Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40 #include <asm/tlbflush.h>
41
42 #define EFI_DEBUG       0
43
44 extern efi_status_t efi_call_phys (void *, ...);
45
46 struct efi efi;
47 EXPORT_SYMBOL(efi);
48 static efi_runtime_services_t *runtime;
49 static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
50
51 #define efi_call_virt(f, args...)       (*(f))(args)
52
53 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
54 static efi_status_t                                                            \
55 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
56 {                                                                              \
57         struct ia64_fpreg fr[6];                                               \
58         efi_time_cap_t *atc = NULL;                                            \
59         efi_status_t ret;                                                      \
60                                                                                \
61         if (tc)                                                                \
62                 atc = adjust_arg(tc);                                          \
63         ia64_save_scratch_fpregs(fr);                                          \
64         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
65                                 adjust_arg(tm), atc);                          \
66         ia64_load_scratch_fpregs(fr);                                          \
67         return ret;                                                            \
68 }
69
70 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
71 static efi_status_t                                                            \
72 prefix##_set_time (efi_time_t *tm)                                             \
73 {                                                                              \
74         struct ia64_fpreg fr[6];                                               \
75         efi_status_t ret;                                                      \
76                                                                                \
77         ia64_save_scratch_fpregs(fr);                                          \
78         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
79                                 adjust_arg(tm));                               \
80         ia64_load_scratch_fpregs(fr);                                          \
81         return ret;                                                            \
82 }
83
84 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
85 static efi_status_t                                                            \
86 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
87                           efi_time_t *tm)                                      \
88 {                                                                              \
89         struct ia64_fpreg fr[6];                                               \
90         efi_status_t ret;                                                      \
91                                                                                \
92         ia64_save_scratch_fpregs(fr);                                          \
93         ret = efi_call_##prefix(                                               \
94                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
95                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
96         ia64_load_scratch_fpregs(fr);                                          \
97         return ret;                                                            \
98 }
99
100 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
101 static efi_status_t                                                            \
102 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
103 {                                                                              \
104         struct ia64_fpreg fr[6];                                               \
105         efi_time_t *atm = NULL;                                                \
106         efi_status_t ret;                                                      \
107                                                                                \
108         if (tm)                                                                \
109                 atm = adjust_arg(tm);                                          \
110         ia64_save_scratch_fpregs(fr);                                          \
111         ret = efi_call_##prefix(                                               \
112                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
113                 enabled, atm);                                                 \
114         ia64_load_scratch_fpregs(fr);                                          \
115         return ret;                                                            \
116 }
117
118 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
119 static efi_status_t                                                            \
120 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
121                        unsigned long *data_size, void *data)                   \
122 {                                                                              \
123         struct ia64_fpreg fr[6];                                               \
124         u32 *aattr = NULL;                                                     \
125         efi_status_t ret;                                                      \
126                                                                                \
127         if (attr)                                                              \
128                 aattr = adjust_arg(attr);                                      \
129         ia64_save_scratch_fpregs(fr);                                          \
130         ret = efi_call_##prefix(                                               \
131                 (efi_get_variable_t *) __va(runtime->get_variable),            \
132                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
133                 adjust_arg(data_size), adjust_arg(data));                      \
134         ia64_load_scratch_fpregs(fr);                                          \
135         return ret;                                                            \
136 }
137
138 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
139 static efi_status_t                                                            \
140 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
141                             efi_guid_t *vendor)                                \
142 {                                                                              \
143         struct ia64_fpreg fr[6];                                               \
144         efi_status_t ret;                                                      \
145                                                                                \
146         ia64_save_scratch_fpregs(fr);                                          \
147         ret = efi_call_##prefix(                                               \
148                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
149                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
150         ia64_load_scratch_fpregs(fr);                                          \
151         return ret;                                                            \
152 }
153
154 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
155 static efi_status_t                                                            \
156 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
157                        unsigned long attr, unsigned long data_size,            \
158                        void *data)                                             \
159 {                                                                              \
160         struct ia64_fpreg fr[6];                                               \
161         efi_status_t ret;                                                      \
162                                                                                \
163         ia64_save_scratch_fpregs(fr);                                          \
164         ret = efi_call_##prefix(                                               \
165                 (efi_set_variable_t *) __va(runtime->set_variable),            \
166                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
167                 adjust_arg(data));                                             \
168         ia64_load_scratch_fpregs(fr);                                          \
169         return ret;                                                            \
170 }
171
172 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
173 static efi_status_t                                                            \
174 prefix##_get_next_high_mono_count (u32 *count)                                 \
175 {                                                                              \
176         struct ia64_fpreg fr[6];                                               \
177         efi_status_t ret;                                                      \
178                                                                                \
179         ia64_save_scratch_fpregs(fr);                                          \
180         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
181                                 __va(runtime->get_next_high_mono_count),       \
182                                 adjust_arg(count));                            \
183         ia64_load_scratch_fpregs(fr);                                          \
184         return ret;                                                            \
185 }
186
187 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
188 static void                                                                    \
189 prefix##_reset_system (int reset_type, efi_status_t status,                    \
190                        unsigned long data_size, efi_char16_t *data)            \
191 {                                                                              \
192         struct ia64_fpreg fr[6];                                               \
193         efi_char16_t *adata = NULL;                                            \
194                                                                                \
195         if (data)                                                              \
196                 adata = adjust_arg(data);                                      \
197                                                                                \
198         ia64_save_scratch_fpregs(fr);                                          \
199         efi_call_##prefix(                                                     \
200                 (efi_reset_system_t *) __va(runtime->reset_system),            \
201                 reset_type, status, data_size, adata);                         \
202         /* should not return, but just in case... */                           \
203         ia64_load_scratch_fpregs(fr);                                          \
204 }
205
206 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
207
208 STUB_GET_TIME(phys, phys_ptr)
209 STUB_SET_TIME(phys, phys_ptr)
210 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
212 STUB_GET_VARIABLE(phys, phys_ptr)
213 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
214 STUB_SET_VARIABLE(phys, phys_ptr)
215 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
216 STUB_RESET_SYSTEM(phys, phys_ptr)
217
218 #define id(arg) arg
219
220 STUB_GET_TIME(virt, id)
221 STUB_SET_TIME(virt, id)
222 STUB_GET_WAKEUP_TIME(virt, id)
223 STUB_SET_WAKEUP_TIME(virt, id)
224 STUB_GET_VARIABLE(virt, id)
225 STUB_GET_NEXT_VARIABLE(virt, id)
226 STUB_SET_VARIABLE(virt, id)
227 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
228 STUB_RESET_SYSTEM(virt, id)
229
230 void
231 efi_gettimeofday (struct timespec *ts)
232 {
233         efi_time_t tm;
234
235         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
236                 memset(ts, 0, sizeof(*ts));
237                 return;
238         }
239
240         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
241                             tm.hour, tm.minute, tm.second);
242         ts->tv_nsec = tm.nanosecond;
243 }
244
245 static int
246 is_memory_available (efi_memory_desc_t *md)
247 {
248         if (!(md->attribute & EFI_MEMORY_WB))
249                 return 0;
250
251         switch (md->type) {
252               case EFI_LOADER_CODE:
253               case EFI_LOADER_DATA:
254               case EFI_BOOT_SERVICES_CODE:
255               case EFI_BOOT_SERVICES_DATA:
256               case EFI_CONVENTIONAL_MEMORY:
257                 return 1;
258         }
259         return 0;
260 }
261
262 typedef struct kern_memdesc {
263         u64 attribute;
264         u64 start;
265         u64 num_pages;
266 } kern_memdesc_t;
267
268 static kern_memdesc_t *kern_memmap;
269
270 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
271
272 static inline u64
273 kmd_end(kern_memdesc_t *kmd)
274 {
275         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
276 }
277
278 static inline u64
279 efi_md_end(efi_memory_desc_t *md)
280 {
281         return (md->phys_addr + efi_md_size(md));
282 }
283
284 static inline int
285 efi_wb(efi_memory_desc_t *md)
286 {
287         return (md->attribute & EFI_MEMORY_WB);
288 }
289
290 static inline int
291 efi_uc(efi_memory_desc_t *md)
292 {
293         return (md->attribute & EFI_MEMORY_UC);
294 }
295
296 static void
297 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
298 {
299         kern_memdesc_t *k;
300         u64 start, end, voff;
301
302         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
303         for (k = kern_memmap; k->start != ~0UL; k++) {
304                 if (k->attribute != attr)
305                         continue;
306                 start = PAGE_ALIGN(k->start);
307                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
308                 if (start < end)
309                         if ((*callback)(start + voff, end + voff, arg) < 0)
310                                 return;
311         }
312 }
313
314 /*
315  * Walk the EFI memory map and call CALLBACK once for each EFI memory
316  * descriptor that has memory that is available for OS use.
317  */
318 void
319 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
320 {
321         walk(callback, arg, EFI_MEMORY_WB);
322 }
323
324 /*
325  * Walk the EFI memory map and call CALLBACK once for each EFI memory
326  * descriptor that has memory that is available for uncached allocator.
327  */
328 void
329 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
330 {
331         walk(callback, arg, EFI_MEMORY_UC);
332 }
333
334 /*
335  * Look for the PAL_CODE region reported by EFI and map it using an
336  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
337  * Abstraction Layer chapter 11 in ADAG
338  */
339 void *
340 efi_get_pal_addr (void)
341 {
342         void *efi_map_start, *efi_map_end, *p;
343         efi_memory_desc_t *md;
344         u64 efi_desc_size;
345         int pal_code_count = 0;
346         u64 vaddr, mask;
347
348         efi_map_start = __va(ia64_boot_param->efi_memmap);
349         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
350         efi_desc_size = ia64_boot_param->efi_memdesc_size;
351
352         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
353                 md = p;
354                 if (md->type != EFI_PAL_CODE)
355                         continue;
356
357                 if (++pal_code_count > 1) {
358                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
359                                "dropped @ %lx\n", md->phys_addr);
360                         continue;
361                 }
362                 /*
363                  * The only ITLB entry in region 7 that is used is the one
364                  * installed by __start().  That entry covers a 64MB range.
365                  */
366                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
367                 vaddr = PAGE_OFFSET + md->phys_addr;
368
369                 /*
370                  * We must check that the PAL mapping won't overlap with the
371                  * kernel mapping.
372                  *
373                  * PAL code is guaranteed to be aligned on a power of 2 between
374                  * 4k and 256KB and that only one ITR is needed to map it. This
375                  * implies that the PAL code is always aligned on its size,
376                  * i.e., the closest matching page size supported by the TLB.
377                  * Therefore PAL code is guaranteed never to cross a 64MB unless
378                  * it is bigger than 64MB (very unlikely!).  So for now the
379                  * following test is enough to determine whether or not we need
380                  * a dedicated ITR for the PAL code.
381                  */
382                 if ((vaddr & mask) == (KERNEL_START & mask)) {
383                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
384                                __func__);
385                         continue;
386                 }
387
388                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
389                         panic("Whoa!  PAL code size bigger than a granule!");
390
391 #if EFI_DEBUG
392                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
393
394                 printk(KERN_INFO "CPU %d: mapping PAL code "
395                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
396                        smp_processor_id(), md->phys_addr,
397                        md->phys_addr + efi_md_size(md),
398                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
399 #endif
400                 return __va(md->phys_addr);
401         }
402         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
403                __func__);
404         return NULL;
405 }
406
407
408 static u8 __init palo_checksum(u8 *buffer, u32 length)
409 {
410         u8 sum = 0;
411         u8 *end = buffer + length;
412
413         while (buffer < end)
414                 sum = (u8) (sum + *(buffer++));
415
416         return sum;
417 }
418
419 /*
420  * Parse and handle PALO table which is published at:
421  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
422  */
423 static void __init handle_palo(unsigned long palo_phys)
424 {
425         struct palo_table *palo = __va(palo_phys);
426         u8  checksum;
427
428         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
429                 printk(KERN_INFO "PALO signature incorrect.\n");
430                 return;
431         }
432
433         checksum = palo_checksum((u8 *)palo, palo->length);
434         if (checksum) {
435                 printk(KERN_INFO "PALO checksum incorrect.\n");
436                 return;
437         }
438
439         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
440 }
441
442 void
443 efi_map_pal_code (void)
444 {
445         void *pal_vaddr = efi_get_pal_addr ();
446         u64 psr;
447
448         if (!pal_vaddr)
449                 return;
450
451         /*
452          * Cannot write to CRx with PSR.ic=1
453          */
454         psr = ia64_clear_ic();
455         ia64_itr(0x1, IA64_TR_PALCODE,
456                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
457                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
458                  IA64_GRANULE_SHIFT);
459         ia64_set_psr(psr);              /* restore psr */
460 }
461
462 void __init
463 efi_init (void)
464 {
465         void *efi_map_start, *efi_map_end;
466         efi_config_table_t *config_tables;
467         efi_char16_t *c16;
468         u64 efi_desc_size;
469         char *cp, vendor[100] = "unknown";
470         int i;
471         unsigned long palo_phys;
472
473         /*
474          * It's too early to be able to use the standard kernel command line
475          * support...
476          */
477         for (cp = boot_command_line; *cp; ) {
478                 if (memcmp(cp, "mem=", 4) == 0) {
479                         mem_limit = memparse(cp + 4, &cp);
480                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
481                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
482                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
483                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
484                 } else {
485                         while (*cp != ' ' && *cp)
486                                 ++cp;
487                         while (*cp == ' ')
488                                 ++cp;
489                 }
490         }
491         if (min_addr != 0UL)
492                 printk(KERN_INFO "Ignoring memory below %luMB\n",
493                        min_addr >> 20);
494         if (max_addr != ~0UL)
495                 printk(KERN_INFO "Ignoring memory above %luMB\n",
496                        max_addr >> 20);
497
498         efi.systab = __va(ia64_boot_param->efi_systab);
499
500         /*
501          * Verify the EFI Table
502          */
503         if (efi.systab == NULL)
504                 panic("Whoa! Can't find EFI system table.\n");
505         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
506                 panic("Whoa! EFI system table signature incorrect\n");
507         if ((efi.systab->hdr.revision >> 16) == 0)
508                 printk(KERN_WARNING "Warning: EFI system table version "
509                        "%d.%02d, expected 1.00 or greater\n",
510                        efi.systab->hdr.revision >> 16,
511                        efi.systab->hdr.revision & 0xffff);
512
513         config_tables = __va(efi.systab->tables);
514
515         /* Show what we know for posterity */
516         c16 = __va(efi.systab->fw_vendor);
517         if (c16) {
518                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
519                         vendor[i] = *c16++;
520                 vendor[i] = '\0';
521         }
522
523         printk(KERN_INFO "EFI v%u.%.02u by %s:",
524                efi.systab->hdr.revision >> 16,
525                efi.systab->hdr.revision & 0xffff, vendor);
526
527         efi.mps        = EFI_INVALID_TABLE_ADDR;
528         efi.acpi       = EFI_INVALID_TABLE_ADDR;
529         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
530         efi.smbios     = EFI_INVALID_TABLE_ADDR;
531         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
532         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
533         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
534         efi.uga        = EFI_INVALID_TABLE_ADDR;
535
536         palo_phys      = EFI_INVALID_TABLE_ADDR;
537
538         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
539                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
540                         efi.mps = config_tables[i].table;
541                         printk(" MPS=0x%lx", config_tables[i].table);
542                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
543                         efi.acpi20 = config_tables[i].table;
544                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
545                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
546                         efi.acpi = config_tables[i].table;
547                         printk(" ACPI=0x%lx", config_tables[i].table);
548                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
549                         efi.smbios = config_tables[i].table;
550                         printk(" SMBIOS=0x%lx", config_tables[i].table);
551                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
552                         efi.sal_systab = config_tables[i].table;
553                         printk(" SALsystab=0x%lx", config_tables[i].table);
554                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
555                         efi.hcdp = config_tables[i].table;
556                         printk(" HCDP=0x%lx", config_tables[i].table);
557                 } else if (efi_guidcmp(config_tables[i].guid,
558                          PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
559                         palo_phys = config_tables[i].table;
560                         printk(" PALO=0x%lx", config_tables[i].table);
561                 }
562         }
563         printk("\n");
564
565         if (palo_phys != EFI_INVALID_TABLE_ADDR)
566                 handle_palo(palo_phys);
567
568         runtime = __va(efi.systab->runtime);
569         efi.get_time = phys_get_time;
570         efi.set_time = phys_set_time;
571         efi.get_wakeup_time = phys_get_wakeup_time;
572         efi.set_wakeup_time = phys_set_wakeup_time;
573         efi.get_variable = phys_get_variable;
574         efi.get_next_variable = phys_get_next_variable;
575         efi.set_variable = phys_set_variable;
576         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
577         efi.reset_system = phys_reset_system;
578
579         efi_map_start = __va(ia64_boot_param->efi_memmap);
580         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
581         efi_desc_size = ia64_boot_param->efi_memdesc_size;
582
583 #if EFI_DEBUG
584         /* print EFI memory map: */
585         {
586                 efi_memory_desc_t *md;
587                 void *p;
588
589                 for (i = 0, p = efi_map_start; p < efi_map_end;
590                      ++i, p += efi_desc_size)
591                 {
592                         const char *unit;
593                         unsigned long size;
594
595                         md = p;
596                         size = md->num_pages << EFI_PAGE_SHIFT;
597
598                         if ((size >> 40) > 0) {
599                                 size >>= 40;
600                                 unit = "TB";
601                         } else if ((size >> 30) > 0) {
602                                 size >>= 30;
603                                 unit = "GB";
604                         } else if ((size >> 20) > 0) {
605                                 size >>= 20;
606                                 unit = "MB";
607                         } else {
608                                 size >>= 10;
609                                 unit = "KB";
610                         }
611
612                         printk("mem%02d: type=%2u, attr=0x%016lx, "
613                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
614                                i, md->type, md->attribute, md->phys_addr,
615                                md->phys_addr + efi_md_size(md), size, unit);
616                 }
617         }
618 #endif
619
620         efi_map_pal_code();
621         efi_enter_virtual_mode();
622 }
623
624 void
625 efi_enter_virtual_mode (void)
626 {
627         void *efi_map_start, *efi_map_end, *p;
628         efi_memory_desc_t *md;
629         efi_status_t status;
630         u64 efi_desc_size;
631
632         efi_map_start = __va(ia64_boot_param->efi_memmap);
633         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
634         efi_desc_size = ia64_boot_param->efi_memdesc_size;
635
636         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
637                 md = p;
638                 if (md->attribute & EFI_MEMORY_RUNTIME) {
639                         /*
640                          * Some descriptors have multiple bits set, so the
641                          * order of the tests is relevant.
642                          */
643                         if (md->attribute & EFI_MEMORY_WB) {
644                                 md->virt_addr = (u64) __va(md->phys_addr);
645                         } else if (md->attribute & EFI_MEMORY_UC) {
646                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
647                         } else if (md->attribute & EFI_MEMORY_WC) {
648 #if 0
649                                 md->virt_addr = ia64_remap(md->phys_addr,
650                                                            (_PAGE_A |
651                                                             _PAGE_P |
652                                                             _PAGE_D |
653                                                             _PAGE_MA_WC |
654                                                             _PAGE_PL_0 |
655                                                             _PAGE_AR_RW));
656 #else
657                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
658                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
659 #endif
660                         } else if (md->attribute & EFI_MEMORY_WT) {
661 #if 0
662                                 md->virt_addr = ia64_remap(md->phys_addr,
663                                                            (_PAGE_A |
664                                                             _PAGE_P |
665                                                             _PAGE_D |
666                                                             _PAGE_MA_WT |
667                                                             _PAGE_PL_0 |
668                                                             _PAGE_AR_RW));
669 #else
670                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
671                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
672 #endif
673                         }
674                 }
675         }
676
677         status = efi_call_phys(__va(runtime->set_virtual_address_map),
678                                ia64_boot_param->efi_memmap_size,
679                                efi_desc_size,
680                                ia64_boot_param->efi_memdesc_version,
681                                ia64_boot_param->efi_memmap);
682         if (status != EFI_SUCCESS) {
683                 printk(KERN_WARNING "warning: unable to switch EFI into "
684                        "virtual mode (status=%lu)\n", status);
685                 return;
686         }
687
688         /*
689          * Now that EFI is in virtual mode, we call the EFI functions more
690          * efficiently:
691          */
692         efi.get_time = virt_get_time;
693         efi.set_time = virt_set_time;
694         efi.get_wakeup_time = virt_get_wakeup_time;
695         efi.set_wakeup_time = virt_set_wakeup_time;
696         efi.get_variable = virt_get_variable;
697         efi.get_next_variable = virt_get_next_variable;
698         efi.set_variable = virt_set_variable;
699         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
700         efi.reset_system = virt_reset_system;
701 }
702
703 /*
704  * Walk the EFI memory map looking for the I/O port range.  There can only be
705  * one entry of this type, other I/O port ranges should be described via ACPI.
706  */
707 u64
708 efi_get_iobase (void)
709 {
710         void *efi_map_start, *efi_map_end, *p;
711         efi_memory_desc_t *md;
712         u64 efi_desc_size;
713
714         efi_map_start = __va(ia64_boot_param->efi_memmap);
715         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
716         efi_desc_size = ia64_boot_param->efi_memdesc_size;
717
718         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
719                 md = p;
720                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
721                         if (md->attribute & EFI_MEMORY_UC)
722                                 return md->phys_addr;
723                 }
724         }
725         return 0;
726 }
727
728 static struct kern_memdesc *
729 kern_memory_descriptor (unsigned long phys_addr)
730 {
731         struct kern_memdesc *md;
732
733         for (md = kern_memmap; md->start != ~0UL; md++) {
734                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
735                          return md;
736         }
737         return NULL;
738 }
739
740 static efi_memory_desc_t *
741 efi_memory_descriptor (unsigned long phys_addr)
742 {
743         void *efi_map_start, *efi_map_end, *p;
744         efi_memory_desc_t *md;
745         u64 efi_desc_size;
746
747         efi_map_start = __va(ia64_boot_param->efi_memmap);
748         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
749         efi_desc_size = ia64_boot_param->efi_memdesc_size;
750
751         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
752                 md = p;
753
754                 if (phys_addr - md->phys_addr < efi_md_size(md))
755                          return md;
756         }
757         return NULL;
758 }
759
760 static int
761 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
762 {
763         void *efi_map_start, *efi_map_end, *p;
764         efi_memory_desc_t *md;
765         u64 efi_desc_size;
766         unsigned long end;
767
768         efi_map_start = __va(ia64_boot_param->efi_memmap);
769         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
770         efi_desc_size = ia64_boot_param->efi_memdesc_size;
771
772         end = phys_addr + size;
773
774         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
775                 md = p;
776                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
777                         return 1;
778         }
779         return 0;
780 }
781
782 u32
783 efi_mem_type (unsigned long phys_addr)
784 {
785         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
786
787         if (md)
788                 return md->type;
789         return 0;
790 }
791
792 u64
793 efi_mem_attributes (unsigned long phys_addr)
794 {
795         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
796
797         if (md)
798                 return md->attribute;
799         return 0;
800 }
801 EXPORT_SYMBOL(efi_mem_attributes);
802
803 u64
804 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
805 {
806         unsigned long end = phys_addr + size;
807         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
808         u64 attr;
809
810         if (!md)
811                 return 0;
812
813         /*
814          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
815          * the kernel that firmware needs this region mapped.
816          */
817         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
818         do {
819                 unsigned long md_end = efi_md_end(md);
820
821                 if (end <= md_end)
822                         return attr;
823
824                 md = efi_memory_descriptor(md_end);
825                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
826                         return 0;
827         } while (md);
828         return 0;       /* never reached */
829 }
830
831 u64
832 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
833 {
834         unsigned long end = phys_addr + size;
835         struct kern_memdesc *md;
836         u64 attr;
837
838         /*
839          * This is a hack for ioremap calls before we set up kern_memmap.
840          * Maybe we should do efi_memmap_init() earlier instead.
841          */
842         if (!kern_memmap) {
843                 attr = efi_mem_attribute(phys_addr, size);
844                 if (attr & EFI_MEMORY_WB)
845                         return EFI_MEMORY_WB;
846                 return 0;
847         }
848
849         md = kern_memory_descriptor(phys_addr);
850         if (!md)
851                 return 0;
852
853         attr = md->attribute;
854         do {
855                 unsigned long md_end = kmd_end(md);
856
857                 if (end <= md_end)
858                         return attr;
859
860                 md = kern_memory_descriptor(md_end);
861                 if (!md || md->attribute != attr)
862                         return 0;
863         } while (md);
864         return 0;       /* never reached */
865 }
866 EXPORT_SYMBOL(kern_mem_attribute);
867
868 int
869 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
870 {
871         u64 attr;
872
873         /*
874          * /dev/mem reads and writes use copy_to_user(), which implicitly
875          * uses a granule-sized kernel identity mapping.  It's really
876          * only safe to do this for regions in kern_memmap.  For more
877          * details, see Documentation/ia64/aliasing.txt.
878          */
879         attr = kern_mem_attribute(phys_addr, size);
880         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
881                 return 1;
882         return 0;
883 }
884
885 int
886 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
887 {
888         unsigned long phys_addr = pfn << PAGE_SHIFT;
889         u64 attr;
890
891         attr = efi_mem_attribute(phys_addr, size);
892
893         /*
894          * /dev/mem mmap uses normal user pages, so we don't need the entire
895          * granule, but the entire region we're mapping must support the same
896          * attribute.
897          */
898         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
899                 return 1;
900
901         /*
902          * Intel firmware doesn't tell us about all the MMIO regions, so
903          * in general we have to allow mmap requests.  But if EFI *does*
904          * tell us about anything inside this region, we should deny it.
905          * The user can always map a smaller region to avoid the overlap.
906          */
907         if (efi_memmap_intersects(phys_addr, size))
908                 return 0;
909
910         return 1;
911 }
912
913 pgprot_t
914 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
915                      pgprot_t vma_prot)
916 {
917         unsigned long phys_addr = pfn << PAGE_SHIFT;
918         u64 attr;
919
920         /*
921          * For /dev/mem mmap, we use user mappings, but if the region is
922          * in kern_memmap (and hence may be covered by a kernel mapping),
923          * we must use the same attribute as the kernel mapping.
924          */
925         attr = kern_mem_attribute(phys_addr, size);
926         if (attr & EFI_MEMORY_WB)
927                 return pgprot_cacheable(vma_prot);
928         else if (attr & EFI_MEMORY_UC)
929                 return pgprot_noncached(vma_prot);
930
931         /*
932          * Some chipsets don't support UC access to memory.  If
933          * WB is supported, we prefer that.
934          */
935         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
936                 return pgprot_cacheable(vma_prot);
937
938         return pgprot_noncached(vma_prot);
939 }
940
941 int __init
942 efi_uart_console_only(void)
943 {
944         efi_status_t status;
945         char *s, name[] = "ConOut";
946         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
947         efi_char16_t *utf16, name_utf16[32];
948         unsigned char data[1024];
949         unsigned long size = sizeof(data);
950         struct efi_generic_dev_path *hdr, *end_addr;
951         int uart = 0;
952
953         /* Convert to UTF-16 */
954         utf16 = name_utf16;
955         s = name;
956         while (*s)
957                 *utf16++ = *s++ & 0x7f;
958         *utf16 = 0;
959
960         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
961         if (status != EFI_SUCCESS) {
962                 printk(KERN_ERR "No EFI %s variable?\n", name);
963                 return 0;
964         }
965
966         hdr = (struct efi_generic_dev_path *) data;
967         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
968         while (hdr < end_addr) {
969                 if (hdr->type == EFI_DEV_MSG &&
970                     hdr->sub_type == EFI_DEV_MSG_UART)
971                         uart = 1;
972                 else if (hdr->type == EFI_DEV_END_PATH ||
973                           hdr->type == EFI_DEV_END_PATH2) {
974                         if (!uart)
975                                 return 0;
976                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
977                                 return 1;
978                         uart = 0;
979                 }
980                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
981         }
982         printk(KERN_ERR "Malformed %s value\n", name);
983         return 0;
984 }
985
986 /*
987  * Look for the first granule aligned memory descriptor memory
988  * that is big enough to hold EFI memory map. Make sure this
989  * descriptor is atleast granule sized so it does not get trimmed
990  */
991 struct kern_memdesc *
992 find_memmap_space (void)
993 {
994         u64     contig_low=0, contig_high=0;
995         u64     as = 0, ae;
996         void *efi_map_start, *efi_map_end, *p, *q;
997         efi_memory_desc_t *md, *pmd = NULL, *check_md;
998         u64     space_needed, efi_desc_size;
999         unsigned long total_mem = 0;
1000
1001         efi_map_start = __va(ia64_boot_param->efi_memmap);
1002         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1003         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1004
1005         /*
1006          * Worst case: we need 3 kernel descriptors for each efi descriptor
1007          * (if every entry has a WB part in the middle, and UC head and tail),
1008          * plus one for the end marker.
1009          */
1010         space_needed = sizeof(kern_memdesc_t) *
1011                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1012
1013         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1014                 md = p;
1015                 if (!efi_wb(md)) {
1016                         continue;
1017                 }
1018                 if (pmd == NULL || !efi_wb(pmd) ||
1019                     efi_md_end(pmd) != md->phys_addr) {
1020                         contig_low = GRANULEROUNDUP(md->phys_addr);
1021                         contig_high = efi_md_end(md);
1022                         for (q = p + efi_desc_size; q < efi_map_end;
1023                              q += efi_desc_size) {
1024                                 check_md = q;
1025                                 if (!efi_wb(check_md))
1026                                         break;
1027                                 if (contig_high != check_md->phys_addr)
1028                                         break;
1029                                 contig_high = efi_md_end(check_md);
1030                         }
1031                         contig_high = GRANULEROUNDDOWN(contig_high);
1032                 }
1033                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1034                         continue;
1035
1036                 /* Round ends inward to granule boundaries */
1037                 as = max(contig_low, md->phys_addr);
1038                 ae = min(contig_high, efi_md_end(md));
1039
1040                 /* keep within max_addr= and min_addr= command line arg */
1041                 as = max(as, min_addr);
1042                 ae = min(ae, max_addr);
1043                 if (ae <= as)
1044                         continue;
1045
1046                 /* avoid going over mem= command line arg */
1047                 if (total_mem + (ae - as) > mem_limit)
1048                         ae -= total_mem + (ae - as) - mem_limit;
1049
1050                 if (ae <= as)
1051                         continue;
1052
1053                 if (ae - as > space_needed)
1054                         break;
1055         }
1056         if (p >= efi_map_end)
1057                 panic("Can't allocate space for kernel memory descriptors");
1058
1059         return __va(as);
1060 }
1061
1062 /*
1063  * Walk the EFI memory map and gather all memory available for kernel
1064  * to use.  We can allocate partial granules only if the unavailable
1065  * parts exist, and are WB.
1066  */
1067 unsigned long
1068 efi_memmap_init(unsigned long *s, unsigned long *e)
1069 {
1070         struct kern_memdesc *k, *prev = NULL;
1071         u64     contig_low=0, contig_high=0;
1072         u64     as, ae, lim;
1073         void *efi_map_start, *efi_map_end, *p, *q;
1074         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1075         u64     efi_desc_size;
1076         unsigned long total_mem = 0;
1077
1078         k = kern_memmap = find_memmap_space();
1079
1080         efi_map_start = __va(ia64_boot_param->efi_memmap);
1081         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1082         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1083
1084         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1085                 md = p;
1086                 if (!efi_wb(md)) {
1087                         if (efi_uc(md) &&
1088                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1089                              md->type == EFI_BOOT_SERVICES_DATA)) {
1090                                 k->attribute = EFI_MEMORY_UC;
1091                                 k->start = md->phys_addr;
1092                                 k->num_pages = md->num_pages;
1093                                 k++;
1094                         }
1095                         continue;
1096                 }
1097                 if (pmd == NULL || !efi_wb(pmd) ||
1098                     efi_md_end(pmd) != md->phys_addr) {
1099                         contig_low = GRANULEROUNDUP(md->phys_addr);
1100                         contig_high = efi_md_end(md);
1101                         for (q = p + efi_desc_size; q < efi_map_end;
1102                              q += efi_desc_size) {
1103                                 check_md = q;
1104                                 if (!efi_wb(check_md))
1105                                         break;
1106                                 if (contig_high != check_md->phys_addr)
1107                                         break;
1108                                 contig_high = efi_md_end(check_md);
1109                         }
1110                         contig_high = GRANULEROUNDDOWN(contig_high);
1111                 }
1112                 if (!is_memory_available(md))
1113                         continue;
1114
1115 #ifdef CONFIG_CRASH_DUMP
1116                 /* saved_max_pfn should ignore max_addr= command line arg */
1117                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1118                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1119 #endif
1120                 /*
1121                  * Round ends inward to granule boundaries
1122                  * Give trimmings to uncached allocator
1123                  */
1124                 if (md->phys_addr < contig_low) {
1125                         lim = min(efi_md_end(md), contig_low);
1126                         if (efi_uc(md)) {
1127                                 if (k > kern_memmap &&
1128                                     (k-1)->attribute == EFI_MEMORY_UC &&
1129                                     kmd_end(k-1) == md->phys_addr) {
1130                                         (k-1)->num_pages +=
1131                                                 (lim - md->phys_addr)
1132                                                 >> EFI_PAGE_SHIFT;
1133                                 } else {
1134                                         k->attribute = EFI_MEMORY_UC;
1135                                         k->start = md->phys_addr;
1136                                         k->num_pages = (lim - md->phys_addr)
1137                                                 >> EFI_PAGE_SHIFT;
1138                                         k++;
1139                                 }
1140                         }
1141                         as = contig_low;
1142                 } else
1143                         as = md->phys_addr;
1144
1145                 if (efi_md_end(md) > contig_high) {
1146                         lim = max(md->phys_addr, contig_high);
1147                         if (efi_uc(md)) {
1148                                 if (lim == md->phys_addr && k > kern_memmap &&
1149                                     (k-1)->attribute == EFI_MEMORY_UC &&
1150                                     kmd_end(k-1) == md->phys_addr) {
1151                                         (k-1)->num_pages += md->num_pages;
1152                                 } else {
1153                                         k->attribute = EFI_MEMORY_UC;
1154                                         k->start = lim;
1155                                         k->num_pages = (efi_md_end(md) - lim)
1156                                                 >> EFI_PAGE_SHIFT;
1157                                         k++;
1158                                 }
1159                         }
1160                         ae = contig_high;
1161                 } else
1162                         ae = efi_md_end(md);
1163
1164                 /* keep within max_addr= and min_addr= command line arg */
1165                 as = max(as, min_addr);
1166                 ae = min(ae, max_addr);
1167                 if (ae <= as)
1168                         continue;
1169
1170                 /* avoid going over mem= command line arg */
1171                 if (total_mem + (ae - as) > mem_limit)
1172                         ae -= total_mem + (ae - as) - mem_limit;
1173
1174                 if (ae <= as)
1175                         continue;
1176                 if (prev && kmd_end(prev) == md->phys_addr) {
1177                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1178                         total_mem += ae - as;
1179                         continue;
1180                 }
1181                 k->attribute = EFI_MEMORY_WB;
1182                 k->start = as;
1183                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1184                 total_mem += ae - as;
1185                 prev = k++;
1186         }
1187         k->start = ~0L; /* end-marker */
1188
1189         /* reserve the memory we are using for kern_memmap */
1190         *s = (u64)kern_memmap;
1191         *e = (u64)++k;
1192
1193         return total_mem;
1194 }
1195
1196 void
1197 efi_initialize_iomem_resources(struct resource *code_resource,
1198                                struct resource *data_resource,
1199                                struct resource *bss_resource)
1200 {
1201         struct resource *res;
1202         void *efi_map_start, *efi_map_end, *p;
1203         efi_memory_desc_t *md;
1204         u64 efi_desc_size;
1205         char *name;
1206         unsigned long flags;
1207
1208         efi_map_start = __va(ia64_boot_param->efi_memmap);
1209         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1210         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1211
1212         res = NULL;
1213
1214         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1215                 md = p;
1216
1217                 if (md->num_pages == 0) /* should not happen */
1218                         continue;
1219
1220                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1221                 switch (md->type) {
1222
1223                         case EFI_MEMORY_MAPPED_IO:
1224                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1225                                 continue;
1226
1227                         case EFI_LOADER_CODE:
1228                         case EFI_LOADER_DATA:
1229                         case EFI_BOOT_SERVICES_DATA:
1230                         case EFI_BOOT_SERVICES_CODE:
1231                         case EFI_CONVENTIONAL_MEMORY:
1232                                 if (md->attribute & EFI_MEMORY_WP) {
1233                                         name = "System ROM";
1234                                         flags |= IORESOURCE_READONLY;
1235                                 } else if (md->attribute == EFI_MEMORY_UC)
1236                                         name = "Uncached RAM";
1237                                 else
1238                                         name = "System RAM";
1239                                 break;
1240
1241                         case EFI_ACPI_MEMORY_NVS:
1242                                 name = "ACPI Non-volatile Storage";
1243                                 break;
1244
1245                         case EFI_UNUSABLE_MEMORY:
1246                                 name = "reserved";
1247                                 flags |= IORESOURCE_DISABLED;
1248                                 break;
1249
1250                         case EFI_RESERVED_TYPE:
1251                         case EFI_RUNTIME_SERVICES_CODE:
1252                         case EFI_RUNTIME_SERVICES_DATA:
1253                         case EFI_ACPI_RECLAIM_MEMORY:
1254                         default:
1255                                 name = "reserved";
1256                                 break;
1257                 }
1258
1259                 if ((res = kzalloc(sizeof(struct resource),
1260                                    GFP_KERNEL)) == NULL) {
1261                         printk(KERN_ERR
1262                                "failed to allocate resource for iomem\n");
1263                         return;
1264                 }
1265
1266                 res->name = name;
1267                 res->start = md->phys_addr;
1268                 res->end = md->phys_addr + efi_md_size(md) - 1;
1269                 res->flags = flags;
1270
1271                 if (insert_resource(&iomem_resource, res) < 0)
1272                         kfree(res);
1273                 else {
1274                         /*
1275                          * We don't know which region contains
1276                          * kernel data so we try it repeatedly and
1277                          * let the resource manager test it.
1278                          */
1279                         insert_resource(res, code_resource);
1280                         insert_resource(res, data_resource);
1281                         insert_resource(res, bss_resource);
1282 #ifdef CONFIG_KEXEC
1283                         insert_resource(res, &efi_memmap_res);
1284                         insert_resource(res, &boot_param_res);
1285                         if (crashk_res.end > crashk_res.start)
1286                                 insert_resource(res, &crashk_res);
1287 #endif
1288                 }
1289         }
1290 }
1291
1292 #ifdef CONFIG_KEXEC
1293 /* find a block of memory aligned to 64M exclude reserved regions
1294    rsvd_regions are sorted
1295  */
1296 unsigned long __init
1297 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1298 {
1299         int i;
1300         u64 start, end;
1301         u64 alignment = 1UL << _PAGE_SIZE_64M;
1302         void *efi_map_start, *efi_map_end, *p;
1303         efi_memory_desc_t *md;
1304         u64 efi_desc_size;
1305
1306         efi_map_start = __va(ia64_boot_param->efi_memmap);
1307         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1308         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1309
1310         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1311                 md = p;
1312                 if (!efi_wb(md))
1313                         continue;
1314                 start = ALIGN(md->phys_addr, alignment);
1315                 end = efi_md_end(md);
1316                 for (i = 0; i < n; i++) {
1317                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1318                                 if (__pa(r[i].start) > start + size)
1319                                         return start;
1320                                 start = ALIGN(__pa(r[i].end), alignment);
1321                                 if (i < n-1 &&
1322                                     __pa(r[i+1].start) < start + size)
1323                                         continue;
1324                                 else
1325                                         break;
1326                         }
1327                 }
1328                 if (end > start + size)
1329                         return start;
1330         }
1331
1332         printk(KERN_WARNING
1333                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1334         return ~0UL;
1335 }
1336 #endif
1337
1338 #ifdef CONFIG_CRASH_DUMP
1339 /* locate the size find a the descriptor at a certain address */
1340 unsigned long __init
1341 vmcore_find_descriptor_size (unsigned long address)
1342 {
1343         void *efi_map_start, *efi_map_end, *p;
1344         efi_memory_desc_t *md;
1345         u64 efi_desc_size;
1346         unsigned long ret = 0;
1347
1348         efi_map_start = __va(ia64_boot_param->efi_memmap);
1349         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1350         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1351
1352         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1353                 md = p;
1354                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1355                     && md->phys_addr == address) {
1356                         ret = efi_md_size(md);
1357                         break;
1358                 }
1359         }
1360
1361         if (ret == 0)
1362                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1363
1364         return ret;
1365 }
1366 #endif