4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@suse.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2008 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
30 #include <linux/pid_namespace.h>
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/spinlock.h>
34 #include <linux/console.h>
35 #include <linux/threads.h>
36 #include <linux/uaccess.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/ptrace.h>
40 #include <linux/reboot.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/sched.h>
44 #include <linux/sysrq.h>
45 #include <linux/init.h>
46 #include <linux/kgdb.h>
47 #include <linux/pid.h>
48 #include <linux/smp.h>
51 #include <asm/cacheflush.h>
52 #include <asm/byteorder.h>
53 #include <asm/atomic.h>
54 #include <asm/system.h>
56 static int kgdb_break_asap;
64 unsigned long threadid;
65 long kgdb_usethreadid;
66 struct pt_regs *linux_regs;
69 static struct debuggerinfo_struct {
71 struct task_struct *task;
75 * kgdb_connected - Is a host GDB connected to us?
78 EXPORT_SYMBOL_GPL(kgdb_connected);
80 /* All the KGDB handlers are installed */
81 static int kgdb_io_module_registered;
83 /* Guard for recursive entry */
84 static int exception_level;
86 static struct kgdb_io *kgdb_io_ops;
87 static DEFINE_SPINLOCK(kgdb_registration_lock);
89 /* kgdb console driver is loaded */
90 static int kgdb_con_registered;
91 /* determine if kgdb console output should be used */
92 static int kgdb_use_con;
94 static int __init opt_kgdb_con(char *str)
100 early_param("kgdbcon", opt_kgdb_con);
102 module_param(kgdb_use_con, int, 0644);
105 * Holds information about breakpoints in a kernel. These breakpoints are
106 * added and removed by gdb.
108 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
109 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
113 * The CPU# of the active CPU, or -1 if none:
115 atomic_t kgdb_active = ATOMIC_INIT(-1);
118 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
119 * bootup code (which might not have percpu set up yet):
121 static atomic_t passive_cpu_wait[NR_CPUS];
122 static atomic_t cpu_in_kgdb[NR_CPUS];
123 atomic_t kgdb_setting_breakpoint;
125 struct task_struct *kgdb_usethread;
126 struct task_struct *kgdb_contthread;
128 int kgdb_single_step;
130 /* Our I/O buffers. */
131 static char remcom_in_buffer[BUFMAX];
132 static char remcom_out_buffer[BUFMAX];
134 /* Storage for the registers, in GDB format. */
135 static unsigned long gdb_regs[(NUMREGBYTES +
136 sizeof(unsigned long) - 1) /
137 sizeof(unsigned long)];
139 /* to keep track of the CPU which is doing the single stepping*/
140 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
143 * If you are debugging a problem where roundup (the collection of
144 * all other CPUs) is a problem [this should be extremely rare],
145 * then use the nokgdbroundup option to avoid roundup. In that case
146 * the other CPUs might interfere with your debugging context, so
147 * use this with care:
149 static int kgdb_do_roundup = 1;
151 static int __init opt_nokgdbroundup(char *str)
158 early_param("nokgdbroundup", opt_nokgdbroundup);
161 * Finally, some KGDB code :-)
165 * Weak aliases for breakpoint management,
166 * can be overriden by architectures when needed:
168 int __weak kgdb_validate_break_address(unsigned long addr)
170 char tmp_variable[BREAK_INSTR_SIZE];
172 return probe_kernel_read(tmp_variable, (char *)addr, BREAK_INSTR_SIZE);
175 int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
179 err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
183 return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
187 int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
189 return probe_kernel_write((char *)addr,
190 (char *)bundle, BREAK_INSTR_SIZE);
193 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
195 return instruction_pointer(regs);
198 int __weak kgdb_arch_init(void)
203 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
209 kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
215 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
216 * @regs: Current &struct pt_regs.
218 * This function will be called if the particular architecture must
219 * disable hardware debugging while it is processing gdb packets or
220 * handling exception.
222 void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
227 * GDB remote protocol parser:
230 static const char hexchars[] = "0123456789abcdef";
232 static int hex(char ch)
234 if ((ch >= 'a') && (ch <= 'f'))
235 return ch - 'a' + 10;
236 if ((ch >= '0') && (ch <= '9'))
238 if ((ch >= 'A') && (ch <= 'F'))
239 return ch - 'A' + 10;
243 /* scan for the sequence $<data>#<checksum> */
244 static void get_packet(char *buffer)
246 unsigned char checksum;
247 unsigned char xmitcsum;
253 * Spin and wait around for the start character, ignore all
256 while ((ch = (kgdb_io_ops->read_char())) != '$')
266 * now, read until a # or end of buffer is found:
268 while (count < (BUFMAX - 1)) {
269 ch = kgdb_io_ops->read_char();
272 checksum = checksum + ch;
279 xmitcsum = hex(kgdb_io_ops->read_char()) << 4;
280 xmitcsum += hex(kgdb_io_ops->read_char());
282 if (checksum != xmitcsum)
283 /* failed checksum */
284 kgdb_io_ops->write_char('-');
286 /* successful transfer */
287 kgdb_io_ops->write_char('+');
288 if (kgdb_io_ops->flush)
289 kgdb_io_ops->flush();
291 } while (checksum != xmitcsum);
295 * Send the packet in buffer.
296 * Check for gdb connection if asked for.
298 static void put_packet(char *buffer)
300 unsigned char checksum;
305 * $<packet info>#<checksum>.
308 kgdb_io_ops->write_char('$');
312 while ((ch = buffer[count])) {
313 kgdb_io_ops->write_char(ch);
318 kgdb_io_ops->write_char('#');
319 kgdb_io_ops->write_char(hexchars[checksum >> 4]);
320 kgdb_io_ops->write_char(hexchars[checksum & 0xf]);
321 if (kgdb_io_ops->flush)
322 kgdb_io_ops->flush();
324 /* Now see what we get in reply. */
325 ch = kgdb_io_ops->read_char();
328 ch = kgdb_io_ops->read_char();
330 /* If we get an ACK, we are done. */
335 * If we get the start of another packet, this means
336 * that GDB is attempting to reconnect. We will NAK
337 * the packet being sent, and stop trying to send this
341 kgdb_io_ops->write_char('-');
342 if (kgdb_io_ops->flush)
343 kgdb_io_ops->flush();
349 static char *pack_hex_byte(char *pkt, u8 byte)
351 *pkt++ = hexchars[byte >> 4];
352 *pkt++ = hexchars[byte & 0xf];
358 * Convert the memory pointed to by mem into hex, placing result in buf.
359 * Return a pointer to the last char put in buf (null). May return an error.
361 int kgdb_mem2hex(char *mem, char *buf, int count)
367 * We use the upper half of buf as an intermediate buffer for the
368 * raw memory copy. Hex conversion will work against this one.
372 err = probe_kernel_read(tmp, mem, count);
375 buf = pack_hex_byte(buf, *tmp);
387 * Copy the binary array pointed to by buf into mem. Fix $, #, and
388 * 0x7d escaped with 0x7d. Return a pointer to the character after
389 * the last byte written.
391 static int kgdb_ebin2mem(char *buf, char *mem, int count)
396 while (count-- > 0) {
401 err = probe_kernel_write(mem, &c, 1);
412 * Convert the hex array pointed to by buf into binary to be placed in mem.
413 * Return a pointer to the character AFTER the last byte written.
414 * May return an error.
416 int kgdb_hex2mem(char *buf, char *mem, int count)
422 * We use the upper half of buf as an intermediate buffer for the
423 * raw memory that is converted from hex.
425 tmp_raw = buf + count * 2;
427 tmp_hex = tmp_raw - 1;
428 while (tmp_hex >= buf) {
430 *tmp_raw = hex(*tmp_hex--);
431 *tmp_raw |= hex(*tmp_hex--) << 4;
434 return probe_kernel_write(mem, tmp_raw, count);
438 * While we find nice hex chars, build a long_val.
439 * Return number of chars processed.
441 int kgdb_hex2long(char **ptr, unsigned long *long_val)
449 hex_val = hex(**ptr);
453 *long_val = (*long_val << 4) | hex_val;
461 /* Write memory due to an 'M' or 'X' packet. */
462 static int write_mem_msg(int binary)
464 char *ptr = &remcom_in_buffer[1];
466 unsigned long length;
469 if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
470 kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
472 err = kgdb_ebin2mem(ptr, (char *)addr, length);
474 err = kgdb_hex2mem(ptr, (char *)addr, length);
477 if (CACHE_FLUSH_IS_SAFE)
478 flush_icache_range(addr, addr + length + 1);
485 static void error_packet(char *pkt, int error)
489 pkt[1] = hexchars[(error / 10)];
490 pkt[2] = hexchars[(error % 10)];
495 * Thread ID accessors. We represent a flat TID space to GDB, where
496 * the per CPU idle threads (which under Linux all have PID 0) are
497 * remapped to negative TIDs.
500 #define BUF_THREAD_ID_SIZE 16
502 static char *pack_threadid(char *pkt, unsigned char *id)
506 limit = pkt + BUF_THREAD_ID_SIZE;
508 pkt = pack_hex_byte(pkt, *id++);
513 static void int_to_threadref(unsigned char *id, int value)
518 scan = (unsigned char *)id;
521 *scan++ = (value >> 24) & 0xff;
522 *scan++ = (value >> 16) & 0xff;
523 *scan++ = (value >> 8) & 0xff;
524 *scan++ = (value & 0xff);
527 static struct task_struct *getthread(struct pt_regs *regs, int tid)
530 * Non-positive TIDs are remapped idle tasks:
533 return idle_task(-tid);
536 * find_task_by_pid_ns() does not take the tasklist lock anymore
537 * but is nicely RCU locked - hence is a pretty resilient
540 return find_task_by_pid_ns(tid, &init_pid_ns);
544 * CPU debug state control:
548 static void kgdb_wait(struct pt_regs *regs)
553 local_irq_save(flags);
554 cpu = raw_smp_processor_id();
555 kgdb_info[cpu].debuggerinfo = regs;
556 kgdb_info[cpu].task = current;
558 * Make sure the above info reaches the primary CPU before
559 * our cpu_in_kgdb[] flag setting does:
562 atomic_set(&cpu_in_kgdb[cpu], 1);
564 /* Wait till primary CPU is done with debugging */
565 while (atomic_read(&passive_cpu_wait[cpu]))
568 kgdb_info[cpu].debuggerinfo = NULL;
569 kgdb_info[cpu].task = NULL;
571 /* fix up hardware debug registers on local cpu */
572 if (arch_kgdb_ops.correct_hw_break)
573 arch_kgdb_ops.correct_hw_break();
575 /* Signal the primary CPU that we are done: */
576 atomic_set(&cpu_in_kgdb[cpu], 0);
577 clocksource_touch_watchdog();
578 local_irq_restore(flags);
583 * Some architectures need cache flushes when we set/clear a
586 static void kgdb_flush_swbreak_addr(unsigned long addr)
588 if (!CACHE_FLUSH_IS_SAFE)
591 if (current->mm && current->mm->mmap_cache) {
592 flush_cache_range(current->mm->mmap_cache,
593 addr, addr + BREAK_INSTR_SIZE);
595 /* Force flush instruction cache if it was outside the mm */
596 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
600 * SW breakpoint management:
602 static int kgdb_activate_sw_breakpoints(void)
608 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
609 if (kgdb_break[i].state != BP_SET)
612 addr = kgdb_break[i].bpt_addr;
613 error = kgdb_arch_set_breakpoint(addr,
614 kgdb_break[i].saved_instr);
618 kgdb_flush_swbreak_addr(addr);
619 kgdb_break[i].state = BP_ACTIVE;
624 static int kgdb_set_sw_break(unsigned long addr)
626 int err = kgdb_validate_break_address(addr);
633 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
634 if ((kgdb_break[i].state == BP_SET) &&
635 (kgdb_break[i].bpt_addr == addr))
638 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
639 if (kgdb_break[i].state == BP_REMOVED &&
640 kgdb_break[i].bpt_addr == addr) {
647 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
648 if (kgdb_break[i].state == BP_UNDEFINED) {
658 kgdb_break[breakno].state = BP_SET;
659 kgdb_break[breakno].type = BP_BREAKPOINT;
660 kgdb_break[breakno].bpt_addr = addr;
665 static int kgdb_deactivate_sw_breakpoints(void)
671 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
672 if (kgdb_break[i].state != BP_ACTIVE)
674 addr = kgdb_break[i].bpt_addr;
675 error = kgdb_arch_remove_breakpoint(addr,
676 kgdb_break[i].saved_instr);
680 kgdb_flush_swbreak_addr(addr);
681 kgdb_break[i].state = BP_SET;
686 static int kgdb_remove_sw_break(unsigned long addr)
690 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
691 if ((kgdb_break[i].state == BP_SET) &&
692 (kgdb_break[i].bpt_addr == addr)) {
693 kgdb_break[i].state = BP_REMOVED;
700 int kgdb_isremovedbreak(unsigned long addr)
704 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
705 if ((kgdb_break[i].state == BP_REMOVED) &&
706 (kgdb_break[i].bpt_addr == addr))
712 static int remove_all_break(void)
718 /* Clear memory breakpoints. */
719 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
720 if (kgdb_break[i].state != BP_ACTIVE)
722 addr = kgdb_break[i].bpt_addr;
723 error = kgdb_arch_remove_breakpoint(addr,
724 kgdb_break[i].saved_instr);
726 printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n",
729 kgdb_break[i].state = BP_UNDEFINED;
732 /* Clear hardware breakpoints. */
733 if (arch_kgdb_ops.remove_all_hw_break)
734 arch_kgdb_ops.remove_all_hw_break();
740 * Remap normal tasks to their real PID, idle tasks to -1 ... -NR_CPUs:
742 static inline int shadow_pid(int realpid)
747 return -1-raw_smp_processor_id();
750 static char gdbmsgbuf[BUFMAX + 1];
752 static void kgdb_msg_write(const char *s, int len)
761 /* Fill and send buffers... */
763 bufptr = gdbmsgbuf + 1;
765 /* Calculate how many this time */
766 if ((len << 1) > (BUFMAX - 2))
767 wcount = (BUFMAX - 2) >> 1;
771 /* Pack in hex chars */
772 for (i = 0; i < wcount; i++)
773 bufptr = pack_hex_byte(bufptr, s[i]);
781 put_packet(gdbmsgbuf);
786 * Return true if there is a valid kgdb I/O module. Also if no
787 * debugger is attached a message can be printed to the console about
788 * waiting for the debugger to attach.
790 * The print_wait argument is only to be true when called from inside
791 * the core kgdb_handle_exception, because it will wait for the
792 * debugger to attach.
794 static int kgdb_io_ready(int print_wait)
800 if (atomic_read(&kgdb_setting_breakpoint))
803 printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
808 * All the functions that start with gdb_cmd are the various
809 * operations to implement the handlers for the gdbserial protocol
810 * where KGDB is communicating with an external debugger
813 /* Handle the '?' status packets */
814 static void gdb_cmd_status(struct kgdb_state *ks)
817 * We know that this packet is only sent
818 * during initial connect. So to be safe,
819 * we clear out our breakpoints now in case
820 * GDB is reconnecting.
824 remcom_out_buffer[0] = 'S';
825 pack_hex_byte(&remcom_out_buffer[1], ks->signo);
828 /* Handle the 'g' get registers request */
829 static void gdb_cmd_getregs(struct kgdb_state *ks)
831 struct task_struct *thread;
832 void *local_debuggerinfo;
835 thread = kgdb_usethread;
837 thread = kgdb_info[ks->cpu].task;
838 local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
840 local_debuggerinfo = NULL;
841 for (i = 0; i < NR_CPUS; i++) {
843 * Try to find the task on some other
844 * or possibly this node if we do not
845 * find the matching task then we try
846 * to approximate the results.
848 if (thread == kgdb_info[i].task)
849 local_debuggerinfo = kgdb_info[i].debuggerinfo;
854 * All threads that don't have debuggerinfo should be
855 * in __schedule() sleeping, since all other CPUs
856 * are in kgdb_wait, and thus have debuggerinfo.
858 if (local_debuggerinfo) {
859 pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
862 * Pull stuff saved during switch_to; nothing
863 * else is accessible (or even particularly
866 * This should be enough for a stack trace.
868 sleeping_thread_to_gdb_regs(gdb_regs, thread);
870 kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
873 /* Handle the 'G' set registers request */
874 static void gdb_cmd_setregs(struct kgdb_state *ks)
876 kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
878 if (kgdb_usethread && kgdb_usethread != current) {
879 error_packet(remcom_out_buffer, -EINVAL);
881 gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
882 strcpy(remcom_out_buffer, "OK");
886 /* Handle the 'm' memory read bytes */
887 static void gdb_cmd_memread(struct kgdb_state *ks)
889 char *ptr = &remcom_in_buffer[1];
890 unsigned long length;
894 if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
895 kgdb_hex2long(&ptr, &length) > 0) {
896 err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
898 error_packet(remcom_out_buffer, err);
900 error_packet(remcom_out_buffer, -EINVAL);
904 /* Handle the 'M' memory write bytes */
905 static void gdb_cmd_memwrite(struct kgdb_state *ks)
907 int err = write_mem_msg(0);
910 error_packet(remcom_out_buffer, err);
912 strcpy(remcom_out_buffer, "OK");
915 /* Handle the 'X' memory binary write bytes */
916 static void gdb_cmd_binwrite(struct kgdb_state *ks)
918 int err = write_mem_msg(1);
921 error_packet(remcom_out_buffer, err);
923 strcpy(remcom_out_buffer, "OK");
926 /* Handle the 'D' or 'k', detach or kill packets */
927 static void gdb_cmd_detachkill(struct kgdb_state *ks)
931 /* The detach case */
932 if (remcom_in_buffer[0] == 'D') {
933 error = remove_all_break();
935 error_packet(remcom_out_buffer, error);
937 strcpy(remcom_out_buffer, "OK");
940 put_packet(remcom_out_buffer);
943 * Assume the kill case, with no exit code checking,
944 * trying to force detach the debugger:
951 /* Handle the 'R' reboot packets */
952 static int gdb_cmd_reboot(struct kgdb_state *ks)
954 /* For now, only honor R0 */
955 if (strcmp(remcom_in_buffer, "R0") == 0) {
956 printk(KERN_CRIT "Executing emergency reboot\n");
957 strcpy(remcom_out_buffer, "OK");
958 put_packet(remcom_out_buffer);
961 * Execution should not return from
962 * machine_emergency_restart()
964 machine_emergency_restart();
972 /* Handle the 'q' query packets */
973 static void gdb_cmd_query(struct kgdb_state *ks)
975 struct task_struct *thread;
976 unsigned char thref[8];
980 switch (remcom_in_buffer[1]) {
983 if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) {
984 error_packet(remcom_out_buffer, -EINVAL);
988 if (remcom_in_buffer[1] == 'f')
991 remcom_out_buffer[0] = 'm';
992 ptr = remcom_out_buffer + 1;
994 for (i = 0; i < 17; ks->threadid++) {
995 thread = getthread(ks->linux_regs, ks->threadid);
997 int_to_threadref(thref, ks->threadid);
998 pack_threadid(ptr, thref);
999 ptr += BUF_THREAD_ID_SIZE;
1008 /* Current thread id */
1009 strcpy(remcom_out_buffer, "QC");
1010 ks->threadid = shadow_pid(current->pid);
1011 int_to_threadref(thref, ks->threadid);
1012 pack_threadid(remcom_out_buffer + 2, thref);
1015 if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) {
1016 error_packet(remcom_out_buffer, -EINVAL);
1020 ptr = remcom_in_buffer + 17;
1021 kgdb_hex2long(&ptr, &ks->threadid);
1022 if (!getthread(ks->linux_regs, ks->threadid)) {
1023 error_packet(remcom_out_buffer, -EINVAL);
1026 if (ks->threadid > 0) {
1027 kgdb_mem2hex(getthread(ks->linux_regs,
1028 ks->threadid)->comm,
1029 remcom_out_buffer, 16);
1031 static char tmpstr[23 + BUF_THREAD_ID_SIZE];
1033 sprintf(tmpstr, "Shadow task %d for pid 0",
1034 (int)(-ks->threadid-1));
1035 kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
1041 /* Handle the 'H' task query packets */
1042 static void gdb_cmd_task(struct kgdb_state *ks)
1044 struct task_struct *thread;
1047 switch (remcom_in_buffer[1]) {
1049 ptr = &remcom_in_buffer[2];
1050 kgdb_hex2long(&ptr, &ks->threadid);
1051 thread = getthread(ks->linux_regs, ks->threadid);
1052 if (!thread && ks->threadid > 0) {
1053 error_packet(remcom_out_buffer, -EINVAL);
1056 kgdb_usethread = thread;
1057 ks->kgdb_usethreadid = ks->threadid;
1058 strcpy(remcom_out_buffer, "OK");
1061 ptr = &remcom_in_buffer[2];
1062 kgdb_hex2long(&ptr, &ks->threadid);
1063 if (!ks->threadid) {
1064 kgdb_contthread = NULL;
1066 thread = getthread(ks->linux_regs, ks->threadid);
1067 if (!thread && ks->threadid > 0) {
1068 error_packet(remcom_out_buffer, -EINVAL);
1071 kgdb_contthread = thread;
1073 strcpy(remcom_out_buffer, "OK");
1078 /* Handle the 'T' thread query packets */
1079 static void gdb_cmd_thread(struct kgdb_state *ks)
1081 char *ptr = &remcom_in_buffer[1];
1082 struct task_struct *thread;
1084 kgdb_hex2long(&ptr, &ks->threadid);
1085 thread = getthread(ks->linux_regs, ks->threadid);
1087 strcpy(remcom_out_buffer, "OK");
1089 error_packet(remcom_out_buffer, -EINVAL);
1092 /* Handle the 'z' or 'Z' breakpoint remove or set packets */
1093 static void gdb_cmd_break(struct kgdb_state *ks)
1096 * Since GDB-5.3, it's been drafted that '0' is a software
1097 * breakpoint, '1' is a hardware breakpoint, so let's do that.
1099 char *bpt_type = &remcom_in_buffer[1];
1100 char *ptr = &remcom_in_buffer[2];
1102 unsigned long length;
1105 if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
1107 if (*bpt_type > '4')
1110 if (*bpt_type != '0' && *bpt_type != '1')
1116 * Test if this is a hardware breakpoint, and
1119 if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
1123 if (*(ptr++) != ',') {
1124 error_packet(remcom_out_buffer, -EINVAL);
1127 if (!kgdb_hex2long(&ptr, &addr)) {
1128 error_packet(remcom_out_buffer, -EINVAL);
1131 if (*(ptr++) != ',' ||
1132 !kgdb_hex2long(&ptr, &length)) {
1133 error_packet(remcom_out_buffer, -EINVAL);
1137 if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
1138 error = kgdb_set_sw_break(addr);
1139 else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
1140 error = kgdb_remove_sw_break(addr);
1141 else if (remcom_in_buffer[0] == 'Z')
1142 error = arch_kgdb_ops.set_hw_breakpoint(addr,
1143 (int)length, *bpt_type - '0');
1144 else if (remcom_in_buffer[0] == 'z')
1145 error = arch_kgdb_ops.remove_hw_breakpoint(addr,
1146 (int) length, *bpt_type - '0');
1149 strcpy(remcom_out_buffer, "OK");
1151 error_packet(remcom_out_buffer, error);
1154 /* Handle the 'C' signal / exception passing packets */
1155 static int gdb_cmd_exception_pass(struct kgdb_state *ks)
1157 /* C09 == pass exception
1158 * C15 == detach kgdb, pass exception
1160 if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
1162 ks->pass_exception = 1;
1163 remcom_in_buffer[0] = 'c';
1165 } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
1167 ks->pass_exception = 1;
1168 remcom_in_buffer[0] = 'D';
1174 error_packet(remcom_out_buffer, -EINVAL);
1178 /* Indicate fall through */
1183 * This function performs all gdbserial command procesing
1185 static int gdb_serial_stub(struct kgdb_state *ks)
1190 /* Clear the out buffer. */
1191 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1193 if (kgdb_connected) {
1194 unsigned char thref[8];
1197 /* Reply to host that an exception has occurred */
1198 ptr = remcom_out_buffer;
1200 ptr = pack_hex_byte(ptr, ks->signo);
1201 ptr += strlen(strcpy(ptr, "thread:"));
1202 int_to_threadref(thref, shadow_pid(current->pid));
1203 ptr = pack_threadid(ptr, thref);
1205 put_packet(remcom_out_buffer);
1208 kgdb_usethread = kgdb_info[ks->cpu].task;
1209 ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
1210 ks->pass_exception = 0;
1215 /* Clear the out buffer. */
1216 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1218 get_packet(remcom_in_buffer);
1220 switch (remcom_in_buffer[0]) {
1221 case '?': /* gdbserial status */
1224 case 'g': /* return the value of the CPU registers */
1225 gdb_cmd_getregs(ks);
1227 case 'G': /* set the value of the CPU registers - return OK */
1228 gdb_cmd_setregs(ks);
1230 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
1231 gdb_cmd_memread(ks);
1233 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1234 gdb_cmd_memwrite(ks);
1236 case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1237 gdb_cmd_binwrite(ks);
1239 /* kill or detach. KGDB should treat this like a
1242 case 'D': /* Debugger detach */
1243 case 'k': /* Debugger detach via kill */
1244 gdb_cmd_detachkill(ks);
1245 goto default_handle;
1246 case 'R': /* Reboot */
1247 if (gdb_cmd_reboot(ks))
1248 goto default_handle;
1250 case 'q': /* query command */
1253 case 'H': /* task related */
1256 case 'T': /* Query thread status */
1259 case 'z': /* Break point remove */
1260 case 'Z': /* Break point set */
1263 case 'C': /* Exception passing */
1264 tmp = gdb_cmd_exception_pass(ks);
1266 goto default_handle;
1269 /* Fall through on tmp < 0 */
1270 case 'c': /* Continue packet */
1271 case 's': /* Single step packet */
1272 if (kgdb_contthread && kgdb_contthread != current) {
1273 /* Can't switch threads in kgdb */
1274 error_packet(remcom_out_buffer, -EINVAL);
1277 kgdb_activate_sw_breakpoints();
1278 /* Fall through to default processing */
1281 error = kgdb_arch_handle_exception(ks->ex_vector,
1288 * Leave cmd processing on error, detach,
1289 * kill, continue, or single step.
1291 if (error >= 0 || remcom_in_buffer[0] == 'D' ||
1292 remcom_in_buffer[0] == 'k') {
1299 /* reply to the request */
1300 put_packet(remcom_out_buffer);
1304 if (ks->pass_exception)
1309 static int kgdb_reenter_check(struct kgdb_state *ks)
1313 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
1316 /* Panic on recursive debugger calls: */
1318 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
1319 kgdb_deactivate_sw_breakpoints();
1322 * If the break point removed ok at the place exception
1323 * occurred, try to recover and print a warning to the end
1324 * user because the user planted a breakpoint in a place that
1325 * KGDB needs in order to function.
1327 if (kgdb_remove_sw_break(addr) == 0) {
1328 exception_level = 0;
1329 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1330 kgdb_activate_sw_breakpoints();
1331 printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n",
1338 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1340 if (exception_level > 1) {
1342 panic("Recursive entry to debugger");
1345 printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
1347 panic("Recursive entry to debugger");
1353 * kgdb_handle_exception() - main entry point from a kernel exception
1355 * Locking hierarchy:
1356 * interface locks, if any (begin_session)
1357 * kgdb lock (kgdb_active)
1360 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
1362 struct kgdb_state kgdb_var;
1363 struct kgdb_state *ks = &kgdb_var;
1364 unsigned long flags;
1368 ks->cpu = raw_smp_processor_id();
1369 ks->ex_vector = evector;
1371 ks->ex_vector = evector;
1372 ks->err_code = ecode;
1373 ks->kgdb_usethreadid = 0;
1374 ks->linux_regs = regs;
1376 if (kgdb_reenter_check(ks))
1377 return 0; /* Ouch, double exception ! */
1381 * Interrupts will be restored by the 'trap return' code, except when
1384 local_irq_save(flags);
1386 cpu = raw_smp_processor_id();
1389 * Acquire the kgdb_active lock:
1391 while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1)
1395 * Do not start the debugger connection on this CPU if the last
1396 * instance of the exception handler wanted to come into the
1397 * debugger on a different CPU via a single step
1399 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
1400 atomic_read(&kgdb_cpu_doing_single_step) != cpu) {
1402 atomic_set(&kgdb_active, -1);
1403 clocksource_touch_watchdog();
1404 local_irq_restore(flags);
1409 if (!kgdb_io_ready(1)) {
1411 goto kgdb_restore; /* No I/O connection, so resume the system */
1415 * Don't enter if we have hit a removed breakpoint.
1417 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
1420 /* Call the I/O driver's pre_exception routine */
1421 if (kgdb_io_ops->pre_exception)
1422 kgdb_io_ops->pre_exception();
1424 kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs;
1425 kgdb_info[ks->cpu].task = current;
1427 kgdb_disable_hw_debug(ks->linux_regs);
1430 * Get the passive CPU lock which will hold all the non-primary
1431 * CPU in a spin state while the debugger is active
1433 if (!kgdb_single_step || !kgdb_contthread) {
1434 for (i = 0; i < NR_CPUS; i++)
1435 atomic_set(&passive_cpu_wait[i], 1);
1439 * spin_lock code is good enough as a barrier so we don't
1442 atomic_set(&cpu_in_kgdb[ks->cpu], 1);
1445 /* Signal the other CPUs to enter kgdb_wait() */
1446 if ((!kgdb_single_step || !kgdb_contthread) && kgdb_do_roundup)
1447 kgdb_roundup_cpus(flags);
1451 * Wait for the other CPUs to be notified and be waiting for us:
1453 for_each_online_cpu(i) {
1454 while (!atomic_read(&cpu_in_kgdb[i]))
1459 * At this point the primary processor is completely
1460 * in the debugger and all secondary CPUs are quiescent
1462 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1463 kgdb_deactivate_sw_breakpoints();
1464 kgdb_single_step = 0;
1465 kgdb_contthread = NULL;
1466 exception_level = 0;
1468 /* Talk to debugger with gdbserial protocol */
1469 error = gdb_serial_stub(ks);
1471 /* Call the I/O driver's post_exception routine */
1472 if (kgdb_io_ops->post_exception)
1473 kgdb_io_ops->post_exception();
1475 kgdb_info[ks->cpu].debuggerinfo = NULL;
1476 kgdb_info[ks->cpu].task = NULL;
1477 atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1479 if (!kgdb_single_step || !kgdb_contthread) {
1480 for (i = NR_CPUS-1; i >= 0; i--)
1481 atomic_set(&passive_cpu_wait[i], 0);
1483 * Wait till all the CPUs have quit
1484 * from the debugger.
1486 for_each_online_cpu(i) {
1487 while (atomic_read(&cpu_in_kgdb[i]))
1493 /* Free kgdb_active */
1494 atomic_set(&kgdb_active, -1);
1495 clocksource_touch_watchdog();
1496 local_irq_restore(flags);
1501 int kgdb_nmicallback(int cpu, void *regs)
1504 if (!atomic_read(&cpu_in_kgdb[cpu]) &&
1505 atomic_read(&kgdb_active) != cpu &&
1506 atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)])) {
1507 kgdb_wait((struct pt_regs *)regs);
1514 void kgdb_console_write(struct console *co, const char *s, unsigned count)
1516 unsigned long flags;
1518 /* If we're debugging, or KGDB has not connected, don't try
1520 if (!kgdb_connected || atomic_read(&kgdb_active) != -1)
1523 local_irq_save(flags);
1524 kgdb_msg_write(s, count);
1525 local_irq_restore(flags);
1528 static struct console kgdbcons = {
1530 .write = kgdb_console_write,
1531 .flags = CON_PRINTBUFFER | CON_ENABLED,
1535 #ifdef CONFIG_MAGIC_SYSRQ
1536 static void sysrq_handle_gdb(int key, struct tty_struct *tty)
1539 printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
1542 if (!kgdb_connected)
1543 printk(KERN_CRIT "Entering KGDB\n");
1548 static struct sysrq_key_op sysrq_gdb_op = {
1549 .handler = sysrq_handle_gdb,
1551 .action_msg = "GDB",
1555 static void kgdb_register_callbacks(void)
1557 if (!kgdb_io_module_registered) {
1558 kgdb_io_module_registered = 1;
1560 #ifdef CONFIG_MAGIC_SYSRQ
1561 register_sysrq_key('g', &sysrq_gdb_op);
1563 if (kgdb_use_con && !kgdb_con_registered) {
1564 register_console(&kgdbcons);
1565 kgdb_con_registered = 1;
1570 static void kgdb_unregister_callbacks(void)
1573 * When this routine is called KGDB should unregister from the
1574 * panic handler and clean up, making sure it is not handling any
1575 * break exceptions at the time.
1577 if (kgdb_io_module_registered) {
1578 kgdb_io_module_registered = 0;
1580 #ifdef CONFIG_MAGIC_SYSRQ
1581 unregister_sysrq_key('g', &sysrq_gdb_op);
1583 if (kgdb_con_registered) {
1584 unregister_console(&kgdbcons);
1585 kgdb_con_registered = 0;
1590 static void kgdb_initial_breakpoint(void)
1592 kgdb_break_asap = 0;
1594 printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
1599 * kgdb_register_io_module - register KGDB IO module
1600 * @new_kgdb_io_ops: the io ops vector
1602 * Register it with the KGDB core.
1604 int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops)
1608 spin_lock(&kgdb_registration_lock);
1611 spin_unlock(&kgdb_registration_lock);
1613 printk(KERN_ERR "kgdb: Another I/O driver is already "
1614 "registered with KGDB.\n");
1618 if (new_kgdb_io_ops->init) {
1619 err = new_kgdb_io_ops->init();
1621 spin_unlock(&kgdb_registration_lock);
1626 kgdb_io_ops = new_kgdb_io_ops;
1628 spin_unlock(&kgdb_registration_lock);
1630 printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
1631 new_kgdb_io_ops->name);
1634 kgdb_register_callbacks();
1636 if (kgdb_break_asap)
1637 kgdb_initial_breakpoint();
1641 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1644 * kkgdb_unregister_io_module - unregister KGDB IO module
1645 * @old_kgdb_io_ops: the io ops vector
1647 * Unregister it with the KGDB core.
1649 void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops)
1651 BUG_ON(kgdb_connected);
1654 * KGDB is no longer able to communicate out, so
1655 * unregister our callbacks and reset state.
1657 kgdb_unregister_callbacks();
1659 spin_lock(&kgdb_registration_lock);
1661 WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops);
1664 spin_unlock(&kgdb_registration_lock);
1667 "kgdb: Unregistered I/O driver %s, debugger disabled.\n",
1668 old_kgdb_io_ops->name);
1670 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1673 * kgdb_breakpoint - generate breakpoint exception
1675 * This function will generate a breakpoint exception. It is used at the
1676 * beginning of a program to sync up with a debugger and can be used
1677 * otherwise as a quick means to stop program execution and "break" into
1680 void kgdb_breakpoint(void)
1682 atomic_set(&kgdb_setting_breakpoint, 1);
1683 wmb(); /* Sync point before breakpoint */
1684 arch_kgdb_breakpoint();
1685 wmb(); /* Sync point after breakpoint */
1686 atomic_set(&kgdb_setting_breakpoint, 0);
1688 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1690 static int __init opt_kgdb_wait(char *str)
1692 kgdb_break_asap = 1;
1694 if (kgdb_io_module_registered)
1695 kgdb_initial_breakpoint();
1700 early_param("kgdbwait", opt_kgdb_wait);