = (ucontrol->value.integer.value[0] & mask);
1914 val2 = (ucontrol->value.integer.value[1] & mask);
1922 val2 = val2 << shift;
1924 err = snd_soc_update_bits(codec, reg, val_mask, val);
1928 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
1931 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
1934 * snd_soc_info_volsw_s8 - signed mixer info callback
1935 * @kcontrol: mixer control
1936 * @uinfo: control element information
1938 * Callback to provide information about a signed mixer control.
1940 * Returns 0 for success.
1942 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
1943 struct snd_ctl_elem_info *uinfo)
1945 struct soc_mixer_control *mc =
1946 (struct soc_mixer_control *)kcontrol->private_value;
1950 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1952 uinfo->value.integer.min = 0;
1953 uinfo->value.integer.max = max-min;
1956 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
1959 * snd_soc_get_volsw_s8 - signed mixer get callback
1960 * @kcontrol: mixer control
1961 * @ucontrol: control element information
1963 * Callback to get the value of a signed mixer control.
1965 * Returns 0 for success.
1967 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
1968 struct snd_ctl_elem_value *ucontrol)
1970 struct soc_mixer_control *mc =
1971 (struct soc_mixer_control *)kcontrol->private_value;
1972 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1973 unsigned int reg = mc->reg;
1975 int val = snd_soc_read(codec, reg);
1977 ucontrol->value.integer.value[0] =
1978 ((signed char)(val & 0xff))-min;
1979 ucontrol->value.integer.value[1] =
1980 ((signed char)((val >> 8) & 0xff))-min;
1983 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
1986 * snd_soc_put_volsw_sgn - signed mixer put callback
1987 * @kcontrol: mixer control
1988 * @ucontrol: control element information
1990 * Callback to set the value of a signed mixer control.
1992 * Returns 0 for success.
1994 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
1995 struct snd_ctl_elem_value *ucontrol)
1997 struct soc_mixer_control *mc =
1998 (struct soc_mixer_control *)kcontrol->private_value;
1999 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2000 unsigned int reg = mc->reg;
2004 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2005 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2007 return snd_soc_update_bits(codec, reg, 0xffff, val);
2009 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2012 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2014 * @clk_id: DAI specific clock ID
2015 * @freq: new clock frequency in Hz
2016 * @dir: new clock direction - input/output.
2018 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2020 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2021 unsigned int freq, int dir)
2023 if (dai->ops.set_sysclk)
2024 return dai->ops.set_sysclk(dai, clk_id, freq, dir);
2028 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2031 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2033 * @div_id: DAI specific clock divider ID
2034 * @div: new clock divisor.
2036 * Configures the clock dividers. This is used to derive the best DAI bit and
2037 * frame clocks from the system or master clock. It's best to set the DAI bit
2038 * and frame clocks as low as possible to save system power.
2040 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2041 int div_id, int div)
2043 if (dai->ops.set_clkdiv)
2044 return dai->ops.set_clkdiv(dai, div_id, div);
2048 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2051 * snd_soc_dai_set_pll - configure DAI PLL.
2053 * @pll_id: DAI specific PLL ID
2054 * @freq_in: PLL input clock frequency in Hz
2055 * @freq_out: requested PLL output clock frequency in Hz
2057 * Configures and enables PLL to generate output clock based on input clock.
2059 int snd_soc_dai_set_pll(struct snd_soc_dai *dai,
2060 int pll_id, unsigned int freq_in, unsigned int freq_out)
2062 if (dai->ops.set_pll)
2063 return dai->ops.set_pll(dai, pll_id, freq_in, freq_out);
2067 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2070 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2072 * @fmt: SND_SOC_DAIFMT_ format value.
2074 * Configures the DAI hardware format and clocking.
2076 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2078 if (dai->ops.set_fmt)
2079 return dai->ops.set_fmt(dai, fmt);
2083 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2086 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2088 * @mask: DAI specific mask representing used slots.
2089 * @slots: Number of slots in use.
2091 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2094 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2095 unsigned int mask, int slots)
2097 if (dai->ops.set_sysclk)
2098 return dai->ops.set_tdm_slot(dai, mask, slots);
2102 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2105 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2107 * @tristate: tristate enable
2109 * Tristates the DAI so that others can use it.
2111 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2113 if (dai->ops.set_sysclk)
2114 return dai->ops.set_tristate(dai, tristate);
2118 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2121 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2123 * @mute: mute enable
2125 * Mutes the DAI DAC.
2127 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2129 if (dai->ops.digital_mute)
2130 return dai->ops.digital_mute(dai, mute);
2134 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2137 * snd_soc_register_card - Register a card with the ASoC core
2139 * @card: Card to register
2141 * Note that currently this is an internal only function: it will be
2142 * exposed to machine drivers after further backporting of ASoC v2
2143 * registration APIs.
2145 static int snd_soc_register_card(struct snd_soc_card *card)
2147 if (!card->name || !card->dev)
2150 INIT_LIST_HEAD(&card->list);
2151 card->instantiated = 0;
2153 mutex_lock(&client_mutex);
2154 list_add(&card->list, &card_list);
2155 snd_soc_instantiate_cards();
2156 mutex_unlock(&client_mutex);
2158 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2164 * snd_soc_unregister_card - Unregister a card with the ASoC core
2166 * @card: Card to unregister
2168 * Note that currently this is an internal only function: it will be
2169 * exposed to machine drivers after further backporting of ASoC v2
2170 * registration APIs.
2172 static int snd_soc_unregister_card(struct snd_soc_card *card)
2174 mutex_lock(&client_mutex);
2175 list_del(&card->list);
2176 mutex_unlock(&client_mutex);
2178 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2184 * snd_soc_register_dai - Register a DAI with the ASoC core
2186 * @dai: DAI to register
2188 int snd_soc_register_dai(struct snd_soc_dai *dai)
2193 /* The device should become mandatory over time */
2195 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2197 INIT_LIST_HEAD(&dai->list);
2199 mutex_lock(&client_mutex);
2200 list_add(&dai->list, &dai_list);
2201 snd_soc_instantiate_cards();
2202 mutex_unlock(&client_mutex);
2204 pr_debug("Registered DAI '%s'\n", dai->name);
2208 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2211 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2213 * @dai: DAI to unregister
2215 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2217 mutex_lock(&client_mutex);
2218 list_del(&dai->list);
2219 mutex_unlock(&client_mutex);
2221 pr_debug("Unregistered DAI '%s'\n", dai->name);
2223 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2226 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2228 * @dai: Array of DAIs to register
2229 * @count: Number of DAIs
2231 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2235 for (i = 0; i < count; i++) {
2236 ret = snd_soc_register_dai(&dai[i]);
2244 for (i--; i >= 0; i--)
2245 snd_soc_unregister_dai(&dai[i]);
2249 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2252 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2254 * @dai: Array of DAIs to unregister
2255 * @count: Number of DAIs
2257 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2261 for (i = 0; i < count; i++)
2262 snd_soc_unregister_dai(&dai[i]);
2264 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2267 * snd_soc_register_platform - Register a platform with the ASoC core
2269 * @platform: platform to register
2271 int snd_soc_register_platform(struct snd_soc_platform *platform)
2273 if (!platform->name)
2276 INIT_LIST_HEAD(&platform->list);
2278 mutex_lock(&client_mutex);
2279 list_add(&platform->list, &platform_list);
2280 snd_soc_instantiate_cards();
2281 mutex_unlock(&client_mutex);
2283 pr_debug("Registered platform '%s'\n", platform->name);
2287 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2290 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2292 * @platform: platform to unregister
2294 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2296 mutex_lock(&client_mutex);
2297 list_del(&platform->list);
2298 mutex_unlock(&client_mutex);
2300 pr_debug("Unregistered platform '%s'\n", platform->name);
2302 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2305 * snd_soc_register_codec - Register a codec with the ASoC core
2307 * @codec: codec to register
2309 int snd_soc_register_codec(struct snd_soc_codec *codec)
2314 /* The device should become mandatory over time */
2316 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2318 INIT_LIST_HEAD(&codec->list);
2320 mutex_lock(&client_mutex);
2321 list_add(&codec->list, &codec_list);
2322 snd_soc_instantiate_cards();
2323 mutex_unlock(&client_mutex);
2325 pr_debug("Registered codec '%s'\n", codec->name);
2329 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2332 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2334 * @codec: codec to unregister
2336 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2338 mutex_lock(&client_mutex);
2339 list_del(&codec->list);
2340 mutex_unlock(&client_mutex);
2342 pr_debug("Unregistered codec '%s'\n", codec->name);
2344 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2346 static int __init snd_soc_init(void)
2348 #ifdef CONFIG_DEBUG_FS
2349 debugfs_root = debugfs_create_dir("asoc", NULL);
2350 if (IS_ERR(debugfs_root) || !debugfs_root) {
2352 "ASoC: Failed to create debugfs directory\n");
2353 debugfs_root = NULL;
2357 return platform_driver_register(&soc_driver);
2360 static void __exit snd_soc_exit(void)
2362 #ifdef CONFIG_DEBUG_FS
2363 debugfs_remove_recursive(debugfs_root);
2365 platform_driver_unregister(&soc_driver);
2368 module_init(snd_soc_init);
2369 module_exit(snd_soc_exit);
2371 /* Module information */
2372 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2373 MODULE_DESCRIPTION("ALSA SoC Core");
2374 MODULE_LICENSE("GPL");
2375 MODULE_ALIAS("platform:soc-audio");