2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
21 #include "ext4_jbd2.h"
25 * balloc.c contains the blocks allocation and deallocation routines
29 * Calculate the block group number and offset, given a block number
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
34 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47 ext4_group_t block_group)
49 ext4_group_t actual_group;
50 ext4_get_group_no_and_offset(sb, block, &actual_group, 0);
51 if (actual_group == block_group)
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57 ext4_group_t block_group)
60 struct ext4_sb_info *sbi = EXT4_SB(sb);
61 /* block bitmap, inode bitmap, and inode table blocks */
62 int used_blocks = sbi->s_itb_per_group + 2;
64 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65 struct ext4_group_desc *gdp;
66 struct buffer_head *bh;
68 gdp = ext4_get_group_desc(sb, block_group, &bh);
69 if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
73 if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
77 tmp = ext4_inode_table(sb, gdp);
78 for (; tmp < ext4_inode_table(sb, gdp) +
79 sbi->s_itb_per_group; tmp++) {
80 if (!ext4_block_in_group(sb, tmp, block_group))
86 /* Initializes an uninitialized block bitmap if given, and returns the
87 * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89 ext4_group_t block_group, struct ext4_group_desc *gdp)
92 unsigned free_blocks, group_blocks;
93 struct ext4_sb_info *sbi = EXT4_SB(sb);
96 J_ASSERT_BH(bh, buffer_locked(bh));
98 /* If checksum is bad mark all blocks used to prevent allocation
99 * essentially implementing a per-group read-only flag. */
100 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101 ext4_error(sb, __func__,
102 "Checksum bad for group %lu\n", block_group);
103 gdp->bg_free_blocks_count = 0;
104 gdp->bg_free_inodes_count = 0;
105 gdp->bg_itable_unused = 0;
106 memset(bh->b_data, 0xff, sb->s_blocksize);
109 memset(bh->b_data, 0, sb->s_blocksize);
112 /* Check for superblock and gdt backups in this group */
113 bit_max = ext4_bg_has_super(sb, block_group);
115 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117 sbi->s_desc_per_block) {
119 bit_max += ext4_bg_num_gdb(sb, block_group);
121 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
123 } else { /* For META_BG_BLOCK_GROUPS */
124 int group_rel = (block_group -
125 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
126 EXT4_DESC_PER_BLOCK(sb);
127 if (group_rel == 0 || group_rel == 1 ||
128 (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
132 if (block_group == sbi->s_groups_count - 1) {
134 * Even though mke2fs always initialize first and last group
135 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
136 * to make sure we calculate the right free blocks
138 group_blocks = ext4_blocks_count(sbi->s_es) -
139 le32_to_cpu(sbi->s_es->s_first_data_block) -
140 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
142 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
145 free_blocks = group_blocks - bit_max;
148 ext4_fsblk_t start, tmp;
151 for (bit = 0; bit < bit_max; bit++)
152 ext4_set_bit(bit, bh->b_data);
154 start = ext4_group_first_block_no(sb, block_group);
156 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
157 EXT4_FEATURE_INCOMPAT_FLEX_BG))
160 /* Set bits for block and inode bitmaps, and inode table */
161 tmp = ext4_block_bitmap(sb, gdp);
162 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
163 ext4_set_bit(tmp - start, bh->b_data);
165 tmp = ext4_inode_bitmap(sb, gdp);
166 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
167 ext4_set_bit(tmp - start, bh->b_data);
169 tmp = ext4_inode_table(sb, gdp);
170 for (; tmp < ext4_inode_table(sb, gdp) +
171 sbi->s_itb_per_group; tmp++) {
173 ext4_block_in_group(sb, tmp, block_group))
174 ext4_set_bit(tmp - start, bh->b_data);
177 * Also if the number of blocks within the group is
178 * less than the blocksize * 8 ( which is the size
179 * of bitmap ), set rest of the block bitmap to 1
181 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
183 return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
188 * The free blocks are managed by bitmaps. A file system contains several
189 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
190 * block for inodes, N blocks for the inode table and data blocks.
192 * The file system contains group descriptors which are located after the
193 * super block. Each descriptor contains the number of the bitmap block and
194 * the free blocks count in the block. The descriptors are loaded in memory
195 * when a file system is mounted (see ext4_fill_super).
199 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
202 * ext4_get_group_desc() -- load group descriptor from disk
204 * @block_group: given block group
205 * @bh: pointer to the buffer head to store the block
208 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
209 ext4_group_t block_group,
210 struct buffer_head ** bh)
212 unsigned long group_desc;
213 unsigned long offset;
214 struct ext4_group_desc * desc;
215 struct ext4_sb_info *sbi = EXT4_SB(sb);
217 if (block_group >= sbi->s_groups_count) {
218 ext4_error (sb, "ext4_get_group_desc",
219 "block_group >= groups_count - "
220 "block_group = %lu, groups_count = %lu",
221 block_group, sbi->s_groups_count);
227 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
228 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
229 if (!sbi->s_group_desc[group_desc]) {
230 ext4_error (sb, "ext4_get_group_desc",
231 "Group descriptor not loaded - "
232 "block_group = %lu, group_desc = %lu, desc = %lu",
233 block_group, group_desc, offset);
237 desc = (struct ext4_group_desc *)(
238 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
239 offset * EXT4_DESC_SIZE(sb));
241 *bh = sbi->s_group_desc[group_desc];
245 static int ext4_valid_block_bitmap(struct super_block *sb,
246 struct ext4_group_desc *desc,
247 unsigned int block_group,
248 struct buffer_head *bh)
250 ext4_grpblk_t offset;
251 ext4_grpblk_t next_zero_bit;
252 ext4_fsblk_t bitmap_blk;
253 ext4_fsblk_t group_first_block;
255 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
256 /* with FLEX_BG, the inode/block bitmaps and itable
257 * blocks may not be in the group at all
258 * so the bitmap validation will be skipped for those groups
259 * or it has to also read the block group where the bitmaps
260 * are located to verify they are set.
264 group_first_block = ext4_group_first_block_no(sb, block_group);
266 /* check whether block bitmap block number is set */
267 bitmap_blk = ext4_block_bitmap(sb, desc);
268 offset = bitmap_blk - group_first_block;
269 if (!ext4_test_bit(offset, bh->b_data))
270 /* bad block bitmap */
273 /* check whether the inode bitmap block number is set */
274 bitmap_blk = ext4_inode_bitmap(sb, desc);
275 offset = bitmap_blk - group_first_block;
276 if (!ext4_test_bit(offset, bh->b_data))
277 /* bad block bitmap */
280 /* check whether the inode table block number is set */
281 bitmap_blk = ext4_inode_table(sb, desc);
282 offset = bitmap_blk - group_first_block;
283 next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
284 offset + EXT4_SB(sb)->s_itb_per_group,
286 if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
287 /* good bitmap for inode tables */
291 ext4_error(sb, __func__,
292 "Invalid block bitmap - "
293 "block_group = %d, block = %llu",
294 block_group, bitmap_blk);
298 * read_block_bitmap()
300 * @block_group: given block group
302 * Read the bitmap for a given block_group,and validate the
303 * bits for block/inode/inode tables are set in the bitmaps
305 * Return buffer_head on success or NULL in case of failure.
308 read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
310 struct ext4_group_desc * desc;
311 struct buffer_head * bh = NULL;
312 ext4_fsblk_t bitmap_blk;
314 desc = ext4_get_group_desc(sb, block_group, NULL);
317 bitmap_blk = ext4_block_bitmap(sb, desc);
318 bh = sb_getblk(sb, bitmap_blk);
320 ext4_error(sb, __func__,
321 "Cannot read block bitmap - "
322 "block_group = %d, block_bitmap = %llu",
323 (int)block_group, (unsigned long long)bitmap_blk);
326 if (bh_uptodate_or_lock(bh))
329 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
330 ext4_init_block_bitmap(sb, bh, block_group, desc);
331 set_buffer_uptodate(bh);
335 if (bh_submit_read(bh) < 0) {
337 ext4_error(sb, __func__,
338 "Cannot read block bitmap - "
339 "block_group = %d, block_bitmap = %llu",
340 (int)block_group, (unsigned long long)bitmap_blk);
343 ext4_valid_block_bitmap(sb, desc, block_group, bh);
345 * file system mounted not to panic on error,
346 * continue with corrupt bitmap
351 * The reservation window structure operations
352 * --------------------------------------------
353 * Operations include:
354 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
356 * We use a red-black tree to represent per-filesystem reservation
362 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
363 * @rb_root: root of per-filesystem reservation rb tree
364 * @verbose: verbose mode
365 * @fn: function which wishes to dump the reservation map
367 * If verbose is turned on, it will print the whole block reservation
368 * windows(start, end). Otherwise, it will only print out the "bad" windows,
369 * those windows that overlap with their immediate neighbors.
372 static void __rsv_window_dump(struct rb_root *root, int verbose,
376 struct ext4_reserve_window_node *rsv, *prev;
384 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
386 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
388 printk("reservation window 0x%p "
389 "start: %llu, end: %llu\n",
390 rsv, rsv->rsv_start, rsv->rsv_end);
391 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
392 printk("Bad reservation %p (start >= end)\n",
396 if (prev && prev->rsv_end >= rsv->rsv_start) {
397 printk("Bad reservation %p (prev->end >= start)\n",
403 printk("Restarting reservation walk in verbose mode\n");
411 printk("Window map complete.\n");
415 #define rsv_window_dump(root, verbose) \
416 __rsv_window_dump((root), (verbose), __func__)
418 #define rsv_window_dump(root, verbose) do {} while (0)
422 * goal_in_my_reservation()
423 * @rsv: inode's reservation window
424 * @grp_goal: given goal block relative to the allocation block group
425 * @group: the current allocation block group
426 * @sb: filesystem super block
428 * Test if the given goal block (group relative) is within the file's
429 * own block reservation window range.
431 * If the reservation window is outside the goal allocation group, return 0;
432 * grp_goal (given goal block) could be -1, which means no specific
433 * goal block. In this case, always return 1.
434 * If the goal block is within the reservation window, return 1;
435 * otherwise, return 0;
438 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
439 ext4_group_t group, struct super_block *sb)
441 ext4_fsblk_t group_first_block, group_last_block;
443 group_first_block = ext4_group_first_block_no(sb, group);
444 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
446 if ((rsv->_rsv_start > group_last_block) ||
447 (rsv->_rsv_end < group_first_block))
449 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
450 || (grp_goal + group_first_block > rsv->_rsv_end)))
456 * search_reserve_window()
457 * @rb_root: root of reservation tree
458 * @goal: target allocation block
460 * Find the reserved window which includes the goal, or the previous one
461 * if the goal is not in any window.
462 * Returns NULL if there are no windows or if all windows start after the goal.
464 static struct ext4_reserve_window_node *
465 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
467 struct rb_node *n = root->rb_node;
468 struct ext4_reserve_window_node *rsv;
474 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
476 if (goal < rsv->rsv_start)
478 else if (goal > rsv->rsv_end)
484 * We've fallen off the end of the tree: the goal wasn't inside
485 * any particular node. OK, the previous node must be to one
486 * side of the interval containing the goal. If it's the RHS,
487 * we need to back up one.
489 if (rsv->rsv_start > goal) {
490 n = rb_prev(&rsv->rsv_node);
491 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
497 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
499 * @rsv: reservation window to add
501 * Must be called with rsv_lock hold.
503 void ext4_rsv_window_add(struct super_block *sb,
504 struct ext4_reserve_window_node *rsv)
506 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
507 struct rb_node *node = &rsv->rsv_node;
508 ext4_fsblk_t start = rsv->rsv_start;
510 struct rb_node ** p = &root->rb_node;
511 struct rb_node * parent = NULL;
512 struct ext4_reserve_window_node *this;
517 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
519 if (start < this->rsv_start)
521 else if (start > this->rsv_end)
524 rsv_window_dump(root, 1);
529 rb_link_node(node, parent, p);
530 rb_insert_color(node, root);
534 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
536 * @rsv: reservation window to remove
538 * Mark the block reservation window as not allocated, and unlink it
539 * from the filesystem reservation window rb tree. Must be called with
542 static void rsv_window_remove(struct super_block *sb,
543 struct ext4_reserve_window_node *rsv)
545 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
546 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
547 rsv->rsv_alloc_hit = 0;
548 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
552 * rsv_is_empty() -- Check if the reservation window is allocated.
553 * @rsv: given reservation window to check
555 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
557 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
559 /* a valid reservation end block could not be 0 */
560 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
564 * ext4_init_block_alloc_info()
565 * @inode: file inode structure
567 * Allocate and initialize the reservation window structure, and
568 * link the window to the ext4 inode structure at last
570 * The reservation window structure is only dynamically allocated
571 * and linked to ext4 inode the first time the open file
572 * needs a new block. So, before every ext4_new_block(s) call, for
573 * regular files, we should check whether the reservation window
574 * structure exists or not. In the latter case, this function is called.
575 * Fail to do so will result in block reservation being turned off for that
578 * This function is called from ext4_get_blocks_handle(), also called
579 * when setting the reservation window size through ioctl before the file
580 * is open for write (needs block allocation).
582 * Needs down_write(i_data_sem) protection prior to call this function.
584 void ext4_init_block_alloc_info(struct inode *inode)
586 struct ext4_inode_info *ei = EXT4_I(inode);
587 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
588 struct super_block *sb = inode->i_sb;
590 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
592 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
594 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
595 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
598 * if filesystem is mounted with NORESERVATION, the goal
599 * reservation window size is set to zero to indicate
600 * block reservation is off
602 if (!test_opt(sb, RESERVATION))
603 rsv->rsv_goal_size = 0;
605 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
606 rsv->rsv_alloc_hit = 0;
607 block_i->last_alloc_logical_block = 0;
608 block_i->last_alloc_physical_block = 0;
610 ei->i_block_alloc_info = block_i;
614 * ext4_discard_reservation()
617 * Discard(free) block reservation window on last file close, or truncate
620 * It is being called in three cases:
621 * ext4_release_file(): last writer close the file
622 * ext4_clear_inode(): last iput(), when nobody link to this file.
623 * ext4_truncate(): when the block indirect map is about to change.
626 void ext4_discard_reservation(struct inode *inode)
628 struct ext4_inode_info *ei = EXT4_I(inode);
629 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
630 struct ext4_reserve_window_node *rsv;
631 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
633 ext4_mb_discard_inode_preallocations(inode);
638 rsv = &block_i->rsv_window_node;
639 if (!rsv_is_empty(&rsv->rsv_window)) {
641 if (!rsv_is_empty(&rsv->rsv_window))
642 rsv_window_remove(inode->i_sb, rsv);
643 spin_unlock(rsv_lock);
648 * ext4_free_blocks_sb() -- Free given blocks and update quota
649 * @handle: handle to this transaction
651 * @block: start physcial block to free
652 * @count: number of blocks to free
653 * @pdquot_freed_blocks: pointer to quota
655 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
656 ext4_fsblk_t block, unsigned long count,
657 unsigned long *pdquot_freed_blocks)
659 struct buffer_head *bitmap_bh = NULL;
660 struct buffer_head *gd_bh;
661 ext4_group_t block_group;
664 unsigned long overflow;
665 struct ext4_group_desc * desc;
666 struct ext4_super_block * es;
667 struct ext4_sb_info *sbi;
669 ext4_grpblk_t group_freed;
671 *pdquot_freed_blocks = 0;
674 if (block < le32_to_cpu(es->s_first_data_block) ||
675 block + count < block ||
676 block + count > ext4_blocks_count(es)) {
677 ext4_error (sb, "ext4_free_blocks",
678 "Freeing blocks not in datazone - "
679 "block = %llu, count = %lu", block, count);
683 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
687 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
689 * Check to see if we are freeing blocks across a group
692 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
693 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
697 bitmap_bh = read_block_bitmap(sb, block_group);
700 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
704 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
705 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
706 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
707 in_range(block + count - 1, ext4_inode_table(sb, desc),
708 sbi->s_itb_per_group)) {
709 ext4_error (sb, "ext4_free_blocks",
710 "Freeing blocks in system zones - "
711 "Block = %llu, count = %lu",
717 * We are about to start releasing blocks in the bitmap,
718 * so we need undo access.
720 /* @@@ check errors */
721 BUFFER_TRACE(bitmap_bh, "getting undo access");
722 err = ext4_journal_get_undo_access(handle, bitmap_bh);
727 * We are about to modify some metadata. Call the journal APIs
728 * to unshare ->b_data if a currently-committing transaction is
731 BUFFER_TRACE(gd_bh, "get_write_access");
732 err = ext4_journal_get_write_access(handle, gd_bh);
736 jbd_lock_bh_state(bitmap_bh);
738 for (i = 0, group_freed = 0; i < count; i++) {
740 * An HJ special. This is expensive...
742 #ifdef CONFIG_JBD2_DEBUG
743 jbd_unlock_bh_state(bitmap_bh);
745 struct buffer_head *debug_bh;
746 debug_bh = sb_find_get_block(sb, block + i);
748 BUFFER_TRACE(debug_bh, "Deleted!");
749 if (!bh2jh(bitmap_bh)->b_committed_data)
750 BUFFER_TRACE(debug_bh,
751 "No commited data in bitmap");
752 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
756 jbd_lock_bh_state(bitmap_bh);
758 if (need_resched()) {
759 jbd_unlock_bh_state(bitmap_bh);
761 jbd_lock_bh_state(bitmap_bh);
763 /* @@@ This prevents newly-allocated data from being
764 * freed and then reallocated within the same
767 * Ideally we would want to allow that to happen, but to
768 * do so requires making jbd2_journal_forget() capable of
769 * revoking the queued write of a data block, which
770 * implies blocking on the journal lock. *forget()
771 * cannot block due to truncate races.
773 * Eventually we can fix this by making jbd2_journal_forget()
774 * return a status indicating whether or not it was able
775 * to revoke the buffer. On successful revoke, it is
776 * safe not to set the allocation bit in the committed
777 * bitmap, because we know that there is no outstanding
778 * activity on the buffer any more and so it is safe to
781 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
782 J_ASSERT_BH(bitmap_bh,
783 bh2jh(bitmap_bh)->b_committed_data != NULL);
784 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
785 bh2jh(bitmap_bh)->b_committed_data);
788 * We clear the bit in the bitmap after setting the committed
789 * data bit, because this is the reverse order to that which
790 * the allocator uses.
792 BUFFER_TRACE(bitmap_bh, "clear bit");
793 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
794 bit + i, bitmap_bh->b_data)) {
795 jbd_unlock_bh_state(bitmap_bh);
796 ext4_error(sb, __func__,
797 "bit already cleared for block %llu",
798 (ext4_fsblk_t)(block + i));
799 jbd_lock_bh_state(bitmap_bh);
800 BUFFER_TRACE(bitmap_bh, "bit already cleared");
805 jbd_unlock_bh_state(bitmap_bh);
807 spin_lock(sb_bgl_lock(sbi, block_group));
808 le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
809 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
810 spin_unlock(sb_bgl_lock(sbi, block_group));
811 percpu_counter_add(&sbi->s_freeblocks_counter, count);
813 /* We dirtied the bitmap block */
814 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
815 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
817 /* And the group descriptor block */
818 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
819 ret = ext4_journal_dirty_metadata(handle, gd_bh);
821 *pdquot_freed_blocks += group_freed;
823 if (overflow && !err) {
831 ext4_std_error(sb, err);
836 * ext4_free_blocks() -- Free given blocks and update quota
837 * @handle: handle for this transaction
839 * @block: start physical block to free
840 * @count: number of blocks to count
841 * @metadata: Are these metadata blocks
843 void ext4_free_blocks(handle_t *handle, struct inode *inode,
844 ext4_fsblk_t block, unsigned long count,
847 struct super_block * sb;
848 unsigned long dquot_freed_blocks;
850 /* this isn't the right place to decide whether block is metadata
851 * inode.c/extents.c knows better, but for safety ... */
852 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
853 ext4_should_journal_data(inode))
858 if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
859 ext4_free_blocks_sb(handle, sb, block, count,
860 &dquot_freed_blocks);
862 ext4_mb_free_blocks(handle, inode, block, count,
863 metadata, &dquot_freed_blocks);
864 if (dquot_freed_blocks)
865 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
870 * ext4_test_allocatable()
871 * @nr: given allocation block group
872 * @bh: bufferhead contains the bitmap of the given block group
874 * For ext4 allocations, we must not reuse any blocks which are
875 * allocated in the bitmap buffer's "last committed data" copy. This
876 * prevents deletes from freeing up the page for reuse until we have
877 * committed the delete transaction.
879 * If we didn't do this, then deleting something and reallocating it as
880 * data would allow the old block to be overwritten before the
881 * transaction committed (because we force data to disk before commit).
882 * This would lead to corruption if we crashed between overwriting the
883 * data and committing the delete.
885 * @@@ We may want to make this allocation behaviour conditional on
886 * data-writes at some point, and disable it for metadata allocations or
889 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
892 struct journal_head *jh = bh2jh(bh);
894 if (ext4_test_bit(nr, bh->b_data))
897 jbd_lock_bh_state(bh);
898 if (!jh->b_committed_data)
901 ret = !ext4_test_bit(nr, jh->b_committed_data);
902 jbd_unlock_bh_state(bh);
907 * bitmap_search_next_usable_block()
908 * @start: the starting block (group relative) of the search
909 * @bh: bufferhead contains the block group bitmap
910 * @maxblocks: the ending block (group relative) of the reservation
912 * The bitmap search --- search forward alternately through the actual
913 * bitmap on disk and the last-committed copy in journal, until we find a
914 * bit free in both bitmaps.
917 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
918 ext4_grpblk_t maxblocks)
921 struct journal_head *jh = bh2jh(bh);
923 while (start < maxblocks) {
924 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
925 if (next >= maxblocks)
927 if (ext4_test_allocatable(next, bh))
929 jbd_lock_bh_state(bh);
930 if (jh->b_committed_data)
931 start = ext4_find_next_zero_bit(jh->b_committed_data,
933 jbd_unlock_bh_state(bh);
939 * find_next_usable_block()
940 * @start: the starting block (group relative) to find next
941 * allocatable block in bitmap.
942 * @bh: bufferhead contains the block group bitmap
943 * @maxblocks: the ending block (group relative) for the search
945 * Find an allocatable block in a bitmap. We honor both the bitmap and
946 * its last-committed copy (if that exists), and perform the "most
947 * appropriate allocation" algorithm of looking for a free block near
948 * the initial goal; then for a free byte somewhere in the bitmap; then
949 * for any free bit in the bitmap.
952 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
953 ext4_grpblk_t maxblocks)
955 ext4_grpblk_t here, next;
960 * The goal was occupied; search forward for a free
961 * block within the next XX blocks.
963 * end_goal is more or less random, but it has to be
964 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
965 * next 64-bit boundary is simple..
967 ext4_grpblk_t end_goal = (start + 63) & ~63;
968 if (end_goal > maxblocks)
969 end_goal = maxblocks;
970 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
971 if (here < end_goal && ext4_test_allocatable(here, bh))
973 ext4_debug("Bit not found near goal\n");
980 p = ((char *)bh->b_data) + (here >> 3);
981 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
982 next = (r - ((char *)bh->b_data)) << 3;
984 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
988 * The bitmap search --- search forward alternately through the actual
989 * bitmap and the last-committed copy until we find a bit free in
992 here = bitmap_search_next_usable_block(here, bh, maxblocks);
998 * @block: the free block (group relative) to allocate
999 * @bh: the bufferhead containts the block group bitmap
1001 * We think we can allocate this block in this bitmap. Try to set the bit.
1002 * If that succeeds then check that nobody has allocated and then freed the
1003 * block since we saw that is was not marked in b_committed_data. If it _was_
1004 * allocated and freed then clear the bit in the bitmap again and return
1008 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1010 struct journal_head *jh = bh2jh(bh);
1013 if (ext4_set_bit_atomic(lock, block, bh->b_data))
1015 jbd_lock_bh_state(bh);
1016 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1017 ext4_clear_bit_atomic(lock, block, bh->b_data);
1022 jbd_unlock_bh_state(bh);
1027 * ext4_try_to_allocate()
1029 * @handle: handle to this transaction
1030 * @group: given allocation block group
1031 * @bitmap_bh: bufferhead holds the block bitmap
1032 * @grp_goal: given target block within the group
1033 * @count: target number of blocks to allocate
1034 * @my_rsv: reservation window
1036 * Attempt to allocate blocks within a give range. Set the range of allocation
1037 * first, then find the first free bit(s) from the bitmap (within the range),
1038 * and at last, allocate the blocks by claiming the found free bit as allocated.
1040 * To set the range of this allocation:
1041 * if there is a reservation window, only try to allocate block(s) from the
1042 * file's own reservation window;
1043 * Otherwise, the allocation range starts from the give goal block, ends at
1044 * the block group's last block.
1046 * If we failed to allocate the desired block then we may end up crossing to a
1047 * new bitmap. In that case we must release write access to the old one via
1048 * ext4_journal_release_buffer(), else we'll run out of credits.
1050 static ext4_grpblk_t
1051 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1052 ext4_group_t group, struct buffer_head *bitmap_bh,
1053 ext4_grpblk_t grp_goal, unsigned long *count,
1054 struct ext4_reserve_window *my_rsv)
1056 ext4_fsblk_t group_first_block;
1057 ext4_grpblk_t start, end;
1058 unsigned long num = 0;
1060 /* we do allocation within the reservation window if we have a window */
1062 group_first_block = ext4_group_first_block_no(sb, group);
1063 if (my_rsv->_rsv_start >= group_first_block)
1064 start = my_rsv->_rsv_start - group_first_block;
1066 /* reservation window cross group boundary */
1068 end = my_rsv->_rsv_end - group_first_block + 1;
1069 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1070 /* reservation window crosses group boundary */
1071 end = EXT4_BLOCKS_PER_GROUP(sb);
1072 if ((start <= grp_goal) && (grp_goal < end))
1081 end = EXT4_BLOCKS_PER_GROUP(sb);
1084 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1087 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1088 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1094 for (i = 0; i < 7 && grp_goal > start &&
1095 ext4_test_allocatable(grp_goal - 1,
1103 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1104 grp_goal, bitmap_bh)) {
1106 * The block was allocated by another thread, or it was
1107 * allocated and then freed by another thread
1117 while (num < *count && grp_goal < end
1118 && ext4_test_allocatable(grp_goal, bitmap_bh)
1119 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1120 grp_goal, bitmap_bh)) {
1125 return grp_goal - num;
1132 * find_next_reservable_window():
1133 * find a reservable space within the given range.
1134 * It does not allocate the reservation window for now:
1135 * alloc_new_reservation() will do the work later.
1137 * @search_head: the head of the searching list;
1138 * This is not necessarily the list head of the whole filesystem
1140 * We have both head and start_block to assist the search
1141 * for the reservable space. The list starts from head,
1142 * but we will shift to the place where start_block is,
1143 * then start from there, when looking for a reservable space.
1145 * @size: the target new reservation window size
1147 * @group_first_block: the first block we consider to start
1148 * the real search from
1151 * the maximum block number that our goal reservable space
1152 * could start from. This is normally the last block in this
1153 * group. The search will end when we found the start of next
1154 * possible reservable space is out of this boundary.
1155 * This could handle the cross boundary reservation window
1158 * basically we search from the given range, rather than the whole
1159 * reservation double linked list, (start_block, last_block)
1160 * to find a free region that is of my size and has not
1164 static int find_next_reservable_window(
1165 struct ext4_reserve_window_node *search_head,
1166 struct ext4_reserve_window_node *my_rsv,
1167 struct super_block * sb,
1168 ext4_fsblk_t start_block,
1169 ext4_fsblk_t last_block)
1171 struct rb_node *next;
1172 struct ext4_reserve_window_node *rsv, *prev;
1174 int size = my_rsv->rsv_goal_size;
1176 /* TODO: make the start of the reservation window byte-aligned */
1177 /* cur = *start_block & ~7;*/
1184 if (cur <= rsv->rsv_end)
1185 cur = rsv->rsv_end + 1;
1188 * in the case we could not find a reservable space
1189 * that is what is expected, during the re-search, we could
1190 * remember what's the largest reservable space we could have
1191 * and return that one.
1193 * For now it will fail if we could not find the reservable
1194 * space with expected-size (or more)...
1196 if (cur > last_block)
1197 return -1; /* fail */
1200 next = rb_next(&rsv->rsv_node);
1201 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1204 * Reached the last reservation, we can just append to the
1210 if (cur + size <= rsv->rsv_start) {
1212 * Found a reserveable space big enough. We could
1213 * have a reservation across the group boundary here
1219 * we come here either :
1220 * when we reach the end of the whole list,
1221 * and there is empty reservable space after last entry in the list.
1222 * append it to the end of the list.
1224 * or we found one reservable space in the middle of the list,
1225 * return the reservation window that we could append to.
1229 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1230 rsv_window_remove(sb, my_rsv);
1233 * Let's book the whole avaliable window for now. We will check the
1234 * disk bitmap later and then, if there are free blocks then we adjust
1235 * the window size if it's larger than requested.
1236 * Otherwise, we will remove this node from the tree next time
1237 * call find_next_reservable_window.
1239 my_rsv->rsv_start = cur;
1240 my_rsv->rsv_end = cur + size - 1;
1241 my_rsv->rsv_alloc_hit = 0;
1244 ext4_rsv_window_add(sb, my_rsv);
1250 * alloc_new_reservation()--allocate a new reservation window
1252 * To make a new reservation, we search part of the filesystem
1253 * reservation list (the list that inside the group). We try to
1254 * allocate a new reservation window near the allocation goal,
1255 * or the beginning of the group, if there is no goal.
1257 * We first find a reservable space after the goal, then from
1258 * there, we check the bitmap for the first free block after
1259 * it. If there is no free block until the end of group, then the
1260 * whole group is full, we failed. Otherwise, check if the free
1261 * block is inside the expected reservable space, if so, we
1263 * If the first free block is outside the reservable space, then
1264 * start from the first free block, we search for next available
1267 * on succeed, a new reservation will be found and inserted into the list
1268 * It contains at least one free block, and it does not overlap with other
1269 * reservation windows.
1271 * failed: we failed to find a reservation window in this group
1273 * @rsv: the reservation
1275 * @grp_goal: The goal (group-relative). It is where the search for a
1276 * free reservable space should start from.
1277 * if we have a grp_goal(grp_goal >0 ), then start from there,
1278 * no grp_goal(grp_goal = -1), we start from the first block
1281 * @sb: the super block
1282 * @group: the group we are trying to allocate in
1283 * @bitmap_bh: the block group block bitmap
1286 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1287 ext4_grpblk_t grp_goal, struct super_block *sb,
1288 ext4_group_t group, struct buffer_head *bitmap_bh)
1290 struct ext4_reserve_window_node *search_head;
1291 ext4_fsblk_t group_first_block, group_end_block, start_block;
1292 ext4_grpblk_t first_free_block;
1293 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1296 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1298 group_first_block = ext4_group_first_block_no(sb, group);
1299 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1302 start_block = group_first_block;
1304 start_block = grp_goal + group_first_block;
1306 size = my_rsv->rsv_goal_size;
1308 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1310 * if the old reservation is cross group boundary
1311 * and if the goal is inside the old reservation window,
1312 * we will come here when we just failed to allocate from
1313 * the first part of the window. We still have another part
1314 * that belongs to the next group. In this case, there is no
1315 * point to discard our window and try to allocate a new one
1316 * in this group(which will fail). we should
1317 * keep the reservation window, just simply move on.
1319 * Maybe we could shift the start block of the reservation
1320 * window to the first block of next group.
1323 if ((my_rsv->rsv_start <= group_end_block) &&
1324 (my_rsv->rsv_end > group_end_block) &&
1325 (start_block >= my_rsv->rsv_start))
1328 if ((my_rsv->rsv_alloc_hit >
1329 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1331 * if the previously allocation hit ratio is
1332 * greater than 1/2, then we double the size of
1333 * the reservation window the next time,
1334 * otherwise we keep the same size window
1337 if (size > EXT4_MAX_RESERVE_BLOCKS)
1338 size = EXT4_MAX_RESERVE_BLOCKS;
1339 my_rsv->rsv_goal_size= size;
1343 spin_lock(rsv_lock);
1345 * shift the search start to the window near the goal block
1347 search_head = search_reserve_window(fs_rsv_root, start_block);
1350 * find_next_reservable_window() simply finds a reservable window
1351 * inside the given range(start_block, group_end_block).
1353 * To make sure the reservation window has a free bit inside it, we
1354 * need to check the bitmap after we found a reservable window.
1357 ret = find_next_reservable_window(search_head, my_rsv, sb,
1358 start_block, group_end_block);
1361 if (!rsv_is_empty(&my_rsv->rsv_window))
1362 rsv_window_remove(sb, my_rsv);
1363 spin_unlock(rsv_lock);
1368 * On success, find_next_reservable_window() returns the
1369 * reservation window where there is a reservable space after it.
1370 * Before we reserve this reservable space, we need
1371 * to make sure there is at least a free block inside this region.
1373 * searching the first free bit on the block bitmap and copy of
1374 * last committed bitmap alternatively, until we found a allocatable
1375 * block. Search start from the start block of the reservable space
1378 spin_unlock(rsv_lock);
1379 first_free_block = bitmap_search_next_usable_block(
1380 my_rsv->rsv_start - group_first_block,
1381 bitmap_bh, group_end_block - group_first_block + 1);
1383 if (first_free_block < 0) {
1385 * no free block left on the bitmap, no point
1386 * to reserve the space. return failed.
1388 spin_lock(rsv_lock);
1389 if (!rsv_is_empty(&my_rsv->rsv_window))
1390 rsv_window_remove(sb, my_rsv);
1391 spin_unlock(rsv_lock);
1392 return -1; /* failed */
1395 start_block = first_free_block + group_first_block;
1397 * check if the first free block is within the
1398 * free space we just reserved
1400 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1401 return 0; /* success */
1403 * if the first free bit we found is out of the reservable space
1404 * continue search for next reservable space,
1405 * start from where the free block is,
1406 * we also shift the list head to where we stopped last time
1408 search_head = my_rsv;
1409 spin_lock(rsv_lock);
1414 * try_to_extend_reservation()
1415 * @my_rsv: given reservation window
1417 * @size: the delta to extend
1419 * Attempt to expand the reservation window large enough to have
1420 * required number of free blocks
1422 * Since ext4_try_to_allocate() will always allocate blocks within
1423 * the reservation window range, if the window size is too small,
1424 * multiple blocks allocation has to stop at the end of the reservation
1425 * window. To make this more efficient, given the total number of
1426 * blocks needed and the current size of the window, we try to
1427 * expand the reservation window size if necessary on a best-effort
1428 * basis before ext4_new_blocks() tries to allocate blocks,
1430 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1431 struct super_block *sb, int size)
1433 struct ext4_reserve_window_node *next_rsv;
1434 struct rb_node *next;
1435 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1437 if (!spin_trylock(rsv_lock))
1440 next = rb_next(&my_rsv->rsv_node);
1443 my_rsv->rsv_end += size;
1445 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1447 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1448 my_rsv->rsv_end += size;
1450 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1452 spin_unlock(rsv_lock);
1456 * ext4_try_to_allocate_with_rsv()
1458 * @handle: handle to this transaction
1459 * @group: given allocation block group
1460 * @bitmap_bh: bufferhead holds the block bitmap
1461 * @grp_goal: given target block within the group
1462 * @count: target number of blocks to allocate
1463 * @my_rsv: reservation window
1464 * @errp: pointer to store the error code
1466 * This is the main function used to allocate a new block and its reservation
1469 * Each time when a new block allocation is need, first try to allocate from
1470 * its own reservation. If it does not have a reservation window, instead of
1471 * looking for a free bit on bitmap first, then look up the reservation list to
1472 * see if it is inside somebody else's reservation window, we try to allocate a
1473 * reservation window for it starting from the goal first. Then do the block
1474 * allocation within the reservation window.
1476 * This will avoid keeping on searching the reservation list again and
1477 * again when somebody is looking for a free block (without
1478 * reservation), and there are lots of free blocks, but they are all
1481 * We use a red-black tree for the per-filesystem reservation list.
1484 static ext4_grpblk_t
1485 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1486 ext4_group_t group, struct buffer_head *bitmap_bh,
1487 ext4_grpblk_t grp_goal,
1488 struct ext4_reserve_window_node * my_rsv,
1489 unsigned long *count, int *errp)
1491 ext4_fsblk_t group_first_block, group_last_block;
1492 ext4_grpblk_t ret = 0;
1494 unsigned long num = *count;
1499 * Make sure we use undo access for the bitmap, because it is critical
1500 * that we do the frozen_data COW on bitmap buffers in all cases even
1501 * if the buffer is in BJ_Forget state in the committing transaction.
1503 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1504 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1511 * we don't deal with reservation when
1512 * filesystem is mounted without reservation
1513 * or the file is not a regular file
1514 * or last attempt to allocate a block with reservation turned on failed
1516 if (my_rsv == NULL ) {
1517 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1518 grp_goal, count, NULL);
1522 * grp_goal is a group relative block number (if there is a goal)
1523 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1524 * first block is a filesystem wide block number
1525 * first block is the block number of the first block in this group
1527 group_first_block = ext4_group_first_block_no(sb, group);
1528 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1531 * Basically we will allocate a new block from inode's reservation
1534 * We need to allocate a new reservation window, if:
1535 * a) inode does not have a reservation window; or
1536 * b) last attempt to allocate a block from existing reservation
1538 * c) we come here with a goal and with a reservation window
1540 * We do not need to allocate a new reservation window if we come here
1541 * at the beginning with a goal and the goal is inside the window, or
1542 * we don't have a goal but already have a reservation window.
1543 * then we could go to allocate from the reservation window directly.
1546 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1547 !goal_in_my_reservation(&my_rsv->rsv_window,
1548 grp_goal, group, sb)) {
1549 if (my_rsv->rsv_goal_size < *count)
1550 my_rsv->rsv_goal_size = *count;
1551 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1556 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1557 grp_goal, group, sb))
1559 } else if (grp_goal >= 0) {
1560 int curr = my_rsv->rsv_end -
1561 (grp_goal + group_first_block) + 1;
1564 try_to_extend_reservation(my_rsv, sb,
1568 if ((my_rsv->rsv_start > group_last_block) ||
1569 (my_rsv->rsv_end < group_first_block)) {
1570 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1573 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1574 grp_goal, &num, &my_rsv->rsv_window);
1576 my_rsv->rsv_alloc_hit += num;
1578 break; /* succeed */
1584 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1586 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1594 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1595 ext4_journal_release_buffer(handle, bitmap_bh);
1600 * ext4_has_free_blocks()
1601 * @sbi: in-core super block structure.
1603 * Check if filesystem has at least 1 free block available for allocation.
1605 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1607 ext4_fsblk_t free_blocks, root_blocks;
1609 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1610 root_blocks = ext4_r_blocks_count(sbi->s_es);
1611 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1612 sbi->s_resuid != current->fsuid &&
1613 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1620 * ext4_should_retry_alloc()
1622 * @retries number of attemps has been made
1624 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1625 * it is profitable to retry the operation, this function will wait
1626 * for the current or commiting transaction to complete, and then
1629 * if the total number of retries exceed three times, return FALSE.
1631 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1633 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1636 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1638 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1642 * ext4_new_blocks_old() -- core block(s) allocation function
1643 * @handle: handle to this transaction
1644 * @inode: file inode
1645 * @goal: given target block(filesystem wide)
1646 * @count: target number of blocks to allocate
1649 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1650 * allocate block(s) from the block group contains the goal block first. If that
1651 * fails, it will try to allocate block(s) from other block groups without
1652 * any specific goal block.
1655 ext4_fsblk_t ext4_new_blocks_old(handle_t *handle, struct inode *inode,
1656 ext4_fsblk_t goal, unsigned long *count, int *errp)
1658 struct buffer_head *bitmap_bh = NULL;
1659 struct buffer_head *gdp_bh;
1660 ext4_group_t group_no;
1661 ext4_group_t goal_group;
1662 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1663 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1664 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1665 ext4_group_t bgi; /* blockgroup iteration index */
1667 int performed_allocation = 0;
1668 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1669 struct super_block *sb;
1670 struct ext4_group_desc *gdp;
1671 struct ext4_super_block *es;
1672 struct ext4_sb_info *sbi;
1673 struct ext4_reserve_window_node *my_rsv = NULL;
1674 struct ext4_block_alloc_info *block_i;
1675 unsigned short windowsz = 0;
1676 ext4_group_t ngroups;
1677 unsigned long num = *count;
1682 printk("ext4_new_block: nonexistent device");
1687 * Check quota for allocation of this block.
1689 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1695 es = EXT4_SB(sb)->s_es;
1696 ext4_debug("goal=%llu.\n", goal);
1698 * Allocate a block from reservation only when
1699 * filesystem is mounted with reservation(default,-o reservation), and
1700 * it's a regular file, and
1701 * the desired window size is greater than 0 (One could use ioctl
1702 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1703 * reservation on that particular file)
1705 block_i = EXT4_I(inode)->i_block_alloc_info;
1706 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1707 my_rsv = &block_i->rsv_window_node;
1709 if (!ext4_has_free_blocks(sbi)) {
1715 * First, test whether the goal block is free.
1717 if (goal < le32_to_cpu(es->s_first_data_block) ||
1718 goal >= ext4_blocks_count(es))
1719 goal = le32_to_cpu(es->s_first_data_block);
1720 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1721 goal_group = group_no;
1723 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1727 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1729 * if there is not enough free blocks to make a new resevation
1730 * turn off reservation for this allocation
1732 if (my_rsv && (free_blocks < windowsz)
1733 && (rsv_is_empty(&my_rsv->rsv_window)))
1736 if (free_blocks > 0) {
1737 bitmap_bh = read_block_bitmap(sb, group_no);
1740 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1741 group_no, bitmap_bh, grp_target_blk,
1742 my_rsv, &num, &fatal);
1745 if (grp_alloc_blk >= 0)
1749 ngroups = EXT4_SB(sb)->s_groups_count;
1753 * Now search the rest of the groups. We assume that
1754 * group_no and gdp correctly point to the last group visited.
1756 for (bgi = 0; bgi < ngroups; bgi++) {
1758 if (group_no >= ngroups)
1760 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1763 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1765 * skip this group if the number of
1766 * free blocks is less than half of the reservation
1769 if (free_blocks <= (windowsz/2))
1773 bitmap_bh = read_block_bitmap(sb, group_no);
1777 * try to allocate block(s) from this group, without a goal(-1).
1779 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1780 group_no, bitmap_bh, -1, my_rsv,
1784 if (grp_alloc_blk >= 0)
1788 * We may end up a bogus ealier ENOSPC error due to
1789 * filesystem is "full" of reservations, but
1790 * there maybe indeed free blocks avaliable on disk
1791 * In this case, we just forget about the reservations
1792 * just do block allocation as without reservations.
1797 group_no = goal_group;
1800 /* No space left on the device */
1806 ext4_debug("using block group %lu(%d)\n",
1807 group_no, gdp->bg_free_blocks_count);
1809 BUFFER_TRACE(gdp_bh, "get_write_access");
1810 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1814 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1816 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1817 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1818 in_range(ret_block, ext4_inode_table(sb, gdp),
1819 EXT4_SB(sb)->s_itb_per_group) ||
1820 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1821 EXT4_SB(sb)->s_itb_per_group)) {
1822 ext4_error(sb, "ext4_new_block",
1823 "Allocating block in system zone - "
1824 "blocks from %llu, length %lu",
1827 * claim_block marked the blocks we allocated
1828 * as in use. So we may want to selectively
1829 * mark some of the blocks as free
1834 performed_allocation = 1;
1836 #ifdef CONFIG_JBD2_DEBUG
1838 struct buffer_head *debug_bh;
1840 /* Record bitmap buffer state in the newly allocated block */
1841 debug_bh = sb_find_get_block(sb, ret_block);
1843 BUFFER_TRACE(debug_bh, "state when allocated");
1844 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1848 jbd_lock_bh_state(bitmap_bh);
1849 spin_lock(sb_bgl_lock(sbi, group_no));
1850 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1853 for (i = 0; i < num; i++) {
1854 if (ext4_test_bit(grp_alloc_blk+i,
1855 bh2jh(bitmap_bh)->b_committed_data)) {
1856 printk("%s: block was unexpectedly set in "
1857 "b_committed_data\n", __func__);
1861 ext4_debug("found bit %d\n", grp_alloc_blk);
1862 spin_unlock(sb_bgl_lock(sbi, group_no));
1863 jbd_unlock_bh_state(bitmap_bh);
1866 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1867 ext4_error(sb, "ext4_new_block",
1868 "block(%llu) >= blocks count(%llu) - "
1869 "block_group = %lu, es == %p ", ret_block,
1870 ext4_blocks_count(es), group_no, es);
1875 * It is up to the caller to add the new buffer to a journal
1876 * list of some description. We don't know in advance whether
1877 * the caller wants to use it as metadata or data.
1879 spin_lock(sb_bgl_lock(sbi, group_no));
1880 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1881 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1882 le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1883 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1884 spin_unlock(sb_bgl_lock(sbi, group_no));
1885 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1887 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1888 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1898 DQUOT_FREE_BLOCK(inode, *count-num);
1907 ext4_std_error(sb, fatal);
1910 * Undo the block allocation
1912 if (!performed_allocation)
1913 DQUOT_FREE_BLOCK(inode, *count);
1918 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1919 ext4_fsblk_t goal, int *errp)
1921 struct ext4_allocation_request ar;
1924 if (!test_opt(inode->i_sb, MBALLOC)) {
1925 unsigned long count = 1;
1926 ret = ext4_new_blocks_old(handle, inode, goal, &count, errp);
1930 memset(&ar, 0, sizeof(ar));
1934 ret = ext4_mb_new_blocks(handle, &ar, errp);
1938 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1939 ext4_fsblk_t goal, unsigned long *count, int *errp)
1941 struct ext4_allocation_request ar;
1944 if (!test_opt(inode->i_sb, MBALLOC)) {
1945 ret = ext4_new_blocks_old(handle, inode, goal, count, errp);
1949 memset(&ar, 0, sizeof(ar));
1953 ret = ext4_mb_new_blocks(handle, &ar, errp);
1960 * ext4_count_free_blocks() -- count filesystem free blocks
1963 * Adds up the number of free blocks from each block group.
1965 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1967 ext4_fsblk_t desc_count;
1968 struct ext4_group_desc *gdp;
1970 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1972 struct ext4_super_block *es;
1973 ext4_fsblk_t bitmap_count;
1975 struct buffer_head *bitmap_bh = NULL;
1977 es = EXT4_SB(sb)->s_es;
1983 for (i = 0; i < ngroups; i++) {
1984 gdp = ext4_get_group_desc(sb, i, NULL);
1987 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1989 bitmap_bh = read_block_bitmap(sb, i);
1990 if (bitmap_bh == NULL)
1993 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1994 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1995 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1999 printk("ext4_count_free_blocks: stored = %llu"
2000 ", computed = %llu, %llu\n",
2001 ext4_free_blocks_count(es),
2002 desc_count, bitmap_count);
2003 return bitmap_count;
2007 for (i = 0; i < ngroups; i++) {
2008 gdp = ext4_get_group_desc(sb, i, NULL);
2011 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2018 static inline int test_root(ext4_group_t a, int b)
2027 static int ext4_group_sparse(ext4_group_t group)
2033 return (test_root(group, 7) || test_root(group, 5) ||
2034 test_root(group, 3));
2038 * ext4_bg_has_super - number of blocks used by the superblock in group
2039 * @sb: superblock for filesystem
2040 * @group: group number to check
2042 * Return the number of blocks used by the superblock (primary or backup)
2043 * in this group. Currently this will be only 0 or 1.
2045 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2047 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2048 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2049 !ext4_group_sparse(group))
2054 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2057 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2058 ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2059 ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2061 if (group == first || group == first + 1 || group == last)
2066 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2069 return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2073 * ext4_bg_num_gdb - number of blocks used by the group table in group
2074 * @sb: superblock for filesystem
2075 * @group: group number to check
2077 * Return the number of blocks used by the group descriptor table
2078 * (primary or backup) in this group. In the future there may be a
2079 * different number of descriptor blocks in each group.
2081 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2083 unsigned long first_meta_bg =
2084 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2085 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2087 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2088 metagroup < first_meta_bg)
2089 return ext4_bg_num_gdb_nometa(sb,group);
2091 return ext4_bg_num_gdb_meta(sb,group);