2 * Architecture-specific unaligned trap handling.
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/tty.h>
21 #include <asm/intrinsics.h>
22 #include <asm/processor.h>
24 #include <asm/uaccess.h>
25 #include <asm/unaligned.h>
27 extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
29 #undef DEBUG_UNALIGNED_TRAP
31 #ifdef DEBUG_UNALIGNED_TRAP
32 # define DPRINT(a...) do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
33 # define DDUMP(str,vp,len) dump(str, vp, len)
36 dump (const char *str, void *vp, size_t len)
38 unsigned char *cp = vp;
42 for (i = 0; i < len; ++i)
43 printk (" %02x", *cp++);
48 # define DDUMP(str,vp,len)
51 #define IA64_FIRST_STACKED_GR 32
52 #define IA64_FIRST_ROTATING_FR 32
53 #define SIGN_EXT9 0xffffffffffffff00ul
56 * sysctl settable hook which tells the kernel whether to honor the
57 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
58 * to allow the super user to enable/disable this for security reasons
59 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
61 int no_unaligned_warning;
62 static int noprint_warning;
68 * --------|------|---------|
69 * [40-37] | [36] | [35:30] |
70 * --------|------|---------|
71 * 4 | 1 | 6 | = 11 bits
72 * --------------------------
73 * However bits [31:30] are not directly useful to distinguish between
74 * load/store so we can use [35:32] instead, which gives the following
75 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
76 * checking the m-bit until later in the load/store emulation.
78 #define IA64_OPCODE_MASK 0x1ef
79 #define IA64_OPCODE_SHIFT 32
82 * Table C-28 Integer Load/Store
84 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
86 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
87 * the address (bits [8:3]), so we must failed.
93 #define LDBIAS_OP 0x084
94 #define LDACQ_OP 0x085
95 /* 0x086, 0x087 are not relevant */
96 #define LDCCLR_OP 0x088
97 #define LDCNC_OP 0x089
98 #define LDCCLRACQ_OP 0x08a
100 #define STREL_OP 0x08d
101 /* 0x08e,0x8f are not relevant */
104 * Table C-29 Integer Load +Reg
106 * we use the ld->m (bit [36:36]) field to determine whether or not we have
107 * a load/store of this form.
111 * Table C-30 Integer Load/Store +Imm
113 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
115 * ld8.fill, st8.fill must be aligned because the Nat register are based on
116 * the address, so we must fail and the program must be fixed.
118 #define LD_IMM_OP 0x0a0
119 #define LDS_IMM_OP 0x0a1
120 #define LDA_IMM_OP 0x0a2
121 #define LDSA_IMM_OP 0x0a3
122 #define LDBIAS_IMM_OP 0x0a4
123 #define LDACQ_IMM_OP 0x0a5
124 /* 0x0a6, 0xa7 are not relevant */
125 #define LDCCLR_IMM_OP 0x0a8
126 #define LDCNC_IMM_OP 0x0a9
127 #define LDCCLRACQ_IMM_OP 0x0aa
128 #define ST_IMM_OP 0x0ac
129 #define STREL_IMM_OP 0x0ad
130 /* 0x0ae,0xaf are not relevant */
133 * Table C-32 Floating-point Load/Store
136 #define LDFS_OP 0x0c1
137 #define LDFA_OP 0x0c2
138 #define LDFSA_OP 0x0c3
139 /* 0x0c6 is irrelevant */
140 #define LDFCCLR_OP 0x0c8
141 #define LDFCNC_OP 0x0c9
142 /* 0x0cb is irrelevant */
146 * Table C-33 Floating-point Load +Reg
148 * we use the ld->m (bit [36:36]) field to determine whether or not we have
149 * a load/store of this form.
153 * Table C-34 Floating-point Load/Store +Imm
155 #define LDF_IMM_OP 0x0e0
156 #define LDFS_IMM_OP 0x0e1
157 #define LDFA_IMM_OP 0x0e2
158 #define LDFSA_IMM_OP 0x0e3
159 /* 0x0e6 is irrelevant */
160 #define LDFCCLR_IMM_OP 0x0e8
161 #define LDFCNC_IMM_OP 0x0e9
162 #define STF_IMM_OP 0x0ec
165 unsigned long qp:6; /* [0:5] */
166 unsigned long r1:7; /* [6:12] */
167 unsigned long imm:7; /* [13:19] */
168 unsigned long r3:7; /* [20:26] */
169 unsigned long x:1; /* [27:27] */
170 unsigned long hint:2; /* [28:29] */
171 unsigned long x6_sz:2; /* [30:31] */
172 unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
173 unsigned long m:1; /* [36:36] */
174 unsigned long op:4; /* [37:40] */
175 unsigned long pad:23; /* [41:63] */
180 UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
181 UPD_REG /* ldXZ r1=[r3],r2 */
185 * We use tables to keep track of the offsets of registers in the saved state.
186 * This way we save having big switch/case statements.
188 * We use bit 0 to indicate switch_stack or pt_regs.
189 * The offset is simply shifted by 1 bit.
190 * A 2-byte value should be enough to hold any kind of offset
192 * In case the calling convention changes (and thus pt_regs/switch_stack)
193 * simply use RSW instead of RPT or vice-versa.
196 #define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
197 #define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
199 #define RPT(x) (RPO(x) << 1)
200 #define RSW(x) (1| RSO(x)<<1)
202 #define GR_OFFS(x) (gr_info[x]>>1)
203 #define GR_IN_SW(x) (gr_info[x] & 0x1)
205 #define FR_OFFS(x) (fr_info[x]>>1)
206 #define FR_IN_SW(x) (fr_info[x] & 0x1)
208 static u16 gr_info[32]={
209 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
211 RPT(r1), RPT(r2), RPT(r3),
213 RSW(r4), RSW(r5), RSW(r6), RSW(r7),
215 RPT(r8), RPT(r9), RPT(r10), RPT(r11),
216 RPT(r12), RPT(r13), RPT(r14), RPT(r15),
218 RPT(r16), RPT(r17), RPT(r18), RPT(r19),
219 RPT(r20), RPT(r21), RPT(r22), RPT(r23),
220 RPT(r24), RPT(r25), RPT(r26), RPT(r27),
221 RPT(r28), RPT(r29), RPT(r30), RPT(r31)
224 static u16 fr_info[32]={
225 0, /* constant : WE SHOULD NEVER GET THIS */
226 0, /* constant : WE SHOULD NEVER GET THIS */
228 RSW(f2), RSW(f3), RSW(f4), RSW(f5),
230 RPT(f6), RPT(f7), RPT(f8), RPT(f9),
233 RSW(f12), RSW(f13), RSW(f14),
234 RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
235 RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
236 RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
240 /* Invalidate ALAT entry for integer register REGNO. */
242 invala_gr (int regno)
244 # define F(reg) case reg: ia64_invala_gr(reg); break
247 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
248 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
249 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
250 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
251 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
252 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
253 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
254 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
255 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
256 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
257 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
258 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
259 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
260 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
261 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
262 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
267 /* Invalidate ALAT entry for floating-point register REGNO. */
269 invala_fr (int regno)
271 # define F(reg) case reg: ia64_invala_fr(reg); break
274 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
275 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
276 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
277 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
278 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
279 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
280 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
281 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
282 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
283 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
284 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
285 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
286 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
287 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
288 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
289 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
294 static inline unsigned long
295 rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
304 set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
306 struct switch_stack *sw = (struct switch_stack *) regs - 1;
307 unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
308 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
309 unsigned long rnats, nat_mask;
310 unsigned long on_kbs;
311 long sof = (regs->cr_ifs) & 0x7f;
312 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
313 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
317 /* this should never happen, as the "rsvd register fault" has higher priority */
318 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
323 ridx = rotate_reg(sor, rrb_gr, ridx);
325 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
326 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
328 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
329 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
331 /* the register is on the kernel backing store: easy... */
332 rnat_addr = ia64_rse_rnat_addr(addr);
333 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
334 rnat_addr = &sw->ar_rnat;
335 nat_mask = 1UL << ia64_rse_slot_num(addr);
339 *rnat_addr |= nat_mask;
341 *rnat_addr &= ~nat_mask;
345 if (!user_stack(current, regs)) {
346 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
350 bspstore = (unsigned long *)regs->ar_bspstore;
351 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
352 bsp = ia64_rse_skip_regs(ubs_end, -sof);
353 addr = ia64_rse_skip_regs(bsp, ridx);
355 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
357 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
359 rnat_addr = ia64_rse_rnat_addr(addr);
361 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
362 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
363 (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
365 nat_mask = 1UL << ia64_rse_slot_num(addr);
370 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
372 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
377 get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
379 struct switch_stack *sw = (struct switch_stack *) regs - 1;
380 unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
381 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
382 unsigned long rnats, nat_mask;
383 unsigned long on_kbs;
384 long sof = (regs->cr_ifs) & 0x7f;
385 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
386 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
390 /* read of out-of-frame register returns an undefined value; 0 in our case. */
391 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
396 ridx = rotate_reg(sor, rrb_gr, ridx);
398 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
399 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
401 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
402 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
404 /* the register is on the kernel backing store: easy... */
407 rnat_addr = ia64_rse_rnat_addr(addr);
408 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
409 rnat_addr = &sw->ar_rnat;
410 nat_mask = 1UL << ia64_rse_slot_num(addr);
411 *nat = (*rnat_addr & nat_mask) != 0;
416 if (!user_stack(current, regs)) {
417 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
421 bspstore = (unsigned long *)regs->ar_bspstore;
422 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
423 bsp = ia64_rse_skip_regs(ubs_end, -sof);
424 addr = ia64_rse_skip_regs(bsp, ridx);
426 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
428 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
431 rnat_addr = ia64_rse_rnat_addr(addr);
432 nat_mask = 1UL << ia64_rse_slot_num(addr);
434 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
436 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
437 *nat = (rnats & nat_mask) != 0;
450 setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
452 struct switch_stack *sw = (struct switch_stack *) regs - 1;
454 unsigned long bitmask;
458 * First takes care of stacked registers
460 if (regnum >= IA64_FIRST_STACKED_GR) {
461 set_rse_reg(regs, regnum, val, nat);
466 * Using r0 as a target raises a General Exception fault which has higher priority
467 * than the Unaligned Reference fault.
471 * Now look at registers in [0-31] range and init correct UNAT
473 if (GR_IN_SW(regnum)) {
474 addr = (unsigned long)sw;
477 addr = (unsigned long)regs;
478 unat = &sw->caller_unat;
480 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
481 addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
483 * add offset from base of struct
486 addr += GR_OFFS(regnum);
488 *(unsigned long *)addr = val;
491 * We need to clear the corresponding UNAT bit to fully emulate the load
492 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
494 bitmask = 1UL << (addr >> 3 & 0x3f);
495 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
501 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
505 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
506 * range from 32-127, result is in the range from 0-95.
508 static inline unsigned long
509 fph_index (struct pt_regs *regs, long regnum)
511 unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
512 return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
516 setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
518 struct switch_stack *sw = (struct switch_stack *)regs - 1;
522 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
523 * Fault. Thus, when we get here, we know the partition is enabled.
524 * To update f32-f127, there are three choices:
526 * (1) save f32-f127 to thread.fph and update the values there
527 * (2) use a gigantic switch statement to directly access the registers
528 * (3) generate code on the fly to update the desired register
530 * For now, we are using approach (1).
532 if (regnum >= IA64_FIRST_ROTATING_FR) {
533 ia64_sync_fph(current);
534 current->thread.fph[fph_index(regs, regnum)] = *fpval;
537 * pt_regs or switch_stack ?
539 if (FR_IN_SW(regnum)) {
540 addr = (unsigned long)sw;
542 addr = (unsigned long)regs;
545 DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
547 addr += FR_OFFS(regnum);
548 *(struct ia64_fpreg *)addr = *fpval;
551 * mark the low partition as being used now
553 * It is highly unlikely that this bit is not already set, but
554 * let's do it for safety.
556 regs->cr_ipsr |= IA64_PSR_MFL;
561 * Those 2 inline functions generate the spilled versions of the constant floating point
562 * registers which can be used with stfX
565 float_spill_f0 (struct ia64_fpreg *final)
567 ia64_stf_spill(final, 0);
571 float_spill_f1 (struct ia64_fpreg *final)
573 ia64_stf_spill(final, 1);
577 getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
579 struct switch_stack *sw = (struct switch_stack *) regs - 1;
583 * From EAS-2.5: FPDisableFault has higher priority than
584 * Unaligned Fault. Thus, when we get here, we know the partition is
587 * When regnum > 31, the register is still live and we need to force a save
588 * to current->thread.fph to get access to it. See discussion in setfpreg()
589 * for reasons and other ways of doing this.
591 if (regnum >= IA64_FIRST_ROTATING_FR) {
592 ia64_flush_fph(current);
593 *fpval = current->thread.fph[fph_index(regs, regnum)];
596 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
597 * not saved, we must generate their spilled form on the fly
601 float_spill_f0(fpval);
604 float_spill_f1(fpval);
608 * pt_regs or switch_stack ?
610 addr = FR_IN_SW(regnum) ? (unsigned long)sw
611 : (unsigned long)regs;
613 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
614 FR_IN_SW(regnum), addr, FR_OFFS(regnum));
616 addr += FR_OFFS(regnum);
617 *fpval = *(struct ia64_fpreg *)addr;
624 getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
626 struct switch_stack *sw = (struct switch_stack *) regs - 1;
627 unsigned long addr, *unat;
629 if (regnum >= IA64_FIRST_STACKED_GR) {
630 get_rse_reg(regs, regnum, val, nat);
635 * take care of r0 (read-only always evaluate to 0)
645 * Now look at registers in [0-31] range and init correct UNAT
647 if (GR_IN_SW(regnum)) {
648 addr = (unsigned long)sw;
651 addr = (unsigned long)regs;
652 unat = &sw->caller_unat;
655 DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
657 addr += GR_OFFS(regnum);
659 *val = *(unsigned long *)addr;
662 * do it only when requested
665 *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
669 emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
673 * Given the way we handle unaligned speculative loads, we should
674 * not get to this point in the code but we keep this sanity check,
677 if (ld.x6_op == 1 || ld.x6_op == 3) {
678 printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
679 if (die_if_kernel("unaligned reference on speculative load with register update\n",
686 * at this point, we know that the base register to update is valid i.e.,
689 if (type == UPD_IMMEDIATE) {
693 * Load +Imm: ldXZ r1=[r3],imm(9)
696 * form imm9: [13:19] contain the first 7 bits
698 imm = ld.x << 7 | ld.imm;
701 * sign extend (1+8bits) if m set
703 if (ld.m) imm |= SIGN_EXT9;
706 * ifa == r3 and we know that the NaT bit on r3 was clear so
707 * we can directly use ifa.
711 setreg(ld.r3, ifa, 0, regs);
713 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
720 * Load +Reg Opcode: ldXZ r1=[r3],r2
722 * Note: that we update r3 even in the case of ldfX.a
723 * (where the load does not happen)
725 * The way the load algorithm works, we know that r3 does not
726 * have its NaT bit set (would have gotten NaT consumption
727 * before getting the unaligned fault). So we can use ifa
728 * which equals r3 at this point.
731 * The above statement holds ONLY because we know that we
732 * never reach this code when trying to do a ldX.s.
733 * If we ever make it to here on an ldfX.s then
735 getreg(ld.imm, &r2, &nat_r2, regs);
740 * propagate Nat r2 -> r3
742 setreg(ld.r3, ifa, nat_r2, regs);
744 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
750 emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
752 unsigned int len = 1 << ld.x6_sz;
753 unsigned long val = 0;
756 * r0, as target, doesn't need to be checked because Illegal Instruction
757 * faults have higher priority than unaligned faults.
759 * r0 cannot be found as the base as it would never generate an
760 * unaligned reference.
764 * ldX.a we will emulate load and also invalidate the ALAT entry.
765 * See comment below for explanation on how we handle ldX.a
768 if (len != 2 && len != 4 && len != 8) {
769 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
772 /* this assumes little-endian byte-order: */
773 if (copy_from_user(&val, (void __user *) ifa, len))
775 setreg(ld.r1, val, 0, regs);
778 * check for updates on any kind of loads
780 if (ld.op == 0x5 || ld.m)
781 emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
784 * handling of various loads (based on EAS2.4):
786 * ldX.acq (ordered load):
787 * - acquire semantics would have been used, so force fence instead.
789 * ldX.c.clr (check load and clear):
790 * - if we get to this handler, it's because the entry was not in the ALAT.
791 * Therefore the operation reverts to a normal load
793 * ldX.c.nc (check load no clear):
794 * - same as previous one
796 * ldX.c.clr.acq (ordered check load and clear):
797 * - same as above for c.clr part. The load needs to have acquire semantics. So
798 * we use the fence semantics which is stronger and thus ensures correctness.
800 * ldX.a (advanced load):
801 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
802 * address doesn't match requested size alignment. This means that we would
803 * possibly need more than one load to get the result.
805 * The load part can be handled just like a normal load, however the difficult
806 * part is to get the right thing into the ALAT. The critical piece of information
807 * in the base address of the load & size. To do that, a ld.a must be executed,
808 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
809 * if we use the same target register, we will be okay for the check.a instruction.
810 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
811 * which would overlap within [r3,r3+X] (the size of the load was store in the
812 * ALAT). If such an entry is found the entry is invalidated. But this is not good
813 * enough, take the following example:
817 * Could be emulated by doing:
819 * store to temporary;
821 * store & shift to temporary;
823 * store & shift to temporary;
825 * store & shift to temporary;
828 * So in this case, you would get the right value is r1 but the wrong info in
829 * the ALAT. Notice that you could do it in reverse to finish with address 3
830 * but you would still get the size wrong. To get the size right, one needs to
831 * execute exactly the same kind of load. You could do it from a aligned
832 * temporary location, but you would get the address wrong.
834 * So no matter what, it is not possible to emulate an advanced load
835 * correctly. But is that really critical ?
837 * We will always convert ld.a into a normal load with ALAT invalidated. This
838 * will enable compiler to do optimization where certain code path after ld.a
839 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
841 * If there is a store after the advanced load, one must either do a ld.c.* or
842 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
843 * entry found in ALAT), and that's perfectly ok because:
845 * - ld.c.*, if the entry is not present a normal load is executed
846 * - chk.a.*, if the entry is not present, execution jumps to recovery code
848 * In either case, the load can be potentially retried in another form.
850 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
851 * up a stale entry later). The register base update MUST also be performed.
855 * when the load has the .acq completer then
856 * use ordering fence.
858 if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
862 * invalidate ALAT entry in case of advanced load
871 emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
874 unsigned int len = 1 << ld.x6_sz;
877 * if we get to this handler, Nat bits on both r3 and r2 have already
878 * been checked. so we don't need to do it
880 * extract the value to be stored
882 getreg(ld.imm, &r2, NULL, regs);
885 * we rely on the macros in unaligned.h for now i.e.,
886 * we let the compiler figure out how to read memory gracefully.
888 * We need this switch/case because the way the inline function
889 * works. The code is optimized by the compiler and looks like
890 * a single switch/case.
892 DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
894 if (len != 2 && len != 4 && len != 8) {
895 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
899 /* this assumes little-endian byte-order: */
900 if (copy_to_user((void __user *) ifa, &r2, len))
907 * ld.r3 can never be r0, because r0 would not generate an
914 * form imm9: [12:6] contain first 7bits
916 imm = ld.x << 7 | ld.r1;
918 * sign extend (8bits) if m set
920 if (ld.m) imm |= SIGN_EXT9;
922 * ifa == r3 (NaT is necessarily cleared)
926 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
928 setreg(ld.r3, ifa, 0, regs);
931 * we don't have alat_invalidate_multiple() so we need
932 * to do the complete flush :-<<
937 * stX.rel: use fence instead of release
946 * floating point operations sizes in bytes
948 static const unsigned char float_fsz[4]={
949 10, /* extended precision (e) */
951 4, /* single precision (s) */
952 8 /* double precision (d) */
956 mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
960 ia64_stf_spill(final, 6);
964 mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
968 ia64_stf_spill(final, 6);
972 mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
976 ia64_stf_spill(final, 6);
980 mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
984 ia64_stf_spill(final, 6);
988 float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
990 ia64_ldf_fill(6, init);
996 float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
998 ia64_ldf_fill(6, init);
1000 ia64_stf8(final, 6);
1004 float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1006 ia64_ldf_fill(6, init);
1008 ia64_stfs(final, 6);
1012 float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1014 ia64_ldf_fill(6, init);
1016 ia64_stfd(final, 6);
1020 emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1022 struct ia64_fpreg fpr_init[2];
1023 struct ia64_fpreg fpr_final[2];
1024 unsigned long len = float_fsz[ld.x6_sz];
1027 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1028 * higher priority than unaligned faults.
1030 * r0 cannot be found as the base as it would never generate an unaligned
1035 * make sure we get clean buffers
1037 memset(&fpr_init, 0, sizeof(fpr_init));
1038 memset(&fpr_final, 0, sizeof(fpr_final));
1041 * ldfpX.a: we don't try to emulate anything but we must
1042 * invalidate the ALAT entry and execute updates, if any.
1044 if (ld.x6_op != 0x2) {
1046 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1049 if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1050 || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1053 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1054 DDUMP("frp_init =", &fpr_init, 2*len);
1057 * Could optimize inlines by using ldfpX & 2 spills
1059 switch( ld.x6_sz ) {
1061 mem2float_extended(&fpr_init[0], &fpr_final[0]);
1062 mem2float_extended(&fpr_init[1], &fpr_final[1]);
1065 mem2float_integer(&fpr_init[0], &fpr_final[0]);
1066 mem2float_integer(&fpr_init[1], &fpr_final[1]);
1069 mem2float_single(&fpr_init[0], &fpr_final[0]);
1070 mem2float_single(&fpr_init[1], &fpr_final[1]);
1073 mem2float_double(&fpr_init[0], &fpr_final[0]);
1074 mem2float_double(&fpr_init[1], &fpr_final[1]);
1077 DDUMP("fpr_final =", &fpr_final, 2*len);
1081 * A possible optimization would be to drop fpr_final and directly
1082 * use the storage from the saved context i.e., the actual final
1083 * destination (pt_regs, switch_stack or thread structure).
1085 setfpreg(ld.r1, &fpr_final[0], regs);
1086 setfpreg(ld.imm, &fpr_final[1], regs);
1090 * Check for updates: only immediate updates are available for this
1095 * the immediate is implicit given the ldsz of the operation:
1096 * single: 8 (2x4) and for all others it's 16 (2x8)
1102 * the fact that we force the NaT of r3 to zero is ONLY valid
1103 * as long as we don't come here with a ldfpX.s.
1104 * For this reason we keep this sanity check
1106 if (ld.x6_op == 1 || ld.x6_op == 3)
1107 printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1110 setreg(ld.r3, ifa, 0, regs);
1114 * Invalidate ALAT entries, if any, for both registers.
1116 if (ld.x6_op == 0x2) {
1125 emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1127 struct ia64_fpreg fpr_init;
1128 struct ia64_fpreg fpr_final;
1129 unsigned long len = float_fsz[ld.x6_sz];
1132 * fr0 & fr1 don't need to be checked because Illegal Instruction
1133 * faults have higher priority than unaligned faults.
1135 * r0 cannot be found as the base as it would never generate an
1136 * unaligned reference.
1140 * make sure we get clean buffers
1142 memset(&fpr_init,0, sizeof(fpr_init));
1143 memset(&fpr_final,0, sizeof(fpr_final));
1146 * ldfX.a we don't try to emulate anything but we must
1147 * invalidate the ALAT entry.
1148 * See comments in ldX for descriptions on how the various loads are handled.
1150 if (ld.x6_op != 0x2) {
1151 if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1154 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1155 DDUMP("fpr_init =", &fpr_init, len);
1157 * we only do something for x6_op={0,8,9}
1159 switch( ld.x6_sz ) {
1161 mem2float_extended(&fpr_init, &fpr_final);
1164 mem2float_integer(&fpr_init, &fpr_final);
1167 mem2float_single(&fpr_init, &fpr_final);
1170 mem2float_double(&fpr_init, &fpr_final);
1173 DDUMP("fpr_final =", &fpr_final, len);
1177 * A possible optimization would be to drop fpr_final and directly
1178 * use the storage from the saved context i.e., the actual final
1179 * destination (pt_regs, switch_stack or thread structure).
1181 setfpreg(ld.r1, &fpr_final, regs);
1185 * check for updates on any loads
1187 if (ld.op == 0x7 || ld.m)
1188 emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1191 * invalidate ALAT entry in case of advanced floating point loads
1193 if (ld.x6_op == 0x2)
1201 emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1203 struct ia64_fpreg fpr_init;
1204 struct ia64_fpreg fpr_final;
1205 unsigned long len = float_fsz[ld.x6_sz];
1208 * make sure we get clean buffers
1210 memset(&fpr_init,0, sizeof(fpr_init));
1211 memset(&fpr_final,0, sizeof(fpr_final));
1214 * if we get to this handler, Nat bits on both r3 and r2 have already
1215 * been checked. so we don't need to do it
1217 * extract the value to be stored
1219 getfpreg(ld.imm, &fpr_init, regs);
1221 * during this step, we extract the spilled registers from the saved
1222 * context i.e., we refill. Then we store (no spill) to temporary
1225 switch( ld.x6_sz ) {
1227 float2mem_extended(&fpr_init, &fpr_final);
1230 float2mem_integer(&fpr_init, &fpr_final);
1233 float2mem_single(&fpr_init, &fpr_final);
1236 float2mem_double(&fpr_init, &fpr_final);
1239 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1240 DDUMP("fpr_init =", &fpr_init, len);
1241 DDUMP("fpr_final =", &fpr_final, len);
1243 if (copy_to_user((void __user *) ifa, &fpr_final, len))
1247 * stfX [r3]=r2,imm(9)
1250 * ld.r3 can never be r0, because r0 would not generate an
1257 * form imm9: [12:6] contain first 7bits
1259 imm = ld.x << 7 | ld.r1;
1261 * sign extend (8bits) if m set
1266 * ifa == r3 (NaT is necessarily cleared)
1270 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1272 setreg(ld.r3, ifa, 0, regs);
1275 * we don't have alat_invalidate_multiple() so we need
1276 * to do the complete flush :-<<
1284 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1285 * eventually fix the program. However, we don't want to do that for every access so we
1286 * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
1290 within_logging_rate_limit (void)
1292 static unsigned long count, last_time;
1294 if (time_after(jiffies, last_time + 5 * HZ))
1297 last_time = jiffies;
1306 ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1308 struct ia64_psr *ipsr = ia64_psr(regs);
1309 mm_segment_t old_fs = get_fs();
1310 unsigned long bundle[2];
1311 unsigned long opcode;
1313 const struct exception_table_entry *eh = NULL;
1320 if (ia64_psr(regs)->be) {
1321 /* we don't support big-endian accesses */
1322 if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
1328 * Treat kernel accesses for which there is an exception handler entry the same as
1329 * user-level unaligned accesses. Otherwise, a clever program could trick this
1330 * handler into reading an arbitrary kernel addresses...
1332 if (!user_mode(regs))
1333 eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1334 if (user_mode(regs) || eh) {
1335 if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1338 if (!no_unaligned_warning &&
1339 !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1340 within_logging_rate_limit())
1342 char buf[200]; /* comm[] is at most 16 bytes... */
1345 len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1346 "ip=0x%016lx\n\r", current->comm,
1347 task_pid_nr(current),
1348 ifa, regs->cr_iip + ipsr->ri);
1350 * Don't call tty_write_message() if we're in the kernel; we might
1351 * be holding locks...
1353 if (user_mode(regs))
1354 tty_write_message(current->signal->tty, buf);
1355 buf[len-1] = '\0'; /* drop '\r' */
1356 /* watch for command names containing %s */
1357 printk(KERN_WARNING "%s", buf);
1359 if (no_unaligned_warning && !noprint_warning) {
1360 noprint_warning = 1;
1361 printk(KERN_WARNING "%s(%d) encountered an "
1362 "unaligned exception which required\n"
1363 "kernel assistance, which degrades "
1364 "the performance of the application.\n"
1365 "Unaligned exception warnings have "
1366 "been disabled by the system "
1368 "echo 0 > /proc/sys/kernel/ignore-"
1369 "unaligned-usertrap to re-enable\n",
1370 current->comm, task_pid_nr(current));
1374 if (within_logging_rate_limit())
1375 printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1376 ifa, regs->cr_iip + ipsr->ri);
1380 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1381 regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1383 if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1387 * extract the instruction from the bundle given the slot number
1390 case 0: u.l = (bundle[0] >> 5); break;
1391 case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1392 case 2: u.l = (bundle[1] >> 23); break;
1394 opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1396 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1397 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1398 u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1402 * Notice that the switch statement DOES not cover all possible instructions
1403 * that DO generate unaligned references. This is made on purpose because for some
1404 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1405 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1406 * the program will get a signal and die:
1411 * Reason: RNATs are based on addresses
1414 * Reason: ld16 and st16 are supposed to occur in a single
1421 * Reason: ATOMIC operations cannot be emulated properly using multiple
1424 * speculative loads:
1426 * Reason: side effects, code must be ready to deal with failure so simpler
1427 * to let the load fail.
1428 * ---------------------------------------------------------------------------------
1431 * I would like to get rid of this switch case and do something
1438 /* oops, really a semaphore op (cmpxchg, etc) */
1447 * The instruction will be retried with deferred exceptions turned on, and
1448 * we should get Nat bit installed
1450 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1451 * are actually executed even though the operation failed. So we don't
1452 * need to take care of this.
1454 DPRINT("forcing PSR_ED\n");
1455 regs->cr_ipsr |= IA64_PSR_ED;
1466 /* oops, really a semaphore op (cmpxchg, etc) */
1475 case LDCCLRACQ_IMM_OP:
1476 ret = emulate_load_int(ifa, u.insn, regs);
1482 /* oops, really a semaphore op (cmpxchg, etc) */
1487 ret = emulate_store_int(ifa, u.insn, regs);
1495 ret = emulate_load_floatpair(ifa, u.insn, regs);
1497 ret = emulate_load_float(ifa, u.insn, regs);
1502 case LDFCCLR_IMM_OP:
1504 ret = emulate_load_float(ifa, u.insn, regs);
1509 ret = emulate_store_float(ifa, u.insn, regs);
1515 DPRINT("ret=%d\n", ret);
1521 * given today's architecture this case is not likely to happen because a
1522 * memory access instruction (M) can never be in the last slot of a
1523 * bundle. But let's keep it for now.
1526 ipsr->ri = (ipsr->ri + 1) & 0x3;
1528 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1530 set_fs(old_fs); /* restore original address limit */
1534 /* something went wrong... */
1535 if (!user_mode(regs)) {
1537 ia64_handle_exception(regs, eh);
1540 if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
1545 si.si_signo = SIGBUS;
1547 si.si_code = BUS_ADRALN;
1548 si.si_addr = (void __user *) ifa;
1552 force_sig_info(SIGBUS, &si, current);