[Blackfin] arch: declare list of peripherals as const since we dont modify the incomi...
[linux-2.6] / kernel / user.c
1 /*
2  * The "user cache".
3  *
4  * (C) Copyright 1991-2000 Linus Torvalds
5  *
6  * We have a per-user structure to keep track of how many
7  * processes, files etc the user has claimed, in order to be
8  * able to have per-user limits for system resources. 
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/bitops.h>
15 #include <linux/key.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/user_namespace.h>
19
20 struct user_namespace init_user_ns = {
21         .kref = {
22                 .refcount       = ATOMIC_INIT(2),
23         },
24         .root_user = &root_user,
25 };
26 EXPORT_SYMBOL_GPL(init_user_ns);
27
28 /*
29  * UID task count cache, to get fast user lookup in "alloc_uid"
30  * when changing user ID's (ie setuid() and friends).
31  */
32
33 #define UIDHASH_MASK            (UIDHASH_SZ - 1)
34 #define __uidhashfn(uid)        (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK)
35 #define uidhashentry(ns, uid)   ((ns)->uidhash_table + __uidhashfn((uid)))
36
37 static struct kmem_cache *uid_cachep;
38
39 /*
40  * The uidhash_lock is mostly taken from process context, but it is
41  * occasionally also taken from softirq/tasklet context, when
42  * task-structs get RCU-freed. Hence all locking must be softirq-safe.
43  * But free_uid() is also called with local interrupts disabled, and running
44  * local_bh_enable() with local interrupts disabled is an error - we'll run
45  * softirq callbacks, and they can unconditionally enable interrupts, and
46  * the caller of free_uid() didn't expect that..
47  */
48 static DEFINE_SPINLOCK(uidhash_lock);
49
50 struct user_struct root_user = {
51         .__count        = ATOMIC_INIT(1),
52         .processes      = ATOMIC_INIT(1),
53         .files          = ATOMIC_INIT(0),
54         .sigpending     = ATOMIC_INIT(0),
55         .locked_shm     = 0,
56 #ifdef CONFIG_KEYS
57         .uid_keyring    = &root_user_keyring,
58         .session_keyring = &root_session_keyring,
59 #endif
60 #ifdef CONFIG_USER_SCHED
61         .tg             = &init_task_group,
62 #endif
63 };
64
65 /*
66  * These routines must be called with the uidhash spinlock held!
67  */
68 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent)
69 {
70         hlist_add_head(&up->uidhash_node, hashent);
71 }
72
73 static void uid_hash_remove(struct user_struct *up)
74 {
75         hlist_del_init(&up->uidhash_node);
76 }
77
78 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent)
79 {
80         struct user_struct *user;
81         struct hlist_node *h;
82
83         hlist_for_each_entry(user, h, hashent, uidhash_node) {
84                 if (user->uid == uid) {
85                         atomic_inc(&user->__count);
86                         return user;
87                 }
88         }
89
90         return NULL;
91 }
92
93 #ifdef CONFIG_USER_SCHED
94
95 static void sched_destroy_user(struct user_struct *up)
96 {
97         sched_destroy_group(up->tg);
98 }
99
100 static int sched_create_user(struct user_struct *up)
101 {
102         int rc = 0;
103
104         up->tg = sched_create_group(&root_task_group);
105         if (IS_ERR(up->tg))
106                 rc = -ENOMEM;
107
108         return rc;
109 }
110
111 static void sched_switch_user(struct task_struct *p)
112 {
113         sched_move_task(p);
114 }
115
116 #else   /* CONFIG_USER_SCHED */
117
118 static void sched_destroy_user(struct user_struct *up) { }
119 static int sched_create_user(struct user_struct *up) { return 0; }
120 static void sched_switch_user(struct task_struct *p) { }
121
122 #endif  /* CONFIG_USER_SCHED */
123
124 #if defined(CONFIG_USER_SCHED) && defined(CONFIG_SYSFS)
125
126 static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */
127 static DEFINE_MUTEX(uids_mutex);
128
129 static inline void uids_mutex_lock(void)
130 {
131         mutex_lock(&uids_mutex);
132 }
133
134 static inline void uids_mutex_unlock(void)
135 {
136         mutex_unlock(&uids_mutex);
137 }
138
139 /* uid directory attributes */
140 #ifdef CONFIG_FAIR_GROUP_SCHED
141 static ssize_t cpu_shares_show(struct kobject *kobj,
142                                struct kobj_attribute *attr,
143                                char *buf)
144 {
145         struct user_struct *up = container_of(kobj, struct user_struct, kobj);
146
147         return sprintf(buf, "%lu\n", sched_group_shares(up->tg));
148 }
149
150 static ssize_t cpu_shares_store(struct kobject *kobj,
151                                 struct kobj_attribute *attr,
152                                 const char *buf, size_t size)
153 {
154         struct user_struct *up = container_of(kobj, struct user_struct, kobj);
155         unsigned long shares;
156         int rc;
157
158         sscanf(buf, "%lu", &shares);
159
160         rc = sched_group_set_shares(up->tg, shares);
161
162         return (rc ? rc : size);
163 }
164
165 static struct kobj_attribute cpu_share_attr =
166         __ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store);
167 #endif
168
169 #ifdef CONFIG_RT_GROUP_SCHED
170 static ssize_t cpu_rt_runtime_show(struct kobject *kobj,
171                                    struct kobj_attribute *attr,
172                                    char *buf)
173 {
174         struct user_struct *up = container_of(kobj, struct user_struct, kobj);
175
176         return sprintf(buf, "%lu\n", sched_group_rt_runtime(up->tg));
177 }
178
179 static ssize_t cpu_rt_runtime_store(struct kobject *kobj,
180                                     struct kobj_attribute *attr,
181                                     const char *buf, size_t size)
182 {
183         struct user_struct *up = container_of(kobj, struct user_struct, kobj);
184         unsigned long rt_runtime;
185         int rc;
186
187         sscanf(buf, "%lu", &rt_runtime);
188
189         rc = sched_group_set_rt_runtime(up->tg, rt_runtime);
190
191         return (rc ? rc : size);
192 }
193
194 static struct kobj_attribute cpu_rt_runtime_attr =
195         __ATTR(cpu_rt_runtime, 0644, cpu_rt_runtime_show, cpu_rt_runtime_store);
196
197 static ssize_t cpu_rt_period_show(struct kobject *kobj,
198                                    struct kobj_attribute *attr,
199                                    char *buf)
200 {
201         struct user_struct *up = container_of(kobj, struct user_struct, kobj);
202
203         return sprintf(buf, "%lu\n", sched_group_rt_period(up->tg));
204 }
205
206 static ssize_t cpu_rt_period_store(struct kobject *kobj,
207                                     struct kobj_attribute *attr,
208                                     const char *buf, size_t size)
209 {
210         struct user_struct *up = container_of(kobj, struct user_struct, kobj);
211         unsigned long rt_period;
212         int rc;
213
214         sscanf(buf, "%lu", &rt_period);
215
216         rc = sched_group_set_rt_period(up->tg, rt_period);
217
218         return (rc ? rc : size);
219 }
220
221 static struct kobj_attribute cpu_rt_period_attr =
222         __ATTR(cpu_rt_period, 0644, cpu_rt_period_show, cpu_rt_period_store);
223 #endif
224
225 /* default attributes per uid directory */
226 static struct attribute *uids_attributes[] = {
227 #ifdef CONFIG_FAIR_GROUP_SCHED
228         &cpu_share_attr.attr,
229 #endif
230 #ifdef CONFIG_RT_GROUP_SCHED
231         &cpu_rt_runtime_attr.attr,
232         &cpu_rt_period_attr.attr,
233 #endif
234         NULL
235 };
236
237 /* the lifetime of user_struct is not managed by the core (now) */
238 static void uids_release(struct kobject *kobj)
239 {
240         return;
241 }
242
243 static struct kobj_type uids_ktype = {
244         .sysfs_ops = &kobj_sysfs_ops,
245         .default_attrs = uids_attributes,
246         .release = uids_release,
247 };
248
249 /* create /sys/kernel/uids/<uid>/cpu_share file for this user */
250 static int uids_user_create(struct user_struct *up)
251 {
252         struct kobject *kobj = &up->kobj;
253         int error;
254
255         memset(kobj, 0, sizeof(struct kobject));
256         kobj->kset = uids_kset;
257         error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid);
258         if (error) {
259                 kobject_put(kobj);
260                 goto done;
261         }
262
263         kobject_uevent(kobj, KOBJ_ADD);
264 done:
265         return error;
266 }
267
268 /* create these entries in sysfs:
269  *      "/sys/kernel/uids" directory
270  *      "/sys/kernel/uids/0" directory (for root user)
271  *      "/sys/kernel/uids/0/cpu_share" file (for root user)
272  */
273 int __init uids_sysfs_init(void)
274 {
275         uids_kset = kset_create_and_add("uids", NULL, kernel_kobj);
276         if (!uids_kset)
277                 return -ENOMEM;
278
279         return uids_user_create(&root_user);
280 }
281
282 /* work function to remove sysfs directory for a user and free up
283  * corresponding structures.
284  */
285 static void remove_user_sysfs_dir(struct work_struct *w)
286 {
287         struct user_struct *up = container_of(w, struct user_struct, work);
288         unsigned long flags;
289         int remove_user = 0;
290
291         /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del()
292          * atomic.
293          */
294         uids_mutex_lock();
295
296         local_irq_save(flags);
297
298         if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) {
299                 uid_hash_remove(up);
300                 remove_user = 1;
301                 spin_unlock_irqrestore(&uidhash_lock, flags);
302         } else {
303                 local_irq_restore(flags);
304         }
305
306         if (!remove_user)
307                 goto done;
308
309         kobject_uevent(&up->kobj, KOBJ_REMOVE);
310         kobject_del(&up->kobj);
311         kobject_put(&up->kobj);
312
313         sched_destroy_user(up);
314         key_put(up->uid_keyring);
315         key_put(up->session_keyring);
316         kmem_cache_free(uid_cachep, up);
317
318 done:
319         uids_mutex_unlock();
320 }
321
322 /* IRQs are disabled and uidhash_lock is held upon function entry.
323  * IRQ state (as stored in flags) is restored and uidhash_lock released
324  * upon function exit.
325  */
326 static inline void free_user(struct user_struct *up, unsigned long flags)
327 {
328         /* restore back the count */
329         atomic_inc(&up->__count);
330         spin_unlock_irqrestore(&uidhash_lock, flags);
331
332         INIT_WORK(&up->work, remove_user_sysfs_dir);
333         schedule_work(&up->work);
334 }
335
336 #else   /* CONFIG_USER_SCHED && CONFIG_SYSFS */
337
338 int uids_sysfs_init(void) { return 0; }
339 static inline int uids_user_create(struct user_struct *up) { return 0; }
340 static inline void uids_mutex_lock(void) { }
341 static inline void uids_mutex_unlock(void) { }
342
343 /* IRQs are disabled and uidhash_lock is held upon function entry.
344  * IRQ state (as stored in flags) is restored and uidhash_lock released
345  * upon function exit.
346  */
347 static inline void free_user(struct user_struct *up, unsigned long flags)
348 {
349         uid_hash_remove(up);
350         spin_unlock_irqrestore(&uidhash_lock, flags);
351         sched_destroy_user(up);
352         key_put(up->uid_keyring);
353         key_put(up->session_keyring);
354         kmem_cache_free(uid_cachep, up);
355 }
356
357 #endif
358
359 /*
360  * Locate the user_struct for the passed UID.  If found, take a ref on it.  The
361  * caller must undo that ref with free_uid().
362  *
363  * If the user_struct could not be found, return NULL.
364  */
365 struct user_struct *find_user(uid_t uid)
366 {
367         struct user_struct *ret;
368         unsigned long flags;
369         struct user_namespace *ns = current->nsproxy->user_ns;
370
371         spin_lock_irqsave(&uidhash_lock, flags);
372         ret = uid_hash_find(uid, uidhashentry(ns, uid));
373         spin_unlock_irqrestore(&uidhash_lock, flags);
374         return ret;
375 }
376
377 void free_uid(struct user_struct *up)
378 {
379         unsigned long flags;
380
381         if (!up)
382                 return;
383
384         local_irq_save(flags);
385         if (atomic_dec_and_lock(&up->__count, &uidhash_lock))
386                 free_user(up, flags);
387         else
388                 local_irq_restore(flags);
389 }
390
391 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid)
392 {
393         struct hlist_head *hashent = uidhashentry(ns, uid);
394         struct user_struct *up, *new;
395
396         /* Make uid_hash_find() + uids_user_create() + uid_hash_insert()
397          * atomic.
398          */
399         uids_mutex_lock();
400
401         spin_lock_irq(&uidhash_lock);
402         up = uid_hash_find(uid, hashent);
403         spin_unlock_irq(&uidhash_lock);
404
405         if (!up) {
406                 new = kmem_cache_alloc(uid_cachep, GFP_KERNEL);
407                 if (!new)
408                         goto out_unlock;
409
410                 new->uid = uid;
411                 atomic_set(&new->__count, 1);
412                 atomic_set(&new->processes, 0);
413                 atomic_set(&new->files, 0);
414                 atomic_set(&new->sigpending, 0);
415 #ifdef CONFIG_INOTIFY_USER
416                 atomic_set(&new->inotify_watches, 0);
417                 atomic_set(&new->inotify_devs, 0);
418 #endif
419 #ifdef CONFIG_POSIX_MQUEUE
420                 new->mq_bytes = 0;
421 #endif
422                 new->locked_shm = 0;
423
424                 if (alloc_uid_keyring(new, current) < 0)
425                         goto out_free_user;
426
427                 if (sched_create_user(new) < 0)
428                         goto out_put_keys;
429
430                 if (uids_user_create(new))
431                         goto out_destoy_sched;
432
433                 /*
434                  * Before adding this, check whether we raced
435                  * on adding the same user already..
436                  */
437                 spin_lock_irq(&uidhash_lock);
438                 up = uid_hash_find(uid, hashent);
439                 if (up) {
440                         /* This case is not possible when CONFIG_USER_SCHED
441                          * is defined, since we serialize alloc_uid() using
442                          * uids_mutex. Hence no need to call
443                          * sched_destroy_user() or remove_user_sysfs_dir().
444                          */
445                         key_put(new->uid_keyring);
446                         key_put(new->session_keyring);
447                         kmem_cache_free(uid_cachep, new);
448                 } else {
449                         uid_hash_insert(new, hashent);
450                         up = new;
451                 }
452                 spin_unlock_irq(&uidhash_lock);
453
454         }
455
456         uids_mutex_unlock();
457
458         return up;
459
460 out_destoy_sched:
461         sched_destroy_user(new);
462 out_put_keys:
463         key_put(new->uid_keyring);
464         key_put(new->session_keyring);
465 out_free_user:
466         kmem_cache_free(uid_cachep, new);
467 out_unlock:
468         uids_mutex_unlock();
469         return NULL;
470 }
471
472 void switch_uid(struct user_struct *new_user)
473 {
474         struct user_struct *old_user;
475
476         /* What if a process setreuid()'s and this brings the
477          * new uid over his NPROC rlimit?  We can check this now
478          * cheaply with the new uid cache, so if it matters
479          * we should be checking for it.  -DaveM
480          */
481         old_user = current->user;
482         atomic_inc(&new_user->processes);
483         atomic_dec(&old_user->processes);
484         switch_uid_keyring(new_user);
485         current->user = new_user;
486         sched_switch_user(current);
487
488         /*
489          * We need to synchronize with __sigqueue_alloc()
490          * doing a get_uid(p->user).. If that saw the old
491          * user value, we need to wait until it has exited
492          * its critical region before we can free the old
493          * structure.
494          */
495         smp_mb();
496         spin_unlock_wait(&current->sighand->siglock);
497
498         free_uid(old_user);
499         suid_keys(current);
500 }
501
502 #ifdef CONFIG_USER_NS
503 void release_uids(struct user_namespace *ns)
504 {
505         int i;
506         unsigned long flags;
507         struct hlist_head *head;
508         struct hlist_node *nd;
509
510         spin_lock_irqsave(&uidhash_lock, flags);
511         /*
512          * collapse the chains so that the user_struct-s will
513          * be still alive, but not in hashes. subsequent free_uid()
514          * will free them.
515          */
516         for (i = 0; i < UIDHASH_SZ; i++) {
517                 head = ns->uidhash_table + i;
518                 while (!hlist_empty(head)) {
519                         nd = head->first;
520                         hlist_del_init(nd);
521                 }
522         }
523         spin_unlock_irqrestore(&uidhash_lock, flags);
524
525         free_uid(ns->root_user);
526 }
527 #endif
528
529 static int __init uid_cache_init(void)
530 {
531         int n;
532
533         uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct),
534                         0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
535
536         for(n = 0; n < UIDHASH_SZ; ++n)
537                 INIT_HLIST_HEAD(init_user_ns.uidhash_table + n);
538
539         /* Insert the root user immediately (init already runs as root) */
540         spin_lock_irq(&uidhash_lock);
541         uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0));
542         spin_unlock_irq(&uidhash_lock);
543
544         return 0;
545 }
546
547 module_init(uid_cache_init);