SELinux: Fix SA selection semantics
[linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h>           /* for Unix socket types */
63 #include <net/af_unix.h>        /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72 #include <linux/selinux.h>
73 #include <linux/mutex.h>
74
75 #include "avc.h"
76 #include "objsec.h"
77 #include "netif.h"
78 #include "xfrm.h"
79 #include "selinux_netlabel.h"
80
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
83
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
87
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
90
91 static int __init enforcing_setup(char *str)
92 {
93         selinux_enforcing = simple_strtol(str,NULL,0);
94         return 1;
95 }
96 __setup("enforcing=", enforcing_setup);
97 #endif
98
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
101
102 static int __init selinux_enabled_setup(char *str)
103 {
104         selinux_enabled = simple_strtol(str, NULL, 0);
105         return 1;
106 }
107 __setup("selinux=", selinux_enabled_setup);
108 #else
109 int selinux_enabled = 1;
110 #endif
111
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
114
115 /* Minimal support for a secondary security module,
116    just to allow the use of the dummy or capability modules.
117    The owlsm module can alternatively be used as a secondary
118    module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
120
121 /* Lists of inode and superblock security structures initialized
122    before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
125
126 static kmem_cache_t *sel_inode_cache;
127
128 /* Return security context for a given sid or just the context 
129    length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
131 {
132         char *context;
133         unsigned len;
134         int rc;
135
136         rc = security_sid_to_context(sid, &context, &len);
137         if (rc)
138                 return rc;
139
140         if (!buffer || !size)
141                 goto getsecurity_exit;
142
143         if (size < len) {
144                 len = -ERANGE;
145                 goto getsecurity_exit;
146         }
147         memcpy(buffer, context, len);
148
149 getsecurity_exit:
150         kfree(context);
151         return len;
152 }
153
154 /* Allocate and free functions for each kind of security blob. */
155
156 static int task_alloc_security(struct task_struct *task)
157 {
158         struct task_security_struct *tsec;
159
160         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161         if (!tsec)
162                 return -ENOMEM;
163
164         tsec->task = task;
165         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166         task->security = tsec;
167
168         return 0;
169 }
170
171 static void task_free_security(struct task_struct *task)
172 {
173         struct task_security_struct *tsec = task->security;
174         task->security = NULL;
175         kfree(tsec);
176 }
177
178 static int inode_alloc_security(struct inode *inode)
179 {
180         struct task_security_struct *tsec = current->security;
181         struct inode_security_struct *isec;
182
183         isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
184         if (!isec)
185                 return -ENOMEM;
186
187         memset(isec, 0, sizeof(*isec));
188         mutex_init(&isec->lock);
189         INIT_LIST_HEAD(&isec->list);
190         isec->inode = inode;
191         isec->sid = SECINITSID_UNLABELED;
192         isec->sclass = SECCLASS_FILE;
193         isec->task_sid = tsec->sid;
194         inode->i_security = isec;
195
196         return 0;
197 }
198
199 static void inode_free_security(struct inode *inode)
200 {
201         struct inode_security_struct *isec = inode->i_security;
202         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203
204         spin_lock(&sbsec->isec_lock);
205         if (!list_empty(&isec->list))
206                 list_del_init(&isec->list);
207         spin_unlock(&sbsec->isec_lock);
208
209         inode->i_security = NULL;
210         kmem_cache_free(sel_inode_cache, isec);
211 }
212
213 static int file_alloc_security(struct file *file)
214 {
215         struct task_security_struct *tsec = current->security;
216         struct file_security_struct *fsec;
217
218         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219         if (!fsec)
220                 return -ENOMEM;
221
222         fsec->file = file;
223         fsec->sid = tsec->sid;
224         fsec->fown_sid = tsec->sid;
225         file->f_security = fsec;
226
227         return 0;
228 }
229
230 static void file_free_security(struct file *file)
231 {
232         struct file_security_struct *fsec = file->f_security;
233         file->f_security = NULL;
234         kfree(fsec);
235 }
236
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239         struct superblock_security_struct *sbsec;
240
241         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242         if (!sbsec)
243                 return -ENOMEM;
244
245         mutex_init(&sbsec->lock);
246         INIT_LIST_HEAD(&sbsec->list);
247         INIT_LIST_HEAD(&sbsec->isec_head);
248         spin_lock_init(&sbsec->isec_lock);
249         sbsec->sb = sb;
250         sbsec->sid = SECINITSID_UNLABELED;
251         sbsec->def_sid = SECINITSID_FILE;
252         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253         sb->s_security = sbsec;
254
255         return 0;
256 }
257
258 static void superblock_free_security(struct super_block *sb)
259 {
260         struct superblock_security_struct *sbsec = sb->s_security;
261
262         spin_lock(&sb_security_lock);
263         if (!list_empty(&sbsec->list))
264                 list_del_init(&sbsec->list);
265         spin_unlock(&sb_security_lock);
266
267         sb->s_security = NULL;
268         kfree(sbsec);
269 }
270
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273         struct sk_security_struct *ssec;
274
275         ssec = kzalloc(sizeof(*ssec), priority);
276         if (!ssec)
277                 return -ENOMEM;
278
279         ssec->sk = sk;
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_init(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304         "uses xattr",
305         "uses transition SIDs",
306         "uses task SIDs",
307         "uses genfs_contexts",
308         "not configured for labeling",
309         "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316         return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320         Opt_context = 1,
321         Opt_fscontext = 2,
322         Opt_defcontext = 4,
323         Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327         {Opt_context, "context=%s"},
328         {Opt_fscontext, "fscontext=%s"},
329         {Opt_defcontext, "defcontext=%s"},
330         {Opt_rootcontext, "rootcontext=%s"},
331 };
332
333 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
334
335 static int may_context_mount_sb_relabel(u32 sid,
336                         struct superblock_security_struct *sbsec,
337                         struct task_security_struct *tsec)
338 {
339         int rc;
340
341         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342                           FILESYSTEM__RELABELFROM, NULL);
343         if (rc)
344                 return rc;
345
346         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELTO, NULL);
348         return rc;
349 }
350
351 static int may_context_mount_inode_relabel(u32 sid,
352                         struct superblock_security_struct *sbsec,
353                         struct task_security_struct *tsec)
354 {
355         int rc;
356         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357                           FILESYSTEM__RELABELFROM, NULL);
358         if (rc)
359                 return rc;
360
361         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362                           FILESYSTEM__ASSOCIATE, NULL);
363         return rc;
364 }
365
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368         char *context = NULL, *defcontext = NULL;
369         char *fscontext = NULL, *rootcontext = NULL;
370         const char *name;
371         u32 sid;
372         int alloc = 0, rc = 0, seen = 0;
373         struct task_security_struct *tsec = current->security;
374         struct superblock_security_struct *sbsec = sb->s_security;
375
376         if (!data)
377                 goto out;
378
379         name = sb->s_type->name;
380
381         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382
383                 /* NFS we understand. */
384                 if (!strcmp(name, "nfs")) {
385                         struct nfs_mount_data *d = data;
386
387                         if (d->version <  NFS_MOUNT_VERSION)
388                                 goto out;
389
390                         if (d->context[0]) {
391                                 context = d->context;
392                                 seen |= Opt_context;
393                         }
394                 } else
395                         goto out;
396
397         } else {
398                 /* Standard string-based options. */
399                 char *p, *options = data;
400
401                 while ((p = strsep(&options, "|")) != NULL) {
402                         int token;
403                         substring_t args[MAX_OPT_ARGS];
404
405                         if (!*p)
406                                 continue;
407
408                         token = match_token(p, tokens, args);
409
410                         switch (token) {
411                         case Opt_context:
412                                 if (seen & (Opt_context|Opt_defcontext)) {
413                                         rc = -EINVAL;
414                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415                                         goto out_free;
416                                 }
417                                 context = match_strdup(&args[0]);
418                                 if (!context) {
419                                         rc = -ENOMEM;
420                                         goto out_free;
421                                 }
422                                 if (!alloc)
423                                         alloc = 1;
424                                 seen |= Opt_context;
425                                 break;
426
427                         case Opt_fscontext:
428                                 if (seen & Opt_fscontext) {
429                                         rc = -EINVAL;
430                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431                                         goto out_free;
432                                 }
433                                 fscontext = match_strdup(&args[0]);
434                                 if (!fscontext) {
435                                         rc = -ENOMEM;
436                                         goto out_free;
437                                 }
438                                 if (!alloc)
439                                         alloc = 1;
440                                 seen |= Opt_fscontext;
441                                 break;
442
443                         case Opt_rootcontext:
444                                 if (seen & Opt_rootcontext) {
445                                         rc = -EINVAL;
446                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447                                         goto out_free;
448                                 }
449                                 rootcontext = match_strdup(&args[0]);
450                                 if (!rootcontext) {
451                                         rc = -ENOMEM;
452                                         goto out_free;
453                                 }
454                                 if (!alloc)
455                                         alloc = 1;
456                                 seen |= Opt_rootcontext;
457                                 break;
458
459                         case Opt_defcontext:
460                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461                                         rc = -EINVAL;
462                                         printk(KERN_WARNING "SELinux:  "
463                                                "defcontext option is invalid "
464                                                "for this filesystem type\n");
465                                         goto out_free;
466                                 }
467                                 if (seen & (Opt_context|Opt_defcontext)) {
468                                         rc = -EINVAL;
469                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470                                         goto out_free;
471                                 }
472                                 defcontext = match_strdup(&args[0]);
473                                 if (!defcontext) {
474                                         rc = -ENOMEM;
475                                         goto out_free;
476                                 }
477                                 if (!alloc)
478                                         alloc = 1;
479                                 seen |= Opt_defcontext;
480                                 break;
481
482                         default:
483                                 rc = -EINVAL;
484                                 printk(KERN_WARNING "SELinux:  unknown mount "
485                                        "option\n");
486                                 goto out_free;
487
488                         }
489                 }
490         }
491
492         if (!seen)
493                 goto out;
494
495         /* sets the context of the superblock for the fs being mounted. */
496         if (fscontext) {
497                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498                 if (rc) {
499                         printk(KERN_WARNING "SELinux: security_context_to_sid"
500                                "(%s) failed for (dev %s, type %s) errno=%d\n",
501                                fscontext, sb->s_id, name, rc);
502                         goto out_free;
503                 }
504
505                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506                 if (rc)
507                         goto out_free;
508
509                 sbsec->sid = sid;
510         }
511
512         /*
513          * Switch to using mount point labeling behavior.
514          * sets the label used on all file below the mountpoint, and will set
515          * the superblock context if not already set.
516          */
517         if (context) {
518                 rc = security_context_to_sid(context, strlen(context), &sid);
519                 if (rc) {
520                         printk(KERN_WARNING "SELinux: security_context_to_sid"
521                                "(%s) failed for (dev %s, type %s) errno=%d\n",
522                                context, sb->s_id, name, rc);
523                         goto out_free;
524                 }
525
526                 if (!fscontext) {
527                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528                         if (rc)
529                                 goto out_free;
530                         sbsec->sid = sid;
531                 } else {
532                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533                         if (rc)
534                                 goto out_free;
535                 }
536                 sbsec->mntpoint_sid = sid;
537
538                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539         }
540
541         if (rootcontext) {
542                 struct inode *inode = sb->s_root->d_inode;
543                 struct inode_security_struct *isec = inode->i_security;
544                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545                 if (rc) {
546                         printk(KERN_WARNING "SELinux: security_context_to_sid"
547                                "(%s) failed for (dev %s, type %s) errno=%d\n",
548                                rootcontext, sb->s_id, name, rc);
549                         goto out_free;
550                 }
551
552                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553                 if (rc)
554                         goto out_free;
555
556                 isec->sid = sid;
557                 isec->initialized = 1;
558         }
559
560         if (defcontext) {
561                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562                 if (rc) {
563                         printk(KERN_WARNING "SELinux: security_context_to_sid"
564                                "(%s) failed for (dev %s, type %s) errno=%d\n",
565                                defcontext, sb->s_id, name, rc);
566                         goto out_free;
567                 }
568
569                 if (sid == sbsec->def_sid)
570                         goto out_free;
571
572                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573                 if (rc)
574                         goto out_free;
575
576                 sbsec->def_sid = sid;
577         }
578
579 out_free:
580         if (alloc) {
581                 kfree(context);
582                 kfree(defcontext);
583                 kfree(fscontext);
584                 kfree(rootcontext);
585         }
586 out:
587         return rc;
588 }
589
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592         struct superblock_security_struct *sbsec = sb->s_security;
593         struct dentry *root = sb->s_root;
594         struct inode *inode = root->d_inode;
595         int rc = 0;
596
597         mutex_lock(&sbsec->lock);
598         if (sbsec->initialized)
599                 goto out;
600
601         if (!ss_initialized) {
602                 /* Defer initialization until selinux_complete_init,
603                    after the initial policy is loaded and the security
604                    server is ready to handle calls. */
605                 spin_lock(&sb_security_lock);
606                 if (list_empty(&sbsec->list))
607                         list_add(&sbsec->list, &superblock_security_head);
608                 spin_unlock(&sb_security_lock);
609                 goto out;
610         }
611
612         /* Determine the labeling behavior to use for this filesystem type. */
613         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614         if (rc) {
615                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
616                        __FUNCTION__, sb->s_type->name, rc);
617                 goto out;
618         }
619
620         rc = try_context_mount(sb, data);
621         if (rc)
622                 goto out;
623
624         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625                 /* Make sure that the xattr handler exists and that no
626                    error other than -ENODATA is returned by getxattr on
627                    the root directory.  -ENODATA is ok, as this may be
628                    the first boot of the SELinux kernel before we have
629                    assigned xattr values to the filesystem. */
630                 if (!inode->i_op->getxattr) {
631                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632                                "xattr support\n", sb->s_id, sb->s_type->name);
633                         rc = -EOPNOTSUPP;
634                         goto out;
635                 }
636                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637                 if (rc < 0 && rc != -ENODATA) {
638                         if (rc == -EOPNOTSUPP)
639                                 printk(KERN_WARNING "SELinux: (dev %s, type "
640                                        "%s) has no security xattr handler\n",
641                                        sb->s_id, sb->s_type->name);
642                         else
643                                 printk(KERN_WARNING "SELinux: (dev %s, type "
644                                        "%s) getxattr errno %d\n", sb->s_id,
645                                        sb->s_type->name, -rc);
646                         goto out;
647                 }
648         }
649
650         if (strcmp(sb->s_type->name, "proc") == 0)
651                 sbsec->proc = 1;
652
653         sbsec->initialized = 1;
654
655         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657                        sb->s_id, sb->s_type->name);
658         }
659         else {
660                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661                        sb->s_id, sb->s_type->name,
662                        labeling_behaviors[sbsec->behavior-1]);
663         }
664
665         /* Initialize the root inode. */
666         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667
668         /* Initialize any other inodes associated with the superblock, e.g.
669            inodes created prior to initial policy load or inodes created
670            during get_sb by a pseudo filesystem that directly
671            populates itself. */
672         spin_lock(&sbsec->isec_lock);
673 next_inode:
674         if (!list_empty(&sbsec->isec_head)) {
675                 struct inode_security_struct *isec =
676                                 list_entry(sbsec->isec_head.next,
677                                            struct inode_security_struct, list);
678                 struct inode *inode = isec->inode;
679                 spin_unlock(&sbsec->isec_lock);
680                 inode = igrab(inode);
681                 if (inode) {
682                         if (!IS_PRIVATE (inode))
683                                 inode_doinit(inode);
684                         iput(inode);
685                 }
686                 spin_lock(&sbsec->isec_lock);
687                 list_del_init(&isec->list);
688                 goto next_inode;
689         }
690         spin_unlock(&sbsec->isec_lock);
691 out:
692         mutex_unlock(&sbsec->lock);
693         return rc;
694 }
695
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698         switch (mode & S_IFMT) {
699         case S_IFSOCK:
700                 return SECCLASS_SOCK_FILE;
701         case S_IFLNK:
702                 return SECCLASS_LNK_FILE;
703         case S_IFREG:
704                 return SECCLASS_FILE;
705         case S_IFBLK:
706                 return SECCLASS_BLK_FILE;
707         case S_IFDIR:
708                 return SECCLASS_DIR;
709         case S_IFCHR:
710                 return SECCLASS_CHR_FILE;
711         case S_IFIFO:
712                 return SECCLASS_FIFO_FILE;
713
714         }
715
716         return SECCLASS_FILE;
717 }
718
719 static inline int default_protocol_stream(int protocol)
720 {
721         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723
724 static inline int default_protocol_dgram(int protocol)
725 {
726         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731         switch (family) {
732         case PF_UNIX:
733                 switch (type) {
734                 case SOCK_STREAM:
735                 case SOCK_SEQPACKET:
736                         return SECCLASS_UNIX_STREAM_SOCKET;
737                 case SOCK_DGRAM:
738                         return SECCLASS_UNIX_DGRAM_SOCKET;
739                 }
740                 break;
741         case PF_INET:
742         case PF_INET6:
743                 switch (type) {
744                 case SOCK_STREAM:
745                         if (default_protocol_stream(protocol))
746                                 return SECCLASS_TCP_SOCKET;
747                         else
748                                 return SECCLASS_RAWIP_SOCKET;
749                 case SOCK_DGRAM:
750                         if (default_protocol_dgram(protocol))
751                                 return SECCLASS_UDP_SOCKET;
752                         else
753                                 return SECCLASS_RAWIP_SOCKET;
754                 default:
755                         return SECCLASS_RAWIP_SOCKET;
756                 }
757                 break;
758         case PF_NETLINK:
759                 switch (protocol) {
760                 case NETLINK_ROUTE:
761                         return SECCLASS_NETLINK_ROUTE_SOCKET;
762                 case NETLINK_FIREWALL:
763                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
764                 case NETLINK_INET_DIAG:
765                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
766                 case NETLINK_NFLOG:
767                         return SECCLASS_NETLINK_NFLOG_SOCKET;
768                 case NETLINK_XFRM:
769                         return SECCLASS_NETLINK_XFRM_SOCKET;
770                 case NETLINK_SELINUX:
771                         return SECCLASS_NETLINK_SELINUX_SOCKET;
772                 case NETLINK_AUDIT:
773                         return SECCLASS_NETLINK_AUDIT_SOCKET;
774                 case NETLINK_IP6_FW:
775                         return SECCLASS_NETLINK_IP6FW_SOCKET;
776                 case NETLINK_DNRTMSG:
777                         return SECCLASS_NETLINK_DNRT_SOCKET;
778                 case NETLINK_KOBJECT_UEVENT:
779                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
780                 default:
781                         return SECCLASS_NETLINK_SOCKET;
782                 }
783         case PF_PACKET:
784                 return SECCLASS_PACKET_SOCKET;
785         case PF_KEY:
786                 return SECCLASS_KEY_SOCKET;
787         case PF_APPLETALK:
788                 return SECCLASS_APPLETALK_SOCKET;
789         }
790
791         return SECCLASS_SOCKET;
792 }
793
794 #ifdef CONFIG_PROC_FS
795 static int selinux_proc_get_sid(struct proc_dir_entry *de,
796                                 u16 tclass,
797                                 u32 *sid)
798 {
799         int buflen, rc;
800         char *buffer, *path, *end;
801
802         buffer = (char*)__get_free_page(GFP_KERNEL);
803         if (!buffer)
804                 return -ENOMEM;
805
806         buflen = PAGE_SIZE;
807         end = buffer+buflen;
808         *--end = '\0';
809         buflen--;
810         path = end-1;
811         *path = '/';
812         while (de && de != de->parent) {
813                 buflen -= de->namelen + 1;
814                 if (buflen < 0)
815                         break;
816                 end -= de->namelen;
817                 memcpy(end, de->name, de->namelen);
818                 *--end = '/';
819                 path = end;
820                 de = de->parent;
821         }
822         rc = security_genfs_sid("proc", path, tclass, sid);
823         free_page((unsigned long)buffer);
824         return rc;
825 }
826 #else
827 static int selinux_proc_get_sid(struct proc_dir_entry *de,
828                                 u16 tclass,
829                                 u32 *sid)
830 {
831         return -EINVAL;
832 }
833 #endif
834
835 /* The inode's security attributes must be initialized before first use. */
836 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
837 {
838         struct superblock_security_struct *sbsec = NULL;
839         struct inode_security_struct *isec = inode->i_security;
840         u32 sid;
841         struct dentry *dentry;
842 #define INITCONTEXTLEN 255
843         char *context = NULL;
844         unsigned len = 0;
845         int rc = 0;
846
847         if (isec->initialized)
848                 goto out;
849
850         mutex_lock(&isec->lock);
851         if (isec->initialized)
852                 goto out_unlock;
853
854         sbsec = inode->i_sb->s_security;
855         if (!sbsec->initialized) {
856                 /* Defer initialization until selinux_complete_init,
857                    after the initial policy is loaded and the security
858                    server is ready to handle calls. */
859                 spin_lock(&sbsec->isec_lock);
860                 if (list_empty(&isec->list))
861                         list_add(&isec->list, &sbsec->isec_head);
862                 spin_unlock(&sbsec->isec_lock);
863                 goto out_unlock;
864         }
865
866         switch (sbsec->behavior) {
867         case SECURITY_FS_USE_XATTR:
868                 if (!inode->i_op->getxattr) {
869                         isec->sid = sbsec->def_sid;
870                         break;
871                 }
872
873                 /* Need a dentry, since the xattr API requires one.
874                    Life would be simpler if we could just pass the inode. */
875                 if (opt_dentry) {
876                         /* Called from d_instantiate or d_splice_alias. */
877                         dentry = dget(opt_dentry);
878                 } else {
879                         /* Called from selinux_complete_init, try to find a dentry. */
880                         dentry = d_find_alias(inode);
881                 }
882                 if (!dentry) {
883                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
884                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
885                                inode->i_ino);
886                         goto out_unlock;
887                 }
888
889                 len = INITCONTEXTLEN;
890                 context = kmalloc(len, GFP_KERNEL);
891                 if (!context) {
892                         rc = -ENOMEM;
893                         dput(dentry);
894                         goto out_unlock;
895                 }
896                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
897                                            context, len);
898                 if (rc == -ERANGE) {
899                         /* Need a larger buffer.  Query for the right size. */
900                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
901                                                    NULL, 0);
902                         if (rc < 0) {
903                                 dput(dentry);
904                                 goto out_unlock;
905                         }
906                         kfree(context);
907                         len = rc;
908                         context = kmalloc(len, GFP_KERNEL);
909                         if (!context) {
910                                 rc = -ENOMEM;
911                                 dput(dentry);
912                                 goto out_unlock;
913                         }
914                         rc = inode->i_op->getxattr(dentry,
915                                                    XATTR_NAME_SELINUX,
916                                                    context, len);
917                 }
918                 dput(dentry);
919                 if (rc < 0) {
920                         if (rc != -ENODATA) {
921                                 printk(KERN_WARNING "%s:  getxattr returned "
922                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
923                                        -rc, inode->i_sb->s_id, inode->i_ino);
924                                 kfree(context);
925                                 goto out_unlock;
926                         }
927                         /* Map ENODATA to the default file SID */
928                         sid = sbsec->def_sid;
929                         rc = 0;
930                 } else {
931                         rc = security_context_to_sid_default(context, rc, &sid,
932                                                              sbsec->def_sid);
933                         if (rc) {
934                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
935                                        "returned %d for dev=%s ino=%ld\n",
936                                        __FUNCTION__, context, -rc,
937                                        inode->i_sb->s_id, inode->i_ino);
938                                 kfree(context);
939                                 /* Leave with the unlabeled SID */
940                                 rc = 0;
941                                 break;
942                         }
943                 }
944                 kfree(context);
945                 isec->sid = sid;
946                 break;
947         case SECURITY_FS_USE_TASK:
948                 isec->sid = isec->task_sid;
949                 break;
950         case SECURITY_FS_USE_TRANS:
951                 /* Default to the fs SID. */
952                 isec->sid = sbsec->sid;
953
954                 /* Try to obtain a transition SID. */
955                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
956                 rc = security_transition_sid(isec->task_sid,
957                                              sbsec->sid,
958                                              isec->sclass,
959                                              &sid);
960                 if (rc)
961                         goto out_unlock;
962                 isec->sid = sid;
963                 break;
964         case SECURITY_FS_USE_MNTPOINT:
965                 isec->sid = sbsec->mntpoint_sid;
966                 break;
967         default:
968                 /* Default to the fs superblock SID. */
969                 isec->sid = sbsec->sid;
970
971                 if (sbsec->proc) {
972                         struct proc_inode *proci = PROC_I(inode);
973                         if (proci->pde) {
974                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
975                                 rc = selinux_proc_get_sid(proci->pde,
976                                                           isec->sclass,
977                                                           &sid);
978                                 if (rc)
979                                         goto out_unlock;
980                                 isec->sid = sid;
981                         }
982                 }
983                 break;
984         }
985
986         isec->initialized = 1;
987
988 out_unlock:
989         mutex_unlock(&isec->lock);
990 out:
991         if (isec->sclass == SECCLASS_FILE)
992                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
993         return rc;
994 }
995
996 /* Convert a Linux signal to an access vector. */
997 static inline u32 signal_to_av(int sig)
998 {
999         u32 perm = 0;
1000
1001         switch (sig) {
1002         case SIGCHLD:
1003                 /* Commonly granted from child to parent. */
1004                 perm = PROCESS__SIGCHLD;
1005                 break;
1006         case SIGKILL:
1007                 /* Cannot be caught or ignored */
1008                 perm = PROCESS__SIGKILL;
1009                 break;
1010         case SIGSTOP:
1011                 /* Cannot be caught or ignored */
1012                 perm = PROCESS__SIGSTOP;
1013                 break;
1014         default:
1015                 /* All other signals. */
1016                 perm = PROCESS__SIGNAL;
1017                 break;
1018         }
1019
1020         return perm;
1021 }
1022
1023 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1024    fork check, ptrace check, etc. */
1025 static int task_has_perm(struct task_struct *tsk1,
1026                          struct task_struct *tsk2,
1027                          u32 perms)
1028 {
1029         struct task_security_struct *tsec1, *tsec2;
1030
1031         tsec1 = tsk1->security;
1032         tsec2 = tsk2->security;
1033         return avc_has_perm(tsec1->sid, tsec2->sid,
1034                             SECCLASS_PROCESS, perms, NULL);
1035 }
1036
1037 /* Check whether a task is allowed to use a capability. */
1038 static int task_has_capability(struct task_struct *tsk,
1039                                int cap)
1040 {
1041         struct task_security_struct *tsec;
1042         struct avc_audit_data ad;
1043
1044         tsec = tsk->security;
1045
1046         AVC_AUDIT_DATA_INIT(&ad,CAP);
1047         ad.tsk = tsk;
1048         ad.u.cap = cap;
1049
1050         return avc_has_perm(tsec->sid, tsec->sid,
1051                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1052 }
1053
1054 /* Check whether a task is allowed to use a system operation. */
1055 static int task_has_system(struct task_struct *tsk,
1056                            u32 perms)
1057 {
1058         struct task_security_struct *tsec;
1059
1060         tsec = tsk->security;
1061
1062         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1063                             SECCLASS_SYSTEM, perms, NULL);
1064 }
1065
1066 /* Check whether a task has a particular permission to an inode.
1067    The 'adp' parameter is optional and allows other audit
1068    data to be passed (e.g. the dentry). */
1069 static int inode_has_perm(struct task_struct *tsk,
1070                           struct inode *inode,
1071                           u32 perms,
1072                           struct avc_audit_data *adp)
1073 {
1074         struct task_security_struct *tsec;
1075         struct inode_security_struct *isec;
1076         struct avc_audit_data ad;
1077
1078         tsec = tsk->security;
1079         isec = inode->i_security;
1080
1081         if (!adp) {
1082                 adp = &ad;
1083                 AVC_AUDIT_DATA_INIT(&ad, FS);
1084                 ad.u.fs.inode = inode;
1085         }
1086
1087         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1088 }
1089
1090 /* Same as inode_has_perm, but pass explicit audit data containing
1091    the dentry to help the auditing code to more easily generate the
1092    pathname if needed. */
1093 static inline int dentry_has_perm(struct task_struct *tsk,
1094                                   struct vfsmount *mnt,
1095                                   struct dentry *dentry,
1096                                   u32 av)
1097 {
1098         struct inode *inode = dentry->d_inode;
1099         struct avc_audit_data ad;
1100         AVC_AUDIT_DATA_INIT(&ad,FS);
1101         ad.u.fs.mnt = mnt;
1102         ad.u.fs.dentry = dentry;
1103         return inode_has_perm(tsk, inode, av, &ad);
1104 }
1105
1106 /* Check whether a task can use an open file descriptor to
1107    access an inode in a given way.  Check access to the
1108    descriptor itself, and then use dentry_has_perm to
1109    check a particular permission to the file.
1110    Access to the descriptor is implicitly granted if it
1111    has the same SID as the process.  If av is zero, then
1112    access to the file is not checked, e.g. for cases
1113    where only the descriptor is affected like seek. */
1114 static int file_has_perm(struct task_struct *tsk,
1115                                 struct file *file,
1116                                 u32 av)
1117 {
1118         struct task_security_struct *tsec = tsk->security;
1119         struct file_security_struct *fsec = file->f_security;
1120         struct vfsmount *mnt = file->f_vfsmnt;
1121         struct dentry *dentry = file->f_dentry;
1122         struct inode *inode = dentry->d_inode;
1123         struct avc_audit_data ad;
1124         int rc;
1125
1126         AVC_AUDIT_DATA_INIT(&ad, FS);
1127         ad.u.fs.mnt = mnt;
1128         ad.u.fs.dentry = dentry;
1129
1130         if (tsec->sid != fsec->sid) {
1131                 rc = avc_has_perm(tsec->sid, fsec->sid,
1132                                   SECCLASS_FD,
1133                                   FD__USE,
1134                                   &ad);
1135                 if (rc)
1136                         return rc;
1137         }
1138
1139         /* av is zero if only checking access to the descriptor. */
1140         if (av)
1141                 return inode_has_perm(tsk, inode, av, &ad);
1142
1143         return 0;
1144 }
1145
1146 /* Check whether a task can create a file. */
1147 static int may_create(struct inode *dir,
1148                       struct dentry *dentry,
1149                       u16 tclass)
1150 {
1151         struct task_security_struct *tsec;
1152         struct inode_security_struct *dsec;
1153         struct superblock_security_struct *sbsec;
1154         u32 newsid;
1155         struct avc_audit_data ad;
1156         int rc;
1157
1158         tsec = current->security;
1159         dsec = dir->i_security;
1160         sbsec = dir->i_sb->s_security;
1161
1162         AVC_AUDIT_DATA_INIT(&ad, FS);
1163         ad.u.fs.dentry = dentry;
1164
1165         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1166                           DIR__ADD_NAME | DIR__SEARCH,
1167                           &ad);
1168         if (rc)
1169                 return rc;
1170
1171         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1172                 newsid = tsec->create_sid;
1173         } else {
1174                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1175                                              &newsid);
1176                 if (rc)
1177                         return rc;
1178         }
1179
1180         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1181         if (rc)
1182                 return rc;
1183
1184         return avc_has_perm(newsid, sbsec->sid,
1185                             SECCLASS_FILESYSTEM,
1186                             FILESYSTEM__ASSOCIATE, &ad);
1187 }
1188
1189 /* Check whether a task can create a key. */
1190 static int may_create_key(u32 ksid,
1191                           struct task_struct *ctx)
1192 {
1193         struct task_security_struct *tsec;
1194
1195         tsec = ctx->security;
1196
1197         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1198 }
1199
1200 #define MAY_LINK   0
1201 #define MAY_UNLINK 1
1202 #define MAY_RMDIR  2
1203
1204 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1205 static int may_link(struct inode *dir,
1206                     struct dentry *dentry,
1207                     int kind)
1208
1209 {
1210         struct task_security_struct *tsec;
1211         struct inode_security_struct *dsec, *isec;
1212         struct avc_audit_data ad;
1213         u32 av;
1214         int rc;
1215
1216         tsec = current->security;
1217         dsec = dir->i_security;
1218         isec = dentry->d_inode->i_security;
1219
1220         AVC_AUDIT_DATA_INIT(&ad, FS);
1221         ad.u.fs.dentry = dentry;
1222
1223         av = DIR__SEARCH;
1224         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1225         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1226         if (rc)
1227                 return rc;
1228
1229         switch (kind) {
1230         case MAY_LINK:
1231                 av = FILE__LINK;
1232                 break;
1233         case MAY_UNLINK:
1234                 av = FILE__UNLINK;
1235                 break;
1236         case MAY_RMDIR:
1237                 av = DIR__RMDIR;
1238                 break;
1239         default:
1240                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1241                 return 0;
1242         }
1243
1244         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1245         return rc;
1246 }
1247
1248 static inline int may_rename(struct inode *old_dir,
1249                              struct dentry *old_dentry,
1250                              struct inode *new_dir,
1251                              struct dentry *new_dentry)
1252 {
1253         struct task_security_struct *tsec;
1254         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1255         struct avc_audit_data ad;
1256         u32 av;
1257         int old_is_dir, new_is_dir;
1258         int rc;
1259
1260         tsec = current->security;
1261         old_dsec = old_dir->i_security;
1262         old_isec = old_dentry->d_inode->i_security;
1263         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1264         new_dsec = new_dir->i_security;
1265
1266         AVC_AUDIT_DATA_INIT(&ad, FS);
1267
1268         ad.u.fs.dentry = old_dentry;
1269         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1270                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1271         if (rc)
1272                 return rc;
1273         rc = avc_has_perm(tsec->sid, old_isec->sid,
1274                           old_isec->sclass, FILE__RENAME, &ad);
1275         if (rc)
1276                 return rc;
1277         if (old_is_dir && new_dir != old_dir) {
1278                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1279                                   old_isec->sclass, DIR__REPARENT, &ad);
1280                 if (rc)
1281                         return rc;
1282         }
1283
1284         ad.u.fs.dentry = new_dentry;
1285         av = DIR__ADD_NAME | DIR__SEARCH;
1286         if (new_dentry->d_inode)
1287                 av |= DIR__REMOVE_NAME;
1288         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1289         if (rc)
1290                 return rc;
1291         if (new_dentry->d_inode) {
1292                 new_isec = new_dentry->d_inode->i_security;
1293                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1294                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1295                                   new_isec->sclass,
1296                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1297                 if (rc)
1298                         return rc;
1299         }
1300
1301         return 0;
1302 }
1303
1304 /* Check whether a task can perform a filesystem operation. */
1305 static int superblock_has_perm(struct task_struct *tsk,
1306                                struct super_block *sb,
1307                                u32 perms,
1308                                struct avc_audit_data *ad)
1309 {
1310         struct task_security_struct *tsec;
1311         struct superblock_security_struct *sbsec;
1312
1313         tsec = tsk->security;
1314         sbsec = sb->s_security;
1315         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1316                             perms, ad);
1317 }
1318
1319 /* Convert a Linux mode and permission mask to an access vector. */
1320 static inline u32 file_mask_to_av(int mode, int mask)
1321 {
1322         u32 av = 0;
1323
1324         if ((mode & S_IFMT) != S_IFDIR) {
1325                 if (mask & MAY_EXEC)
1326                         av |= FILE__EXECUTE;
1327                 if (mask & MAY_READ)
1328                         av |= FILE__READ;
1329
1330                 if (mask & MAY_APPEND)
1331                         av |= FILE__APPEND;
1332                 else if (mask & MAY_WRITE)
1333                         av |= FILE__WRITE;
1334
1335         } else {
1336                 if (mask & MAY_EXEC)
1337                         av |= DIR__SEARCH;
1338                 if (mask & MAY_WRITE)
1339                         av |= DIR__WRITE;
1340                 if (mask & MAY_READ)
1341                         av |= DIR__READ;
1342         }
1343
1344         return av;
1345 }
1346
1347 /* Convert a Linux file to an access vector. */
1348 static inline u32 file_to_av(struct file *file)
1349 {
1350         u32 av = 0;
1351
1352         if (file->f_mode & FMODE_READ)
1353                 av |= FILE__READ;
1354         if (file->f_mode & FMODE_WRITE) {
1355                 if (file->f_flags & O_APPEND)
1356                         av |= FILE__APPEND;
1357                 else
1358                         av |= FILE__WRITE;
1359         }
1360
1361         return av;
1362 }
1363
1364 /* Hook functions begin here. */
1365
1366 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1367 {
1368         struct task_security_struct *psec = parent->security;
1369         struct task_security_struct *csec = child->security;
1370         int rc;
1371
1372         rc = secondary_ops->ptrace(parent,child);
1373         if (rc)
1374                 return rc;
1375
1376         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1377         /* Save the SID of the tracing process for later use in apply_creds. */
1378         if (!(child->ptrace & PT_PTRACED) && !rc)
1379                 csec->ptrace_sid = psec->sid;
1380         return rc;
1381 }
1382
1383 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1384                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1385 {
1386         int error;
1387
1388         error = task_has_perm(current, target, PROCESS__GETCAP);
1389         if (error)
1390                 return error;
1391
1392         return secondary_ops->capget(target, effective, inheritable, permitted);
1393 }
1394
1395 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1396                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1397 {
1398         int error;
1399
1400         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1401         if (error)
1402                 return error;
1403
1404         return task_has_perm(current, target, PROCESS__SETCAP);
1405 }
1406
1407 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1408                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1409 {
1410         secondary_ops->capset_set(target, effective, inheritable, permitted);
1411 }
1412
1413 static int selinux_capable(struct task_struct *tsk, int cap)
1414 {
1415         int rc;
1416
1417         rc = secondary_ops->capable(tsk, cap);
1418         if (rc)
1419                 return rc;
1420
1421         return task_has_capability(tsk,cap);
1422 }
1423
1424 static int selinux_sysctl(ctl_table *table, int op)
1425 {
1426         int error = 0;
1427         u32 av;
1428         struct task_security_struct *tsec;
1429         u32 tsid;
1430         int rc;
1431
1432         rc = secondary_ops->sysctl(table, op);
1433         if (rc)
1434                 return rc;
1435
1436         tsec = current->security;
1437
1438         rc = selinux_proc_get_sid(table->de, (op == 001) ?
1439                                   SECCLASS_DIR : SECCLASS_FILE, &tsid);
1440         if (rc) {
1441                 /* Default to the well-defined sysctl SID. */
1442                 tsid = SECINITSID_SYSCTL;
1443         }
1444
1445         /* The op values are "defined" in sysctl.c, thereby creating
1446          * a bad coupling between this module and sysctl.c */
1447         if(op == 001) {
1448                 error = avc_has_perm(tsec->sid, tsid,
1449                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1450         } else {
1451                 av = 0;
1452                 if (op & 004)
1453                         av |= FILE__READ;
1454                 if (op & 002)
1455                         av |= FILE__WRITE;
1456                 if (av)
1457                         error = avc_has_perm(tsec->sid, tsid,
1458                                              SECCLASS_FILE, av, NULL);
1459         }
1460
1461         return error;
1462 }
1463
1464 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1465 {
1466         int rc = 0;
1467
1468         if (!sb)
1469                 return 0;
1470
1471         switch (cmds) {
1472                 case Q_SYNC:
1473                 case Q_QUOTAON:
1474                 case Q_QUOTAOFF:
1475                 case Q_SETINFO:
1476                 case Q_SETQUOTA:
1477                         rc = superblock_has_perm(current,
1478                                                  sb,
1479                                                  FILESYSTEM__QUOTAMOD, NULL);
1480                         break;
1481                 case Q_GETFMT:
1482                 case Q_GETINFO:
1483                 case Q_GETQUOTA:
1484                         rc = superblock_has_perm(current,
1485                                                  sb,
1486                                                  FILESYSTEM__QUOTAGET, NULL);
1487                         break;
1488                 default:
1489                         rc = 0;  /* let the kernel handle invalid cmds */
1490                         break;
1491         }
1492         return rc;
1493 }
1494
1495 static int selinux_quota_on(struct dentry *dentry)
1496 {
1497         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1498 }
1499
1500 static int selinux_syslog(int type)
1501 {
1502         int rc;
1503
1504         rc = secondary_ops->syslog(type);
1505         if (rc)
1506                 return rc;
1507
1508         switch (type) {
1509                 case 3:         /* Read last kernel messages */
1510                 case 10:        /* Return size of the log buffer */
1511                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1512                         break;
1513                 case 6:         /* Disable logging to console */
1514                 case 7:         /* Enable logging to console */
1515                 case 8:         /* Set level of messages printed to console */
1516                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1517                         break;
1518                 case 0:         /* Close log */
1519                 case 1:         /* Open log */
1520                 case 2:         /* Read from log */
1521                 case 4:         /* Read/clear last kernel messages */
1522                 case 5:         /* Clear ring buffer */
1523                 default:
1524                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1525                         break;
1526         }
1527         return rc;
1528 }
1529
1530 /*
1531  * Check that a process has enough memory to allocate a new virtual
1532  * mapping. 0 means there is enough memory for the allocation to
1533  * succeed and -ENOMEM implies there is not.
1534  *
1535  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1536  * if the capability is granted, but __vm_enough_memory requires 1 if
1537  * the capability is granted.
1538  *
1539  * Do not audit the selinux permission check, as this is applied to all
1540  * processes that allocate mappings.
1541  */
1542 static int selinux_vm_enough_memory(long pages)
1543 {
1544         int rc, cap_sys_admin = 0;
1545         struct task_security_struct *tsec = current->security;
1546
1547         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1548         if (rc == 0)
1549                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1550                                         SECCLASS_CAPABILITY,
1551                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1552                                         NULL);
1553
1554         if (rc == 0)
1555                 cap_sys_admin = 1;
1556
1557         return __vm_enough_memory(pages, cap_sys_admin);
1558 }
1559
1560 /* binprm security operations */
1561
1562 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1563 {
1564         struct bprm_security_struct *bsec;
1565
1566         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1567         if (!bsec)
1568                 return -ENOMEM;
1569
1570         bsec->bprm = bprm;
1571         bsec->sid = SECINITSID_UNLABELED;
1572         bsec->set = 0;
1573
1574         bprm->security = bsec;
1575         return 0;
1576 }
1577
1578 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1579 {
1580         struct task_security_struct *tsec;
1581         struct inode *inode = bprm->file->f_dentry->d_inode;
1582         struct inode_security_struct *isec;
1583         struct bprm_security_struct *bsec;
1584         u32 newsid;
1585         struct avc_audit_data ad;
1586         int rc;
1587
1588         rc = secondary_ops->bprm_set_security(bprm);
1589         if (rc)
1590                 return rc;
1591
1592         bsec = bprm->security;
1593
1594         if (bsec->set)
1595                 return 0;
1596
1597         tsec = current->security;
1598         isec = inode->i_security;
1599
1600         /* Default to the current task SID. */
1601         bsec->sid = tsec->sid;
1602
1603         /* Reset fs, key, and sock SIDs on execve. */
1604         tsec->create_sid = 0;
1605         tsec->keycreate_sid = 0;
1606         tsec->sockcreate_sid = 0;
1607
1608         if (tsec->exec_sid) {
1609                 newsid = tsec->exec_sid;
1610                 /* Reset exec SID on execve. */
1611                 tsec->exec_sid = 0;
1612         } else {
1613                 /* Check for a default transition on this program. */
1614                 rc = security_transition_sid(tsec->sid, isec->sid,
1615                                              SECCLASS_PROCESS, &newsid);
1616                 if (rc)
1617                         return rc;
1618         }
1619
1620         AVC_AUDIT_DATA_INIT(&ad, FS);
1621         ad.u.fs.mnt = bprm->file->f_vfsmnt;
1622         ad.u.fs.dentry = bprm->file->f_dentry;
1623
1624         if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1625                 newsid = tsec->sid;
1626
1627         if (tsec->sid == newsid) {
1628                 rc = avc_has_perm(tsec->sid, isec->sid,
1629                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1630                 if (rc)
1631                         return rc;
1632         } else {
1633                 /* Check permissions for the transition. */
1634                 rc = avc_has_perm(tsec->sid, newsid,
1635                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1636                 if (rc)
1637                         return rc;
1638
1639                 rc = avc_has_perm(newsid, isec->sid,
1640                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1641                 if (rc)
1642                         return rc;
1643
1644                 /* Clear any possibly unsafe personality bits on exec: */
1645                 current->personality &= ~PER_CLEAR_ON_SETID;
1646
1647                 /* Set the security field to the new SID. */
1648                 bsec->sid = newsid;
1649         }
1650
1651         bsec->set = 1;
1652         return 0;
1653 }
1654
1655 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1656 {
1657         return secondary_ops->bprm_check_security(bprm);
1658 }
1659
1660
1661 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1662 {
1663         struct task_security_struct *tsec = current->security;
1664         int atsecure = 0;
1665
1666         if (tsec->osid != tsec->sid) {
1667                 /* Enable secure mode for SIDs transitions unless
1668                    the noatsecure permission is granted between
1669                    the two SIDs, i.e. ahp returns 0. */
1670                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1671                                          SECCLASS_PROCESS,
1672                                          PROCESS__NOATSECURE, NULL);
1673         }
1674
1675         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1676 }
1677
1678 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1679 {
1680         kfree(bprm->security);
1681         bprm->security = NULL;
1682 }
1683
1684 extern struct vfsmount *selinuxfs_mount;
1685 extern struct dentry *selinux_null;
1686
1687 /* Derived from fs/exec.c:flush_old_files. */
1688 static inline void flush_unauthorized_files(struct files_struct * files)
1689 {
1690         struct avc_audit_data ad;
1691         struct file *file, *devnull = NULL;
1692         struct tty_struct *tty;
1693         struct fdtable *fdt;
1694         long j = -1;
1695
1696         mutex_lock(&tty_mutex);
1697         tty = current->signal->tty;
1698         if (tty) {
1699                 file_list_lock();
1700                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1701                 if (file) {
1702                         /* Revalidate access to controlling tty.
1703                            Use inode_has_perm on the tty inode directly rather
1704                            than using file_has_perm, as this particular open
1705                            file may belong to another process and we are only
1706                            interested in the inode-based check here. */
1707                         struct inode *inode = file->f_dentry->d_inode;
1708                         if (inode_has_perm(current, inode,
1709                                            FILE__READ | FILE__WRITE, NULL)) {
1710                                 /* Reset controlling tty. */
1711                                 current->signal->tty = NULL;
1712                                 current->signal->tty_old_pgrp = 0;
1713                         }
1714                 }
1715                 file_list_unlock();
1716         }
1717         mutex_unlock(&tty_mutex);
1718
1719         /* Revalidate access to inherited open files. */
1720
1721         AVC_AUDIT_DATA_INIT(&ad,FS);
1722
1723         spin_lock(&files->file_lock);
1724         for (;;) {
1725                 unsigned long set, i;
1726                 int fd;
1727
1728                 j++;
1729                 i = j * __NFDBITS;
1730                 fdt = files_fdtable(files);
1731                 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1732                         break;
1733                 set = fdt->open_fds->fds_bits[j];
1734                 if (!set)
1735                         continue;
1736                 spin_unlock(&files->file_lock);
1737                 for ( ; set ; i++,set >>= 1) {
1738                         if (set & 1) {
1739                                 file = fget(i);
1740                                 if (!file)
1741                                         continue;
1742                                 if (file_has_perm(current,
1743                                                   file,
1744                                                   file_to_av(file))) {
1745                                         sys_close(i);
1746                                         fd = get_unused_fd();
1747                                         if (fd != i) {
1748                                                 if (fd >= 0)
1749                                                         put_unused_fd(fd);
1750                                                 fput(file);
1751                                                 continue;
1752                                         }
1753                                         if (devnull) {
1754                                                 get_file(devnull);
1755                                         } else {
1756                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1757                                                 if (IS_ERR(devnull)) {
1758                                                         devnull = NULL;
1759                                                         put_unused_fd(fd);
1760                                                         fput(file);
1761                                                         continue;
1762                                                 }
1763                                         }
1764                                         fd_install(fd, devnull);
1765                                 }
1766                                 fput(file);
1767                         }
1768                 }
1769                 spin_lock(&files->file_lock);
1770
1771         }
1772         spin_unlock(&files->file_lock);
1773 }
1774
1775 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1776 {
1777         struct task_security_struct *tsec;
1778         struct bprm_security_struct *bsec;
1779         u32 sid;
1780         int rc;
1781
1782         secondary_ops->bprm_apply_creds(bprm, unsafe);
1783
1784         tsec = current->security;
1785
1786         bsec = bprm->security;
1787         sid = bsec->sid;
1788
1789         tsec->osid = tsec->sid;
1790         bsec->unsafe = 0;
1791         if (tsec->sid != sid) {
1792                 /* Check for shared state.  If not ok, leave SID
1793                    unchanged and kill. */
1794                 if (unsafe & LSM_UNSAFE_SHARE) {
1795                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1796                                         PROCESS__SHARE, NULL);
1797                         if (rc) {
1798                                 bsec->unsafe = 1;
1799                                 return;
1800                         }
1801                 }
1802
1803                 /* Check for ptracing, and update the task SID if ok.
1804                    Otherwise, leave SID unchanged and kill. */
1805                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1806                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1807                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1808                                           NULL);
1809                         if (rc) {
1810                                 bsec->unsafe = 1;
1811                                 return;
1812                         }
1813                 }
1814                 tsec->sid = sid;
1815         }
1816 }
1817
1818 /*
1819  * called after apply_creds without the task lock held
1820  */
1821 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1822 {
1823         struct task_security_struct *tsec;
1824         struct rlimit *rlim, *initrlim;
1825         struct itimerval itimer;
1826         struct bprm_security_struct *bsec;
1827         int rc, i;
1828
1829         tsec = current->security;
1830         bsec = bprm->security;
1831
1832         if (bsec->unsafe) {
1833                 force_sig_specific(SIGKILL, current);
1834                 return;
1835         }
1836         if (tsec->osid == tsec->sid)
1837                 return;
1838
1839         /* Close files for which the new task SID is not authorized. */
1840         flush_unauthorized_files(current->files);
1841
1842         /* Check whether the new SID can inherit signal state
1843            from the old SID.  If not, clear itimers to avoid
1844            subsequent signal generation and flush and unblock
1845            signals. This must occur _after_ the task SID has
1846           been updated so that any kill done after the flush
1847           will be checked against the new SID. */
1848         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1849                           PROCESS__SIGINH, NULL);
1850         if (rc) {
1851                 memset(&itimer, 0, sizeof itimer);
1852                 for (i = 0; i < 3; i++)
1853                         do_setitimer(i, &itimer, NULL);
1854                 flush_signals(current);
1855                 spin_lock_irq(&current->sighand->siglock);
1856                 flush_signal_handlers(current, 1);
1857                 sigemptyset(&current->blocked);
1858                 recalc_sigpending();
1859                 spin_unlock_irq(&current->sighand->siglock);
1860         }
1861
1862         /* Check whether the new SID can inherit resource limits
1863            from the old SID.  If not, reset all soft limits to
1864            the lower of the current task's hard limit and the init
1865            task's soft limit.  Note that the setting of hard limits
1866            (even to lower them) can be controlled by the setrlimit
1867            check. The inclusion of the init task's soft limit into
1868            the computation is to avoid resetting soft limits higher
1869            than the default soft limit for cases where the default
1870            is lower than the hard limit, e.g. RLIMIT_CORE or
1871            RLIMIT_STACK.*/
1872         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1873                           PROCESS__RLIMITINH, NULL);
1874         if (rc) {
1875                 for (i = 0; i < RLIM_NLIMITS; i++) {
1876                         rlim = current->signal->rlim + i;
1877                         initrlim = init_task.signal->rlim+i;
1878                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1879                 }
1880                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1881                         /*
1882                          * This will cause RLIMIT_CPU calculations
1883                          * to be refigured.
1884                          */
1885                         current->it_prof_expires = jiffies_to_cputime(1);
1886                 }
1887         }
1888
1889         /* Wake up the parent if it is waiting so that it can
1890            recheck wait permission to the new task SID. */
1891         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1892 }
1893
1894 /* superblock security operations */
1895
1896 static int selinux_sb_alloc_security(struct super_block *sb)
1897 {
1898         return superblock_alloc_security(sb);
1899 }
1900
1901 static void selinux_sb_free_security(struct super_block *sb)
1902 {
1903         superblock_free_security(sb);
1904 }
1905
1906 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1907 {
1908         if (plen > olen)
1909                 return 0;
1910
1911         return !memcmp(prefix, option, plen);
1912 }
1913
1914 static inline int selinux_option(char *option, int len)
1915 {
1916         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1917                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1918                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1919                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1920 }
1921
1922 static inline void take_option(char **to, char *from, int *first, int len)
1923 {
1924         if (!*first) {
1925                 **to = ',';
1926                 *to += 1;
1927         } else
1928                 *first = 0;
1929         memcpy(*to, from, len);
1930         *to += len;
1931 }
1932
1933 static inline void take_selinux_option(char **to, char *from, int *first, 
1934                                        int len)
1935 {
1936         int current_size = 0;
1937
1938         if (!*first) {
1939                 **to = '|';
1940                 *to += 1;
1941         }
1942         else
1943                 *first = 0;
1944
1945         while (current_size < len) {
1946                 if (*from != '"') {
1947                         **to = *from;
1948                         *to += 1;
1949                 }
1950                 from += 1;
1951                 current_size += 1;
1952         }
1953 }
1954
1955 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1956 {
1957         int fnosec, fsec, rc = 0;
1958         char *in_save, *in_curr, *in_end;
1959         char *sec_curr, *nosec_save, *nosec;
1960         int open_quote = 0;
1961
1962         in_curr = orig;
1963         sec_curr = copy;
1964
1965         /* Binary mount data: just copy */
1966         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1967                 copy_page(sec_curr, in_curr);
1968                 goto out;
1969         }
1970
1971         nosec = (char *)get_zeroed_page(GFP_KERNEL);
1972         if (!nosec) {
1973                 rc = -ENOMEM;
1974                 goto out;
1975         }
1976
1977         nosec_save = nosec;
1978         fnosec = fsec = 1;
1979         in_save = in_end = orig;
1980
1981         do {
1982                 if (*in_end == '"')
1983                         open_quote = !open_quote;
1984                 if ((*in_end == ',' && open_quote == 0) ||
1985                                 *in_end == '\0') {
1986                         int len = in_end - in_curr;
1987
1988                         if (selinux_option(in_curr, len))
1989                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
1990                         else
1991                                 take_option(&nosec, in_curr, &fnosec, len);
1992
1993                         in_curr = in_end + 1;
1994                 }
1995         } while (*in_end++);
1996
1997         strcpy(in_save, nosec_save);
1998         free_page((unsigned long)nosec_save);
1999 out:
2000         return rc;
2001 }
2002
2003 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2004 {
2005         struct avc_audit_data ad;
2006         int rc;
2007
2008         rc = superblock_doinit(sb, data);
2009         if (rc)
2010                 return rc;
2011
2012         AVC_AUDIT_DATA_INIT(&ad,FS);
2013         ad.u.fs.dentry = sb->s_root;
2014         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2015 }
2016
2017 static int selinux_sb_statfs(struct dentry *dentry)
2018 {
2019         struct avc_audit_data ad;
2020
2021         AVC_AUDIT_DATA_INIT(&ad,FS);
2022         ad.u.fs.dentry = dentry->d_sb->s_root;
2023         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2024 }
2025
2026 static int selinux_mount(char * dev_name,
2027                          struct nameidata *nd,
2028                          char * type,
2029                          unsigned long flags,
2030                          void * data)
2031 {
2032         int rc;
2033
2034         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2035         if (rc)
2036                 return rc;
2037
2038         if (flags & MS_REMOUNT)
2039                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2040                                            FILESYSTEM__REMOUNT, NULL);
2041         else
2042                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2043                                        FILE__MOUNTON);
2044 }
2045
2046 static int selinux_umount(struct vfsmount *mnt, int flags)
2047 {
2048         int rc;
2049
2050         rc = secondary_ops->sb_umount(mnt, flags);
2051         if (rc)
2052                 return rc;
2053
2054         return superblock_has_perm(current,mnt->mnt_sb,
2055                                    FILESYSTEM__UNMOUNT,NULL);
2056 }
2057
2058 /* inode security operations */
2059
2060 static int selinux_inode_alloc_security(struct inode *inode)
2061 {
2062         return inode_alloc_security(inode);
2063 }
2064
2065 static void selinux_inode_free_security(struct inode *inode)
2066 {
2067         inode_free_security(inode);
2068 }
2069
2070 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2071                                        char **name, void **value,
2072                                        size_t *len)
2073 {
2074         struct task_security_struct *tsec;
2075         struct inode_security_struct *dsec;
2076         struct superblock_security_struct *sbsec;
2077         u32 newsid, clen;
2078         int rc;
2079         char *namep = NULL, *context;
2080
2081         tsec = current->security;
2082         dsec = dir->i_security;
2083         sbsec = dir->i_sb->s_security;
2084
2085         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2086                 newsid = tsec->create_sid;
2087         } else {
2088                 rc = security_transition_sid(tsec->sid, dsec->sid,
2089                                              inode_mode_to_security_class(inode->i_mode),
2090                                              &newsid);
2091                 if (rc) {
2092                         printk(KERN_WARNING "%s:  "
2093                                "security_transition_sid failed, rc=%d (dev=%s "
2094                                "ino=%ld)\n",
2095                                __FUNCTION__,
2096                                -rc, inode->i_sb->s_id, inode->i_ino);
2097                         return rc;
2098                 }
2099         }
2100
2101         /* Possibly defer initialization to selinux_complete_init. */
2102         if (sbsec->initialized) {
2103                 struct inode_security_struct *isec = inode->i_security;
2104                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2105                 isec->sid = newsid;
2106                 isec->initialized = 1;
2107         }
2108
2109         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2110                 return -EOPNOTSUPP;
2111
2112         if (name) {
2113                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2114                 if (!namep)
2115                         return -ENOMEM;
2116                 *name = namep;
2117         }
2118
2119         if (value && len) {
2120                 rc = security_sid_to_context(newsid, &context, &clen);
2121                 if (rc) {
2122                         kfree(namep);
2123                         return rc;
2124                 }
2125                 *value = context;
2126                 *len = clen;
2127         }
2128
2129         return 0;
2130 }
2131
2132 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2133 {
2134         return may_create(dir, dentry, SECCLASS_FILE);
2135 }
2136
2137 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2138 {
2139         int rc;
2140
2141         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2142         if (rc)
2143                 return rc;
2144         return may_link(dir, old_dentry, MAY_LINK);
2145 }
2146
2147 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2148 {
2149         int rc;
2150
2151         rc = secondary_ops->inode_unlink(dir, dentry);
2152         if (rc)
2153                 return rc;
2154         return may_link(dir, dentry, MAY_UNLINK);
2155 }
2156
2157 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2158 {
2159         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2160 }
2161
2162 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2163 {
2164         return may_create(dir, dentry, SECCLASS_DIR);
2165 }
2166
2167 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2168 {
2169         return may_link(dir, dentry, MAY_RMDIR);
2170 }
2171
2172 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2173 {
2174         int rc;
2175
2176         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2177         if (rc)
2178                 return rc;
2179
2180         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2181 }
2182
2183 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2184                                 struct inode *new_inode, struct dentry *new_dentry)
2185 {
2186         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2187 }
2188
2189 static int selinux_inode_readlink(struct dentry *dentry)
2190 {
2191         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2192 }
2193
2194 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2195 {
2196         int rc;
2197
2198         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2199         if (rc)
2200                 return rc;
2201         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2202 }
2203
2204 static int selinux_inode_permission(struct inode *inode, int mask,
2205                                     struct nameidata *nd)
2206 {
2207         int rc;
2208
2209         rc = secondary_ops->inode_permission(inode, mask, nd);
2210         if (rc)
2211                 return rc;
2212
2213         if (!mask) {
2214                 /* No permission to check.  Existence test. */
2215                 return 0;
2216         }
2217
2218         return inode_has_perm(current, inode,
2219                                file_mask_to_av(inode->i_mode, mask), NULL);
2220 }
2221
2222 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2223 {
2224         int rc;
2225
2226         rc = secondary_ops->inode_setattr(dentry, iattr);
2227         if (rc)
2228                 return rc;
2229
2230         if (iattr->ia_valid & ATTR_FORCE)
2231                 return 0;
2232
2233         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2234                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2235                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2236
2237         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2238 }
2239
2240 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2241 {
2242         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2243 }
2244
2245 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2246 {
2247         struct task_security_struct *tsec = current->security;
2248         struct inode *inode = dentry->d_inode;
2249         struct inode_security_struct *isec = inode->i_security;
2250         struct superblock_security_struct *sbsec;
2251         struct avc_audit_data ad;
2252         u32 newsid;
2253         int rc = 0;
2254
2255         if (strcmp(name, XATTR_NAME_SELINUX)) {
2256                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2257                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2258                     !capable(CAP_SYS_ADMIN)) {
2259                         /* A different attribute in the security namespace.
2260                            Restrict to administrator. */
2261                         return -EPERM;
2262                 }
2263
2264                 /* Not an attribute we recognize, so just check the
2265                    ordinary setattr permission. */
2266                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2267         }
2268
2269         sbsec = inode->i_sb->s_security;
2270         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2271                 return -EOPNOTSUPP;
2272
2273         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2274                 return -EPERM;
2275
2276         AVC_AUDIT_DATA_INIT(&ad,FS);
2277         ad.u.fs.dentry = dentry;
2278
2279         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2280                           FILE__RELABELFROM, &ad);
2281         if (rc)
2282                 return rc;
2283
2284         rc = security_context_to_sid(value, size, &newsid);
2285         if (rc)
2286                 return rc;
2287
2288         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2289                           FILE__RELABELTO, &ad);
2290         if (rc)
2291                 return rc;
2292
2293         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2294                                           isec->sclass);
2295         if (rc)
2296                 return rc;
2297
2298         return avc_has_perm(newsid,
2299                             sbsec->sid,
2300                             SECCLASS_FILESYSTEM,
2301                             FILESYSTEM__ASSOCIATE,
2302                             &ad);
2303 }
2304
2305 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2306                                         void *value, size_t size, int flags)
2307 {
2308         struct inode *inode = dentry->d_inode;
2309         struct inode_security_struct *isec = inode->i_security;
2310         u32 newsid;
2311         int rc;
2312
2313         if (strcmp(name, XATTR_NAME_SELINUX)) {
2314                 /* Not an attribute we recognize, so nothing to do. */
2315                 return;
2316         }
2317
2318         rc = security_context_to_sid(value, size, &newsid);
2319         if (rc) {
2320                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2321                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2322                 return;
2323         }
2324
2325         isec->sid = newsid;
2326         return;
2327 }
2328
2329 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2330 {
2331         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2332 }
2333
2334 static int selinux_inode_listxattr (struct dentry *dentry)
2335 {
2336         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2337 }
2338
2339 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2340 {
2341         if (strcmp(name, XATTR_NAME_SELINUX)) {
2342                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2343                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2344                     !capable(CAP_SYS_ADMIN)) {
2345                         /* A different attribute in the security namespace.
2346                            Restrict to administrator. */
2347                         return -EPERM;
2348                 }
2349
2350                 /* Not an attribute we recognize, so just check the
2351                    ordinary setattr permission. Might want a separate
2352                    permission for removexattr. */
2353                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2354         }
2355
2356         /* No one is allowed to remove a SELinux security label.
2357            You can change the label, but all data must be labeled. */
2358         return -EACCES;
2359 }
2360
2361 static const char *selinux_inode_xattr_getsuffix(void)
2362 {
2363       return XATTR_SELINUX_SUFFIX;
2364 }
2365
2366 /*
2367  * Copy the in-core inode security context value to the user.  If the
2368  * getxattr() prior to this succeeded, check to see if we need to
2369  * canonicalize the value to be finally returned to the user.
2370  *
2371  * Permission check is handled by selinux_inode_getxattr hook.
2372  */
2373 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2374 {
2375         struct inode_security_struct *isec = inode->i_security;
2376
2377         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2378                 return -EOPNOTSUPP;
2379
2380         return selinux_getsecurity(isec->sid, buffer, size);
2381 }
2382
2383 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2384                                      const void *value, size_t size, int flags)
2385 {
2386         struct inode_security_struct *isec = inode->i_security;
2387         u32 newsid;
2388         int rc;
2389
2390         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2391                 return -EOPNOTSUPP;
2392
2393         if (!value || !size)
2394                 return -EACCES;
2395
2396         rc = security_context_to_sid((void*)value, size, &newsid);
2397         if (rc)
2398                 return rc;
2399
2400         isec->sid = newsid;
2401         return 0;
2402 }
2403
2404 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2405 {
2406         const int len = sizeof(XATTR_NAME_SELINUX);
2407         if (buffer && len <= buffer_size)
2408                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2409         return len;
2410 }
2411
2412 /* file security operations */
2413
2414 static int selinux_file_permission(struct file *file, int mask)
2415 {
2416         int rc;
2417         struct inode *inode = file->f_dentry->d_inode;
2418
2419         if (!mask) {
2420                 /* No permission to check.  Existence test. */
2421                 return 0;
2422         }
2423
2424         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2425         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2426                 mask |= MAY_APPEND;
2427
2428         rc = file_has_perm(current, file,
2429                            file_mask_to_av(inode->i_mode, mask));
2430         if (rc)
2431                 return rc;
2432
2433         return selinux_netlbl_inode_permission(inode, mask);
2434 }
2435
2436 static int selinux_file_alloc_security(struct file *file)
2437 {
2438         return file_alloc_security(file);
2439 }
2440
2441 static void selinux_file_free_security(struct file *file)
2442 {
2443         file_free_security(file);
2444 }
2445
2446 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2447                               unsigned long arg)
2448 {
2449         int error = 0;
2450
2451         switch (cmd) {
2452                 case FIONREAD:
2453                 /* fall through */
2454                 case FIBMAP:
2455                 /* fall through */
2456                 case FIGETBSZ:
2457                 /* fall through */
2458                 case EXT2_IOC_GETFLAGS:
2459                 /* fall through */
2460                 case EXT2_IOC_GETVERSION:
2461                         error = file_has_perm(current, file, FILE__GETATTR);
2462                         break;
2463
2464                 case EXT2_IOC_SETFLAGS:
2465                 /* fall through */
2466                 case EXT2_IOC_SETVERSION:
2467                         error = file_has_perm(current, file, FILE__SETATTR);
2468                         break;
2469
2470                 /* sys_ioctl() checks */
2471                 case FIONBIO:
2472                 /* fall through */
2473                 case FIOASYNC:
2474                         error = file_has_perm(current, file, 0);
2475                         break;
2476
2477                 case KDSKBENT:
2478                 case KDSKBSENT:
2479                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2480                         break;
2481
2482                 /* default case assumes that the command will go
2483                  * to the file's ioctl() function.
2484                  */
2485                 default:
2486                         error = file_has_perm(current, file, FILE__IOCTL);
2487
2488         }
2489         return error;
2490 }
2491
2492 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2493 {
2494 #ifndef CONFIG_PPC32
2495         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2496                 /*
2497                  * We are making executable an anonymous mapping or a
2498                  * private file mapping that will also be writable.
2499                  * This has an additional check.
2500                  */
2501                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2502                 if (rc)
2503                         return rc;
2504         }
2505 #endif
2506
2507         if (file) {
2508                 /* read access is always possible with a mapping */
2509                 u32 av = FILE__READ;
2510
2511                 /* write access only matters if the mapping is shared */
2512                 if (shared && (prot & PROT_WRITE))
2513                         av |= FILE__WRITE;
2514
2515                 if (prot & PROT_EXEC)
2516                         av |= FILE__EXECUTE;
2517
2518                 return file_has_perm(current, file, av);
2519         }
2520         return 0;
2521 }
2522
2523 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2524                              unsigned long prot, unsigned long flags)
2525 {
2526         int rc;
2527
2528         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2529         if (rc)
2530                 return rc;
2531
2532         if (selinux_checkreqprot)
2533                 prot = reqprot;
2534
2535         return file_map_prot_check(file, prot,
2536                                    (flags & MAP_TYPE) == MAP_SHARED);
2537 }
2538
2539 static int selinux_file_mprotect(struct vm_area_struct *vma,
2540                                  unsigned long reqprot,
2541                                  unsigned long prot)
2542 {
2543         int rc;
2544
2545         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2546         if (rc)
2547                 return rc;
2548
2549         if (selinux_checkreqprot)
2550                 prot = reqprot;
2551
2552 #ifndef CONFIG_PPC32
2553         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2554                 rc = 0;
2555                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2556                     vma->vm_end <= vma->vm_mm->brk) {
2557                         rc = task_has_perm(current, current,
2558                                            PROCESS__EXECHEAP);
2559                 } else if (!vma->vm_file &&
2560                            vma->vm_start <= vma->vm_mm->start_stack &&
2561                            vma->vm_end >= vma->vm_mm->start_stack) {
2562                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2563                 } else if (vma->vm_file && vma->anon_vma) {
2564                         /*
2565                          * We are making executable a file mapping that has
2566                          * had some COW done. Since pages might have been
2567                          * written, check ability to execute the possibly
2568                          * modified content.  This typically should only
2569                          * occur for text relocations.
2570                          */
2571                         rc = file_has_perm(current, vma->vm_file,
2572                                            FILE__EXECMOD);
2573                 }
2574                 if (rc)
2575                         return rc;
2576         }
2577 #endif
2578
2579         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2580 }
2581
2582 static int selinux_file_lock(struct file *file, unsigned int cmd)
2583 {
2584         return file_has_perm(current, file, FILE__LOCK);
2585 }
2586
2587 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2588                               unsigned long arg)
2589 {
2590         int err = 0;
2591
2592         switch (cmd) {
2593                 case F_SETFL:
2594                         if (!file->f_dentry || !file->f_dentry->d_inode) {
2595                                 err = -EINVAL;
2596                                 break;
2597                         }
2598
2599                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2600                                 err = file_has_perm(current, file,FILE__WRITE);
2601                                 break;
2602                         }
2603                         /* fall through */
2604                 case F_SETOWN:
2605                 case F_SETSIG:
2606                 case F_GETFL:
2607                 case F_GETOWN:
2608                 case F_GETSIG:
2609                         /* Just check FD__USE permission */
2610                         err = file_has_perm(current, file, 0);
2611                         break;
2612                 case F_GETLK:
2613                 case F_SETLK:
2614                 case F_SETLKW:
2615 #if BITS_PER_LONG == 32
2616                 case F_GETLK64:
2617                 case F_SETLK64:
2618                 case F_SETLKW64:
2619 #endif
2620                         if (!file->f_dentry || !file->f_dentry->d_inode) {
2621                                 err = -EINVAL;
2622                                 break;
2623                         }
2624                         err = file_has_perm(current, file, FILE__LOCK);
2625                         break;
2626         }
2627
2628         return err;
2629 }
2630
2631 static int selinux_file_set_fowner(struct file *file)
2632 {
2633         struct task_security_struct *tsec;
2634         struct file_security_struct *fsec;
2635
2636         tsec = current->security;
2637         fsec = file->f_security;
2638         fsec->fown_sid = tsec->sid;
2639
2640         return 0;
2641 }
2642
2643 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2644                                        struct fown_struct *fown, int signum)
2645 {
2646         struct file *file;
2647         u32 perm;
2648         struct task_security_struct *tsec;
2649         struct file_security_struct *fsec;
2650
2651         /* struct fown_struct is never outside the context of a struct file */
2652         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2653
2654         tsec = tsk->security;
2655         fsec = file->f_security;
2656
2657         if (!signum)
2658                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2659         else
2660                 perm = signal_to_av(signum);
2661
2662         return avc_has_perm(fsec->fown_sid, tsec->sid,
2663                             SECCLASS_PROCESS, perm, NULL);
2664 }
2665
2666 static int selinux_file_receive(struct file *file)
2667 {
2668         return file_has_perm(current, file, file_to_av(file));
2669 }
2670
2671 /* task security operations */
2672
2673 static int selinux_task_create(unsigned long clone_flags)
2674 {
2675         int rc;
2676
2677         rc = secondary_ops->task_create(clone_flags);
2678         if (rc)
2679                 return rc;
2680
2681         return task_has_perm(current, current, PROCESS__FORK);
2682 }
2683
2684 static int selinux_task_alloc_security(struct task_struct *tsk)
2685 {
2686         struct task_security_struct *tsec1, *tsec2;
2687         int rc;
2688
2689         tsec1 = current->security;
2690
2691         rc = task_alloc_security(tsk);
2692         if (rc)
2693                 return rc;
2694         tsec2 = tsk->security;
2695
2696         tsec2->osid = tsec1->osid;
2697         tsec2->sid = tsec1->sid;
2698
2699         /* Retain the exec, fs, key, and sock SIDs across fork */
2700         tsec2->exec_sid = tsec1->exec_sid;
2701         tsec2->create_sid = tsec1->create_sid;
2702         tsec2->keycreate_sid = tsec1->keycreate_sid;
2703         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2704
2705         /* Retain ptracer SID across fork, if any.
2706            This will be reset by the ptrace hook upon any
2707            subsequent ptrace_attach operations. */
2708         tsec2->ptrace_sid = tsec1->ptrace_sid;
2709
2710         return 0;
2711 }
2712
2713 static void selinux_task_free_security(struct task_struct *tsk)
2714 {
2715         task_free_security(tsk);
2716 }
2717
2718 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2719 {
2720         /* Since setuid only affects the current process, and
2721            since the SELinux controls are not based on the Linux
2722            identity attributes, SELinux does not need to control
2723            this operation.  However, SELinux does control the use
2724            of the CAP_SETUID and CAP_SETGID capabilities using the
2725            capable hook. */
2726         return 0;
2727 }
2728
2729 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2730 {
2731         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2732 }
2733
2734 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2735 {
2736         /* See the comment for setuid above. */
2737         return 0;
2738 }
2739
2740 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2741 {
2742         return task_has_perm(current, p, PROCESS__SETPGID);
2743 }
2744
2745 static int selinux_task_getpgid(struct task_struct *p)
2746 {
2747         return task_has_perm(current, p, PROCESS__GETPGID);
2748 }
2749
2750 static int selinux_task_getsid(struct task_struct *p)
2751 {
2752         return task_has_perm(current, p, PROCESS__GETSESSION);
2753 }
2754
2755 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2756 {
2757         selinux_get_task_sid(p, secid);
2758 }
2759
2760 static int selinux_task_setgroups(struct group_info *group_info)
2761 {
2762         /* See the comment for setuid above. */
2763         return 0;
2764 }
2765
2766 static int selinux_task_setnice(struct task_struct *p, int nice)
2767 {
2768         int rc;
2769
2770         rc = secondary_ops->task_setnice(p, nice);
2771         if (rc)
2772                 return rc;
2773
2774         return task_has_perm(current,p, PROCESS__SETSCHED);
2775 }
2776
2777 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2778 {
2779         return task_has_perm(current, p, PROCESS__SETSCHED);
2780 }
2781
2782 static int selinux_task_getioprio(struct task_struct *p)
2783 {
2784         return task_has_perm(current, p, PROCESS__GETSCHED);
2785 }
2786
2787 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2788 {
2789         struct rlimit *old_rlim = current->signal->rlim + resource;
2790         int rc;
2791
2792         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2793         if (rc)
2794                 return rc;
2795
2796         /* Control the ability to change the hard limit (whether
2797            lowering or raising it), so that the hard limit can
2798            later be used as a safe reset point for the soft limit
2799            upon context transitions. See selinux_bprm_apply_creds. */
2800         if (old_rlim->rlim_max != new_rlim->rlim_max)
2801                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2802
2803         return 0;
2804 }
2805
2806 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2807 {
2808         return task_has_perm(current, p, PROCESS__SETSCHED);
2809 }
2810
2811 static int selinux_task_getscheduler(struct task_struct *p)
2812 {
2813         return task_has_perm(current, p, PROCESS__GETSCHED);
2814 }
2815
2816 static int selinux_task_movememory(struct task_struct *p)
2817 {
2818         return task_has_perm(current, p, PROCESS__SETSCHED);
2819 }
2820
2821 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2822                                 int sig, u32 secid)
2823 {
2824         u32 perm;
2825         int rc;
2826         struct task_security_struct *tsec;
2827
2828         rc = secondary_ops->task_kill(p, info, sig, secid);
2829         if (rc)
2830                 return rc;
2831
2832         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2833                 return 0;
2834
2835         if (!sig)
2836                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2837         else
2838                 perm = signal_to_av(sig);
2839         tsec = p->security;
2840         if (secid)
2841                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2842         else
2843                 rc = task_has_perm(current, p, perm);
2844         return rc;
2845 }
2846
2847 static int selinux_task_prctl(int option,
2848                               unsigned long arg2,
2849                               unsigned long arg3,
2850                               unsigned long arg4,
2851                               unsigned long arg5)
2852 {
2853         /* The current prctl operations do not appear to require
2854            any SELinux controls since they merely observe or modify
2855            the state of the current process. */
2856         return 0;
2857 }
2858
2859 static int selinux_task_wait(struct task_struct *p)
2860 {
2861         u32 perm;
2862
2863         perm = signal_to_av(p->exit_signal);
2864
2865         return task_has_perm(p, current, perm);
2866 }
2867
2868 static void selinux_task_reparent_to_init(struct task_struct *p)
2869 {
2870         struct task_security_struct *tsec;
2871
2872         secondary_ops->task_reparent_to_init(p);
2873
2874         tsec = p->security;
2875         tsec->osid = tsec->sid;
2876         tsec->sid = SECINITSID_KERNEL;
2877         return;
2878 }
2879
2880 static void selinux_task_to_inode(struct task_struct *p,
2881                                   struct inode *inode)
2882 {
2883         struct task_security_struct *tsec = p->security;
2884         struct inode_security_struct *isec = inode->i_security;
2885
2886         isec->sid = tsec->sid;
2887         isec->initialized = 1;
2888         return;
2889 }
2890
2891 /* Returns error only if unable to parse addresses */
2892 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2893                         struct avc_audit_data *ad, u8 *proto)
2894 {
2895         int offset, ihlen, ret = -EINVAL;
2896         struct iphdr _iph, *ih;
2897
2898         offset = skb->nh.raw - skb->data;
2899         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2900         if (ih == NULL)
2901                 goto out;
2902
2903         ihlen = ih->ihl * 4;
2904         if (ihlen < sizeof(_iph))
2905                 goto out;
2906
2907         ad->u.net.v4info.saddr = ih->saddr;
2908         ad->u.net.v4info.daddr = ih->daddr;
2909         ret = 0;
2910
2911         if (proto)
2912                 *proto = ih->protocol;
2913
2914         switch (ih->protocol) {
2915         case IPPROTO_TCP: {
2916                 struct tcphdr _tcph, *th;
2917
2918                 if (ntohs(ih->frag_off) & IP_OFFSET)
2919                         break;
2920
2921                 offset += ihlen;
2922                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2923                 if (th == NULL)
2924                         break;
2925
2926                 ad->u.net.sport = th->source;
2927                 ad->u.net.dport = th->dest;
2928                 break;
2929         }
2930         
2931         case IPPROTO_UDP: {
2932                 struct udphdr _udph, *uh;
2933                 
2934                 if (ntohs(ih->frag_off) & IP_OFFSET)
2935                         break;
2936                         
2937                 offset += ihlen;
2938                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2939                 if (uh == NULL)
2940                         break;  
2941
2942                 ad->u.net.sport = uh->source;
2943                 ad->u.net.dport = uh->dest;
2944                 break;
2945         }
2946
2947         default:
2948                 break;
2949         }
2950 out:
2951         return ret;
2952 }
2953
2954 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2955
2956 /* Returns error only if unable to parse addresses */
2957 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
2958                         struct avc_audit_data *ad, u8 *proto)
2959 {
2960         u8 nexthdr;
2961         int ret = -EINVAL, offset;
2962         struct ipv6hdr _ipv6h, *ip6;
2963
2964         offset = skb->nh.raw - skb->data;
2965         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2966         if (ip6 == NULL)
2967                 goto out;
2968
2969         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2970         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2971         ret = 0;
2972
2973         nexthdr = ip6->nexthdr;
2974         offset += sizeof(_ipv6h);
2975         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2976         if (offset < 0)
2977                 goto out;
2978
2979         if (proto)
2980                 *proto = nexthdr;
2981
2982         switch (nexthdr) {
2983         case IPPROTO_TCP: {
2984                 struct tcphdr _tcph, *th;
2985
2986                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2987                 if (th == NULL)
2988                         break;
2989
2990                 ad->u.net.sport = th->source;
2991                 ad->u.net.dport = th->dest;
2992                 break;
2993         }
2994
2995         case IPPROTO_UDP: {
2996                 struct udphdr _udph, *uh;
2997
2998                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2999                 if (uh == NULL)
3000                         break;
3001
3002                 ad->u.net.sport = uh->source;
3003                 ad->u.net.dport = uh->dest;
3004                 break;
3005         }
3006
3007         /* includes fragments */
3008         default:
3009                 break;
3010         }
3011 out:
3012         return ret;
3013 }
3014
3015 #endif /* IPV6 */
3016
3017 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3018                              char **addrp, int *len, int src, u8 *proto)
3019 {
3020         int ret = 0;
3021
3022         switch (ad->u.net.family) {
3023         case PF_INET:
3024                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3025                 if (ret || !addrp)
3026                         break;
3027                 *len = 4;
3028                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3029                                         &ad->u.net.v4info.daddr);
3030                 break;
3031
3032 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3033         case PF_INET6:
3034                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3035                 if (ret || !addrp)
3036                         break;
3037                 *len = 16;
3038                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3039                                         &ad->u.net.v6info.daddr);
3040                 break;
3041 #endif  /* IPV6 */
3042         default:
3043                 break;
3044         }
3045
3046         return ret;
3047 }
3048
3049 /* socket security operations */
3050 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3051                            u32 perms)
3052 {
3053         struct inode_security_struct *isec;
3054         struct task_security_struct *tsec;
3055         struct avc_audit_data ad;
3056         int err = 0;
3057
3058         tsec = task->security;
3059         isec = SOCK_INODE(sock)->i_security;
3060
3061         if (isec->sid == SECINITSID_KERNEL)
3062                 goto out;
3063
3064         AVC_AUDIT_DATA_INIT(&ad,NET);
3065         ad.u.net.sk = sock->sk;
3066         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3067
3068 out:
3069         return err;
3070 }
3071
3072 static int selinux_socket_create(int family, int type,
3073                                  int protocol, int kern)
3074 {
3075         int err = 0;
3076         struct task_security_struct *tsec;
3077         u32 newsid;
3078
3079         if (kern)
3080                 goto out;
3081
3082         tsec = current->security;
3083         newsid = tsec->sockcreate_sid ? : tsec->sid;
3084         err = avc_has_perm(tsec->sid, newsid,
3085                            socket_type_to_security_class(family, type,
3086                            protocol), SOCKET__CREATE, NULL);
3087
3088 out:
3089         return err;
3090 }
3091
3092 static int selinux_socket_post_create(struct socket *sock, int family,
3093                                       int type, int protocol, int kern)
3094 {
3095         int err = 0;
3096         struct inode_security_struct *isec;
3097         struct task_security_struct *tsec;
3098         struct sk_security_struct *sksec;
3099         u32 newsid;
3100
3101         isec = SOCK_INODE(sock)->i_security;
3102
3103         tsec = current->security;
3104         newsid = tsec->sockcreate_sid ? : tsec->sid;
3105         isec->sclass = socket_type_to_security_class(family, type, protocol);
3106         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3107         isec->initialized = 1;
3108
3109         if (sock->sk) {
3110                 sksec = sock->sk->sk_security;
3111                 sksec->sid = isec->sid;
3112                 err = selinux_netlbl_socket_post_create(sock,
3113                                                         family,
3114                                                         isec->sid);
3115         }
3116
3117         return err;
3118 }
3119
3120 /* Range of port numbers used to automatically bind.
3121    Need to determine whether we should perform a name_bind
3122    permission check between the socket and the port number. */
3123 #define ip_local_port_range_0 sysctl_local_port_range[0]
3124 #define ip_local_port_range_1 sysctl_local_port_range[1]
3125
3126 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3127 {
3128         u16 family;
3129         int err;
3130
3131         err = socket_has_perm(current, sock, SOCKET__BIND);
3132         if (err)
3133                 goto out;
3134
3135         /*
3136          * If PF_INET or PF_INET6, check name_bind permission for the port.
3137          * Multiple address binding for SCTP is not supported yet: we just
3138          * check the first address now.
3139          */
3140         family = sock->sk->sk_family;
3141         if (family == PF_INET || family == PF_INET6) {
3142                 char *addrp;
3143                 struct inode_security_struct *isec;
3144                 struct task_security_struct *tsec;
3145                 struct avc_audit_data ad;
3146                 struct sockaddr_in *addr4 = NULL;
3147                 struct sockaddr_in6 *addr6 = NULL;
3148                 unsigned short snum;
3149                 struct sock *sk = sock->sk;
3150                 u32 sid, node_perm, addrlen;
3151
3152                 tsec = current->security;
3153                 isec = SOCK_INODE(sock)->i_security;
3154
3155                 if (family == PF_INET) {
3156                         addr4 = (struct sockaddr_in *)address;
3157                         snum = ntohs(addr4->sin_port);
3158                         addrlen = sizeof(addr4->sin_addr.s_addr);
3159                         addrp = (char *)&addr4->sin_addr.s_addr;
3160                 } else {
3161                         addr6 = (struct sockaddr_in6 *)address;
3162                         snum = ntohs(addr6->sin6_port);
3163                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3164                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3165                 }
3166
3167                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3168                            snum > ip_local_port_range_1)) {
3169                         err = security_port_sid(sk->sk_family, sk->sk_type,
3170                                                 sk->sk_protocol, snum, &sid);
3171                         if (err)
3172                                 goto out;
3173                         AVC_AUDIT_DATA_INIT(&ad,NET);
3174                         ad.u.net.sport = htons(snum);
3175                         ad.u.net.family = family;
3176                         err = avc_has_perm(isec->sid, sid,
3177                                            isec->sclass,
3178                                            SOCKET__NAME_BIND, &ad);
3179                         if (err)
3180                                 goto out;
3181                 }
3182                 
3183                 switch(isec->sclass) {
3184                 case SECCLASS_TCP_SOCKET:
3185                         node_perm = TCP_SOCKET__NODE_BIND;
3186                         break;
3187                         
3188                 case SECCLASS_UDP_SOCKET:
3189                         node_perm = UDP_SOCKET__NODE_BIND;
3190                         break;
3191                         
3192                 default:
3193                         node_perm = RAWIP_SOCKET__NODE_BIND;
3194                         break;
3195                 }
3196                 
3197                 err = security_node_sid(family, addrp, addrlen, &sid);
3198                 if (err)
3199                         goto out;
3200                 
3201                 AVC_AUDIT_DATA_INIT(&ad,NET);
3202                 ad.u.net.sport = htons(snum);
3203                 ad.u.net.family = family;
3204
3205                 if (family == PF_INET)
3206                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3207                 else
3208                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3209
3210                 err = avc_has_perm(isec->sid, sid,
3211                                    isec->sclass, node_perm, &ad);
3212                 if (err)
3213                         goto out;
3214         }
3215 out:
3216         return err;
3217 }
3218
3219 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3220 {
3221         struct inode_security_struct *isec;
3222         int err;
3223
3224         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3225         if (err)
3226                 return err;
3227
3228         /*
3229          * If a TCP socket, check name_connect permission for the port.
3230          */
3231         isec = SOCK_INODE(sock)->i_security;
3232         if (isec->sclass == SECCLASS_TCP_SOCKET) {
3233                 struct sock *sk = sock->sk;
3234                 struct avc_audit_data ad;
3235                 struct sockaddr_in *addr4 = NULL;
3236                 struct sockaddr_in6 *addr6 = NULL;
3237                 unsigned short snum;
3238                 u32 sid;
3239
3240                 if (sk->sk_family == PF_INET) {
3241                         addr4 = (struct sockaddr_in *)address;
3242                         if (addrlen < sizeof(struct sockaddr_in))
3243                                 return -EINVAL;
3244                         snum = ntohs(addr4->sin_port);
3245                 } else {
3246                         addr6 = (struct sockaddr_in6 *)address;
3247                         if (addrlen < SIN6_LEN_RFC2133)
3248                                 return -EINVAL;
3249                         snum = ntohs(addr6->sin6_port);
3250                 }
3251
3252                 err = security_port_sid(sk->sk_family, sk->sk_type,
3253                                         sk->sk_protocol, snum, &sid);
3254                 if (err)
3255                         goto out;
3256
3257                 AVC_AUDIT_DATA_INIT(&ad,NET);
3258                 ad.u.net.dport = htons(snum);
3259                 ad.u.net.family = sk->sk_family;
3260                 err = avc_has_perm(isec->sid, sid, isec->sclass,
3261                                    TCP_SOCKET__NAME_CONNECT, &ad);
3262                 if (err)
3263                         goto out;
3264         }
3265
3266 out:
3267         return err;
3268 }
3269
3270 static int selinux_socket_listen(struct socket *sock, int backlog)
3271 {
3272         return socket_has_perm(current, sock, SOCKET__LISTEN);
3273 }
3274
3275 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3276 {
3277         int err;
3278         struct inode_security_struct *isec;
3279         struct inode_security_struct *newisec;
3280
3281         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3282         if (err)
3283                 return err;
3284
3285         newisec = SOCK_INODE(newsock)->i_security;
3286
3287         isec = SOCK_INODE(sock)->i_security;
3288         newisec->sclass = isec->sclass;
3289         newisec->sid = isec->sid;
3290         newisec->initialized = 1;
3291
3292         return 0;
3293 }
3294
3295 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3296                                   int size)
3297 {
3298         int rc;
3299
3300         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3301         if (rc)
3302                 return rc;
3303
3304         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3305 }
3306
3307 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3308                                   int size, int flags)
3309 {
3310         return socket_has_perm(current, sock, SOCKET__READ);
3311 }
3312
3313 static int selinux_socket_getsockname(struct socket *sock)
3314 {
3315         return socket_has_perm(current, sock, SOCKET__GETATTR);
3316 }
3317
3318 static int selinux_socket_getpeername(struct socket *sock)
3319 {
3320         return socket_has_perm(current, sock, SOCKET__GETATTR);
3321 }
3322
3323 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3324 {
3325         int err;
3326
3327         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3328         if (err)
3329                 return err;
3330
3331         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3332 }
3333
3334 static int selinux_socket_getsockopt(struct socket *sock, int level,
3335                                      int optname)
3336 {
3337         return socket_has_perm(current, sock, SOCKET__GETOPT);
3338 }
3339
3340 static int selinux_socket_shutdown(struct socket *sock, int how)
3341 {
3342         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3343 }
3344
3345 static int selinux_socket_unix_stream_connect(struct socket *sock,
3346                                               struct socket *other,
3347                                               struct sock *newsk)
3348 {
3349         struct sk_security_struct *ssec;
3350         struct inode_security_struct *isec;
3351         struct inode_security_struct *other_isec;
3352         struct avc_audit_data ad;
3353         int err;
3354
3355         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3356         if (err)
3357                 return err;
3358
3359         isec = SOCK_INODE(sock)->i_security;
3360         other_isec = SOCK_INODE(other)->i_security;
3361
3362         AVC_AUDIT_DATA_INIT(&ad,NET);
3363         ad.u.net.sk = other->sk;
3364
3365         err = avc_has_perm(isec->sid, other_isec->sid,
3366                            isec->sclass,
3367                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3368         if (err)
3369                 return err;
3370
3371         /* connecting socket */
3372         ssec = sock->sk->sk_security;
3373         ssec->peer_sid = other_isec->sid;
3374         
3375         /* server child socket */
3376         ssec = newsk->sk_security;
3377         ssec->peer_sid = isec->sid;
3378         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3379
3380         return err;
3381 }
3382
3383 static int selinux_socket_unix_may_send(struct socket *sock,
3384                                         struct socket *other)
3385 {
3386         struct inode_security_struct *isec;
3387         struct inode_security_struct *other_isec;
3388         struct avc_audit_data ad;
3389         int err;
3390
3391         isec = SOCK_INODE(sock)->i_security;
3392         other_isec = SOCK_INODE(other)->i_security;
3393
3394         AVC_AUDIT_DATA_INIT(&ad,NET);
3395         ad.u.net.sk = other->sk;
3396
3397         err = avc_has_perm(isec->sid, other_isec->sid,
3398                            isec->sclass, SOCKET__SENDTO, &ad);
3399         if (err)
3400                 return err;
3401
3402         return 0;
3403 }
3404
3405 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3406                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3407 {
3408         int err = 0;
3409         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3410         struct socket *sock;
3411         u16 sock_class = 0;
3412         u32 sock_sid = 0;
3413
3414         read_lock_bh(&sk->sk_callback_lock);
3415         sock = sk->sk_socket;
3416         if (sock) {
3417                 struct inode *inode;
3418                 inode = SOCK_INODE(sock);
3419                 if (inode) {
3420                         struct inode_security_struct *isec;
3421                         isec = inode->i_security;
3422                         sock_sid = isec->sid;
3423                         sock_class = isec->sclass;
3424                 }
3425         }
3426         read_unlock_bh(&sk->sk_callback_lock);
3427         if (!sock_sid)
3428                 goto out;
3429
3430         if (!skb->dev)
3431                 goto out;
3432
3433         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3434         if (err)
3435                 goto out;
3436
3437         switch (sock_class) {
3438         case SECCLASS_UDP_SOCKET:
3439                 netif_perm = NETIF__UDP_RECV;
3440                 node_perm = NODE__UDP_RECV;
3441                 recv_perm = UDP_SOCKET__RECV_MSG;
3442                 break;
3443         
3444         case SECCLASS_TCP_SOCKET:
3445                 netif_perm = NETIF__TCP_RECV;
3446                 node_perm = NODE__TCP_RECV;
3447                 recv_perm = TCP_SOCKET__RECV_MSG;
3448                 break;
3449         
3450         default:
3451                 netif_perm = NETIF__RAWIP_RECV;
3452                 node_perm = NODE__RAWIP_RECV;
3453                 break;
3454         }
3455
3456         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3457         if (err)
3458                 goto out;
3459         
3460         err = security_node_sid(family, addrp, len, &node_sid);
3461         if (err)
3462                 goto out;
3463         
3464         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3465         if (err)
3466                 goto out;
3467
3468         if (recv_perm) {
3469                 u32 port_sid;
3470
3471                 err = security_port_sid(sk->sk_family, sk->sk_type,
3472                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3473                                         &port_sid);
3474                 if (err)
3475                         goto out;
3476
3477                 err = avc_has_perm(sock_sid, port_sid,
3478                                    sock_class, recv_perm, ad);
3479         }
3480
3481 out:
3482         return err;
3483 }
3484
3485 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3486 {
3487         u16 family;
3488         char *addrp;
3489         int len, err = 0;
3490         struct avc_audit_data ad;
3491         struct sk_security_struct *sksec = sk->sk_security;
3492
3493         family = sk->sk_family;
3494         if (family != PF_INET && family != PF_INET6)
3495                 goto out;
3496
3497         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3498         if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3499                 family = PF_INET;
3500
3501         AVC_AUDIT_DATA_INIT(&ad, NET);
3502         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3503         ad.u.net.family = family;
3504
3505         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3506         if (err)
3507                 goto out;
3508
3509         if (selinux_compat_net)
3510                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3511                                                   addrp, len);
3512         else
3513                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3514                                    PACKET__RECV, &ad);
3515         if (err)
3516                 goto out;
3517
3518         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3519         if (err)
3520                 goto out;
3521
3522         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3523 out:    
3524         return err;
3525 }
3526
3527 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3528                                             int __user *optlen, unsigned len)
3529 {
3530         int err = 0;
3531         char *scontext;
3532         u32 scontext_len;
3533         struct sk_security_struct *ssec;
3534         struct inode_security_struct *isec;
3535         u32 peer_sid = 0;
3536
3537         isec = SOCK_INODE(sock)->i_security;
3538
3539         /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3540         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3541                 ssec = sock->sk->sk_security;
3542                 peer_sid = ssec->peer_sid;
3543         }
3544         else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3545                 peer_sid = selinux_netlbl_socket_getpeersec_stream(sock);
3546                 if (peer_sid == SECSID_NULL) {
3547                         ssec = sock->sk->sk_security;
3548                         peer_sid = ssec->peer_sid;
3549                 }
3550                 if (peer_sid == SECSID_NULL) {
3551                         err = -ENOPROTOOPT;
3552                         goto out;
3553                 }
3554         }
3555         else {
3556                 err = -ENOPROTOOPT;
3557                 goto out;
3558         }
3559
3560         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3561
3562         if (err)
3563                 goto out;
3564
3565         if (scontext_len > len) {
3566                 err = -ERANGE;
3567                 goto out_len;
3568         }
3569
3570         if (copy_to_user(optval, scontext, scontext_len))
3571                 err = -EFAULT;
3572
3573 out_len:
3574         if (put_user(scontext_len, optlen))
3575                 err = -EFAULT;
3576
3577         kfree(scontext);
3578 out:    
3579         return err;
3580 }
3581
3582 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3583 {
3584         u32 peer_secid = SECSID_NULL;
3585         int err = 0;
3586
3587         if (sock && (sock->sk->sk_family == PF_UNIX))
3588                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3589         else if (skb) {
3590                 peer_secid = selinux_netlbl_socket_getpeersec_dgram(skb);
3591                 if (peer_secid == SECSID_NULL)
3592                         peer_secid = selinux_socket_getpeer_dgram(skb);
3593         }
3594
3595         if (peer_secid == SECSID_NULL)
3596                 err = -EINVAL;
3597         *secid = peer_secid;
3598
3599         return err;
3600 }
3601
3602 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3603 {
3604         return sk_alloc_security(sk, family, priority);
3605 }
3606
3607 static void selinux_sk_free_security(struct sock *sk)
3608 {
3609         sk_free_security(sk);
3610 }
3611
3612 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3613 {
3614         struct sk_security_struct *ssec = sk->sk_security;
3615         struct sk_security_struct *newssec = newsk->sk_security;
3616
3617         newssec->sid = ssec->sid;
3618         newssec->peer_sid = ssec->peer_sid;
3619
3620         selinux_netlbl_sk_clone_security(ssec, newssec);
3621 }
3622
3623 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3624 {
3625         if (!sk)
3626                 *secid = SECINITSID_ANY_SOCKET;
3627         else {
3628                 struct sk_security_struct *sksec = sk->sk_security;
3629
3630                 *secid = sksec->sid;
3631         }
3632 }
3633
3634 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3635 {
3636         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3637         struct sk_security_struct *sksec = sk->sk_security;
3638
3639         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3640             sk->sk_family == PF_UNIX)
3641                 isec->sid = sksec->sid;
3642
3643         selinux_netlbl_sock_graft(sk, parent);
3644 }
3645
3646 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3647                                      struct request_sock *req)
3648 {
3649         struct sk_security_struct *sksec = sk->sk_security;
3650         int err;
3651         u32 newsid;
3652         u32 peersid;
3653
3654         newsid = selinux_netlbl_inet_conn_request(skb, sksec->sid);
3655         if (newsid != SECSID_NULL) {
3656                 req->secid = newsid;
3657                 return 0;
3658         }
3659
3660         selinux_skb_xfrm_sid(skb, &peersid);
3661
3662         if (peersid == SECSID_NULL) {
3663                 req->secid = sksec->sid;
3664                 req->peer_secid = 0;
3665                 return 0;
3666         }
3667
3668         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3669         if (err)
3670                 return err;
3671
3672         req->secid = newsid;
3673         req->peer_secid = peersid;
3674         return 0;
3675 }
3676
3677 static void selinux_inet_csk_clone(struct sock *newsk,
3678                                    const struct request_sock *req)
3679 {
3680         struct sk_security_struct *newsksec = newsk->sk_security;
3681
3682         newsksec->sid = req->secid;
3683         newsksec->peer_sid = req->peer_secid;
3684         /* NOTE: Ideally, we should also get the isec->sid for the
3685            new socket in sync, but we don't have the isec available yet.
3686            So we will wait until sock_graft to do it, by which
3687            time it will have been created and available. */
3688
3689         selinux_netlbl_sk_security_init(newsksec, req->rsk_ops->family);
3690 }
3691
3692 static void selinux_inet_conn_established(struct sock *sk,
3693                                 struct sk_buff *skb)
3694 {
3695         struct sk_security_struct *sksec = sk->sk_security;
3696
3697         selinux_skb_xfrm_sid(skb, &sksec->peer_sid);
3698 }
3699
3700 static void selinux_req_classify_flow(const struct request_sock *req,
3701                                       struct flowi *fl)
3702 {
3703         fl->secid = req->secid;
3704 }
3705
3706 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3707 {
3708         int err = 0;
3709         u32 perm;
3710         struct nlmsghdr *nlh;
3711         struct socket *sock = sk->sk_socket;
3712         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3713         
3714         if (skb->len < NLMSG_SPACE(0)) {
3715                 err = -EINVAL;
3716                 goto out;
3717         }
3718         nlh = (struct nlmsghdr *)skb->data;
3719         
3720         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3721         if (err) {
3722                 if (err == -EINVAL) {
3723                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3724                                   "SELinux:  unrecognized netlink message"
3725                                   " type=%hu for sclass=%hu\n",
3726                                   nlh->nlmsg_type, isec->sclass);
3727                         if (!selinux_enforcing)
3728                                 err = 0;
3729                 }
3730
3731                 /* Ignore */
3732                 if (err == -ENOENT)
3733                         err = 0;
3734                 goto out;
3735         }
3736
3737         err = socket_has_perm(current, sock, perm);
3738 out:
3739         return err;
3740 }
3741
3742 #ifdef CONFIG_NETFILTER
3743
3744 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3745                                             struct avc_audit_data *ad,
3746                                             u16 family, char *addrp, int len)
3747 {
3748         int err = 0;
3749         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3750         struct socket *sock;
3751         struct inode *inode;
3752         struct inode_security_struct *isec;
3753
3754         sock = sk->sk_socket;
3755         if (!sock)
3756                 goto out;
3757
3758         inode = SOCK_INODE(sock);
3759         if (!inode)
3760                 goto out;
3761
3762         isec = inode->i_security;
3763         
3764         err = sel_netif_sids(dev, &if_sid, NULL);
3765         if (err)
3766                 goto out;
3767
3768         switch (isec->sclass) {
3769         case SECCLASS_UDP_SOCKET:
3770                 netif_perm = NETIF__UDP_SEND;
3771                 node_perm = NODE__UDP_SEND;
3772                 send_perm = UDP_SOCKET__SEND_MSG;
3773                 break;
3774         
3775         case SECCLASS_TCP_SOCKET:
3776                 netif_perm = NETIF__TCP_SEND;
3777                 node_perm = NODE__TCP_SEND;
3778                 send_perm = TCP_SOCKET__SEND_MSG;
3779                 break;
3780         
3781         default:
3782                 netif_perm = NETIF__RAWIP_SEND;
3783                 node_perm = NODE__RAWIP_SEND;
3784                 break;
3785         }
3786
3787         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3788         if (err)
3789                 goto out;
3790                 
3791         err = security_node_sid(family, addrp, len, &node_sid);
3792         if (err)
3793                 goto out;
3794         
3795         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3796         if (err)
3797                 goto out;
3798
3799         if (send_perm) {
3800                 u32 port_sid;
3801                 
3802                 err = security_port_sid(sk->sk_family,
3803                                         sk->sk_type,
3804                                         sk->sk_protocol,
3805                                         ntohs(ad->u.net.dport),
3806                                         &port_sid);
3807                 if (err)
3808                         goto out;
3809
3810                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3811                                    send_perm, ad);
3812         }
3813 out:
3814         return err;
3815 }
3816
3817 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3818                                               struct sk_buff **pskb,
3819                                               const struct net_device *in,
3820                                               const struct net_device *out,
3821                                               int (*okfn)(struct sk_buff *),
3822                                               u16 family)
3823 {
3824         char *addrp;
3825         int len, err = 0;
3826         struct sock *sk;
3827         struct sk_buff *skb = *pskb;
3828         struct avc_audit_data ad;
3829         struct net_device *dev = (struct net_device *)out;
3830         struct sk_security_struct *sksec;
3831         u8 proto;
3832
3833         sk = skb->sk;
3834         if (!sk)
3835                 goto out;
3836
3837         sksec = sk->sk_security;
3838
3839         AVC_AUDIT_DATA_INIT(&ad, NET);
3840         ad.u.net.netif = dev->name;
3841         ad.u.net.family = family;
3842
3843         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3844         if (err)
3845                 goto out;
3846
3847         if (selinux_compat_net)
3848                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3849                                                        family, addrp, len);
3850         else
3851                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3852                                    PACKET__SEND, &ad);
3853
3854         if (err)
3855                 goto out;
3856
3857         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3858 out:
3859         return err ? NF_DROP : NF_ACCEPT;
3860 }
3861
3862 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3863                                                 struct sk_buff **pskb,
3864                                                 const struct net_device *in,
3865                                                 const struct net_device *out,
3866                                                 int (*okfn)(struct sk_buff *))
3867 {
3868         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3869 }
3870
3871 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3872
3873 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3874                                                 struct sk_buff **pskb,
3875                                                 const struct net_device *in,
3876                                                 const struct net_device *out,
3877                                                 int (*okfn)(struct sk_buff *))
3878 {
3879         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3880 }
3881
3882 #endif  /* IPV6 */
3883
3884 #endif  /* CONFIG_NETFILTER */
3885
3886 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3887 {
3888         int err;
3889
3890         err = secondary_ops->netlink_send(sk, skb);
3891         if (err)
3892                 return err;
3893
3894         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3895                 err = selinux_nlmsg_perm(sk, skb);
3896
3897         return err;
3898 }
3899
3900 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3901 {
3902         int err;
3903         struct avc_audit_data ad;
3904
3905         err = secondary_ops->netlink_recv(skb, capability);
3906         if (err)
3907                 return err;
3908
3909         AVC_AUDIT_DATA_INIT(&ad, CAP);
3910         ad.u.cap = capability;
3911
3912         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3913                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3914 }
3915
3916 static int ipc_alloc_security(struct task_struct *task,
3917                               struct kern_ipc_perm *perm,
3918                               u16 sclass)
3919 {
3920         struct task_security_struct *tsec = task->security;
3921         struct ipc_security_struct *isec;
3922
3923         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3924         if (!isec)
3925                 return -ENOMEM;
3926
3927         isec->sclass = sclass;
3928         isec->ipc_perm = perm;
3929         isec->sid = tsec->sid;
3930         perm->security = isec;
3931
3932         return 0;
3933 }
3934
3935 static void ipc_free_security(struct kern_ipc_perm *perm)
3936 {
3937         struct ipc_security_struct *isec = perm->security;
3938         perm->security = NULL;
3939         kfree(isec);
3940 }
3941
3942 static int msg_msg_alloc_security(struct msg_msg *msg)
3943 {
3944         struct msg_security_struct *msec;
3945
3946         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3947         if (!msec)
3948                 return -ENOMEM;
3949
3950         msec->msg = msg;
3951         msec->sid = SECINITSID_UNLABELED;
3952         msg->security = msec;
3953
3954         return 0;
3955 }
3956
3957 static void msg_msg_free_security(struct msg_msg *msg)
3958 {
3959         struct msg_security_struct *msec = msg->security;
3960
3961         msg->security = NULL;
3962         kfree(msec);
3963 }
3964
3965 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3966                         u32 perms)
3967 {
3968         struct task_security_struct *tsec;
3969         struct ipc_security_struct *isec;
3970         struct avc_audit_data ad;
3971
3972         tsec = current->security;
3973         isec = ipc_perms->security;
3974
3975         AVC_AUDIT_DATA_INIT(&ad, IPC);
3976         ad.u.ipc_id = ipc_perms->key;
3977
3978         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3979 }
3980
3981 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3982 {
3983         return msg_msg_alloc_security(msg);
3984 }
3985
3986 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3987 {
3988         msg_msg_free_security(msg);
3989 }
3990
3991 /* message queue security operations */
3992 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3993 {
3994         struct task_security_struct *tsec;
3995         struct ipc_security_struct *isec;
3996         struct avc_audit_data ad;
3997         int rc;
3998
3999         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4000         if (rc)
4001                 return rc;
4002
4003         tsec = current->security;
4004         isec = msq->q_perm.security;
4005
4006         AVC_AUDIT_DATA_INIT(&ad, IPC);
4007         ad.u.ipc_id = msq->q_perm.key;
4008
4009         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4010                           MSGQ__CREATE, &ad);
4011         if (rc) {
4012                 ipc_free_security(&msq->q_perm);
4013                 return rc;
4014         }
4015         return 0;
4016 }
4017
4018 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4019 {
4020         ipc_free_security(&msq->q_perm);
4021 }
4022
4023 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4024 {
4025         struct task_security_struct *tsec;
4026         struct ipc_security_struct *isec;
4027         struct avc_audit_data ad;
4028
4029         tsec = current->security;
4030         isec = msq->q_perm.security;
4031
4032         AVC_AUDIT_DATA_INIT(&ad, IPC);
4033         ad.u.ipc_id = msq->q_perm.key;
4034
4035         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4036                             MSGQ__ASSOCIATE, &ad);
4037 }
4038
4039 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4040 {
4041         int err;
4042         int perms;
4043
4044         switch(cmd) {
4045         case IPC_INFO:
4046         case MSG_INFO:
4047                 /* No specific object, just general system-wide information. */
4048                 return task_has_system(current, SYSTEM__IPC_INFO);
4049         case IPC_STAT:
4050         case MSG_STAT:
4051                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4052                 break;
4053         case IPC_SET:
4054                 perms = MSGQ__SETATTR;
4055                 break;
4056         case IPC_RMID:
4057                 perms = MSGQ__DESTROY;
4058                 break;
4059         default:
4060                 return 0;
4061         }
4062
4063         err = ipc_has_perm(&msq->q_perm, perms);
4064         return err;
4065 }
4066
4067 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4068 {
4069         struct task_security_struct *tsec;
4070         struct ipc_security_struct *isec;
4071         struct msg_security_struct *msec;
4072         struct avc_audit_data ad;
4073         int rc;
4074
4075         tsec = current->security;
4076         isec = msq->q_perm.security;
4077         msec = msg->security;
4078
4079         /*
4080          * First time through, need to assign label to the message
4081          */
4082         if (msec->sid == SECINITSID_UNLABELED) {
4083                 /*
4084                  * Compute new sid based on current process and
4085                  * message queue this message will be stored in
4086                  */
4087                 rc = security_transition_sid(tsec->sid,
4088                                              isec->sid,
4089                                              SECCLASS_MSG,
4090                                              &msec->sid);
4091                 if (rc)
4092                         return rc;
4093         }
4094
4095         AVC_AUDIT_DATA_INIT(&ad, IPC);
4096         ad.u.ipc_id = msq->q_perm.key;
4097
4098         /* Can this process write to the queue? */
4099         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4100                           MSGQ__WRITE, &ad);
4101         if (!rc)
4102                 /* Can this process send the message */
4103                 rc = avc_has_perm(tsec->sid, msec->sid,
4104                                   SECCLASS_MSG, MSG__SEND, &ad);
4105         if (!rc)
4106                 /* Can the message be put in the queue? */
4107                 rc = avc_has_perm(msec->sid, isec->sid,
4108                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4109
4110         return rc;
4111 }
4112
4113 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4114                                     struct task_struct *target,
4115                                     long type, int mode)
4116 {
4117         struct task_security_struct *tsec;
4118         struct ipc_security_struct *isec;
4119         struct msg_security_struct *msec;
4120         struct avc_audit_data ad;
4121         int rc;
4122
4123         tsec = target->security;
4124         isec = msq->q_perm.security;
4125         msec = msg->security;
4126
4127         AVC_AUDIT_DATA_INIT(&ad, IPC);
4128         ad.u.ipc_id = msq->q_perm.key;
4129
4130         rc = avc_has_perm(tsec->sid, isec->sid,
4131                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4132         if (!rc)
4133                 rc = avc_has_perm(tsec->sid, msec->sid,
4134                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4135         return rc;
4136 }
4137
4138 /* Shared Memory security operations */
4139 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4140 {
4141         struct task_security_struct *tsec;
4142         struct ipc_security_struct *isec;
4143         struct avc_audit_data ad;
4144         int rc;
4145
4146         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4147         if (rc)
4148                 return rc;
4149
4150         tsec = current->security;
4151         isec = shp->shm_perm.security;
4152
4153         AVC_AUDIT_DATA_INIT(&ad, IPC);
4154         ad.u.ipc_id = shp->shm_perm.key;
4155
4156         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4157                           SHM__CREATE, &ad);
4158         if (rc) {
4159                 ipc_free_security(&shp->shm_perm);
4160                 return rc;
4161         }
4162         return 0;
4163 }
4164
4165 static void selinux_shm_free_security(struct shmid_kernel *shp)
4166 {
4167         ipc_free_security(&shp->shm_perm);
4168 }
4169
4170 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4171 {
4172         struct task_security_struct *tsec;
4173         struct ipc_security_struct *isec;
4174         struct avc_audit_data ad;
4175
4176         tsec = current->security;
4177         isec = shp->shm_perm.security;
4178
4179         AVC_AUDIT_DATA_INIT(&ad, IPC);
4180         ad.u.ipc_id = shp->shm_perm.key;
4181
4182         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4183                             SHM__ASSOCIATE, &ad);
4184 }
4185
4186 /* Note, at this point, shp is locked down */
4187 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4188 {
4189         int perms;
4190         int err;
4191
4192         switch(cmd) {
4193         case IPC_INFO:
4194         case SHM_INFO:
4195                 /* No specific object, just general system-wide information. */
4196                 return task_has_system(current, SYSTEM__IPC_INFO);
4197         case IPC_STAT:
4198         case SHM_STAT:
4199                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4200                 break;
4201         case IPC_SET:
4202                 perms = SHM__SETATTR;
4203                 break;
4204         case SHM_LOCK:
4205         case SHM_UNLOCK:
4206                 perms = SHM__LOCK;
4207                 break;
4208         case IPC_RMID:
4209                 perms = SHM__DESTROY;
4210                 break;
4211         default:
4212                 return 0;
4213         }
4214
4215         err = ipc_has_perm(&shp->shm_perm, perms);
4216         return err;
4217 }
4218
4219 static int selinux_shm_shmat(struct shmid_kernel *shp,
4220                              char __user *shmaddr, int shmflg)
4221 {
4222         u32 perms;
4223         int rc;
4224
4225         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4226         if (rc)
4227                 return rc;
4228
4229         if (shmflg & SHM_RDONLY)
4230                 perms = SHM__READ;
4231         else
4232                 perms = SHM__READ | SHM__WRITE;
4233
4234         return ipc_has_perm(&shp->shm_perm, perms);
4235 }
4236
4237 /* Semaphore security operations */
4238 static int selinux_sem_alloc_security(struct sem_array *sma)
4239 {
4240         struct task_security_struct *tsec;
4241         struct ipc_security_struct *isec;
4242         struct avc_audit_data ad;
4243         int rc;
4244
4245         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4246         if (rc)
4247                 return rc;
4248
4249         tsec = current->security;
4250         isec = sma->sem_perm.security;
4251
4252         AVC_AUDIT_DATA_INIT(&ad, IPC);
4253         ad.u.ipc_id = sma->sem_perm.key;
4254
4255         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4256                           SEM__CREATE, &ad);
4257         if (rc) {
4258                 ipc_free_security(&sma->sem_perm);
4259                 return rc;
4260         }
4261         return 0;
4262 }
4263
4264 static void selinux_sem_free_security(struct sem_array *sma)
4265 {
4266         ipc_free_security(&sma->sem_perm);
4267 }
4268
4269 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4270 {
4271         struct task_security_struct *tsec;
4272         struct ipc_security_struct *isec;
4273         struct avc_audit_data ad;
4274
4275         tsec = current->security;
4276         isec = sma->sem_perm.security;
4277
4278         AVC_AUDIT_DATA_INIT(&ad, IPC);
4279         ad.u.ipc_id = sma->sem_perm.key;
4280
4281         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4282                             SEM__ASSOCIATE, &ad);
4283 }
4284
4285 /* Note, at this point, sma is locked down */
4286 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4287 {
4288         int err;
4289         u32 perms;
4290
4291         switch(cmd) {
4292         case IPC_INFO:
4293         case SEM_INFO:
4294                 /* No specific object, just general system-wide information. */
4295                 return task_has_system(current, SYSTEM__IPC_INFO);
4296         case GETPID:
4297         case GETNCNT:
4298         case GETZCNT:
4299                 perms = SEM__GETATTR;
4300                 break;
4301         case GETVAL:
4302         case GETALL:
4303                 perms = SEM__READ;
4304                 break;
4305         case SETVAL:
4306         case SETALL:
4307                 perms = SEM__WRITE;
4308                 break;
4309         case IPC_RMID:
4310                 perms = SEM__DESTROY;
4311                 break;
4312         case IPC_SET:
4313                 perms = SEM__SETATTR;
4314                 break;
4315         case IPC_STAT:
4316         case SEM_STAT:
4317                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4318                 break;
4319         default:
4320                 return 0;
4321         }
4322
4323         err = ipc_has_perm(&sma->sem_perm, perms);
4324         return err;
4325 }
4326
4327 static int selinux_sem_semop(struct sem_array *sma,
4328                              struct sembuf *sops, unsigned nsops, int alter)
4329 {
4330         u32 perms;
4331
4332         if (alter)
4333                 perms = SEM__READ | SEM__WRITE;
4334         else
4335                 perms = SEM__READ;
4336
4337         return ipc_has_perm(&sma->sem_perm, perms);
4338 }
4339
4340 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4341 {
4342         u32 av = 0;
4343
4344         av = 0;
4345         if (flag & S_IRUGO)
4346                 av |= IPC__UNIX_READ;
4347         if (flag & S_IWUGO)
4348                 av |= IPC__UNIX_WRITE;
4349
4350         if (av == 0)
4351                 return 0;
4352
4353         return ipc_has_perm(ipcp, av);
4354 }
4355
4356 /* module stacking operations */
4357 static int selinux_register_security (const char *name, struct security_operations *ops)
4358 {
4359         if (secondary_ops != original_ops) {
4360                 printk(KERN_INFO "%s:  There is already a secondary security "
4361                        "module registered.\n", __FUNCTION__);
4362                 return -EINVAL;
4363         }
4364
4365         secondary_ops = ops;
4366
4367         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4368                __FUNCTION__,
4369                name);
4370
4371         return 0;
4372 }
4373
4374 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4375 {
4376         if (ops != secondary_ops) {
4377                 printk (KERN_INFO "%s:  trying to unregister a security module "
4378                         "that is not registered.\n", __FUNCTION__);
4379                 return -EINVAL;
4380         }
4381
4382         secondary_ops = original_ops;
4383
4384         return 0;
4385 }
4386
4387 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4388 {
4389         if (inode)
4390                 inode_doinit_with_dentry(inode, dentry);
4391 }
4392
4393 static int selinux_getprocattr(struct task_struct *p,
4394                                char *name, void *value, size_t size)
4395 {
4396         struct task_security_struct *tsec;
4397         u32 sid;
4398         int error;
4399
4400         if (current != p) {
4401                 error = task_has_perm(current, p, PROCESS__GETATTR);
4402                 if (error)
4403                         return error;
4404         }
4405
4406         tsec = p->security;
4407
4408         if (!strcmp(name, "current"))
4409                 sid = tsec->sid;
4410         else if (!strcmp(name, "prev"))
4411                 sid = tsec->osid;
4412         else if (!strcmp(name, "exec"))
4413                 sid = tsec->exec_sid;
4414         else if (!strcmp(name, "fscreate"))
4415                 sid = tsec->create_sid;
4416         else if (!strcmp(name, "keycreate"))
4417                 sid = tsec->keycreate_sid;
4418         else if (!strcmp(name, "sockcreate"))
4419                 sid = tsec->sockcreate_sid;
4420         else
4421                 return -EINVAL;
4422
4423         if (!sid)
4424                 return 0;
4425
4426         return selinux_getsecurity(sid, value, size);
4427 }
4428
4429 static int selinux_setprocattr(struct task_struct *p,
4430                                char *name, void *value, size_t size)
4431 {
4432         struct task_security_struct *tsec;
4433         u32 sid = 0;
4434         int error;
4435         char *str = value;
4436
4437         if (current != p) {
4438                 /* SELinux only allows a process to change its own
4439                    security attributes. */
4440                 return -EACCES;
4441         }
4442
4443         /*
4444          * Basic control over ability to set these attributes at all.
4445          * current == p, but we'll pass them separately in case the
4446          * above restriction is ever removed.
4447          */
4448         if (!strcmp(name, "exec"))
4449                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4450         else if (!strcmp(name, "fscreate"))
4451                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4452         else if (!strcmp(name, "keycreate"))
4453                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4454         else if (!strcmp(name, "sockcreate"))
4455                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4456         else if (!strcmp(name, "current"))
4457                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4458         else
4459                 error = -EINVAL;
4460         if (error)
4461                 return error;
4462
4463         /* Obtain a SID for the context, if one was specified. */
4464         if (size && str[1] && str[1] != '\n') {
4465                 if (str[size-1] == '\n') {
4466                         str[size-1] = 0;
4467                         size--;
4468                 }
4469                 error = security_context_to_sid(value, size, &sid);
4470                 if (error)
4471                         return error;
4472         }
4473
4474         /* Permission checking based on the specified context is
4475            performed during the actual operation (execve,
4476            open/mkdir/...), when we know the full context of the
4477            operation.  See selinux_bprm_set_security for the execve
4478            checks and may_create for the file creation checks. The
4479            operation will then fail if the context is not permitted. */
4480         tsec = p->security;
4481         if (!strcmp(name, "exec"))
4482                 tsec->exec_sid = sid;
4483         else if (!strcmp(name, "fscreate"))
4484                 tsec->create_sid = sid;
4485         else if (!strcmp(name, "keycreate")) {
4486                 error = may_create_key(sid, p);
4487                 if (error)
4488                         return error;
4489                 tsec->keycreate_sid = sid;
4490         } else if (!strcmp(name, "sockcreate"))
4491                 tsec->sockcreate_sid = sid;
4492         else if (!strcmp(name, "current")) {
4493                 struct av_decision avd;
4494
4495                 if (sid == 0)
4496                         return -EINVAL;
4497
4498                 /* Only allow single threaded processes to change context */
4499                 if (atomic_read(&p->mm->mm_users) != 1) {
4500                         struct task_struct *g, *t;
4501                         struct mm_struct *mm = p->mm;
4502                         read_lock(&tasklist_lock);
4503                         do_each_thread(g, t)
4504                                 if (t->mm == mm && t != p) {
4505                                         read_unlock(&tasklist_lock);
4506                                         return -EPERM;
4507                                 }
4508                         while_each_thread(g, t);
4509                         read_unlock(&tasklist_lock);
4510                 }
4511
4512                 /* Check permissions for the transition. */
4513                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4514                                      PROCESS__DYNTRANSITION, NULL);
4515                 if (error)
4516                         return error;
4517
4518                 /* Check for ptracing, and update the task SID if ok.
4519                    Otherwise, leave SID unchanged and fail. */
4520                 task_lock(p);
4521                 if (p->ptrace & PT_PTRACED) {
4522                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4523                                                      SECCLASS_PROCESS,
4524                                                      PROCESS__PTRACE, &avd);
4525                         if (!error)
4526                                 tsec->sid = sid;
4527                         task_unlock(p);
4528                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4529                                   PROCESS__PTRACE, &avd, error, NULL);
4530                         if (error)
4531                                 return error;
4532                 } else {
4533                         tsec->sid = sid;
4534                         task_unlock(p);
4535                 }
4536         }
4537         else
4538                 return -EINVAL;
4539
4540         return size;
4541 }
4542
4543 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4544 {
4545         return security_sid_to_context(secid, secdata, seclen);
4546 }
4547
4548 static void selinux_release_secctx(char *secdata, u32 seclen)
4549 {
4550         if (secdata)
4551                 kfree(secdata);
4552 }
4553
4554 #ifdef CONFIG_KEYS
4555
4556 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4557                              unsigned long flags)
4558 {
4559         struct task_security_struct *tsec = tsk->security;
4560         struct key_security_struct *ksec;
4561
4562         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4563         if (!ksec)
4564                 return -ENOMEM;
4565
4566         ksec->obj = k;
4567         if (tsec->keycreate_sid)
4568                 ksec->sid = tsec->keycreate_sid;
4569         else
4570                 ksec->sid = tsec->sid;
4571         k->security = ksec;
4572
4573         return 0;
4574 }
4575
4576 static void selinux_key_free(struct key *k)
4577 {
4578         struct key_security_struct *ksec = k->security;
4579
4580         k->security = NULL;
4581         kfree(ksec);
4582 }
4583
4584 static int selinux_key_permission(key_ref_t key_ref,
4585                             struct task_struct *ctx,
4586                             key_perm_t perm)
4587 {
4588         struct key *key;
4589         struct task_security_struct *tsec;
4590         struct key_security_struct *ksec;
4591
4592         key = key_ref_to_ptr(key_ref);
4593
4594         tsec = ctx->security;
4595         ksec = key->security;
4596
4597         /* if no specific permissions are requested, we skip the
4598            permission check. No serious, additional covert channels
4599            appear to be created. */
4600         if (perm == 0)
4601                 return 0;
4602
4603         return avc_has_perm(tsec->sid, ksec->sid,
4604                             SECCLASS_KEY, perm, NULL);
4605 }
4606
4607 #endif
4608
4609 static struct security_operations selinux_ops = {
4610         .ptrace =                       selinux_ptrace,
4611         .capget =                       selinux_capget,
4612         .capset_check =                 selinux_capset_check,
4613         .capset_set =                   selinux_capset_set,
4614         .sysctl =                       selinux_sysctl,
4615         .capable =                      selinux_capable,
4616         .quotactl =                     selinux_quotactl,
4617         .quota_on =                     selinux_quota_on,
4618         .syslog =                       selinux_syslog,
4619         .vm_enough_memory =             selinux_vm_enough_memory,
4620
4621         .netlink_send =                 selinux_netlink_send,
4622         .netlink_recv =                 selinux_netlink_recv,
4623
4624         .bprm_alloc_security =          selinux_bprm_alloc_security,
4625         .bprm_free_security =           selinux_bprm_free_security,
4626         .bprm_apply_creds =             selinux_bprm_apply_creds,
4627         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4628         .bprm_set_security =            selinux_bprm_set_security,
4629         .bprm_check_security =          selinux_bprm_check_security,
4630         .bprm_secureexec =              selinux_bprm_secureexec,
4631
4632         .sb_alloc_security =            selinux_sb_alloc_security,
4633         .sb_free_security =             selinux_sb_free_security,
4634         .sb_copy_data =                 selinux_sb_copy_data,
4635         .sb_kern_mount =                selinux_sb_kern_mount,
4636         .sb_statfs =                    selinux_sb_statfs,
4637         .sb_mount =                     selinux_mount,
4638         .sb_umount =                    selinux_umount,
4639
4640         .inode_alloc_security =         selinux_inode_alloc_security,
4641         .inode_free_security =          selinux_inode_free_security,
4642         .inode_init_security =          selinux_inode_init_security,
4643         .inode_create =                 selinux_inode_create,
4644         .inode_link =                   selinux_inode_link,
4645         .inode_unlink =                 selinux_inode_unlink,
4646         .inode_symlink =                selinux_inode_symlink,
4647         .inode_mkdir =                  selinux_inode_mkdir,
4648         .inode_rmdir =                  selinux_inode_rmdir,
4649         .inode_mknod =                  selinux_inode_mknod,
4650         .inode_rename =                 selinux_inode_rename,
4651         .inode_readlink =               selinux_inode_readlink,
4652         .inode_follow_link =            selinux_inode_follow_link,
4653         .inode_permission =             selinux_inode_permission,
4654         .inode_setattr =                selinux_inode_setattr,
4655         .inode_getattr =                selinux_inode_getattr,
4656         .inode_setxattr =               selinux_inode_setxattr,
4657         .inode_post_setxattr =          selinux_inode_post_setxattr,
4658         .inode_getxattr =               selinux_inode_getxattr,
4659         .inode_listxattr =              selinux_inode_listxattr,
4660         .inode_removexattr =            selinux_inode_removexattr,
4661         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4662         .inode_getsecurity =            selinux_inode_getsecurity,
4663         .inode_setsecurity =            selinux_inode_setsecurity,
4664         .inode_listsecurity =           selinux_inode_listsecurity,
4665
4666         .file_permission =              selinux_file_permission,
4667         .file_alloc_security =          selinux_file_alloc_security,
4668         .file_free_security =           selinux_file_free_security,
4669         .file_ioctl =                   selinux_file_ioctl,
4670         .file_mmap =                    selinux_file_mmap,
4671         .file_mprotect =                selinux_file_mprotect,
4672         .file_lock =                    selinux_file_lock,
4673         .file_fcntl =                   selinux_file_fcntl,
4674         .file_set_fowner =              selinux_file_set_fowner,
4675         .file_send_sigiotask =          selinux_file_send_sigiotask,
4676         .file_receive =                 selinux_file_receive,
4677
4678         .task_create =                  selinux_task_create,
4679         .task_alloc_security =          selinux_task_alloc_security,
4680         .task_free_security =           selinux_task_free_security,
4681         .task_setuid =                  selinux_task_setuid,
4682         .task_post_setuid =             selinux_task_post_setuid,
4683         .task_setgid =                  selinux_task_setgid,
4684         .task_setpgid =                 selinux_task_setpgid,
4685         .task_getpgid =                 selinux_task_getpgid,
4686         .task_getsid =                  selinux_task_getsid,
4687         .task_getsecid =                selinux_task_getsecid,
4688         .task_setgroups =               selinux_task_setgroups,
4689         .task_setnice =                 selinux_task_setnice,
4690         .task_setioprio =               selinux_task_setioprio,
4691         .task_getioprio =               selinux_task_getioprio,
4692         .task_setrlimit =               selinux_task_setrlimit,
4693         .task_setscheduler =            selinux_task_setscheduler,
4694         .task_getscheduler =            selinux_task_getscheduler,
4695         .task_movememory =              selinux_task_movememory,
4696         .task_kill =                    selinux_task_kill,
4697         .task_wait =                    selinux_task_wait,
4698         .task_prctl =                   selinux_task_prctl,
4699         .task_reparent_to_init =        selinux_task_reparent_to_init,
4700         .task_to_inode =                selinux_task_to_inode,
4701
4702         .ipc_permission =               selinux_ipc_permission,
4703
4704         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4705         .msg_msg_free_security =        selinux_msg_msg_free_security,
4706
4707         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4708         .msg_queue_free_security =      selinux_msg_queue_free_security,
4709         .msg_queue_associate =          selinux_msg_queue_associate,
4710         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4711         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4712         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4713
4714         .shm_alloc_security =           selinux_shm_alloc_security,
4715         .shm_free_security =            selinux_shm_free_security,
4716         .shm_associate =                selinux_shm_associate,
4717         .shm_shmctl =                   selinux_shm_shmctl,
4718         .shm_shmat =                    selinux_shm_shmat,
4719
4720         .sem_alloc_security =           selinux_sem_alloc_security,
4721         .sem_free_security =            selinux_sem_free_security,
4722         .sem_associate =                selinux_sem_associate,
4723         .sem_semctl =                   selinux_sem_semctl,
4724         .sem_semop =                    selinux_sem_semop,
4725
4726         .register_security =            selinux_register_security,
4727         .unregister_security =          selinux_unregister_security,
4728
4729         .d_instantiate =                selinux_d_instantiate,
4730
4731         .getprocattr =                  selinux_getprocattr,
4732         .setprocattr =                  selinux_setprocattr,
4733
4734         .secid_to_secctx =              selinux_secid_to_secctx,
4735         .release_secctx =               selinux_release_secctx,
4736
4737         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4738         .unix_may_send =                selinux_socket_unix_may_send,
4739
4740         .socket_create =                selinux_socket_create,
4741         .socket_post_create =           selinux_socket_post_create,
4742         .socket_bind =                  selinux_socket_bind,
4743         .socket_connect =               selinux_socket_connect,
4744         .socket_listen =                selinux_socket_listen,
4745         .socket_accept =                selinux_socket_accept,
4746         .socket_sendmsg =               selinux_socket_sendmsg,
4747         .socket_recvmsg =               selinux_socket_recvmsg,
4748         .socket_getsockname =           selinux_socket_getsockname,
4749         .socket_getpeername =           selinux_socket_getpeername,
4750         .socket_getsockopt =            selinux_socket_getsockopt,
4751         .socket_setsockopt =            selinux_socket_setsockopt,
4752         .socket_shutdown =              selinux_socket_shutdown,
4753         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4754         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4755         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4756         .sk_alloc_security =            selinux_sk_alloc_security,
4757         .sk_free_security =             selinux_sk_free_security,
4758         .sk_clone_security =            selinux_sk_clone_security,
4759         .sk_getsecid =                  selinux_sk_getsecid,
4760         .sock_graft =                   selinux_sock_graft,
4761         .inet_conn_request =            selinux_inet_conn_request,
4762         .inet_csk_clone =               selinux_inet_csk_clone,
4763         .inet_conn_established =        selinux_inet_conn_established,
4764         .req_classify_flow =            selinux_req_classify_flow,
4765
4766 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4767         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4768         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4769         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4770         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4771         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4772         .xfrm_state_free_security =     selinux_xfrm_state_free,
4773         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4774         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4775         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4776         .xfrm_decode_session =          selinux_xfrm_decode_session,
4777 #endif
4778
4779 #ifdef CONFIG_KEYS
4780         .key_alloc =                    selinux_key_alloc,
4781         .key_free =                     selinux_key_free,
4782         .key_permission =               selinux_key_permission,
4783 #endif
4784 };
4785
4786 static __init int selinux_init(void)
4787 {
4788         struct task_security_struct *tsec;
4789
4790         if (!selinux_enabled) {
4791                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4792                 return 0;
4793         }
4794
4795         printk(KERN_INFO "SELinux:  Initializing.\n");
4796
4797         /* Set the security state for the initial task. */
4798         if (task_alloc_security(current))
4799                 panic("SELinux:  Failed to initialize initial task.\n");
4800         tsec = current->security;
4801         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4802
4803         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4804                                             sizeof(struct inode_security_struct),
4805                                             0, SLAB_PANIC, NULL, NULL);
4806         avc_init();
4807
4808         original_ops = secondary_ops = security_ops;
4809         if (!secondary_ops)
4810                 panic ("SELinux: No initial security operations\n");
4811         if (register_security (&selinux_ops))
4812                 panic("SELinux: Unable to register with kernel.\n");
4813
4814         if (selinux_enforcing) {
4815                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4816         } else {
4817                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4818         }
4819
4820 #ifdef CONFIG_KEYS
4821         /* Add security information to initial keyrings */
4822         selinux_key_alloc(&root_user_keyring, current,
4823                           KEY_ALLOC_NOT_IN_QUOTA);
4824         selinux_key_alloc(&root_session_keyring, current,
4825                           KEY_ALLOC_NOT_IN_QUOTA);
4826 #endif
4827
4828         return 0;
4829 }
4830
4831 void selinux_complete_init(void)
4832 {
4833         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4834
4835         /* Set up any superblocks initialized prior to the policy load. */
4836         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4837         spin_lock(&sb_lock);
4838         spin_lock(&sb_security_lock);
4839 next_sb:
4840         if (!list_empty(&superblock_security_head)) {
4841                 struct superblock_security_struct *sbsec =
4842                                 list_entry(superblock_security_head.next,
4843                                            struct superblock_security_struct,
4844                                            list);
4845                 struct super_block *sb = sbsec->sb;
4846                 sb->s_count++;
4847                 spin_unlock(&sb_security_lock);
4848                 spin_unlock(&sb_lock);
4849                 down_read(&sb->s_umount);
4850                 if (sb->s_root)
4851                         superblock_doinit(sb, NULL);
4852                 drop_super(sb);
4853                 spin_lock(&sb_lock);
4854                 spin_lock(&sb_security_lock);
4855                 list_del_init(&sbsec->list);
4856                 goto next_sb;
4857         }
4858         spin_unlock(&sb_security_lock);
4859         spin_unlock(&sb_lock);
4860 }
4861
4862 /* SELinux requires early initialization in order to label
4863    all processes and objects when they are created. */
4864 security_initcall(selinux_init);
4865
4866 #if defined(CONFIG_NETFILTER)
4867
4868 static struct nf_hook_ops selinux_ipv4_op = {
4869         .hook =         selinux_ipv4_postroute_last,
4870         .owner =        THIS_MODULE,
4871         .pf =           PF_INET,
4872         .hooknum =      NF_IP_POST_ROUTING,
4873         .priority =     NF_IP_PRI_SELINUX_LAST,
4874 };
4875
4876 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4877
4878 static struct nf_hook_ops selinux_ipv6_op = {
4879         .hook =         selinux_ipv6_postroute_last,
4880         .owner =        THIS_MODULE,
4881         .pf =           PF_INET6,
4882         .hooknum =      NF_IP6_POST_ROUTING,
4883         .priority =     NF_IP6_PRI_SELINUX_LAST,
4884 };
4885
4886 #endif  /* IPV6 */
4887
4888 static int __init selinux_nf_ip_init(void)
4889 {
4890         int err = 0;
4891
4892         if (!selinux_enabled)
4893                 goto out;
4894                 
4895         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4896         
4897         err = nf_register_hook(&selinux_ipv4_op);
4898         if (err)
4899                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4900
4901 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4902
4903         err = nf_register_hook(&selinux_ipv6_op);
4904         if (err)
4905                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4906
4907 #endif  /* IPV6 */
4908
4909 out:
4910         return err;
4911 }
4912
4913 __initcall(selinux_nf_ip_init);
4914
4915 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4916 static void selinux_nf_ip_exit(void)
4917 {
4918         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4919
4920         nf_unregister_hook(&selinux_ipv4_op);
4921 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4922         nf_unregister_hook(&selinux_ipv6_op);
4923 #endif  /* IPV6 */
4924 }
4925 #endif
4926
4927 #else /* CONFIG_NETFILTER */
4928
4929 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4930 #define selinux_nf_ip_exit()
4931 #endif
4932
4933 #endif /* CONFIG_NETFILTER */
4934
4935 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4936 int selinux_disable(void)
4937 {
4938         extern void exit_sel_fs(void);
4939         static int selinux_disabled = 0;
4940
4941         if (ss_initialized) {
4942                 /* Not permitted after initial policy load. */
4943                 return -EINVAL;
4944         }
4945
4946         if (selinux_disabled) {
4947                 /* Only do this once. */
4948                 return -EINVAL;
4949         }
4950
4951         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4952
4953         selinux_disabled = 1;
4954         selinux_enabled = 0;
4955
4956         /* Reset security_ops to the secondary module, dummy or capability. */
4957         security_ops = secondary_ops;
4958
4959         /* Unregister netfilter hooks. */
4960         selinux_nf_ip_exit();
4961
4962         /* Unregister selinuxfs. */
4963         exit_sel_fs();
4964
4965         return 0;
4966 }
4967 #endif
4968
4969