Merge branch 'for-linus' of git://git.o-hand.com/linux-rpurdie-leds
[linux-2.6] / drivers / media / dvb / frontends / tda1004x.c
1   /*
2      Driver for Philips tda1004xh OFDM Demodulator
3
4      (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach
5
6      This program is free software; you can redistribute it and/or modify
7      it under the terms of the GNU General Public License as published by
8      the Free Software Foundation; either version 2 of the License, or
9      (at your option) any later version.
10
11      This program is distributed in the hope that it will be useful,
12      but WITHOUT ANY WARRANTY; without even the implied warranty of
13      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
15      GNU General Public License for more details.
16
17      You should have received a copy of the GNU General Public License
18      along with this program; if not, write to the Free Software
19      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21    */
22 /*
23  * This driver needs external firmware. Please use the commands
24  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045",
25  * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to
26  * download/extract them, and then copy them to /usr/lib/hotplug/firmware
27  * or /lib/firmware (depending on configuration of firmware hotplug).
28  */
29 #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw"
30 #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw"
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/device.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39
40 #include "dvb_frontend.h"
41 #include "tda1004x.h"
42
43 enum tda1004x_demod {
44         TDA1004X_DEMOD_TDA10045,
45         TDA1004X_DEMOD_TDA10046,
46 };
47
48 struct tda1004x_state {
49         struct i2c_adapter* i2c;
50         const struct tda1004x_config* config;
51         struct dvb_frontend frontend;
52
53         /* private demod data */
54         enum tda1004x_demod demod_type;
55 };
56
57 static int debug;
58 #define dprintk(args...) \
59         do { \
60                 if (debug) printk(KERN_DEBUG "tda1004x: " args); \
61         } while (0)
62
63 #define TDA1004X_CHIPID          0x00
64 #define TDA1004X_AUTO            0x01
65 #define TDA1004X_IN_CONF1        0x02
66 #define TDA1004X_IN_CONF2        0x03
67 #define TDA1004X_OUT_CONF1       0x04
68 #define TDA1004X_OUT_CONF2       0x05
69 #define TDA1004X_STATUS_CD       0x06
70 #define TDA1004X_CONFC4          0x07
71 #define TDA1004X_DSSPARE2        0x0C
72 #define TDA10045H_CODE_IN        0x0D
73 #define TDA10045H_FWPAGE         0x0E
74 #define TDA1004X_SCAN_CPT        0x10
75 #define TDA1004X_DSP_CMD         0x11
76 #define TDA1004X_DSP_ARG         0x12
77 #define TDA1004X_DSP_DATA1       0x13
78 #define TDA1004X_DSP_DATA2       0x14
79 #define TDA1004X_CONFADC1        0x15
80 #define TDA1004X_CONFC1          0x16
81 #define TDA10045H_S_AGC          0x1a
82 #define TDA10046H_AGC_TUN_LEVEL  0x1a
83 #define TDA1004X_SNR             0x1c
84 #define TDA1004X_CONF_TS1        0x1e
85 #define TDA1004X_CONF_TS2        0x1f
86 #define TDA1004X_CBER_RESET      0x20
87 #define TDA1004X_CBER_MSB        0x21
88 #define TDA1004X_CBER_LSB        0x22
89 #define TDA1004X_CVBER_LUT       0x23
90 #define TDA1004X_VBER_MSB        0x24
91 #define TDA1004X_VBER_MID        0x25
92 #define TDA1004X_VBER_LSB        0x26
93 #define TDA1004X_UNCOR           0x27
94
95 #define TDA10045H_CONFPLL_P      0x2D
96 #define TDA10045H_CONFPLL_M_MSB  0x2E
97 #define TDA10045H_CONFPLL_M_LSB  0x2F
98 #define TDA10045H_CONFPLL_N      0x30
99
100 #define TDA10046H_CONFPLL1       0x2D
101 #define TDA10046H_CONFPLL2       0x2F
102 #define TDA10046H_CONFPLL3       0x30
103 #define TDA10046H_TIME_WREF1     0x31
104 #define TDA10046H_TIME_WREF2     0x32
105 #define TDA10046H_TIME_WREF3     0x33
106 #define TDA10046H_TIME_WREF4     0x34
107 #define TDA10046H_TIME_WREF5     0x35
108
109 #define TDA10045H_UNSURW_MSB     0x31
110 #define TDA10045H_UNSURW_LSB     0x32
111 #define TDA10045H_WREF_MSB       0x33
112 #define TDA10045H_WREF_MID       0x34
113 #define TDA10045H_WREF_LSB       0x35
114 #define TDA10045H_MUXOUT         0x36
115 #define TDA1004X_CONFADC2        0x37
116
117 #define TDA10045H_IOFFSET        0x38
118
119 #define TDA10046H_CONF_TRISTATE1 0x3B
120 #define TDA10046H_CONF_TRISTATE2 0x3C
121 #define TDA10046H_CONF_POLARITY  0x3D
122 #define TDA10046H_FREQ_OFFSET    0x3E
123 #define TDA10046H_GPIO_OUT_SEL   0x41
124 #define TDA10046H_GPIO_SELECT    0x42
125 #define TDA10046H_AGC_CONF       0x43
126 #define TDA10046H_AGC_THR        0x44
127 #define TDA10046H_AGC_RENORM     0x45
128 #define TDA10046H_AGC_GAINS      0x46
129 #define TDA10046H_AGC_TUN_MIN    0x47
130 #define TDA10046H_AGC_TUN_MAX    0x48
131 #define TDA10046H_AGC_IF_MIN     0x49
132 #define TDA10046H_AGC_IF_MAX     0x4A
133
134 #define TDA10046H_FREQ_PHY2_MSB  0x4D
135 #define TDA10046H_FREQ_PHY2_LSB  0x4E
136
137 #define TDA10046H_CVBER_CTRL     0x4F
138 #define TDA10046H_AGC_IF_LEVEL   0x52
139 #define TDA10046H_CODE_CPT       0x57
140 #define TDA10046H_CODE_IN        0x58
141
142
143 static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data)
144 {
145         int ret;
146         u8 buf[] = { reg, data };
147         struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 };
148
149         dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data);
150
151         msg.addr = state->config->demod_address;
152         ret = i2c_transfer(state->i2c, &msg, 1);
153
154         if (ret != 1)
155                 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
156                         __FUNCTION__, reg, data, ret);
157
158         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
159                 reg, data, ret);
160         return (ret != 1) ? -1 : 0;
161 }
162
163 static int tda1004x_read_byte(struct tda1004x_state *state, int reg)
164 {
165         int ret;
166         u8 b0[] = { reg };
167         u8 b1[] = { 0 };
168         struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
169                                 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
170
171         dprintk("%s: reg=0x%x\n", __FUNCTION__, reg);
172
173         msg[0].addr = state->config->demod_address;
174         msg[1].addr = state->config->demod_address;
175         ret = i2c_transfer(state->i2c, msg, 2);
176
177         if (ret != 2) {
178                 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
179                         ret);
180                 return -1;
181         }
182
183         dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__,
184                 reg, b1[0], ret);
185         return b1[0];
186 }
187
188 static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data)
189 {
190         int val;
191         dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg,
192                 mask, data);
193
194         // read a byte and check
195         val = tda1004x_read_byte(state, reg);
196         if (val < 0)
197                 return val;
198
199         // mask if off
200         val = val & ~mask;
201         val |= data & 0xff;
202
203         // write it out again
204         return tda1004x_write_byteI(state, reg, val);
205 }
206
207 static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len)
208 {
209         int i;
210         int result;
211
212         dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len);
213
214         result = 0;
215         for (i = 0; i < len; i++) {
216                 result = tda1004x_write_byteI(state, reg + i, buf[i]);
217                 if (result != 0)
218                         break;
219         }
220
221         return result;
222 }
223
224 static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state)
225 {
226         int result;
227         dprintk("%s\n", __FUNCTION__);
228
229         result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2);
230         msleep(20);
231         return result;
232 }
233
234 static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state)
235 {
236         dprintk("%s\n", __FUNCTION__);
237
238         return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0);
239 }
240
241 static int tda10045h_set_bandwidth(struct tda1004x_state *state,
242                                    fe_bandwidth_t bandwidth)
243 {
244         static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f };
245         static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb };
246         static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 };
247
248         switch (bandwidth) {
249         case BANDWIDTH_6_MHZ:
250                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz));
251                 break;
252
253         case BANDWIDTH_7_MHZ:
254                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz));
255                 break;
256
257         case BANDWIDTH_8_MHZ:
258                 tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz));
259                 break;
260
261         default:
262                 return -EINVAL;
263         }
264
265         tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0);
266
267         return 0;
268 }
269
270 static int tda10046h_set_bandwidth(struct tda1004x_state *state,
271                                    fe_bandwidth_t bandwidth)
272 {
273         static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 };
274         static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f };
275         static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d };
276
277         static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 };
278         static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab };
279         static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 };
280         int tda10046_clk53m;
281
282         if ((state->config->if_freq == TDA10046_FREQ_045) ||
283             (state->config->if_freq == TDA10046_FREQ_052))
284                 tda10046_clk53m = 0;
285         else
286                 tda10046_clk53m = 1;
287         switch (bandwidth) {
288         case BANDWIDTH_6_MHZ:
289                 if (tda10046_clk53m)
290                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M,
291                                                   sizeof(bandwidth_6mhz_53M));
292                 else
293                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M,
294                                                   sizeof(bandwidth_6mhz_48M));
295                 if (state->config->if_freq == TDA10046_FREQ_045) {
296                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a);
297                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab);
298                 }
299                 break;
300
301         case BANDWIDTH_7_MHZ:
302                 if (tda10046_clk53m)
303                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M,
304                                                   sizeof(bandwidth_7mhz_53M));
305                 else
306                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M,
307                                                   sizeof(bandwidth_7mhz_48M));
308                 if (state->config->if_freq == TDA10046_FREQ_045) {
309                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
310                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
311                 }
312                 break;
313
314         case BANDWIDTH_8_MHZ:
315                 if (tda10046_clk53m)
316                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M,
317                                                   sizeof(bandwidth_8mhz_53M));
318                 else
319                         tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M,
320                                                   sizeof(bandwidth_8mhz_48M));
321                 if (state->config->if_freq == TDA10046_FREQ_045) {
322                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
323                         tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55);
324                 }
325                 break;
326
327         default:
328                 return -EINVAL;
329         }
330
331         return 0;
332 }
333
334 static int tda1004x_do_upload(struct tda1004x_state *state,
335                               unsigned char *mem, unsigned int len,
336                               u8 dspCodeCounterReg, u8 dspCodeInReg)
337 {
338         u8 buf[65];
339         struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 };
340         int tx_size;
341         int pos = 0;
342
343         /* clear code counter */
344         tda1004x_write_byteI(state, dspCodeCounterReg, 0);
345         fw_msg.addr = state->config->demod_address;
346
347         buf[0] = dspCodeInReg;
348         while (pos != len) {
349                 // work out how much to send this time
350                 tx_size = len - pos;
351                 if (tx_size > 0x10)
352                         tx_size = 0x10;
353
354                 // send the chunk
355                 memcpy(buf + 1, mem + pos, tx_size);
356                 fw_msg.len = tx_size + 1;
357                 if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) {
358                         printk(KERN_ERR "tda1004x: Error during firmware upload\n");
359                         return -EIO;
360                 }
361                 pos += tx_size;
362
363                 dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos);
364         }
365         // give the DSP a chance to settle 03/10/05 Hac
366         msleep(100);
367
368         return 0;
369 }
370
371 static int tda1004x_check_upload_ok(struct tda1004x_state *state)
372 {
373         u8 data1, data2;
374         unsigned long timeout;
375
376         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
377                 timeout = jiffies + 2 * HZ;
378                 while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) {
379                         if (time_after(jiffies, timeout)) {
380                                 printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n");
381                                 break;
382                         }
383                         msleep(1);
384                 }
385         } else
386                 msleep(100);
387
388         // check upload was OK
389         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP
390         tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67);
391
392         data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1);
393         data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2);
394         if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) {
395                 printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2);
396                 return -EIO;
397         }
398         printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2);
399         return 0;
400 }
401
402 static int tda10045_fwupload(struct dvb_frontend* fe)
403 {
404         struct tda1004x_state* state = fe->demodulator_priv;
405         int ret;
406         const struct firmware *fw;
407
408         /* don't re-upload unless necessary */
409         if (tda1004x_check_upload_ok(state) == 0)
410                 return 0;
411
412         /* request the firmware, this will block until someone uploads it */
413         printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE);
414         ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE);
415         if (ret) {
416                 printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
417                 return ret;
418         }
419
420         /* reset chip */
421         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0);
422         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
423         tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
424         msleep(10);
425
426         /* set parameters */
427         tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ);
428
429         ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN);
430         release_firmware(fw);
431         if (ret)
432                 return ret;
433         printk(KERN_INFO "tda1004x: firmware upload complete\n");
434
435         /* wait for DSP to initialise */
436         /* DSPREADY doesn't seem to work on the TDA10045H */
437         msleep(100);
438
439         return tda1004x_check_upload_ok(state);
440 }
441
442 static void tda10046_init_plls(struct dvb_frontend* fe)
443 {
444         struct tda1004x_state* state = fe->demodulator_priv;
445         int tda10046_clk53m;
446
447         if ((state->config->if_freq == TDA10046_FREQ_045) ||
448             (state->config->if_freq == TDA10046_FREQ_052))
449                 tda10046_clk53m = 0;
450         else
451                 tda10046_clk53m = 1;
452
453         tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0);
454         if(tda10046_clk53m) {
455                 printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n");
456                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8
457         } else {
458                 printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n");
459                 tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3
460         }
461         if (state->config->xtal_freq == TDA10046_XTAL_4M ) {
462                 dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__);
463                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0
464         } else {
465                 dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__);
466                 tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3
467         }
468         if(tda10046_clk53m)
469                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67);
470         else
471                 tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72);
472         /* Note clock frequency is handled implicitly */
473         switch (state->config->if_freq) {
474         case TDA10046_FREQ_045:
475                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c);
476                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00);
477                 break;
478         case TDA10046_FREQ_052:
479                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d);
480                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7);
481                 break;
482         case TDA10046_FREQ_3617:
483                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
484                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59);
485                 break;
486         case TDA10046_FREQ_3613:
487                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7);
488                 tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f);
489                 break;
490         }
491         tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz
492         /* let the PLLs settle */
493         msleep(120);
494 }
495
496 static int tda10046_fwupload(struct dvb_frontend* fe)
497 {
498         struct tda1004x_state* state = fe->demodulator_priv;
499         int ret;
500         const struct firmware *fw;
501
502         /* reset + wake up chip */
503         if (state->config->xtal_freq == TDA10046_XTAL_4M) {
504                 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0);
505         } else {
506                 dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __FUNCTION__);
507                 tda1004x_write_byteI(state, TDA1004X_CONFC4, 0x80);
508         }
509         tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0);
510         /* let the clocks recover from sleep */
511         msleep(5);
512
513         /* The PLLs need to be reprogrammed after sleep */
514         tda10046_init_plls(fe);
515
516         /* don't re-upload unless necessary */
517         if (tda1004x_check_upload_ok(state) == 0)
518                 return 0;
519
520         if (state->config->request_firmware != NULL) {
521                 /* request the firmware, this will block until someone uploads it */
522                 printk(KERN_INFO "tda1004x: waiting for firmware upload...\n");
523                 ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE);
524                 if (ret) {
525                         printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n");
526                         return ret;
527                 }
528                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST
529                 ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN);
530                 release_firmware(fw);
531                 if (ret)
532                         return ret;
533         } else {
534                 /* boot from firmware eeprom */
535                 printk(KERN_INFO "tda1004x: booting from eeprom\n");
536                 tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4);
537                 msleep(300);
538         }
539         return tda1004x_check_upload_ok(state);
540 }
541
542 static int tda1004x_encode_fec(int fec)
543 {
544         // convert known FEC values
545         switch (fec) {
546         case FEC_1_2:
547                 return 0;
548         case FEC_2_3:
549                 return 1;
550         case FEC_3_4:
551                 return 2;
552         case FEC_5_6:
553                 return 3;
554         case FEC_7_8:
555                 return 4;
556         }
557
558         // unsupported
559         return -EINVAL;
560 }
561
562 static int tda1004x_decode_fec(int tdafec)
563 {
564         // convert known FEC values
565         switch (tdafec) {
566         case 0:
567                 return FEC_1_2;
568         case 1:
569                 return FEC_2_3;
570         case 2:
571                 return FEC_3_4;
572         case 3:
573                 return FEC_5_6;
574         case 4:
575                 return FEC_7_8;
576         }
577
578         // unsupported
579         return -1;
580 }
581
582 static int tda1004x_write(struct dvb_frontend* fe, u8 *buf, int len)
583 {
584         struct tda1004x_state* state = fe->demodulator_priv;
585
586         if (len != 2)
587                 return -EINVAL;
588
589         return tda1004x_write_byteI(state, buf[0], buf[1]);
590 }
591
592 static int tda10045_init(struct dvb_frontend* fe)
593 {
594         struct tda1004x_state* state = fe->demodulator_priv;
595
596         dprintk("%s\n", __FUNCTION__);
597
598         if (tda10045_fwupload(fe)) {
599                 printk("tda1004x: firmware upload failed\n");
600                 return -EIO;
601         }
602
603         tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC
604
605         // tda setup
606         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
607         tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream
608         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal
609         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer
610         tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset
611         tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset
612         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface
613         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface
614         tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits
615         tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity
616         tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e);
617
618         tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk);
619
620         return 0;
621 }
622
623 static int tda10046_init(struct dvb_frontend* fe)
624 {
625         struct tda1004x_state* state = fe->demodulator_priv;
626         dprintk("%s\n", __FUNCTION__);
627
628         if (tda10046_fwupload(fe)) {
629                 printk("tda1004x: firmware upload failed\n");
630                         return -EIO;
631         }
632
633         // tda setup
634         tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer
635         tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87);    // 100 ppm crystal, select HP stream
636         tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88);      // enable pulse killer
637
638         switch (state->config->agc_config) {
639         case TDA10046_AGC_DEFAULT:
640                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup
641                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
642                 break;
643         case TDA10046_AGC_IFO_AUTO_NEG:
644                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
645                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
646                 break;
647         case TDA10046_AGC_IFO_AUTO_POS:
648                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup
649                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x00); // set AGC polarities
650                 break;
651         case TDA10046_AGC_TDA827X_GP11:
652                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
653                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
654                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
655                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x6a); // set AGC polarities
656                 break;
657         case TDA10046_AGC_TDA827X_GP00:
658                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
659                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
660                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
661                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities
662                 break;
663         case TDA10046_AGC_TDA827X_GP01:
664                 tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02);   // AGC setup
665                 tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70);    // AGC Threshold
666                 tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize
667                 tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x62); // set AGC polarities
668                 break;
669         }
670         tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38);
671         tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on
672         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0);    // }
673         tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values
674         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0);     // }
675         tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff);  // }
676         tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1
677         tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits
678         tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config
679         tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config
680         // tda1004x_write_mask(state, 0x50, 0x80, 0x80);         // handle out of guard echoes
681         tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7);
682
683         return 0;
684 }
685
686 static int tda1004x_set_fe(struct dvb_frontend* fe,
687                            struct dvb_frontend_parameters *fe_params)
688 {
689         struct tda1004x_state* state = fe->demodulator_priv;
690         int tmp;
691         int inversion;
692
693         dprintk("%s\n", __FUNCTION__);
694
695         if (state->demod_type == TDA1004X_DEMOD_TDA10046) {
696                 // setup auto offset
697                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10);
698                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0);
699                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0);
700
701                 // disable agc_conf[2]
702                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0);
703         }
704
705         // set frequency
706         if (fe->ops.tuner_ops.set_params) {
707                 fe->ops.tuner_ops.set_params(fe, fe_params);
708                 if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
709         }
710
711         // Hardcoded to use auto as much as possible on the TDA10045 as it
712         // is very unreliable if AUTO mode is _not_ used.
713         if (state->demod_type == TDA1004X_DEMOD_TDA10045) {
714                 fe_params->u.ofdm.code_rate_HP = FEC_AUTO;
715                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO;
716                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO;
717         }
718
719         // Set standard params.. or put them to auto
720         if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) ||
721                 (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) ||
722                 (fe_params->u.ofdm.constellation == QAM_AUTO) ||
723                 (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) {
724                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1);        // enable auto
725                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits
726                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits
727                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits
728         } else {
729                 tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0);        // disable auto
730
731                 // set HP FEC
732                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP);
733                 if (tmp < 0)
734                         return tmp;
735                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp);
736
737                 // set LP FEC
738                 tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP);
739                 if (tmp < 0)
740                         return tmp;
741                 tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3);
742
743                 // set constellation
744                 switch (fe_params->u.ofdm.constellation) {
745                 case QPSK:
746                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0);
747                         break;
748
749                 case QAM_16:
750                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1);
751                         break;
752
753                 case QAM_64:
754                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2);
755                         break;
756
757                 default:
758                         return -EINVAL;
759                 }
760
761                 // set hierarchy
762                 switch (fe_params->u.ofdm.hierarchy_information) {
763                 case HIERARCHY_NONE:
764                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5);
765                         break;
766
767                 case HIERARCHY_1:
768                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5);
769                         break;
770
771                 case HIERARCHY_2:
772                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5);
773                         break;
774
775                 case HIERARCHY_4:
776                         tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5);
777                         break;
778
779                 default:
780                         return -EINVAL;
781                 }
782         }
783
784         // set bandwidth
785         switch (state->demod_type) {
786         case TDA1004X_DEMOD_TDA10045:
787                 tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
788                 break;
789
790         case TDA1004X_DEMOD_TDA10046:
791                 tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth);
792                 break;
793         }
794
795         // set inversion
796         inversion = fe_params->inversion;
797         if (state->config->invert)
798                 inversion = inversion ? INVERSION_OFF : INVERSION_ON;
799         switch (inversion) {
800         case INVERSION_OFF:
801                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0);
802                 break;
803
804         case INVERSION_ON:
805                 tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20);
806                 break;
807
808         default:
809                 return -EINVAL;
810         }
811
812         // set guard interval
813         switch (fe_params->u.ofdm.guard_interval) {
814         case GUARD_INTERVAL_1_32:
815                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
816                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
817                 break;
818
819         case GUARD_INTERVAL_1_16:
820                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
821                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2);
822                 break;
823
824         case GUARD_INTERVAL_1_8:
825                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
826                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2);
827                 break;
828
829         case GUARD_INTERVAL_1_4:
830                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0);
831                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2);
832                 break;
833
834         case GUARD_INTERVAL_AUTO:
835                 tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2);
836                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2);
837                 break;
838
839         default:
840                 return -EINVAL;
841         }
842
843         // set transmission mode
844         switch (fe_params->u.ofdm.transmission_mode) {
845         case TRANSMISSION_MODE_2K:
846                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
847                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4);
848                 break;
849
850         case TRANSMISSION_MODE_8K:
851                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0);
852                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4);
853                 break;
854
855         case TRANSMISSION_MODE_AUTO:
856                 tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4);
857                 tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0);
858                 break;
859
860         default:
861                 return -EINVAL;
862         }
863
864         // start the lock
865         switch (state->demod_type) {
866         case TDA1004X_DEMOD_TDA10045:
867                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8);
868                 tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0);
869                 break;
870
871         case TDA1004X_DEMOD_TDA10046:
872                 tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40);
873                 msleep(1);
874                 tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1);
875                 break;
876         }
877
878         msleep(10);
879
880         return 0;
881 }
882
883 static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
884 {
885         struct tda1004x_state* state = fe->demodulator_priv;
886
887         dprintk("%s\n", __FUNCTION__);
888
889         // inversion status
890         fe_params->inversion = INVERSION_OFF;
891         if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20)
892                 fe_params->inversion = INVERSION_ON;
893         if (state->config->invert)
894                 fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON;
895
896         // bandwidth
897         switch (state->demod_type) {
898         case TDA1004X_DEMOD_TDA10045:
899                 switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) {
900                 case 0x14:
901                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
902                         break;
903                 case 0xdb:
904                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
905                         break;
906                 case 0x4f:
907                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
908                         break;
909                 }
910                 break;
911         case TDA1004X_DEMOD_TDA10046:
912                 switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) {
913                 case 0x5c:
914                 case 0x54:
915                         fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ;
916                         break;
917                 case 0x6a:
918                 case 0x60:
919                         fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ;
920                         break;
921                 case 0x7b:
922                 case 0x70:
923                         fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ;
924                         break;
925                 }
926                 break;
927         }
928
929         // FEC
930         fe_params->u.ofdm.code_rate_HP =
931             tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7);
932         fe_params->u.ofdm.code_rate_LP =
933             tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7);
934
935         // constellation
936         switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) {
937         case 0:
938                 fe_params->u.ofdm.constellation = QPSK;
939                 break;
940         case 1:
941                 fe_params->u.ofdm.constellation = QAM_16;
942                 break;
943         case 2:
944                 fe_params->u.ofdm.constellation = QAM_64;
945                 break;
946         }
947
948         // transmission mode
949         fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
950         if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10)
951                 fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
952
953         // guard interval
954         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) {
955         case 0:
956                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
957                 break;
958         case 1:
959                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
960                 break;
961         case 2:
962                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
963                 break;
964         case 3:
965                 fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
966                 break;
967         }
968
969         // hierarchy
970         switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) {
971         case 0:
972                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE;
973                 break;
974         case 1:
975                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_1;
976                 break;
977         case 2:
978                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_2;
979                 break;
980         case 3:
981                 fe_params->u.ofdm.hierarchy_information = HIERARCHY_4;
982                 break;
983         }
984
985         return 0;
986 }
987
988 static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status)
989 {
990         struct tda1004x_state* state = fe->demodulator_priv;
991         int status;
992         int cber;
993         int vber;
994
995         dprintk("%s\n", __FUNCTION__);
996
997         // read status
998         status = tda1004x_read_byte(state, TDA1004X_STATUS_CD);
999         if (status == -1)
1000                 return -EIO;
1001
1002         // decode
1003         *fe_status = 0;
1004         if (status & 4)
1005                 *fe_status |= FE_HAS_SIGNAL;
1006         if (status & 2)
1007                 *fe_status |= FE_HAS_CARRIER;
1008         if (status & 8)
1009                 *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK;
1010
1011         // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi
1012         // is getting anything valid
1013         if (!(*fe_status & FE_HAS_VITERBI)) {
1014                 // read the CBER
1015                 cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1016                 if (cber == -1)
1017                         return -EIO;
1018                 status = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1019                 if (status == -1)
1020                         return -EIO;
1021                 cber |= (status << 8);
1022                 // The address 0x20 should be read to cope with a TDA10046 bug
1023                 tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1024
1025                 if (cber != 65535)
1026                         *fe_status |= FE_HAS_VITERBI;
1027         }
1028
1029         // if we DO have some valid VITERBI output, but don't already have SYNC
1030         // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid.
1031         if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) {
1032                 // read the VBER
1033                 vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB);
1034                 if (vber == -1)
1035                         return -EIO;
1036                 status = tda1004x_read_byte(state, TDA1004X_VBER_MID);
1037                 if (status == -1)
1038                         return -EIO;
1039                 vber |= (status << 8);
1040                 status = tda1004x_read_byte(state, TDA1004X_VBER_MSB);
1041                 if (status == -1)
1042                         return -EIO;
1043                 vber |= (status & 0x0f) << 16;
1044                 // The CVBER_LUT should be read to cope with TDA10046 hardware bug
1045                 tda1004x_read_byte(state, TDA1004X_CVBER_LUT);
1046
1047                 // if RS has passed some valid TS packets, then we must be
1048                 // getting some SYNC bytes
1049                 if (vber < 16632)
1050                         *fe_status |= FE_HAS_SYNC;
1051         }
1052
1053         // success
1054         dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status);
1055         return 0;
1056 }
1057
1058 static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
1059 {
1060         struct tda1004x_state* state = fe->demodulator_priv;
1061         int tmp;
1062         int reg = 0;
1063
1064         dprintk("%s\n", __FUNCTION__);
1065
1066         // determine the register to use
1067         switch (state->demod_type) {
1068         case TDA1004X_DEMOD_TDA10045:
1069                 reg = TDA10045H_S_AGC;
1070                 break;
1071
1072         case TDA1004X_DEMOD_TDA10046:
1073                 reg = TDA10046H_AGC_IF_LEVEL;
1074                 break;
1075         }
1076
1077         // read it
1078         tmp = tda1004x_read_byte(state, reg);
1079         if (tmp < 0)
1080                 return -EIO;
1081
1082         *signal = (tmp << 8) | tmp;
1083         dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal);
1084         return 0;
1085 }
1086
1087 static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr)
1088 {
1089         struct tda1004x_state* state = fe->demodulator_priv;
1090         int tmp;
1091
1092         dprintk("%s\n", __FUNCTION__);
1093
1094         // read it
1095         tmp = tda1004x_read_byte(state, TDA1004X_SNR);
1096         if (tmp < 0)
1097                 return -EIO;
1098         tmp = 255 - tmp;
1099
1100         *snr = ((tmp << 8) | tmp);
1101         dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr);
1102         return 0;
1103 }
1104
1105 static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
1106 {
1107         struct tda1004x_state* state = fe->demodulator_priv;
1108         int tmp;
1109         int tmp2;
1110         int counter;
1111
1112         dprintk("%s\n", __FUNCTION__);
1113
1114         // read the UCBLOCKS and reset
1115         counter = 0;
1116         tmp = tda1004x_read_byte(state, TDA1004X_UNCOR);
1117         if (tmp < 0)
1118                 return -EIO;
1119         tmp &= 0x7f;
1120         while (counter++ < 5) {
1121                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1122                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1123                 tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0);
1124
1125                 tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR);
1126                 if (tmp2 < 0)
1127                         return -EIO;
1128                 tmp2 &= 0x7f;
1129                 if ((tmp2 < tmp) || (tmp2 == 0))
1130                         break;
1131         }
1132
1133         if (tmp != 0x7f)
1134                 *ucblocks = tmp;
1135         else
1136                 *ucblocks = 0xffffffff;
1137
1138         dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks);
1139         return 0;
1140 }
1141
1142 static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber)
1143 {
1144         struct tda1004x_state* state = fe->demodulator_priv;
1145         int tmp;
1146
1147         dprintk("%s\n", __FUNCTION__);
1148
1149         // read it in
1150         tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB);
1151         if (tmp < 0)
1152                 return -EIO;
1153         *ber = tmp << 1;
1154         tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB);
1155         if (tmp < 0)
1156                 return -EIO;
1157         *ber |= (tmp << 9);
1158         // The address 0x20 should be read to cope with a TDA10046 bug
1159         tda1004x_read_byte(state, TDA1004X_CBER_RESET);
1160
1161         dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber);
1162         return 0;
1163 }
1164
1165 static int tda1004x_sleep(struct dvb_frontend* fe)
1166 {
1167         struct tda1004x_state* state = fe->demodulator_priv;
1168
1169         switch (state->demod_type) {
1170         case TDA1004X_DEMOD_TDA10045:
1171                 tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10);
1172                 break;
1173
1174         case TDA1004X_DEMOD_TDA10046:
1175                 /* set outputs to tristate */
1176                 tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff);
1177                 tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1);
1178                 break;
1179         }
1180
1181         return 0;
1182 }
1183
1184 static int tda1004x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
1185 {
1186         struct tda1004x_state* state = fe->demodulator_priv;
1187
1188         if (enable) {
1189                 return tda1004x_enable_tuner_i2c(state);
1190         } else {
1191                 return tda1004x_disable_tuner_i2c(state);
1192         }
1193 }
1194
1195 static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
1196 {
1197         fesettings->min_delay_ms = 800;
1198         /* Drift compensation makes no sense for DVB-T */
1199         fesettings->step_size = 0;
1200         fesettings->max_drift = 0;
1201         return 0;
1202 }
1203
1204 static void tda1004x_release(struct dvb_frontend* fe)
1205 {
1206         struct tda1004x_state *state = fe->demodulator_priv;
1207         kfree(state);
1208 }
1209
1210 static struct dvb_frontend_ops tda10045_ops = {
1211         .info = {
1212                 .name = "Philips TDA10045H DVB-T",
1213                 .type = FE_OFDM,
1214                 .frequency_min = 51000000,
1215                 .frequency_max = 858000000,
1216                 .frequency_stepsize = 166667,
1217                 .caps =
1218                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1219                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1220                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1221                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1222         },
1223
1224         .release = tda1004x_release,
1225
1226         .init = tda10045_init,
1227         .sleep = tda1004x_sleep,
1228         .write = tda1004x_write,
1229         .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1230
1231         .set_frontend = tda1004x_set_fe,
1232         .get_frontend = tda1004x_get_fe,
1233         .get_tune_settings = tda1004x_get_tune_settings,
1234
1235         .read_status = tda1004x_read_status,
1236         .read_ber = tda1004x_read_ber,
1237         .read_signal_strength = tda1004x_read_signal_strength,
1238         .read_snr = tda1004x_read_snr,
1239         .read_ucblocks = tda1004x_read_ucblocks,
1240 };
1241
1242 struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config,
1243                                      struct i2c_adapter* i2c)
1244 {
1245         struct tda1004x_state *state;
1246
1247         /* allocate memory for the internal state */
1248         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1249         if (!state)
1250                 return NULL;
1251
1252         /* setup the state */
1253         state->config = config;
1254         state->i2c = i2c;
1255         state->demod_type = TDA1004X_DEMOD_TDA10045;
1256
1257         /* check if the demod is there */
1258         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) {
1259                 kfree(state);
1260                 return NULL;
1261         }
1262
1263         /* create dvb_frontend */
1264         memcpy(&state->frontend.ops, &tda10045_ops, sizeof(struct dvb_frontend_ops));
1265         state->frontend.demodulator_priv = state;
1266         return &state->frontend;
1267 }
1268
1269 static struct dvb_frontend_ops tda10046_ops = {
1270         .info = {
1271                 .name = "Philips TDA10046H DVB-T",
1272                 .type = FE_OFDM,
1273                 .frequency_min = 51000000,
1274                 .frequency_max = 858000000,
1275                 .frequency_stepsize = 166667,
1276                 .caps =
1277                     FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1278                     FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1279                     FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
1280                     FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO
1281         },
1282
1283         .release = tda1004x_release,
1284
1285         .init = tda10046_init,
1286         .sleep = tda1004x_sleep,
1287         .write = tda1004x_write,
1288         .i2c_gate_ctrl = tda1004x_i2c_gate_ctrl,
1289
1290         .set_frontend = tda1004x_set_fe,
1291         .get_frontend = tda1004x_get_fe,
1292         .get_tune_settings = tda1004x_get_tune_settings,
1293
1294         .read_status = tda1004x_read_status,
1295         .read_ber = tda1004x_read_ber,
1296         .read_signal_strength = tda1004x_read_signal_strength,
1297         .read_snr = tda1004x_read_snr,
1298         .read_ucblocks = tda1004x_read_ucblocks,
1299 };
1300
1301 struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config,
1302                                      struct i2c_adapter* i2c)
1303 {
1304         struct tda1004x_state *state;
1305
1306         /* allocate memory for the internal state */
1307         state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL);
1308         if (!state)
1309                 return NULL;
1310
1311         /* setup the state */
1312         state->config = config;
1313         state->i2c = i2c;
1314         state->demod_type = TDA1004X_DEMOD_TDA10046;
1315
1316         /* check if the demod is there */
1317         if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) {
1318                 kfree(state);
1319                 return NULL;
1320         }
1321
1322         /* create dvb_frontend */
1323         memcpy(&state->frontend.ops, &tda10046_ops, sizeof(struct dvb_frontend_ops));
1324         state->frontend.demodulator_priv = state;
1325         return &state->frontend;
1326 }
1327
1328 module_param(debug, int, 0644);
1329 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
1330
1331 MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator");
1332 MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach");
1333 MODULE_LICENSE("GPL");
1334
1335 EXPORT_SYMBOL(tda10045_attach);
1336 EXPORT_SYMBOL(tda10046_attach);