2 * mac80211 <-> driver interface
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/wireless.h>
23 #include <net/cfg80211.h>
28 * mac80211 is the Linux stack for 802.11 hardware that implements
29 * only partial functionality in hard- or firmware. This document
30 * defines the interface between mac80211 and low-level hardware
35 * DOC: Calling mac80211 from interrupts
37 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
38 * called in hardware interrupt context. The low-level driver must not call any
39 * other functions in hardware interrupt context. If there is a need for such
40 * call, the low-level driver should first ACK the interrupt and perform the
41 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue function.
47 * If you're reading this document and not the header file itself, it will
48 * be incomplete because not all documentation has been converted yet.
54 * As a general rule, when frames are passed between mac80211 and the driver,
55 * they start with the IEEE 802.11 header and include the same octets that are
56 * sent over the air except for the FCS which should be calculated by the
59 * There are, however, various exceptions to this rule for advanced features:
61 * The first exception is for hardware encryption and decryption offload
62 * where the IV/ICV may or may not be generated in hardware.
64 * Secondly, when the hardware handles fragmentation, the frame handed to
65 * the driver from mac80211 is the MSDU, not the MPDU.
67 * Finally, for received frames, the driver is able to indicate that it has
68 * filled a radiotap header and put that in front of the frame; if it does
69 * not do so then mac80211 may add this under certain circumstances.
73 * struct ieee80211_ht_bss_info - describing BSS's HT characteristics
75 * This structure describes most essential parameters needed
76 * to describe 802.11n HT characteristics in a BSS
78 * @primary_channel: channel number of primery channel
79 * @bss_cap: 802.11n's general BSS capabilities (e.g. channel width)
80 * @bss_op_mode: 802.11n's BSS operation modes (e.g. HT protection)
82 struct ieee80211_ht_bss_info {
84 u8 bss_cap; /* use IEEE80211_HT_IE_CHA_ */
85 u8 bss_op_mode; /* use IEEE80211_HT_IE_ */
89 * struct ieee80211_tx_queue_params - transmit queue configuration
91 * The information provided in this structure is required for QoS
92 * transmit queue configuration.
94 * @aifs: arbitration interface space [0..255, -1: use default]
95 * @cw_min: minimum contention window [will be a value of the form
96 * 2^n-1 in the range 1..1023; 0: use default]
97 * @cw_max: maximum contention window [like @cw_min]
98 * @burst_time: maximum burst time in units of 0.1ms, 0 meaning disabled
100 struct ieee80211_tx_queue_params {
108 * struct ieee80211_tx_queue_stats_data - transmit queue statistics
110 * @len: number of packets in queue
111 * @limit: queue length limit
112 * @count: number of frames sent
114 struct ieee80211_tx_queue_stats_data {
121 * enum ieee80211_tx_queue - transmit queue number
123 * These constants are used with some callbacks that take a
124 * queue number to set parameters for a queue.
126 * @IEEE80211_TX_QUEUE_DATA0: data queue 0
127 * @IEEE80211_TX_QUEUE_DATA1: data queue 1
128 * @IEEE80211_TX_QUEUE_DATA2: data queue 2
129 * @IEEE80211_TX_QUEUE_DATA3: data queue 3
130 * @IEEE80211_TX_QUEUE_DATA4: data queue 4
131 * @IEEE80211_TX_QUEUE_SVP: ??
132 * @NUM_TX_DATA_QUEUES: number of data queues
133 * @IEEE80211_TX_QUEUE_AFTER_BEACON: transmit queue for frames to be
134 * sent after a beacon
135 * @IEEE80211_TX_QUEUE_BEACON: transmit queue for beacon frames
136 * @NUM_TX_DATA_QUEUES_AMPDU: adding more queues for A-MPDU
138 enum ieee80211_tx_queue {
139 IEEE80211_TX_QUEUE_DATA0,
140 IEEE80211_TX_QUEUE_DATA1,
141 IEEE80211_TX_QUEUE_DATA2,
142 IEEE80211_TX_QUEUE_DATA3,
143 IEEE80211_TX_QUEUE_DATA4,
144 IEEE80211_TX_QUEUE_SVP,
148 /* due to stupidity in the sub-ioctl userspace interface, the items in
149 * this struct need to have fixed values. As soon as it is removed, we can
150 * fix these entries. */
151 IEEE80211_TX_QUEUE_AFTER_BEACON = 6,
152 IEEE80211_TX_QUEUE_BEACON = 7,
153 NUM_TX_DATA_QUEUES_AMPDU = 16
156 struct ieee80211_tx_queue_stats {
157 struct ieee80211_tx_queue_stats_data data[NUM_TX_DATA_QUEUES_AMPDU];
160 struct ieee80211_low_level_stats {
161 unsigned int dot11ACKFailureCount;
162 unsigned int dot11RTSFailureCount;
163 unsigned int dot11FCSErrorCount;
164 unsigned int dot11RTSSuccessCount;
168 * enum ieee80211_bss_change - BSS change notification flags
170 * These flags are used with the bss_info_changed() callback
171 * to indicate which BSS parameter changed.
173 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
174 * also implies a change in the AID.
175 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
176 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
178 enum ieee80211_bss_change {
179 BSS_CHANGED_ASSOC = 1<<0,
180 BSS_CHANGED_ERP_CTS_PROT = 1<<1,
181 BSS_CHANGED_ERP_PREAMBLE = 1<<2,
185 * struct ieee80211_bss_conf - holds the BSS's changing parameters
187 * This structure keeps information about a BSS (and an association
188 * to that BSS) that can change during the lifetime of the BSS.
190 * @assoc: association status
191 * @aid: association ID number, valid only when @assoc is true
192 * @use_cts_prot: use CTS protection
193 * @use_short_preamble: use 802.11b short preamble
195 struct ieee80211_bss_conf {
196 /* association related data */
199 /* erp related data */
201 bool use_short_preamble;
204 /* Transmit control fields. This data structure is passed to low-level driver
205 * with each TX frame. The low-level driver is responsible for configuring
206 * the hardware to use given values (depending on what is supported). */
208 struct ieee80211_tx_control {
209 struct ieee80211_vif *vif;
210 struct ieee80211_rate *tx_rate;
212 /* Transmit rate for RTS/CTS frame */
213 struct ieee80211_rate *rts_cts_rate;
215 /* retry rate for the last retries */
216 struct ieee80211_rate *alt_retry_rate;
218 #define IEEE80211_TXCTL_REQ_TX_STATUS (1<<0)/* request TX status callback for
220 #define IEEE80211_TXCTL_DO_NOT_ENCRYPT (1<<1) /* send this frame without
221 * encryption; e.g., for EAPOL
223 #define IEEE80211_TXCTL_USE_RTS_CTS (1<<2) /* use RTS-CTS before sending
225 #define IEEE80211_TXCTL_USE_CTS_PROTECT (1<<3) /* use CTS protection for the
226 * frame (e.g., for combined
227 * 802.11g / 802.11b networks) */
228 #define IEEE80211_TXCTL_NO_ACK (1<<4) /* tell the low level not to
230 #define IEEE80211_TXCTL_RATE_CTRL_PROBE (1<<5)
231 #define IEEE80211_TXCTL_CLEAR_DST_MASK (1<<6)
232 #define IEEE80211_TXCTL_REQUEUE (1<<7)
233 #define IEEE80211_TXCTL_FIRST_FRAGMENT (1<<8) /* this is a first fragment of
235 #define IEEE80211_TXCTL_SHORT_PREAMBLE (1<<9)
236 #define IEEE80211_TXCTL_LONG_RETRY_LIMIT (1<<10) /* this frame should be send
238 * set_retry_limit configured
239 * long retry value */
240 #define IEEE80211_TXCTL_EAPOL_FRAME (1<<11) /* internal to mac80211 */
241 #define IEEE80211_TXCTL_SEND_AFTER_DTIM (1<<12) /* send this frame after DTIM
243 #define IEEE80211_TXCTL_AMPDU (1<<13) /* this frame should be sent
244 * as part of an A-MPDU */
245 u32 flags; /* tx control flags defined
247 u8 key_idx; /* keyidx from hw->set_key(), undefined if
248 * IEEE80211_TXCTL_DO_NOT_ENCRYPT is set */
249 u8 retry_limit; /* 1 = only first attempt, 2 = one retry, ..
250 * This could be used when set_retry_limit
251 * is not implemented by the driver */
252 u8 antenna_sel_tx; /* 0 = default/diversity, 1 = Ant0, 2 = Ant1 */
253 u8 icv_len; /* length of the ICV/MIC field in octets */
254 u8 iv_len; /* length of the IV field in octets */
255 u8 queue; /* hardware queue to use for this frame;
256 * 0 = highest, hw->queues-1 = lowest */
257 int type; /* internal */
262 * enum mac80211_rx_flags - receive flags
264 * These flags are used with the @flag member of &struct ieee80211_rx_status.
265 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
266 * Use together with %RX_FLAG_MMIC_STRIPPED.
267 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
268 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
269 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
270 * verification has been done by the hardware.
271 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
272 * If this flag is set, the stack cannot do any replay detection
273 * hence the driver or hardware will have to do that.
274 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
276 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
278 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
281 enum mac80211_rx_flags {
282 RX_FLAG_MMIC_ERROR = 1<<0,
283 RX_FLAG_DECRYPTED = 1<<1,
284 RX_FLAG_RADIOTAP = 1<<2,
285 RX_FLAG_MMIC_STRIPPED = 1<<3,
286 RX_FLAG_IV_STRIPPED = 1<<4,
287 RX_FLAG_FAILED_FCS_CRC = 1<<5,
288 RX_FLAG_FAILED_PLCP_CRC = 1<<6,
293 * struct ieee80211_rx_status - receive status
295 * The low-level driver should provide this information (the subset
296 * supported by hardware) to the 802.11 code with each received
298 * @mactime: MAC timestamp as defined by 802.11
299 * @band: the active band when this frame was received
300 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
301 * @ssi: signal strength when receiving this frame
302 * @signal: used as 'qual' in statistics reporting
303 * @noise: PHY noise when receiving this frame
304 * @antenna: antenna used
305 * @rate_idx: index of data rate into band's supported rates
308 struct ieee80211_rx_status {
310 enum ieee80211_band band;
321 * enum ieee80211_tx_status_flags - transmit status flags
323 * Status flags to indicate various transmit conditions.
325 * @IEEE80211_TX_STATUS_TX_FILTERED: The frame was not transmitted
326 * because the destination STA was in powersave mode.
327 * @IEEE80211_TX_STATUS_ACK: Frame was acknowledged
328 * @IEEE80211_TX_STATUS_AMPDU: The frame was aggregated, so status
329 * is for the whole aggregation.
331 enum ieee80211_tx_status_flags {
332 IEEE80211_TX_STATUS_TX_FILTERED = 1<<0,
333 IEEE80211_TX_STATUS_ACK = 1<<1,
334 IEEE80211_TX_STATUS_AMPDU = 1<<2,
338 * struct ieee80211_tx_status - transmit status
340 * As much information as possible should be provided for each transmitted
341 * frame with ieee80211_tx_status().
343 * @control: a copy of the &struct ieee80211_tx_control passed to the driver
344 * in the tx() callback.
345 * @flags: transmit status flags, defined above
346 * @retry_count: number of retries
347 * @excessive_retries: set to 1 if the frame was retried many times
348 * but not acknowledged
349 * @ampdu_ack_len: number of aggregated frames.
350 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
351 * @ampdu_ack_map: block ack bit map for the aggregation.
352 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
353 * @ack_signal: signal strength of the ACK frame
354 * @queue_length: ?? REMOVE
355 * @queue_number: ?? REMOVE
357 struct ieee80211_tx_status {
358 struct ieee80211_tx_control control;
361 bool excessive_retries;
370 * enum ieee80211_conf_flags - configuration flags
372 * Flags to define PHY configuration options
374 * @IEEE80211_CONF_SHORT_SLOT_TIME: use 802.11g short slot time
375 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
376 * @IEEE80211_CONF_SUPPORT_HT_MODE: use 802.11n HT capabilities (if supported)
378 enum ieee80211_conf_flags {
379 IEEE80211_CONF_SHORT_SLOT_TIME = (1<<0),
380 IEEE80211_CONF_RADIOTAP = (1<<1),
381 IEEE80211_CONF_SUPPORT_HT_MODE = (1<<2),
385 * struct ieee80211_conf - configuration of the device
387 * This struct indicates how the driver shall configure the hardware.
389 * @radio_enabled: when zero, driver is required to switch off the radio.
391 * @beacon_int: beacon interval (TODO make interface config)
392 * @flags: configuration flags defined above
393 * @power_level: requested transmit power (in dBm)
394 * @max_antenna_gain: maximum antenna gain (in dBi)
395 * @antenna_sel_tx: transmit antenna selection, 0: default/diversity,
397 * @antenna_sel_rx: receive antenna selection, like @antenna_sel_tx
398 * @ht_conf: describes current self configuration of 802.11n HT capabilies
399 * @ht_bss_conf: describes current BSS configuration of 802.11n HT parameters
400 * @channel: the channel to tune to
402 struct ieee80211_conf {
403 unsigned int regulatory_domain;
409 int max_antenna_gain;
413 struct ieee80211_channel *channel;
415 struct ieee80211_ht_info ht_conf;
416 struct ieee80211_ht_bss_info ht_bss_conf;
420 * enum ieee80211_if_types - types of 802.11 network interfaces
422 * @IEEE80211_IF_TYPE_INVALID: invalid interface type, not used
424 * @IEEE80211_IF_TYPE_AP: interface in AP mode.
425 * @IEEE80211_IF_TYPE_MGMT: special interface for communication with hostap
426 * daemon. Drivers should never see this type.
427 * @IEEE80211_IF_TYPE_STA: interface in STA (client) mode.
428 * @IEEE80211_IF_TYPE_IBSS: interface in IBSS (ad-hoc) mode.
429 * @IEEE80211_IF_TYPE_MNTR: interface in monitor (rfmon) mode.
430 * @IEEE80211_IF_TYPE_WDS: interface in WDS mode.
431 * @IEEE80211_IF_TYPE_VLAN: VLAN interface bound to an AP, drivers
432 * will never see this type.
434 enum ieee80211_if_types {
435 IEEE80211_IF_TYPE_INVALID,
436 IEEE80211_IF_TYPE_AP,
437 IEEE80211_IF_TYPE_STA,
438 IEEE80211_IF_TYPE_IBSS,
439 IEEE80211_IF_TYPE_MNTR,
440 IEEE80211_IF_TYPE_WDS,
441 IEEE80211_IF_TYPE_VLAN,
445 * struct ieee80211_vif - per-interface data
447 * Data in this structure is continually present for driver
448 * use during the life of a virtual interface.
450 * @type: type of this virtual interface
451 * @drv_priv: data area for driver use, will always be aligned to
454 struct ieee80211_vif {
455 enum ieee80211_if_types type;
457 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
461 * struct ieee80211_if_init_conf - initial configuration of an interface
463 * @vif: pointer to a driver-use per-interface structure. The pointer
464 * itself is also used for various functions including
465 * ieee80211_beacon_get() and ieee80211_get_buffered_bc().
466 * @type: one of &enum ieee80211_if_types constants. Determines the type of
467 * added/removed interface.
468 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
469 * until the interface is removed (i.e. it cannot be used after
470 * remove_interface() callback was called for this interface).
472 * This structure is used in add_interface() and remove_interface()
473 * callbacks of &struct ieee80211_hw.
475 * When you allow multiple interfaces to be added to your PHY, take care
476 * that the hardware can actually handle multiple MAC addresses. However,
477 * also take care that when there's no interface left with mac_addr != %NULL
478 * you remove the MAC address from the device to avoid acknowledging packets
479 * in pure monitor mode.
481 struct ieee80211_if_init_conf {
482 enum ieee80211_if_types type;
483 struct ieee80211_vif *vif;
488 * struct ieee80211_if_conf - configuration of an interface
490 * @type: type of the interface. This is always the same as was specified in
491 * &struct ieee80211_if_init_conf. The type of an interface never changes
492 * during the life of the interface; this field is present only for
494 * @bssid: BSSID of the network we are associated to/creating.
495 * @ssid: used (together with @ssid_len) by drivers for hardware that
496 * generate beacons independently. The pointer is valid only during the
497 * config_interface() call, so copy the value somewhere if you need
499 * @ssid_len: length of the @ssid field.
500 * @beacon: beacon template. Valid only if @host_gen_beacon_template in
501 * &struct ieee80211_hw is set. The driver is responsible of freeing
503 * @beacon_control: tx_control for the beacon template, this field is only
504 * valid when the @beacon field was set.
506 * This structure is passed to the config_interface() callback of
507 * &struct ieee80211_hw.
509 struct ieee80211_if_conf {
514 struct sk_buff *beacon;
515 struct ieee80211_tx_control *beacon_control;
519 * enum ieee80211_key_alg - key algorithm
520 * @ALG_WEP: WEP40 or WEP104
522 * @ALG_CCMP: CCMP (AES)
524 enum ieee80211_key_alg {
532 * enum ieee80211_key_flags - key flags
534 * These flags are used for communication about keys between the driver
535 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
537 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
538 * that the STA this key will be used with could be using QoS.
539 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
540 * driver to indicate that it requires IV generation for this
542 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
543 * the driver for a TKIP key if it requires Michael MIC
544 * generation in software.
546 enum ieee80211_key_flags {
547 IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
548 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
549 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
553 * struct ieee80211_key_conf - key information
555 * This key information is given by mac80211 to the driver by
556 * the set_key() callback in &struct ieee80211_ops.
558 * @hw_key_idx: To be set by the driver, this is the key index the driver
559 * wants to be given when a frame is transmitted and needs to be
560 * encrypted in hardware.
561 * @alg: The key algorithm.
562 * @flags: key flags, see &enum ieee80211_key_flags.
563 * @keyidx: the key index (0-3)
564 * @keylen: key material length
567 struct ieee80211_key_conf {
568 enum ieee80211_key_alg alg;
577 * enum set_key_cmd - key command
579 * Used with the set_key() callback in &struct ieee80211_ops, this
580 * indicates whether a key is being removed or added.
582 * @SET_KEY: a key is set
583 * @DISABLE_KEY: a key must be disabled
586 SET_KEY, DISABLE_KEY,
590 * enum sta_notify_cmd - sta notify command
592 * Used with the sta_notify() callback in &struct ieee80211_ops, this
593 * indicates addition and removal of a station to station table
595 * @STA_NOTIFY_ADD: a station was added to the station table
596 * @STA_NOTIFY_REMOVE: a station being removed from the station table
598 enum sta_notify_cmd {
599 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE
603 * enum ieee80211_hw_flags - hardware flags
605 * These flags are used to indicate hardware capabilities to
606 * the stack. Generally, flags here should have their meaning
607 * done in a way that the simplest hardware doesn't need setting
608 * any particular flags. There are some exceptions to this rule,
609 * however, so you are advised to review these flags carefully.
611 * @IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE:
612 * The device only needs to be supplied with a beacon template.
613 * If you need the host to generate each beacon then don't use
614 * this flag and call ieee80211_beacon_get() when you need the
615 * next beacon frame. Note that if you set this flag, you must
616 * implement the set_tim() callback for powersave mode to work
618 * This flag is only relevant for access-point mode.
620 * @IEEE80211_HW_RX_INCLUDES_FCS:
621 * Indicates that received frames passed to the stack include
622 * the FCS at the end.
624 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
625 * Some wireless LAN chipsets buffer broadcast/multicast frames
626 * for power saving stations in the hardware/firmware and others
627 * rely on the host system for such buffering. This option is used
628 * to configure the IEEE 802.11 upper layer to buffer broadcast and
629 * multicast frames when there are power saving stations so that
630 * the driver can fetch them with ieee80211_get_buffered_bc(). Note
631 * that not setting this flag works properly only when the
632 * %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is also not set because
633 * otherwise the stack will not know when the DTIM beacon was sent.
635 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
636 * Hardware is not capable of short slot operation on the 2.4 GHz band.
638 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
639 * Hardware is not capable of receiving frames with short preamble on
642 enum ieee80211_hw_flags {
643 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE = 1<<0,
644 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
645 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
646 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
647 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
651 * struct ieee80211_hw - hardware information and state
653 * This structure contains the configuration and hardware
654 * information for an 802.11 PHY.
656 * @wiphy: This points to the &struct wiphy allocated for this
657 * 802.11 PHY. You must fill in the @perm_addr and @dev
658 * members of this structure using SET_IEEE80211_DEV()
659 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
660 * bands (with channels, bitrates) are registered here.
662 * @conf: &struct ieee80211_conf, device configuration, don't use.
664 * @workqueue: single threaded workqueue available for driver use,
665 * allocated by mac80211 on registration and flushed on
668 * @priv: pointer to private area that was allocated for driver use
669 * along with this structure.
671 * @flags: hardware flags, see &enum ieee80211_hw_flags.
673 * @extra_tx_headroom: headroom to reserve in each transmit skb
674 * for use by the driver (e.g. for transmit headers.)
676 * @channel_change_time: time (in microseconds) it takes to change channels.
678 * @max_rssi: Maximum value for ssi in RX information, use
679 * negative numbers for dBm and 0 to indicate no support.
681 * @max_signal: like @max_rssi, but for the signal value.
683 * @max_noise: like @max_rssi, but for the noise value.
685 * @queues: number of available hardware transmit queues for
686 * data packets. WMM/QoS requires at least four.
688 * @rate_control_algorithm: rate control algorithm for this hardware.
689 * If unset (NULL), the default algorithm will be used. Must be
690 * set before calling ieee80211_register_hw().
692 * @vif_data_size: size (in bytes) of the drv_priv data area
693 * within &struct ieee80211_vif.
695 struct ieee80211_hw {
696 struct ieee80211_conf conf;
698 struct workqueue_struct *workqueue;
699 const char *rate_control_algorithm;
702 unsigned int extra_tx_headroom;
703 int channel_change_time;
712 * SET_IEEE80211_DEV - set device for 802.11 hardware
714 * @hw: the &struct ieee80211_hw to set the device for
715 * @dev: the &struct device of this 802.11 device
717 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
719 set_wiphy_dev(hw->wiphy, dev);
723 * SET_IEEE80211_PERM_ADDR - set the permanenet MAC address for 802.11 hardware
725 * @hw: the &struct ieee80211_hw to set the MAC address for
726 * @addr: the address to set
728 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
730 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
734 * DOC: Hardware crypto acceleration
736 * mac80211 is capable of taking advantage of many hardware
737 * acceleration designs for encryption and decryption operations.
739 * The set_key() callback in the &struct ieee80211_ops for a given
740 * device is called to enable hardware acceleration of encryption and
741 * decryption. The callback takes an @address parameter that will be
742 * the broadcast address for default keys, the other station's hardware
743 * address for individual keys or the zero address for keys that will
744 * be used only for transmission.
745 * Multiple transmission keys with the same key index may be used when
746 * VLANs are configured for an access point.
748 * The @local_address parameter will always be set to our own address,
749 * this is only relevant if you support multiple local addresses.
751 * When transmitting, the TX control data will use the @hw_key_idx
752 * selected by the driver by modifying the &struct ieee80211_key_conf
753 * pointed to by the @key parameter to the set_key() function.
755 * The set_key() call for the %SET_KEY command should return 0 if
756 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
757 * added; if you return 0 then hw_key_idx must be assigned to the
758 * hardware key index, you are free to use the full u8 range.
760 * When the cmd is %DISABLE_KEY then it must succeed.
762 * Note that it is permissible to not decrypt a frame even if a key
763 * for it has been uploaded to hardware, the stack will not make any
764 * decision based on whether a key has been uploaded or not but rather
765 * based on the receive flags.
767 * The &struct ieee80211_key_conf structure pointed to by the @key
768 * parameter is guaranteed to be valid until another call to set_key()
769 * removes it, but it can only be used as a cookie to differentiate
774 * DOC: Frame filtering
776 * mac80211 requires to see many management frames for proper
777 * operation, and users may want to see many more frames when
778 * in monitor mode. However, for best CPU usage and power consumption,
779 * having as few frames as possible percolate through the stack is
780 * desirable. Hence, the hardware should filter as much as possible.
782 * To achieve this, mac80211 uses filter flags (see below) to tell
783 * the driver's configure_filter() function which frames should be
784 * passed to mac80211 and which should be filtered out.
786 * The configure_filter() callback is invoked with the parameters
787 * @mc_count and @mc_list for the combined multicast address list
788 * of all virtual interfaces, @changed_flags telling which flags
789 * were changed and @total_flags with the new flag states.
791 * If your device has no multicast address filters your driver will
792 * need to check both the %FIF_ALLMULTI flag and the @mc_count
793 * parameter to see whether multicast frames should be accepted
796 * All unsupported flags in @total_flags must be cleared, i.e. you
797 * should clear all bits except those you honoured.
801 * enum ieee80211_filter_flags - hardware filter flags
803 * These flags determine what the filter in hardware should be
804 * programmed to let through and what should not be passed to the
805 * stack. It is always safe to pass more frames than requested,
806 * but this has negative impact on power consumption.
808 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
809 * think of the BSS as your network segment and then this corresponds
810 * to the regular ethernet device promiscuous mode.
812 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
813 * by the user or if the hardware is not capable of filtering by
816 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
817 * %RX_FLAG_FAILED_FCS_CRC for them)
819 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
820 * the %RX_FLAG_FAILED_PLCP_CRC for them
822 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
823 * to the hardware that it should not filter beacons or probe responses
824 * by BSSID. Filtering them can greatly reduce the amount of processing
825 * mac80211 needs to do and the amount of CPU wakeups, so you should
826 * honour this flag if possible.
828 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
829 * only those addressed to this station
831 * @FIF_OTHER_BSS: pass frames destined to other BSSes
833 enum ieee80211_filter_flags {
834 FIF_PROMISC_IN_BSS = 1<<0,
838 FIF_BCN_PRBRESP_PROMISC = 1<<4,
840 FIF_OTHER_BSS = 1<<6,
844 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
846 * These flags are used with the ampdu_action() callback in
847 * &struct ieee80211_ops to indicate which action is needed.
848 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
849 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
850 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
851 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
853 enum ieee80211_ampdu_mlme_action {
854 IEEE80211_AMPDU_RX_START,
855 IEEE80211_AMPDU_RX_STOP,
856 IEEE80211_AMPDU_TX_START,
857 IEEE80211_AMPDU_TX_STOP,
861 * struct ieee80211_ops - callbacks from mac80211 to the driver
863 * This structure contains various callbacks that the driver may
864 * handle or, in some cases, must handle, for example to configure
865 * the hardware to a new channel or to transmit a frame.
867 * @tx: Handler that 802.11 module calls for each transmitted frame.
868 * skb contains the buffer starting from the IEEE 802.11 header.
869 * The low-level driver should send the frame out based on
870 * configuration in the TX control data. Must be implemented and
873 * @start: Called before the first netdevice attached to the hardware
874 * is enabled. This should turn on the hardware and must turn on
875 * frame reception (for possibly enabled monitor interfaces.)
876 * Returns negative error codes, these may be seen in userspace,
878 * When the device is started it should not have a MAC address
879 * to avoid acknowledging frames before a non-monitor device
881 * Must be implemented.
883 * @stop: Called after last netdevice attached to the hardware
884 * is disabled. This should turn off the hardware (at least
885 * it must turn off frame reception.)
886 * May be called right after add_interface if that rejects
888 * Must be implemented.
890 * @add_interface: Called when a netdevice attached to the hardware is
891 * enabled. Because it is not called for monitor mode devices, @open
892 * and @stop must be implemented.
893 * The driver should perform any initialization it needs before
894 * the device can be enabled. The initial configuration for the
895 * interface is given in the conf parameter.
896 * The callback may refuse to add an interface by returning a
897 * negative error code (which will be seen in userspace.)
898 * Must be implemented.
900 * @remove_interface: Notifies a driver that an interface is going down.
901 * The @stop callback is called after this if it is the last interface
902 * and no monitor interfaces are present.
903 * When all interfaces are removed, the MAC address in the hardware
904 * must be cleared so the device no longer acknowledges packets,
905 * the mac_addr member of the conf structure is, however, set to the
906 * MAC address of the device going away.
907 * Hence, this callback must be implemented.
909 * @config: Handler for configuration requests. IEEE 802.11 code calls this
910 * function to change hardware configuration, e.g., channel.
912 * @config_interface: Handler for configuration requests related to interfaces
913 * (e.g. BSSID changes.)
915 * @bss_info_changed: Handler for configuration requests related to BSS
916 * parameters that may vary during BSS's lifespan, and may affect low
917 * level driver (e.g. assoc/disassoc status, erp parameters).
918 * This function should not be used if no BSS has been set, unless
919 * for association indication. The @changed parameter indicates which
920 * of the bss parameters has changed when a call is made. This callback
923 * @configure_filter: Configure the device's RX filter.
924 * See the section "Frame filtering" for more information.
925 * This callback must be implemented and atomic.
927 * @set_tim: Set TIM bit. If the hardware/firmware takes care of beacon
928 * generation (that is, %IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE is set)
929 * mac80211 calls this function when a TIM bit must be set or cleared
930 * for a given AID. Must be atomic.
932 * @set_key: See the section "Hardware crypto acceleration"
933 * This callback can sleep, and is only called between add_interface
934 * and remove_interface calls, i.e. while the interface with the
935 * given local_address is enabled.
937 * @hw_scan: Ask the hardware to service the scan request, no need to start
938 * the scan state machine in stack. The scan must honour the channel
939 * configuration done by the regulatory agent in the wiphy's registered
942 * @get_stats: return low-level statistics
944 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
945 * callback should be provided to read the TKIP transmit IVs (both IV32
946 * and IV16) for the given key from hardware.
948 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
950 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this if
951 * the device does fragmentation by itself; if this method is assigned then
952 * the stack will not do fragmentation.
954 * @set_retry_limit: Configuration of retry limits (if device needs it)
956 * @sta_notify: Notifies low level driver about addition or removal
957 * of assocaited station or AP.
959 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
960 * bursting) for a hardware TX queue. The @queue parameter uses the
961 * %IEEE80211_TX_QUEUE_* constants. Must be atomic.
963 * @get_tx_stats: Get statistics of the current TX queue status. This is used
964 * to get number of currently queued packets (queue length), maximum queue
965 * size (limit), and total number of packets sent using each TX queue
966 * (count). This information is used for WMM to find out which TX
967 * queues have room for more packets and by hostapd to provide
968 * statistics about the current queueing state to external programs.
970 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
971 * this is only used for IBSS mode debugging and, as such, is not a
972 * required function. Must be atomic.
974 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
975 * with other STAs in the IBSS. This is only used in IBSS mode. This
976 * function is optional if the firmware/hardware takes full care of
977 * TSF synchronization.
979 * @beacon_update: Setup beacon data for IBSS beacons. Unlike access point,
980 * IBSS uses a fixed beacon frame which is configured using this
982 * If the driver returns success (0) from this callback, it owns
983 * the skb. That means the driver is responsible to kfree_skb() it.
984 * The control structure is not dynamically allocated. That means the
985 * driver does not own the pointer and if it needs it somewhere
986 * outside of the context of this function, it must copy it
988 * This handler is required only for IBSS mode.
990 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
991 * This is needed only for IBSS mode and the result of this function is
992 * used to determine whether to reply to Probe Requests.
994 * @conf_ht: Configures low level driver with 802.11n HT data. Must be atomic.
996 * @ampdu_action: Perform a certain A-MPDU action
997 * The RA/TID combination determines the destination and TID we want
998 * the ampdu action to be performed for. The action is defined through
999 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1000 * is the first frame we expect to perform the action on. notice
1001 * that TX/RX_STOP can pass NULL for this parameter.
1003 struct ieee80211_ops {
1004 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb,
1005 struct ieee80211_tx_control *control);
1006 int (*start)(struct ieee80211_hw *hw);
1007 void (*stop)(struct ieee80211_hw *hw);
1008 int (*add_interface)(struct ieee80211_hw *hw,
1009 struct ieee80211_if_init_conf *conf);
1010 void (*remove_interface)(struct ieee80211_hw *hw,
1011 struct ieee80211_if_init_conf *conf);
1012 int (*config)(struct ieee80211_hw *hw, struct ieee80211_conf *conf);
1013 int (*config_interface)(struct ieee80211_hw *hw,
1014 struct ieee80211_vif *vif,
1015 struct ieee80211_if_conf *conf);
1016 void (*bss_info_changed)(struct ieee80211_hw *hw,
1017 struct ieee80211_vif *vif,
1018 struct ieee80211_bss_conf *info,
1020 void (*configure_filter)(struct ieee80211_hw *hw,
1021 unsigned int changed_flags,
1022 unsigned int *total_flags,
1023 int mc_count, struct dev_addr_list *mc_list);
1024 int (*set_tim)(struct ieee80211_hw *hw, int aid, int set);
1025 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1026 const u8 *local_address, const u8 *address,
1027 struct ieee80211_key_conf *key);
1028 int (*hw_scan)(struct ieee80211_hw *hw, u8 *ssid, size_t len);
1029 int (*get_stats)(struct ieee80211_hw *hw,
1030 struct ieee80211_low_level_stats *stats);
1031 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1032 u32 *iv32, u16 *iv16);
1033 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1034 int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
1035 int (*set_retry_limit)(struct ieee80211_hw *hw,
1036 u32 short_retry, u32 long_retr);
1037 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1038 enum sta_notify_cmd, const u8 *addr);
1039 int (*conf_tx)(struct ieee80211_hw *hw, int queue,
1040 const struct ieee80211_tx_queue_params *params);
1041 int (*get_tx_stats)(struct ieee80211_hw *hw,
1042 struct ieee80211_tx_queue_stats *stats);
1043 u64 (*get_tsf)(struct ieee80211_hw *hw);
1044 void (*reset_tsf)(struct ieee80211_hw *hw);
1045 int (*beacon_update)(struct ieee80211_hw *hw,
1046 struct sk_buff *skb,
1047 struct ieee80211_tx_control *control);
1048 int (*tx_last_beacon)(struct ieee80211_hw *hw);
1049 int (*conf_ht)(struct ieee80211_hw *hw, struct ieee80211_conf *conf);
1050 int (*ampdu_action)(struct ieee80211_hw *hw,
1051 enum ieee80211_ampdu_mlme_action action,
1052 const u8 *addr, u16 tid, u16 *ssn);
1056 * ieee80211_alloc_hw - Allocate a new hardware device
1058 * This must be called once for each hardware device. The returned pointer
1059 * must be used to refer to this device when calling other functions.
1060 * mac80211 allocates a private data area for the driver pointed to by
1061 * @priv in &struct ieee80211_hw, the size of this area is given as
1064 * @priv_data_len: length of private data
1065 * @ops: callbacks for this device
1067 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1068 const struct ieee80211_ops *ops);
1071 * ieee80211_register_hw - Register hardware device
1073 * You must call this function before any other functions
1074 * except ieee80211_register_hwmode.
1076 * @hw: the device to register as returned by ieee80211_alloc_hw()
1078 int ieee80211_register_hw(struct ieee80211_hw *hw);
1080 #ifdef CONFIG_MAC80211_LEDS
1081 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1082 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1083 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1084 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1087 * ieee80211_get_tx_led_name - get name of TX LED
1089 * mac80211 creates a transmit LED trigger for each wireless hardware
1090 * that can be used to drive LEDs if your driver registers a LED device.
1091 * This function returns the name (or %NULL if not configured for LEDs)
1092 * of the trigger so you can automatically link the LED device.
1094 * @hw: the hardware to get the LED trigger name for
1096 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1098 #ifdef CONFIG_MAC80211_LEDS
1099 return __ieee80211_get_tx_led_name(hw);
1106 * ieee80211_get_rx_led_name - get name of RX LED
1108 * mac80211 creates a receive LED trigger for each wireless hardware
1109 * that can be used to drive LEDs if your driver registers a LED device.
1110 * This function returns the name (or %NULL if not configured for LEDs)
1111 * of the trigger so you can automatically link the LED device.
1113 * @hw: the hardware to get the LED trigger name for
1115 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1117 #ifdef CONFIG_MAC80211_LEDS
1118 return __ieee80211_get_rx_led_name(hw);
1125 * ieee80211_get_assoc_led_name - get name of association LED
1127 * mac80211 creates a association LED trigger for each wireless hardware
1128 * that can be used to drive LEDs if your driver registers a LED device.
1129 * This function returns the name (or %NULL if not configured for LEDs)
1130 * of the trigger so you can automatically link the LED device.
1132 * @hw: the hardware to get the LED trigger name for
1134 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1136 #ifdef CONFIG_MAC80211_LEDS
1137 return __ieee80211_get_assoc_led_name(hw);
1144 * ieee80211_get_radio_led_name - get name of radio LED
1146 * mac80211 creates a radio change LED trigger for each wireless hardware
1147 * that can be used to drive LEDs if your driver registers a LED device.
1148 * This function returns the name (or %NULL if not configured for LEDs)
1149 * of the trigger so you can automatically link the LED device.
1151 * @hw: the hardware to get the LED trigger name for
1153 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1155 #ifdef CONFIG_MAC80211_LEDS
1156 return __ieee80211_get_radio_led_name(hw);
1163 * ieee80211_unregister_hw - Unregister a hardware device
1165 * This function instructs mac80211 to free allocated resources
1166 * and unregister netdevices from the networking subsystem.
1168 * @hw: the hardware to unregister
1170 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1173 * ieee80211_free_hw - free hardware descriptor
1175 * This function frees everything that was allocated, including the
1176 * private data for the driver. You must call ieee80211_unregister_hw()
1177 * before calling this function
1179 * @hw: the hardware to free
1181 void ieee80211_free_hw(struct ieee80211_hw *hw);
1183 /* trick to avoid symbol clashes with the ieee80211 subsystem */
1184 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1185 struct ieee80211_rx_status *status);
1188 * ieee80211_rx - receive frame
1190 * Use this function to hand received frames to mac80211. The receive
1191 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1192 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1194 * This function may not be called in IRQ context.
1196 * @hw: the hardware this frame came in on
1197 * @skb: the buffer to receive, owned by mac80211 after this call
1198 * @status: status of this frame; the status pointer need not be valid
1199 * after this function returns
1201 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1202 struct ieee80211_rx_status *status)
1204 __ieee80211_rx(hw, skb, status);
1208 * ieee80211_rx_irqsafe - receive frame
1210 * Like ieee80211_rx() but can be called in IRQ context
1211 * (internally defers to a workqueue.)
1213 * @hw: the hardware this frame came in on
1214 * @skb: the buffer to receive, owned by mac80211 after this call
1215 * @status: status of this frame; the status pointer need not be valid
1216 * after this function returns and is not freed by mac80211,
1217 * it is recommended that it points to a stack area
1219 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1220 struct sk_buff *skb,
1221 struct ieee80211_rx_status *status);
1224 * ieee80211_tx_status - transmit status callback
1226 * Call this function for all transmitted frames after they have been
1227 * transmitted. It is permissible to not call this function for
1228 * multicast frames but this can affect statistics.
1230 * @hw: the hardware the frame was transmitted by
1231 * @skb: the frame that was transmitted, owned by mac80211 after this call
1232 * @status: status information for this frame; the status pointer need not
1233 * be valid after this function returns and is not freed by mac80211,
1234 * it is recommended that it points to a stack area
1236 void ieee80211_tx_status(struct ieee80211_hw *hw,
1237 struct sk_buff *skb,
1238 struct ieee80211_tx_status *status);
1239 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1240 struct sk_buff *skb,
1241 struct ieee80211_tx_status *status);
1244 * ieee80211_beacon_get - beacon generation function
1245 * @hw: pointer obtained from ieee80211_alloc_hw().
1246 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1247 * @control: will be filled with information needed to send this beacon.
1249 * If the beacon frames are generated by the host system (i.e., not in
1250 * hardware/firmware), the low-level driver uses this function to receive
1251 * the next beacon frame from the 802.11 code. The low-level is responsible
1252 * for calling this function before beacon data is needed (e.g., based on
1253 * hardware interrupt). Returned skb is used only once and low-level driver
1254 * is responsible of freeing it.
1256 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1257 struct ieee80211_vif *vif,
1258 struct ieee80211_tx_control *control);
1261 * ieee80211_rts_get - RTS frame generation function
1262 * @hw: pointer obtained from ieee80211_alloc_hw().
1263 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1264 * @frame: pointer to the frame that is going to be protected by the RTS.
1265 * @frame_len: the frame length (in octets).
1266 * @frame_txctl: &struct ieee80211_tx_control of the frame.
1267 * @rts: The buffer where to store the RTS frame.
1269 * If the RTS frames are generated by the host system (i.e., not in
1270 * hardware/firmware), the low-level driver uses this function to receive
1271 * the next RTS frame from the 802.11 code. The low-level is responsible
1272 * for calling this function before and RTS frame is needed.
1274 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1275 const void *frame, size_t frame_len,
1276 const struct ieee80211_tx_control *frame_txctl,
1277 struct ieee80211_rts *rts);
1280 * ieee80211_rts_duration - Get the duration field for an RTS frame
1281 * @hw: pointer obtained from ieee80211_alloc_hw().
1282 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1283 * @frame_len: the length of the frame that is going to be protected by the RTS.
1284 * @frame_txctl: &struct ieee80211_tx_control of the frame.
1286 * If the RTS is generated in firmware, but the host system must provide
1287 * the duration field, the low-level driver uses this function to receive
1288 * the duration field value in little-endian byteorder.
1290 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1291 struct ieee80211_vif *vif, size_t frame_len,
1292 const struct ieee80211_tx_control *frame_txctl);
1295 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1296 * @hw: pointer obtained from ieee80211_alloc_hw().
1297 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1298 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1299 * @frame_len: the frame length (in octets).
1300 * @frame_txctl: &struct ieee80211_tx_control of the frame.
1301 * @cts: The buffer where to store the CTS-to-self frame.
1303 * If the CTS-to-self frames are generated by the host system (i.e., not in
1304 * hardware/firmware), the low-level driver uses this function to receive
1305 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1306 * for calling this function before and CTS-to-self frame is needed.
1308 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1309 struct ieee80211_vif *vif,
1310 const void *frame, size_t frame_len,
1311 const struct ieee80211_tx_control *frame_txctl,
1312 struct ieee80211_cts *cts);
1315 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1316 * @hw: pointer obtained from ieee80211_alloc_hw().
1317 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1318 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1319 * @frame_txctl: &struct ieee80211_tx_control of the frame.
1321 * If the CTS-to-self is generated in firmware, but the host system must provide
1322 * the duration field, the low-level driver uses this function to receive
1323 * the duration field value in little-endian byteorder.
1325 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1326 struct ieee80211_vif *vif,
1328 const struct ieee80211_tx_control *frame_txctl);
1331 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1332 * @hw: pointer obtained from ieee80211_alloc_hw().
1333 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1334 * @frame_len: the length of the frame.
1335 * @rate: the rate at which the frame is going to be transmitted.
1337 * Calculate the duration field of some generic frame, given its
1338 * length and transmission rate (in 100kbps).
1340 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1341 struct ieee80211_vif *vif,
1343 struct ieee80211_rate *rate);
1346 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1347 * @hw: pointer as obtained from ieee80211_alloc_hw().
1348 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1349 * @control: will be filled with information needed to send returned frame.
1351 * Function for accessing buffered broadcast and multicast frames. If
1352 * hardware/firmware does not implement buffering of broadcast/multicast
1353 * frames when power saving is used, 802.11 code buffers them in the host
1354 * memory. The low-level driver uses this function to fetch next buffered
1355 * frame. In most cases, this is used when generating beacon frame. This
1356 * function returns a pointer to the next buffered skb or NULL if no more
1357 * buffered frames are available.
1359 * Note: buffered frames are returned only after DTIM beacon frame was
1360 * generated with ieee80211_beacon_get() and the low-level driver must thus
1361 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1362 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1363 * does not need to check for DTIM beacons separately and should be able to
1364 * use common code for all beacons.
1367 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1368 struct ieee80211_tx_control *control);
1371 * ieee80211_get_hdrlen_from_skb - get header length from data
1373 * Given an skb with a raw 802.11 header at the data pointer this function
1374 * returns the 802.11 header length in bytes (not including encryption
1375 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1376 * header the function returns 0.
1380 int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1383 * ieee80211_get_hdrlen - get header length from frame control
1385 * This function returns the 802.11 header length in bytes (not including
1386 * encryption headers.)
1388 * @fc: the frame control field (in CPU endianness)
1390 int ieee80211_get_hdrlen(u16 fc);
1393 * ieee80211_wake_queue - wake specific queue
1394 * @hw: pointer as obtained from ieee80211_alloc_hw().
1395 * @queue: queue number (counted from zero).
1397 * Drivers should use this function instead of netif_wake_queue.
1399 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1402 * ieee80211_stop_queue - stop specific queue
1403 * @hw: pointer as obtained from ieee80211_alloc_hw().
1404 * @queue: queue number (counted from zero).
1406 * Drivers should use this function instead of netif_stop_queue.
1408 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1411 * ieee80211_start_queues - start all queues
1412 * @hw: pointer to as obtained from ieee80211_alloc_hw().
1414 * Drivers should use this function instead of netif_start_queue.
1416 void ieee80211_start_queues(struct ieee80211_hw *hw);
1419 * ieee80211_stop_queues - stop all queues
1420 * @hw: pointer as obtained from ieee80211_alloc_hw().
1422 * Drivers should use this function instead of netif_stop_queue.
1424 void ieee80211_stop_queues(struct ieee80211_hw *hw);
1427 * ieee80211_wake_queues - wake all queues
1428 * @hw: pointer as obtained from ieee80211_alloc_hw().
1430 * Drivers should use this function instead of netif_wake_queue.
1432 void ieee80211_wake_queues(struct ieee80211_hw *hw);
1435 * ieee80211_scan_completed - completed hardware scan
1437 * When hardware scan offload is used (i.e. the hw_scan() callback is
1438 * assigned) this function needs to be called by the driver to notify
1439 * mac80211 that the scan finished.
1441 * @hw: the hardware that finished the scan
1443 void ieee80211_scan_completed(struct ieee80211_hw *hw);
1446 * ieee80211_iterate_active_interfaces - iterate active interfaces
1448 * This function iterates over the interfaces associated with a given
1449 * hardware that are currently active and calls the callback for them.
1451 * @hw: the hardware struct of which the interfaces should be iterated over
1452 * @iterator: the iterator function to call, cannot sleep
1453 * @data: first argument of the iterator function
1455 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1456 void (*iterator)(void *data, u8 *mac,
1457 struct ieee80211_vif *vif),
1461 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1462 * @hw: pointer as obtained from ieee80211_alloc_hw().
1463 * @ra: receiver address of the BA session recipient
1464 * @tid: the TID to BA on.
1465 * @return: success if addBA request was sent, failure otherwise
1467 * Although mac80211/low level driver/user space application can estimate
1468 * the need to start aggregation on a certain RA/TID, the session level
1469 * will be managed by the mac80211.
1471 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1474 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1475 * @hw: pointer as obtained from ieee80211_alloc_hw().
1476 * @ra: receiver address of the BA session recipient.
1477 * @tid: the TID to BA on.
1479 * This function must be called by low level driver once it has
1480 * finished with preparations for the BA session.
1482 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1485 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1486 * @hw: pointer as obtained from ieee80211_alloc_hw().
1487 * @ra: receiver address of the BA session recipient.
1488 * @tid: the TID to BA on.
1490 * This function must be called by low level driver once it has
1491 * finished with preparations for the BA session.
1492 * This version of the function is irq safe.
1494 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1498 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1499 * @hw: pointer as obtained from ieee80211_alloc_hw().
1500 * @ra: receiver address of the BA session recipient
1501 * @tid: the TID to stop BA.
1502 * @initiator: if indicates initiator DELBA frame will be sent.
1503 * @return: error if no sta with matching da found, success otherwise
1505 * Although mac80211/low level driver/user space application can estimate
1506 * the need to stop aggregation on a certain RA/TID, the session level
1507 * will be managed by the mac80211.
1509 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1511 enum ieee80211_back_parties initiator);
1514 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1515 * @hw: pointer as obtained from ieee80211_alloc_hw().
1516 * @ra: receiver address of the BA session recipient.
1517 * @tid: the desired TID to BA on.
1519 * This function must be called by low level driver once it has
1520 * finished with preparations for the BA session tear down.
1522 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
1525 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
1526 * @hw: pointer as obtained from ieee80211_alloc_hw().
1527 * @ra: receiver address of the BA session recipient.
1528 * @tid: the desired TID to BA on.
1530 * This function must be called by low level driver once it has
1531 * finished with preparations for the BA session tear down.
1532 * This version of the function is irq safe.
1534 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1537 #endif /* MAC80211_H */