2 * Common Flash Interface support:
3 * Intel Extended Vendor Command Set (ID 0x0001)
5 * (C) 2000 Red Hat. GPL'd
7 * $Id: cfi_cmdset_0001.c,v 1.186 2005/11/23 22:07:52 nico Exp $
10 * 10/10/2000 Nicolas Pitre <nico@cam.org>
11 * - completely revamped method functions so they are aware and
12 * independent of the flash geometry (buswidth, interleave, etc.)
13 * - scalability vs code size is completely set at compile-time
14 * (see include/linux/mtd/cfi.h for selection)
15 * - optimized write buffer method
16 * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
17 * - reworked lock/unlock/erase support for var size flash
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/init.h>
26 #include <asm/byteorder.h>
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/reboot.h>
33 #include <linux/mtd/xip.h>
34 #include <linux/mtd/map.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/compatmac.h>
37 #include <linux/mtd/cfi.h>
39 /* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
40 /* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
42 // debugging, turns off buffer write mode if set to 1
43 #define FORCE_WORD_WRITE 0
45 #define MANUFACTURER_INTEL 0x0089
46 #define I82802AB 0x00ad
47 #define I82802AC 0x00ac
48 #define MANUFACTURER_ST 0x0020
49 #define M50LPW080 0x002F
51 static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_intelext_writev(struct mtd_info *, const struct kvec *, unsigned long, loff_t, size_t *);
55 static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_intelext_sync (struct mtd_info *);
57 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
58 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
60 static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
62 static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63 static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
64 static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
65 struct otp_info *, size_t);
66 static int cfi_intelext_get_user_prot_info (struct mtd_info *,
67 struct otp_info *, size_t);
69 static int cfi_intelext_suspend (struct mtd_info *);
70 static void cfi_intelext_resume (struct mtd_info *);
71 static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);
73 static void cfi_intelext_destroy(struct mtd_info *);
75 struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
77 static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
78 static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
80 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
81 size_t *retlen, u_char **mtdbuf);
82 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
85 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
86 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
92 * *********** SETUP AND PROBE BITS ***********
95 static struct mtd_chip_driver cfi_intelext_chipdrv = {
96 .probe = NULL, /* Not usable directly */
97 .destroy = cfi_intelext_destroy,
98 .name = "cfi_cmdset_0001",
102 /* #define DEBUG_LOCK_BITS */
103 /* #define DEBUG_CFI_FEATURES */
105 #ifdef DEBUG_CFI_FEATURES
106 static void cfi_tell_features(struct cfi_pri_intelext *extp)
109 printk(" Extended Query version %c.%c\n", extp->MajorVersion, extp->MinorVersion);
110 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
111 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
112 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
113 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
114 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
115 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
116 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
117 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
118 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
119 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
120 printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
121 printk(" - Extended Flash Array: %s\n", extp->FeatureSupport&1024?"supported":"unsupported");
122 for (i=11; i<32; i++) {
123 if (extp->FeatureSupport & (1<<i))
124 printk(" - Unknown Bit %X: supported\n", i);
127 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
128 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
129 for (i=1; i<8; i++) {
130 if (extp->SuspendCmdSupport & (1<<i))
131 printk(" - Unknown Bit %X: supported\n", i);
134 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
135 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
136 printk(" - Lock-Down Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
137 for (i=2; i<3; i++) {
138 if (extp->BlkStatusRegMask & (1<<i))
139 printk(" - Unknown Bit %X Active: yes\n",i);
141 printk(" - EFA Lock Bit: %s\n", extp->BlkStatusRegMask&16?"yes":"no");
142 printk(" - EFA Lock-Down Bit: %s\n", extp->BlkStatusRegMask&32?"yes":"no");
143 for (i=6; i<16; i++) {
144 if (extp->BlkStatusRegMask & (1<<i))
145 printk(" - Unknown Bit %X Active: yes\n",i);
148 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
149 extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
150 if (extp->VppOptimal)
151 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
152 extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
156 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
157 /* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
158 static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
160 struct map_info *map = mtd->priv;
161 struct cfi_private *cfi = map->fldrv_priv;
162 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
164 printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
165 "erase on write disabled.\n");
166 extp->SuspendCmdSupport &= ~1;
170 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
171 static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
173 struct map_info *map = mtd->priv;
174 struct cfi_private *cfi = map->fldrv_priv;
175 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
177 if (cfip && (cfip->FeatureSupport&4)) {
178 cfip->FeatureSupport &= ~4;
179 printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
184 static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
186 struct map_info *map = mtd->priv;
187 struct cfi_private *cfi = map->fldrv_priv;
189 cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
190 cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
193 static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
195 struct map_info *map = mtd->priv;
196 struct cfi_private *cfi = map->fldrv_priv;
198 /* Note this is done after the region info is endian swapped */
199 cfi->cfiq->EraseRegionInfo[1] =
200 (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
203 static void fixup_use_point(struct mtd_info *mtd, void *param)
205 struct map_info *map = mtd->priv;
206 if (!mtd->point && map_is_linear(map)) {
207 mtd->point = cfi_intelext_point;
208 mtd->unpoint = cfi_intelext_unpoint;
212 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
214 struct map_info *map = mtd->priv;
215 struct cfi_private *cfi = map->fldrv_priv;
216 if (cfi->cfiq->BufWriteTimeoutTyp) {
217 printk(KERN_INFO "Using buffer write method\n" );
218 mtd->write = cfi_intelext_write_buffers;
219 mtd->writev = cfi_intelext_writev;
223 static struct cfi_fixup cfi_fixup_table[] = {
224 #ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
225 { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
227 #ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
228 { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
230 #if !FORCE_WORD_WRITE
231 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
233 { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
234 { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
238 static struct cfi_fixup jedec_fixup_table[] = {
239 { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
240 { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
241 { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
244 static struct cfi_fixup fixup_table[] = {
245 /* The CFI vendor ids and the JEDEC vendor IDs appear
246 * to be common. It is like the devices id's are as
247 * well. This table is to pick all cases where
248 * we know that is the case.
250 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
254 static inline struct cfi_pri_intelext *
255 read_pri_intelext(struct map_info *map, __u16 adr)
257 struct cfi_pri_intelext *extp;
258 unsigned int extp_size = sizeof(*extp);
261 extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
265 if (extp->MajorVersion != '1' ||
266 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
267 printk(KERN_ERR " Unknown Intel/Sharp Extended Query "
268 "version %c.%c.\n", extp->MajorVersion,
274 /* Do some byteswapping if necessary */
275 extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
276 extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
277 extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
279 if (extp->MajorVersion == '1' && extp->MinorVersion >= '3') {
280 unsigned int extra_size = 0;
283 /* Protection Register info */
284 extra_size += (extp->NumProtectionFields - 1) *
285 sizeof(struct cfi_intelext_otpinfo);
287 /* Burst Read info */
289 if (extp_size < sizeof(*extp) + extra_size)
291 extra_size += extp->extra[extra_size-1];
293 /* Number of hardware-partitions */
295 if (extp_size < sizeof(*extp) + extra_size)
297 nb_parts = extp->extra[extra_size - 1];
299 /* skip the sizeof(partregion) field in CFI 1.4 */
300 if (extp->MinorVersion >= '4')
303 for (i = 0; i < nb_parts; i++) {
304 struct cfi_intelext_regioninfo *rinfo;
305 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
306 extra_size += sizeof(*rinfo);
307 if (extp_size < sizeof(*extp) + extra_size)
309 rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
310 extra_size += (rinfo->NumBlockTypes - 1)
311 * sizeof(struct cfi_intelext_blockinfo);
314 if (extp->MinorVersion >= '4')
315 extra_size += sizeof(struct cfi_intelext_programming_regioninfo);
317 if (extp_size < sizeof(*extp) + extra_size) {
319 extp_size = sizeof(*extp) + extra_size;
321 if (extp_size > 4096) {
323 "%s: cfi_pri_intelext is too fat\n",
334 struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
336 struct cfi_private *cfi = map->fldrv_priv;
337 struct mtd_info *mtd;
340 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
342 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
346 mtd->type = MTD_NORFLASH;
348 /* Fill in the default mtd operations */
349 mtd->erase = cfi_intelext_erase_varsize;
350 mtd->read = cfi_intelext_read;
351 mtd->write = cfi_intelext_write_words;
352 mtd->sync = cfi_intelext_sync;
353 mtd->lock = cfi_intelext_lock;
354 mtd->unlock = cfi_intelext_unlock;
355 mtd->suspend = cfi_intelext_suspend;
356 mtd->resume = cfi_intelext_resume;
357 mtd->flags = MTD_CAP_NORFLASH;
358 mtd->name = map->name;
361 mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;
363 if (cfi->cfi_mode == CFI_MODE_CFI) {
365 * It's a real CFI chip, not one for which the probe
366 * routine faked a CFI structure. So we read the feature
369 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
370 struct cfi_pri_intelext *extp;
372 extp = read_pri_intelext(map, adr);
378 /* Install our own private info structure */
379 cfi->cmdset_priv = extp;
381 cfi_fixup(mtd, cfi_fixup_table);
383 #ifdef DEBUG_CFI_FEATURES
384 /* Tell the user about it in lots of lovely detail */
385 cfi_tell_features(extp);
388 if(extp->SuspendCmdSupport & 1) {
389 printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
392 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
393 /* Apply jedec specific fixups */
394 cfi_fixup(mtd, jedec_fixup_table);
396 /* Apply generic fixups */
397 cfi_fixup(mtd, fixup_table);
399 for (i=0; i< cfi->numchips; i++) {
400 if (cfi->cfiq->WordWriteTimeoutTyp)
401 cfi->chips[i].word_write_time =
402 1<<cfi->cfiq->WordWriteTimeoutTyp;
404 cfi->chips[i].word_write_time = 50000;
406 if (cfi->cfiq->BufWriteTimeoutTyp)
407 cfi->chips[i].buffer_write_time =
408 1<<cfi->cfiq->BufWriteTimeoutTyp;
409 /* No default; if it isn't specified, we won't use it */
411 if (cfi->cfiq->BlockEraseTimeoutTyp)
412 cfi->chips[i].erase_time =
413 1000<<cfi->cfiq->BlockEraseTimeoutTyp;
415 cfi->chips[i].erase_time = 2000000;
417 cfi->chips[i].ref_point_counter = 0;
418 init_waitqueue_head(&(cfi->chips[i].wq));
421 map->fldrv = &cfi_intelext_chipdrv;
423 return cfi_intelext_setup(mtd);
425 struct mtd_info *cfi_cmdset_0003(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
426 struct mtd_info *cfi_cmdset_0200(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0001")));
427 EXPORT_SYMBOL_GPL(cfi_cmdset_0001);
428 EXPORT_SYMBOL_GPL(cfi_cmdset_0003);
429 EXPORT_SYMBOL_GPL(cfi_cmdset_0200);
431 static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
433 struct map_info *map = mtd->priv;
434 struct cfi_private *cfi = map->fldrv_priv;
435 unsigned long offset = 0;
437 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
439 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
441 mtd->size = devsize * cfi->numchips;
443 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
444 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
445 * mtd->numeraseregions, GFP_KERNEL);
446 if (!mtd->eraseregions) {
447 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
451 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
452 unsigned long ernum, ersize;
453 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
454 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
456 if (mtd->erasesize < ersize) {
457 mtd->erasesize = ersize;
459 for (j=0; j<cfi->numchips; j++) {
460 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
461 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
462 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
464 offset += (ersize * ernum);
467 if (offset != devsize) {
469 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
473 for (i=0; i<mtd->numeraseregions;i++){
474 printk(KERN_DEBUG "erase region %d: offset=0x%x,size=0x%x,blocks=%d\n",
475 i,mtd->eraseregions[i].offset,
476 mtd->eraseregions[i].erasesize,
477 mtd->eraseregions[i].numblocks);
480 #ifdef CONFIG_MTD_OTP
481 mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
482 mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
483 mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
484 mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
485 mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
486 mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
489 /* This function has the potential to distort the reality
490 a bit and therefore should be called last. */
491 if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
494 __module_get(THIS_MODULE);
495 register_reboot_notifier(&mtd->reboot_notifier);
500 kfree(mtd->eraseregions);
503 kfree(cfi->cmdset_priv);
507 static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
508 struct cfi_private **pcfi)
510 struct map_info *map = mtd->priv;
511 struct cfi_private *cfi = *pcfi;
512 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
515 * Probing of multi-partition flash ships.
517 * To support multiple partitions when available, we simply arrange
518 * for each of them to have their own flchip structure even if they
519 * are on the same physical chip. This means completely recreating
520 * a new cfi_private structure right here which is a blatent code
521 * layering violation, but this is still the least intrusive
522 * arrangement at this point. This can be rearranged in the future
523 * if someone feels motivated enough. --nico
525 if (extp && extp->MajorVersion == '1' && extp->MinorVersion >= '3'
526 && extp->FeatureSupport & (1 << 9)) {
527 struct cfi_private *newcfi;
529 struct flchip_shared *shared;
530 int offs, numregions, numparts, partshift, numvirtchips, i, j;
532 /* Protection Register info */
533 offs = (extp->NumProtectionFields - 1) *
534 sizeof(struct cfi_intelext_otpinfo);
536 /* Burst Read info */
537 offs += extp->extra[offs+1]+2;
539 /* Number of partition regions */
540 numregions = extp->extra[offs];
543 /* skip the sizeof(partregion) field in CFI 1.4 */
544 if (extp->MinorVersion >= '4')
547 /* Number of hardware partitions */
549 for (i = 0; i < numregions; i++) {
550 struct cfi_intelext_regioninfo *rinfo;
551 rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
552 numparts += rinfo->NumIdentPartitions;
553 offs += sizeof(*rinfo)
554 + (rinfo->NumBlockTypes - 1) *
555 sizeof(struct cfi_intelext_blockinfo);
558 /* Programming Region info */
559 if (extp->MinorVersion >= '4') {
560 struct cfi_intelext_programming_regioninfo *prinfo;
561 prinfo = (struct cfi_intelext_programming_regioninfo *)&extp->extra[offs];
562 mtd->writesize = cfi->interleave << prinfo->ProgRegShift;
563 mtd->flags &= ~MTD_BIT_WRITEABLE;
564 printk(KERN_DEBUG "%s: program region size/ctrl_valid/ctrl_inval = %d/%d/%d\n",
565 map->name, mtd->writesize,
566 cfi->interleave * prinfo->ControlValid,
567 cfi->interleave * prinfo->ControlInvalid);
571 * All functions below currently rely on all chips having
572 * the same geometry so we'll just assume that all hardware
573 * partitions are of the same size too.
575 partshift = cfi->chipshift - __ffs(numparts);
577 if ((1 << partshift) < mtd->erasesize) {
579 "%s: bad number of hw partitions (%d)\n",
580 __FUNCTION__, numparts);
584 numvirtchips = cfi->numchips * numparts;
585 newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
588 shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
593 memcpy(newcfi, cfi, sizeof(struct cfi_private));
594 newcfi->numchips = numvirtchips;
595 newcfi->chipshift = partshift;
597 chip = &newcfi->chips[0];
598 for (i = 0; i < cfi->numchips; i++) {
599 shared[i].writing = shared[i].erasing = NULL;
600 spin_lock_init(&shared[i].lock);
601 for (j = 0; j < numparts; j++) {
602 *chip = cfi->chips[i];
603 chip->start += j << partshift;
604 chip->priv = &shared[i];
605 /* those should be reset too since
606 they create memory references. */
607 init_waitqueue_head(&chip->wq);
608 spin_lock_init(&chip->_spinlock);
609 chip->mutex = &chip->_spinlock;
614 printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
615 "--> %d partitions of %d KiB\n",
616 map->name, cfi->numchips, cfi->interleave,
617 newcfi->numchips, 1<<(newcfi->chipshift-10));
619 map->fldrv_priv = newcfi;
628 * *********** CHIP ACCESS FUNCTIONS ***********
631 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
633 DECLARE_WAITQUEUE(wait, current);
634 struct cfi_private *cfi = map->fldrv_priv;
635 map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
637 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
640 timeo = jiffies + HZ;
642 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
644 * OK. We have possibility for contension on the write/erase
645 * operations which are global to the real chip and not per
646 * partition. So let's fight it over in the partition which
647 * currently has authority on the operation.
649 * The rules are as follows:
651 * - any write operation must own shared->writing.
653 * - any erase operation must own _both_ shared->writing and
656 * - contension arbitration is handled in the owner's context.
658 * The 'shared' struct can be read and/or written only when
661 struct flchip_shared *shared = chip->priv;
662 struct flchip *contender;
663 spin_lock(&shared->lock);
664 contender = shared->writing;
665 if (contender && contender != chip) {
667 * The engine to perform desired operation on this
668 * partition is already in use by someone else.
669 * Let's fight over it in the context of the chip
670 * currently using it. If it is possible to suspend,
671 * that other partition will do just that, otherwise
672 * it'll happily send us to sleep. In any case, when
673 * get_chip returns success we're clear to go ahead.
675 int ret = spin_trylock(contender->mutex);
676 spin_unlock(&shared->lock);
679 spin_unlock(chip->mutex);
680 ret = get_chip(map, contender, contender->start, mode);
681 spin_lock(chip->mutex);
683 spin_unlock(contender->mutex);
686 timeo = jiffies + HZ;
687 spin_lock(&shared->lock);
688 spin_unlock(contender->mutex);
692 shared->writing = chip;
693 if (mode == FL_ERASING)
694 shared->erasing = chip;
695 spin_unlock(&shared->lock);
698 switch (chip->state) {
702 status = map_read(map, adr);
703 if (map_word_andequal(map, status, status_OK, status_OK))
706 /* At this point we're fine with write operations
707 in other partitions as they don't conflict. */
708 if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
711 if (time_after(jiffies, timeo)) {
712 printk(KERN_ERR "%s: Waiting for chip to be ready timed out. Status %lx\n",
713 map->name, status.x[0]);
716 spin_unlock(chip->mutex);
718 spin_lock(chip->mutex);
719 /* Someone else might have been playing with it. */
730 !(cfip->FeatureSupport & 2) ||
731 !(mode == FL_READY || mode == FL_POINT ||
732 (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
737 map_write(map, CMD(0xB0), adr);
739 /* If the flash has finished erasing, then 'erase suspend'
740 * appears to make some (28F320) flash devices switch to
741 * 'read' mode. Make sure that we switch to 'read status'
742 * mode so we get the right data. --rmk
744 map_write(map, CMD(0x70), adr);
745 chip->oldstate = FL_ERASING;
746 chip->state = FL_ERASE_SUSPENDING;
747 chip->erase_suspended = 1;
749 status = map_read(map, adr);
750 if (map_word_andequal(map, status, status_OK, status_OK))
753 if (time_after(jiffies, timeo)) {
754 /* Urgh. Resume and pretend we weren't here. */
755 map_write(map, CMD(0xd0), adr);
756 /* Make sure we're in 'read status' mode if it had finished */
757 map_write(map, CMD(0x70), adr);
758 chip->state = FL_ERASING;
759 chip->oldstate = FL_READY;
760 printk(KERN_ERR "%s: Chip not ready after erase "
761 "suspended: status = 0x%lx\n", map->name, status.x[0]);
765 spin_unlock(chip->mutex);
767 spin_lock(chip->mutex);
768 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
769 So we can just loop here. */
771 chip->state = FL_STATUS;
774 case FL_XIP_WHILE_ERASING:
775 if (mode != FL_READY && mode != FL_POINT &&
776 (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
778 chip->oldstate = chip->state;
779 chip->state = FL_READY;
783 /* Only if there's no operation suspended... */
784 if (mode == FL_READY && chip->oldstate == FL_READY)
789 set_current_state(TASK_UNINTERRUPTIBLE);
790 add_wait_queue(&chip->wq, &wait);
791 spin_unlock(chip->mutex);
793 remove_wait_queue(&chip->wq, &wait);
794 spin_lock(chip->mutex);
799 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
801 struct cfi_private *cfi = map->fldrv_priv;
804 struct flchip_shared *shared = chip->priv;
805 spin_lock(&shared->lock);
806 if (shared->writing == chip && chip->oldstate == FL_READY) {
807 /* We own the ability to write, but we're done */
808 shared->writing = shared->erasing;
809 if (shared->writing && shared->writing != chip) {
810 /* give back ownership to who we loaned it from */
811 struct flchip *loaner = shared->writing;
812 spin_lock(loaner->mutex);
813 spin_unlock(&shared->lock);
814 spin_unlock(chip->mutex);
815 put_chip(map, loaner, loaner->start);
816 spin_lock(chip->mutex);
817 spin_unlock(loaner->mutex);
821 shared->erasing = NULL;
822 shared->writing = NULL;
823 } else if (shared->erasing == chip && shared->writing != chip) {
825 * We own the ability to erase without the ability
826 * to write, which means the erase was suspended
827 * and some other partition is currently writing.
828 * Don't let the switch below mess things up since
829 * we don't have ownership to resume anything.
831 spin_unlock(&shared->lock);
835 spin_unlock(&shared->lock);
838 switch(chip->oldstate) {
840 chip->state = chip->oldstate;
841 /* What if one interleaved chip has finished and the
842 other hasn't? The old code would leave the finished
843 one in READY mode. That's bad, and caused -EROFS
844 errors to be returned from do_erase_oneblock because
845 that's the only bit it checked for at the time.
846 As the state machine appears to explicitly allow
847 sending the 0x70 (Read Status) command to an erasing
848 chip and expecting it to be ignored, that's what we
850 map_write(map, CMD(0xd0), adr);
851 map_write(map, CMD(0x70), adr);
852 chip->oldstate = FL_READY;
853 chip->state = FL_ERASING;
856 case FL_XIP_WHILE_ERASING:
857 chip->state = chip->oldstate;
858 chip->oldstate = FL_READY;
864 /* We should really make set_vpp() count, rather than doing this */
868 printk(KERN_ERR "%s: put_chip() called with oldstate %d!!\n", map->name, chip->oldstate);
873 #ifdef CONFIG_MTD_XIP
876 * No interrupt what so ever can be serviced while the flash isn't in array
877 * mode. This is ensured by the xip_disable() and xip_enable() functions
878 * enclosing any code path where the flash is known not to be in array mode.
879 * And within a XIP disabled code path, only functions marked with __xipram
880 * may be called and nothing else (it's a good thing to inspect generated
881 * assembly to make sure inline functions were actually inlined and that gcc
882 * didn't emit calls to its own support functions). Also configuring MTD CFI
883 * support to a single buswidth and a single interleave is also recommended.
886 static void xip_disable(struct map_info *map, struct flchip *chip,
889 /* TODO: chips with no XIP use should ignore and return */
890 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
894 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
897 struct cfi_private *cfi = map->fldrv_priv;
898 if (chip->state != FL_POINT && chip->state != FL_READY) {
899 map_write(map, CMD(0xff), adr);
900 chip->state = FL_READY;
902 (void) map_read(map, adr);
908 * When a delay is required for the flash operation to complete, the
909 * xip_wait_for_operation() function is polling for both the given timeout
910 * and pending (but still masked) hardware interrupts. Whenever there is an
911 * interrupt pending then the flash erase or write operation is suspended,
912 * array mode restored and interrupts unmasked. Task scheduling might also
913 * happen at that point. The CPU eventually returns from the interrupt or
914 * the call to schedule() and the suspended flash operation is resumed for
915 * the remaining of the delay period.
917 * Warning: this function _will_ fool interrupt latency tracing tools.
920 static int __xipram xip_wait_for_operation(
921 struct map_info *map, struct flchip *chip,
922 unsigned long adr, unsigned int chip_op_time )
924 struct cfi_private *cfi = map->fldrv_priv;
925 struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
926 map_word status, OK = CMD(0x80);
927 unsigned long usec, suspended, start, done;
928 flstate_t oldstate, newstate;
930 start = xip_currtime();
931 usec = chip_op_time * 8;
938 if (xip_irqpending() && cfip &&
939 ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
940 (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
941 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
943 * Let's suspend the erase or write operation when
944 * supported. Note that we currently don't try to
945 * suspend interleaved chips if there is already
946 * another operation suspended (imagine what happens
947 * when one chip was already done with the current
948 * operation while another chip suspended it, then
949 * we resume the whole thing at once). Yes, it
953 map_write(map, CMD(0xb0), adr);
954 map_write(map, CMD(0x70), adr);
955 suspended = xip_currtime();
957 if (xip_elapsed_since(suspended) > 100000) {
959 * The chip doesn't want to suspend
960 * after waiting for 100 msecs.
961 * This is a critical error but there
962 * is not much we can do here.
966 status = map_read(map, adr);
967 } while (!map_word_andequal(map, status, OK, OK));
969 /* Suspend succeeded */
970 oldstate = chip->state;
971 if (oldstate == FL_ERASING) {
972 if (!map_word_bitsset(map, status, CMD(0x40)))
974 newstate = FL_XIP_WHILE_ERASING;
975 chip->erase_suspended = 1;
977 if (!map_word_bitsset(map, status, CMD(0x04)))
979 newstate = FL_XIP_WHILE_WRITING;
980 chip->write_suspended = 1;
982 chip->state = newstate;
983 map_write(map, CMD(0xff), adr);
984 (void) map_read(map, adr);
985 asm volatile (".rep 8; nop; .endr");
987 spin_unlock(chip->mutex);
988 asm volatile (".rep 8; nop; .endr");
992 * We're back. However someone else might have
993 * decided to go write to the chip if we are in
994 * a suspended erase state. If so let's wait
997 spin_lock(chip->mutex);
998 while (chip->state != newstate) {
999 DECLARE_WAITQUEUE(wait, current);
1000 set_current_state(TASK_UNINTERRUPTIBLE);
1001 add_wait_queue(&chip->wq, &wait);
1002 spin_unlock(chip->mutex);
1004 remove_wait_queue(&chip->wq, &wait);
1005 spin_lock(chip->mutex);
1007 /* Disallow XIP again */
1008 local_irq_disable();
1010 /* Resume the write or erase operation */
1011 map_write(map, CMD(0xd0), adr);
1012 map_write(map, CMD(0x70), adr);
1013 chip->state = oldstate;
1014 start = xip_currtime();
1015 } else if (usec >= 1000000/HZ) {
1017 * Try to save on CPU power when waiting delay
1018 * is at least a system timer tick period.
1019 * No need to be extremely accurate here.
1023 status = map_read(map, adr);
1024 done = xip_elapsed_since(start);
1025 } while (!map_word_andequal(map, status, OK, OK)
1028 return (done >= usec) ? -ETIME : 0;
1032 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1033 * the flash is actively programming or erasing since we have to poll for
1034 * the operation to complete anyway. We can't do that in a generic way with
1035 * a XIP setup so do it before the actual flash operation in this case
1036 * and stub it out from INVAL_CACHE_AND_WAIT.
1038 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
1039 INVALIDATE_CACHED_RANGE(map, from, size)
1041 #define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec) \
1042 xip_wait_for_operation(map, chip, cmd_adr, usec)
1046 #define xip_disable(map, chip, adr)
1047 #define xip_enable(map, chip, adr)
1048 #define XIP_INVAL_CACHED_RANGE(x...)
1049 #define INVAL_CACHE_AND_WAIT inval_cache_and_wait_for_operation
1051 static int inval_cache_and_wait_for_operation(
1052 struct map_info *map, struct flchip *chip,
1053 unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
1054 unsigned int chip_op_time)
1056 struct cfi_private *cfi = map->fldrv_priv;
1057 map_word status, status_OK = CMD(0x80);
1058 int chip_state = chip->state;
1059 unsigned int timeo, sleep_time;
1061 spin_unlock(chip->mutex);
1063 INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
1064 spin_lock(chip->mutex);
1066 /* set our timeout to 8 times the expected delay */
1067 timeo = chip_op_time * 8;
1070 sleep_time = chip_op_time / 2;
1073 status = map_read(map, cmd_adr);
1074 if (map_word_andequal(map, status, status_OK, status_OK))
1078 map_write(map, CMD(0x70), cmd_adr);
1079 chip->state = FL_STATUS;
1083 /* OK Still waiting. Drop the lock, wait a while and retry. */
1084 spin_unlock(chip->mutex);
1085 if (sleep_time >= 1000000/HZ) {
1087 * Half of the normal delay still remaining
1088 * can be performed with a sleeping delay instead
1091 msleep(sleep_time/1000);
1092 timeo -= sleep_time;
1093 sleep_time = 1000000/HZ;
1099 spin_lock(chip->mutex);
1101 while (chip->state != chip_state) {
1102 /* Someone's suspended the operation: sleep */
1103 DECLARE_WAITQUEUE(wait, current);
1104 set_current_state(TASK_UNINTERRUPTIBLE);
1105 add_wait_queue(&chip->wq, &wait);
1106 spin_unlock(chip->mutex);
1108 remove_wait_queue(&chip->wq, &wait);
1109 spin_lock(chip->mutex);
1113 /* Done and happy. */
1114 chip->state = FL_STATUS;
1120 #define WAIT_TIMEOUT(map, chip, adr, udelay) \
1121 INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay);
1124 static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
1126 unsigned long cmd_addr;
1127 struct cfi_private *cfi = map->fldrv_priv;
1132 /* Ensure cmd read/writes are aligned. */
1133 cmd_addr = adr & ~(map_bankwidth(map)-1);
1135 spin_lock(chip->mutex);
1137 ret = get_chip(map, chip, cmd_addr, FL_POINT);
1140 if (chip->state != FL_POINT && chip->state != FL_READY)
1141 map_write(map, CMD(0xff), cmd_addr);
1143 chip->state = FL_POINT;
1144 chip->ref_point_counter++;
1146 spin_unlock(chip->mutex);
1151 static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
1153 struct map_info *map = mtd->priv;
1154 struct cfi_private *cfi = map->fldrv_priv;
1159 if (!map->virt || (from + len > mtd->size))
1162 *mtdbuf = (void *)map->virt + from;
1165 /* Now lock the chip(s) to POINT state */
1167 /* ofs: offset within the first chip that the first read should start */
1168 chipnum = (from >> cfi->chipshift);
1169 ofs = from - (chipnum << cfi->chipshift);
1172 unsigned long thislen;
1174 if (chipnum >= cfi->numchips)
1177 if ((len + ofs -1) >> cfi->chipshift)
1178 thislen = (1<<cfi->chipshift) - ofs;
1182 ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
1195 static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
1197 struct map_info *map = mtd->priv;
1198 struct cfi_private *cfi = map->fldrv_priv;
1202 /* Now unlock the chip(s) POINT state */
1204 /* ofs: offset within the first chip that the first read should start */
1205 chipnum = (from >> cfi->chipshift);
1206 ofs = from - (chipnum << cfi->chipshift);
1209 unsigned long thislen;
1210 struct flchip *chip;
1212 chip = &cfi->chips[chipnum];
1213 if (chipnum >= cfi->numchips)
1216 if ((len + ofs -1) >> cfi->chipshift)
1217 thislen = (1<<cfi->chipshift) - ofs;
1221 spin_lock(chip->mutex);
1222 if (chip->state == FL_POINT) {
1223 chip->ref_point_counter--;
1224 if(chip->ref_point_counter == 0)
1225 chip->state = FL_READY;
1227 printk(KERN_ERR "%s: Warning: unpoint called on non pointed region\n", map->name); /* Should this give an error? */
1229 put_chip(map, chip, chip->start);
1230 spin_unlock(chip->mutex);
1238 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1240 unsigned long cmd_addr;
1241 struct cfi_private *cfi = map->fldrv_priv;
1246 /* Ensure cmd read/writes are aligned. */
1247 cmd_addr = adr & ~(map_bankwidth(map)-1);
1249 spin_lock(chip->mutex);
1250 ret = get_chip(map, chip, cmd_addr, FL_READY);
1252 spin_unlock(chip->mutex);
1256 if (chip->state != FL_POINT && chip->state != FL_READY) {
1257 map_write(map, CMD(0xff), cmd_addr);
1259 chip->state = FL_READY;
1262 map_copy_from(map, buf, adr, len);
1264 put_chip(map, chip, cmd_addr);
1266 spin_unlock(chip->mutex);
1270 static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1272 struct map_info *map = mtd->priv;
1273 struct cfi_private *cfi = map->fldrv_priv;
1278 /* ofs: offset within the first chip that the first read should start */
1279 chipnum = (from >> cfi->chipshift);
1280 ofs = from - (chipnum << cfi->chipshift);
1285 unsigned long thislen;
1287 if (chipnum >= cfi->numchips)
1290 if ((len + ofs -1) >> cfi->chipshift)
1291 thislen = (1<<cfi->chipshift) - ofs;
1295 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1309 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1310 unsigned long adr, map_word datum, int mode)
1312 struct cfi_private *cfi = map->fldrv_priv;
1313 map_word status, write_cmd;
1320 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0x40) : CMD(0x41);
1323 write_cmd = CMD(0xc0);
1329 spin_lock(chip->mutex);
1330 ret = get_chip(map, chip, adr, mode);
1332 spin_unlock(chip->mutex);
1336 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1338 xip_disable(map, chip, adr);
1339 map_write(map, write_cmd, adr);
1340 map_write(map, datum, adr);
1343 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1344 adr, map_bankwidth(map),
1345 chip->word_write_time);
1347 xip_enable(map, chip, adr);
1348 printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
1352 /* check for errors */
1353 status = map_read(map, adr);
1354 if (map_word_bitsset(map, status, CMD(0x1a))) {
1355 unsigned long chipstatus = MERGESTATUS(status);
1358 map_write(map, CMD(0x50), adr);
1359 map_write(map, CMD(0x70), adr);
1360 xip_enable(map, chip, adr);
1362 if (chipstatus & 0x02) {
1364 } else if (chipstatus & 0x08) {
1365 printk(KERN_ERR "%s: word write error (bad VPP)\n", map->name);
1368 printk(KERN_ERR "%s: word write error (status 0x%lx)\n", map->name, chipstatus);
1375 xip_enable(map, chip, adr);
1376 out: put_chip(map, chip, adr);
1377 spin_unlock(chip->mutex);
1382 static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
1384 struct map_info *map = mtd->priv;
1385 struct cfi_private *cfi = map->fldrv_priv;
1394 chipnum = to >> cfi->chipshift;
1395 ofs = to - (chipnum << cfi->chipshift);
1397 /* If it's not bus-aligned, do the first byte write */
1398 if (ofs & (map_bankwidth(map)-1)) {
1399 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1400 int gap = ofs - bus_ofs;
1404 n = min_t(int, len, map_bankwidth(map)-gap);
1405 datum = map_word_ff(map);
1406 datum = map_word_load_partial(map, datum, buf, gap, n);
1408 ret = do_write_oneword(map, &cfi->chips[chipnum],
1409 bus_ofs, datum, FL_WRITING);
1418 if (ofs >> cfi->chipshift) {
1421 if (chipnum == cfi->numchips)
1426 while(len >= map_bankwidth(map)) {
1427 map_word datum = map_word_load(map, buf);
1429 ret = do_write_oneword(map, &cfi->chips[chipnum],
1430 ofs, datum, FL_WRITING);
1434 ofs += map_bankwidth(map);
1435 buf += map_bankwidth(map);
1436 (*retlen) += map_bankwidth(map);
1437 len -= map_bankwidth(map);
1439 if (ofs >> cfi->chipshift) {
1442 if (chipnum == cfi->numchips)
1447 if (len & (map_bankwidth(map)-1)) {
1450 datum = map_word_ff(map);
1451 datum = map_word_load_partial(map, datum, buf, 0, len);
1453 ret = do_write_oneword(map, &cfi->chips[chipnum],
1454 ofs, datum, FL_WRITING);
1465 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1466 unsigned long adr, const struct kvec **pvec,
1467 unsigned long *pvec_seek, int len)
1469 struct cfi_private *cfi = map->fldrv_priv;
1470 map_word status, write_cmd, datum;
1471 unsigned long cmd_adr;
1472 int ret, wbufsize, word_gap, words;
1473 const struct kvec *vec;
1474 unsigned long vec_seek;
1476 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1478 cmd_adr = adr & ~(wbufsize-1);
1480 /* Let's determine this according to the interleave only once */
1481 write_cmd = (cfi->cfiq->P_ID != 0x0200) ? CMD(0xe8) : CMD(0xe9);
1483 spin_lock(chip->mutex);
1484 ret = get_chip(map, chip, cmd_adr, FL_WRITING);
1486 spin_unlock(chip->mutex);
1490 XIP_INVAL_CACHED_RANGE(map, adr, len);
1492 xip_disable(map, chip, cmd_adr);
1494 /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
1495 [...], the device will not accept any more Write to Buffer commands".
1496 So we must check here and reset those bits if they're set. Otherwise
1497 we're just pissing in the wind */
1498 if (chip->state != FL_STATUS) {
1499 map_write(map, CMD(0x70), cmd_adr);
1500 chip->state = FL_STATUS;
1502 status = map_read(map, cmd_adr);
1503 if (map_word_bitsset(map, status, CMD(0x30))) {
1504 xip_enable(map, chip, cmd_adr);
1505 printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
1506 xip_disable(map, chip, cmd_adr);
1507 map_write(map, CMD(0x50), cmd_adr);
1508 map_write(map, CMD(0x70), cmd_adr);
1511 chip->state = FL_WRITING_TO_BUFFER;
1512 map_write(map, write_cmd, cmd_adr);
1513 ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0);
1515 /* Argh. Not ready for write to buffer */
1516 map_word Xstatus = map_read(map, cmd_adr);
1517 map_write(map, CMD(0x70), cmd_adr);
1518 chip->state = FL_STATUS;
1519 status = map_read(map, cmd_adr);
1520 map_write(map, CMD(0x50), cmd_adr);
1521 map_write(map, CMD(0x70), cmd_adr);
1522 xip_enable(map, chip, cmd_adr);
1523 printk(KERN_ERR "%s: Chip not ready for buffer write. Xstatus = %lx, status = %lx\n",
1524 map->name, Xstatus.x[0], status.x[0]);
1528 /* Figure out the number of words to write */
1529 word_gap = (-adr & (map_bankwidth(map)-1));
1530 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
1534 word_gap = map_bankwidth(map) - word_gap;
1536 datum = map_word_ff(map);
1539 /* Write length of data to come */
1540 map_write(map, CMD(words), cmd_adr );
1544 vec_seek = *pvec_seek;
1546 int n = map_bankwidth(map) - word_gap;
1547 if (n > vec->iov_len - vec_seek)
1548 n = vec->iov_len - vec_seek;
1552 if (!word_gap && len < map_bankwidth(map))
1553 datum = map_word_ff(map);
1555 datum = map_word_load_partial(map, datum,
1556 vec->iov_base + vec_seek,
1561 if (!len || word_gap == map_bankwidth(map)) {
1562 map_write(map, datum, adr);
1563 adr += map_bankwidth(map);
1568 if (vec_seek == vec->iov_len) {
1574 *pvec_seek = vec_seek;
1577 map_write(map, CMD(0xd0), cmd_adr);
1578 chip->state = FL_WRITING;
1580 ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
1582 chip->buffer_write_time);
1584 map_write(map, CMD(0x70), cmd_adr);
1585 chip->state = FL_STATUS;
1586 xip_enable(map, chip, cmd_adr);
1587 printk(KERN_ERR "%s: buffer write error (status timeout)\n", map->name);
1591 /* check for errors */
1592 status = map_read(map, cmd_adr);
1593 if (map_word_bitsset(map, status, CMD(0x1a))) {
1594 unsigned long chipstatus = MERGESTATUS(status);
1597 map_write(map, CMD(0x50), cmd_adr);
1598 map_write(map, CMD(0x70), cmd_adr);
1599 xip_enable(map, chip, cmd_adr);
1601 if (chipstatus & 0x02) {
1603 } else if (chipstatus & 0x08) {
1604 printk(KERN_ERR "%s: buffer write error (bad VPP)\n", map->name);
1607 printk(KERN_ERR "%s: buffer write error (status 0x%lx)\n", map->name, chipstatus);
1614 xip_enable(map, chip, cmd_adr);
1615 out: put_chip(map, chip, cmd_adr);
1616 spin_unlock(chip->mutex);
1620 static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
1621 unsigned long count, loff_t to, size_t *retlen)
1623 struct map_info *map = mtd->priv;
1624 struct cfi_private *cfi = map->fldrv_priv;
1625 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1628 unsigned long ofs, vec_seek, i;
1631 for (i = 0; i < count; i++)
1632 len += vecs[i].iov_len;
1638 chipnum = to >> cfi->chipshift;
1639 ofs = to - (chipnum << cfi->chipshift);
1643 /* We must not cross write block boundaries */
1644 int size = wbufsize - (ofs & (wbufsize-1));
1648 ret = do_write_buffer(map, &cfi->chips[chipnum],
1649 ofs, &vecs, &vec_seek, size);
1657 if (ofs >> cfi->chipshift) {
1660 if (chipnum == cfi->numchips)
1664 /* Be nice and reschedule with the chip in a usable state for other
1673 static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
1674 size_t len, size_t *retlen, const u_char *buf)
1678 vec.iov_base = (void *) buf;
1681 return cfi_intelext_writev(mtd, &vec, 1, to, retlen);
1684 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
1685 unsigned long adr, int len, void *thunk)
1687 struct cfi_private *cfi = map->fldrv_priv;
1695 spin_lock(chip->mutex);
1696 ret = get_chip(map, chip, adr, FL_ERASING);
1698 spin_unlock(chip->mutex);
1702 XIP_INVAL_CACHED_RANGE(map, adr, len);
1704 xip_disable(map, chip, adr);
1706 /* Clear the status register first */
1707 map_write(map, CMD(0x50), adr);
1710 map_write(map, CMD(0x20), adr);
1711 map_write(map, CMD(0xD0), adr);
1712 chip->state = FL_ERASING;
1713 chip->erase_suspended = 0;
1715 ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
1719 map_write(map, CMD(0x70), adr);
1720 chip->state = FL_STATUS;
1721 xip_enable(map, chip, adr);
1722 printk(KERN_ERR "%s: block erase error: (status timeout)\n", map->name);
1726 /* We've broken this before. It doesn't hurt to be safe */
1727 map_write(map, CMD(0x70), adr);
1728 chip->state = FL_STATUS;
1729 status = map_read(map, adr);
1731 /* check for errors */
1732 if (map_word_bitsset(map, status, CMD(0x3a))) {
1733 unsigned long chipstatus = MERGESTATUS(status);
1735 /* Reset the error bits */
1736 map_write(map, CMD(0x50), adr);
1737 map_write(map, CMD(0x70), adr);
1738 xip_enable(map, chip, adr);
1740 if ((chipstatus & 0x30) == 0x30) {
1741 printk(KERN_ERR "%s: block erase error: (bad command sequence, status 0x%lx)\n", map->name, chipstatus);
1743 } else if (chipstatus & 0x02) {
1744 /* Protection bit set */
1746 } else if (chipstatus & 0x8) {
1748 printk(KERN_ERR "%s: block erase error: (bad VPP)\n", map->name);
1750 } else if (chipstatus & 0x20 && retries--) {
1751 printk(KERN_DEBUG "block erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
1752 put_chip(map, chip, adr);
1753 spin_unlock(chip->mutex);
1756 printk(KERN_ERR "%s: block erase failed at 0x%08lx (status 0x%lx)\n", map->name, adr, chipstatus);
1763 xip_enable(map, chip, adr);
1764 out: put_chip(map, chip, adr);
1765 spin_unlock(chip->mutex);
1769 int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1771 unsigned long ofs, len;
1777 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1781 instr->state = MTD_ERASE_DONE;
1782 mtd_erase_callback(instr);
1787 static void cfi_intelext_sync (struct mtd_info *mtd)
1789 struct map_info *map = mtd->priv;
1790 struct cfi_private *cfi = map->fldrv_priv;
1792 struct flchip *chip;
1795 for (i=0; !ret && i<cfi->numchips; i++) {
1796 chip = &cfi->chips[i];
1798 spin_lock(chip->mutex);
1799 ret = get_chip(map, chip, chip->start, FL_SYNCING);
1802 chip->oldstate = chip->state;
1803 chip->state = FL_SYNCING;
1804 /* No need to wake_up() on this state change -
1805 * as the whole point is that nobody can do anything
1806 * with the chip now anyway.
1809 spin_unlock(chip->mutex);
1812 /* Unlock the chips again */
1814 for (i--; i >=0; i--) {
1815 chip = &cfi->chips[i];
1817 spin_lock(chip->mutex);
1819 if (chip->state == FL_SYNCING) {
1820 chip->state = chip->oldstate;
1821 chip->oldstate = FL_READY;
1824 spin_unlock(chip->mutex);
1828 #ifdef DEBUG_LOCK_BITS
1829 static int __xipram do_printlockstatus_oneblock(struct map_info *map,
1830 struct flchip *chip,
1832 int len, void *thunk)
1834 struct cfi_private *cfi = map->fldrv_priv;
1835 int status, ofs_factor = cfi->interleave * cfi->device_type;
1838 xip_disable(map, chip, adr+(2*ofs_factor));
1839 map_write(map, CMD(0x90), adr+(2*ofs_factor));
1840 chip->state = FL_JEDEC_QUERY;
1841 status = cfi_read_query(map, adr+(2*ofs_factor));
1842 xip_enable(map, chip, 0);
1843 printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
1849 #define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
1850 #define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
1852 static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
1853 unsigned long adr, int len, void *thunk)
1855 struct cfi_private *cfi = map->fldrv_priv;
1856 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
1862 spin_lock(chip->mutex);
1863 ret = get_chip(map, chip, adr, FL_LOCKING);
1865 spin_unlock(chip->mutex);
1870 xip_disable(map, chip, adr);
1872 map_write(map, CMD(0x60), adr);
1873 if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
1874 map_write(map, CMD(0x01), adr);
1875 chip->state = FL_LOCKING;
1876 } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
1877 map_write(map, CMD(0xD0), adr);
1878 chip->state = FL_UNLOCKING;
1883 * If Instant Individual Block Locking supported then no need
1886 udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
1888 ret = WAIT_TIMEOUT(map, chip, adr, udelay);
1890 map_write(map, CMD(0x70), adr);
1891 chip->state = FL_STATUS;
1892 xip_enable(map, chip, adr);
1893 printk(KERN_ERR "%s: block unlock error: (status timeout)\n", map->name);
1897 xip_enable(map, chip, adr);
1898 out: put_chip(map, chip, adr);
1899 spin_unlock(chip->mutex);
1903 static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1907 #ifdef DEBUG_LOCK_BITS
1908 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
1909 __FUNCTION__, ofs, len);
1910 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1914 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
1915 ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
1917 #ifdef DEBUG_LOCK_BITS
1918 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
1920 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1927 static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1931 #ifdef DEBUG_LOCK_BITS
1932 printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
1933 __FUNCTION__, ofs, len);
1934 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1938 ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
1939 ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
1941 #ifdef DEBUG_LOCK_BITS
1942 printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
1944 cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
1951 #ifdef CONFIG_MTD_OTP
1953 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1954 u_long data_offset, u_char *buf, u_int size,
1955 u_long prot_offset, u_int groupno, u_int groupsize);
1958 do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
1959 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
1961 struct cfi_private *cfi = map->fldrv_priv;
1964 spin_lock(chip->mutex);
1965 ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
1967 spin_unlock(chip->mutex);
1971 /* let's ensure we're not reading back cached data from array mode */
1972 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
1974 xip_disable(map, chip, chip->start);
1975 if (chip->state != FL_JEDEC_QUERY) {
1976 map_write(map, CMD(0x90), chip->start);
1977 chip->state = FL_JEDEC_QUERY;
1979 map_copy_from(map, buf, chip->start + offset, size);
1980 xip_enable(map, chip, chip->start);
1982 /* then ensure we don't keep OTP data in the cache */
1983 INVALIDATE_CACHED_RANGE(map, chip->start + offset, size);
1985 put_chip(map, chip, chip->start);
1986 spin_unlock(chip->mutex);
1991 do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
1992 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
1997 unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
1998 int gap = offset - bus_ofs;
1999 int n = min_t(int, size, map_bankwidth(map)-gap);
2000 map_word datum = map_word_ff(map);
2002 datum = map_word_load_partial(map, datum, buf, gap, n);
2003 ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
2016 do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
2017 u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
2019 struct cfi_private *cfi = map->fldrv_priv;
2022 /* make sure area matches group boundaries */
2026 datum = map_word_ff(map);
2027 datum = map_word_clr(map, datum, CMD(1 << grpno));
2028 return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
2031 static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
2032 size_t *retlen, u_char *buf,
2033 otp_op_t action, int user_regs)
2035 struct map_info *map = mtd->priv;
2036 struct cfi_private *cfi = map->fldrv_priv;
2037 struct cfi_pri_intelext *extp = cfi->cmdset_priv;
2038 struct flchip *chip;
2039 struct cfi_intelext_otpinfo *otp;
2040 u_long devsize, reg_prot_offset, data_offset;
2041 u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
2042 u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
2047 /* Check that we actually have some OTP registers */
2048 if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
2051 /* we need real chips here not virtual ones */
2052 devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
2053 chip_step = devsize >> cfi->chipshift;
2056 /* Some chips have OTP located in the _top_ partition only.
2057 For example: Intel 28F256L18T (T means top-parameter device) */
2058 if (cfi->mfr == MANUFACTURER_INTEL) {
2063 chip_num = chip_step - 1;
2067 for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
2068 chip = &cfi->chips[chip_num];
2069 otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
2071 /* first OTP region */
2073 reg_prot_offset = extp->ProtRegAddr;
2074 reg_fact_groups = 1;
2075 reg_fact_size = 1 << extp->FactProtRegSize;
2076 reg_user_groups = 1;
2077 reg_user_size = 1 << extp->UserProtRegSize;
2080 /* flash geometry fixup */
2081 data_offset = reg_prot_offset + 1;
2082 data_offset *= cfi->interleave * cfi->device_type;
2083 reg_prot_offset *= cfi->interleave * cfi->device_type;
2084 reg_fact_size *= cfi->interleave;
2085 reg_user_size *= cfi->interleave;
2088 groups = reg_user_groups;
2089 groupsize = reg_user_size;
2090 /* skip over factory reg area */
2091 groupno = reg_fact_groups;
2092 data_offset += reg_fact_groups * reg_fact_size;
2094 groups = reg_fact_groups;
2095 groupsize = reg_fact_size;
2099 while (len > 0 && groups > 0) {
2102 * Special case: if action is NULL
2103 * we fill buf with otp_info records.
2105 struct otp_info *otpinfo;
2107 len -= sizeof(struct otp_info);
2110 ret = do_otp_read(map, chip,
2112 (u_char *)&lockword,
2117 otpinfo = (struct otp_info *)buf;
2118 otpinfo->start = from;
2119 otpinfo->length = groupsize;
2121 !map_word_bitsset(map, lockword,
2124 buf += sizeof(*otpinfo);
2125 *retlen += sizeof(*otpinfo);
2126 } else if (from >= groupsize) {
2128 data_offset += groupsize;
2130 int size = groupsize;
2131 data_offset += from;
2136 ret = action(map, chip, data_offset,
2137 buf, size, reg_prot_offset,
2138 groupno, groupsize);
2144 data_offset += size;
2150 /* next OTP region */
2151 if (++field == extp->NumProtectionFields)
2153 reg_prot_offset = otp->ProtRegAddr;
2154 reg_fact_groups = otp->FactGroups;
2155 reg_fact_size = 1 << otp->FactProtRegSize;
2156 reg_user_groups = otp->UserGroups;
2157 reg_user_size = 1 << otp->UserProtRegSize;
2165 static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2166 size_t len, size_t *retlen,
2169 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2170 buf, do_otp_read, 0);
2173 static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2174 size_t len, size_t *retlen,
2177 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2178 buf, do_otp_read, 1);
2181 static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2182 size_t len, size_t *retlen,
2185 return cfi_intelext_otp_walk(mtd, from, len, retlen,
2186 buf, do_otp_write, 1);
2189 static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
2190 loff_t from, size_t len)
2193 return cfi_intelext_otp_walk(mtd, from, len, &retlen,
2194 NULL, do_otp_lock, 1);
2197 static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
2198 struct otp_info *buf, size_t len)
2203 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
2204 return ret ? : retlen;
2207 static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
2208 struct otp_info *buf, size_t len)
2213 ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
2214 return ret ? : retlen;
2219 static int cfi_intelext_suspend(struct mtd_info *mtd)
2221 struct map_info *map = mtd->priv;
2222 struct cfi_private *cfi = map->fldrv_priv;
2224 struct flchip *chip;
2227 for (i=0; !ret && i<cfi->numchips; i++) {
2228 chip = &cfi->chips[i];
2230 spin_lock(chip->mutex);
2232 switch (chip->state) {
2236 case FL_JEDEC_QUERY:
2237 if (chip->oldstate == FL_READY) {
2238 /* place the chip in a known state before suspend */
2239 map_write(map, CMD(0xFF), cfi->chips[i].start);
2240 chip->oldstate = chip->state;
2241 chip->state = FL_PM_SUSPENDED;
2242 /* No need to wake_up() on this state change -
2243 * as the whole point is that nobody can do anything
2244 * with the chip now anyway.
2247 /* There seems to be an operation pending. We must wait for it. */
2248 printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
2253 /* Should we actually wait? Once upon a time these routines weren't
2254 allowed to. Or should we return -EAGAIN, because the upper layers
2255 ought to have already shut down anything which was using the device
2256 anyway? The latter for now. */
2257 printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
2259 case FL_PM_SUSPENDED:
2262 spin_unlock(chip->mutex);
2265 /* Unlock the chips again */
2268 for (i--; i >=0; i--) {
2269 chip = &cfi->chips[i];
2271 spin_lock(chip->mutex);
2273 if (chip->state == FL_PM_SUSPENDED) {
2274 /* No need to force it into a known state here,
2275 because we're returning failure, and it didn't
2277 chip->state = chip->oldstate;
2278 chip->oldstate = FL_READY;
2281 spin_unlock(chip->mutex);
2288 static void cfi_intelext_resume(struct mtd_info *mtd)
2290 struct map_info *map = mtd->priv;
2291 struct cfi_private *cfi = map->fldrv_priv;
2293 struct flchip *chip;
2295 for (i=0; i<cfi->numchips; i++) {
2297 chip = &cfi->chips[i];
2299 spin_lock(chip->mutex);
2301 /* Go to known state. Chip may have been power cycled */
2302 if (chip->state == FL_PM_SUSPENDED) {
2303 map_write(map, CMD(0xFF), cfi->chips[i].start);
2304 chip->oldstate = chip->state = FL_READY;
2308 spin_unlock(chip->mutex);
2312 static int cfi_intelext_reset(struct mtd_info *mtd)
2314 struct map_info *map = mtd->priv;
2315 struct cfi_private *cfi = map->fldrv_priv;
2318 for (i=0; i < cfi->numchips; i++) {
2319 struct flchip *chip = &cfi->chips[i];
2321 /* force the completion of any ongoing operation
2322 and switch to array mode so any bootloader in
2323 flash is accessible for soft reboot. */
2324 spin_lock(chip->mutex);
2325 ret = get_chip(map, chip, chip->start, FL_SYNCING);
2327 map_write(map, CMD(0xff), chip->start);
2328 chip->state = FL_READY;
2330 spin_unlock(chip->mutex);
2336 static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
2339 struct mtd_info *mtd;
2341 mtd = container_of(nb, struct mtd_info, reboot_notifier);
2342 cfi_intelext_reset(mtd);
2346 static void cfi_intelext_destroy(struct mtd_info *mtd)
2348 struct map_info *map = mtd->priv;
2349 struct cfi_private *cfi = map->fldrv_priv;
2350 cfi_intelext_reset(mtd);
2351 unregister_reboot_notifier(&mtd->reboot_notifier);
2352 kfree(cfi->cmdset_priv);
2354 kfree(cfi->chips[0].priv);
2356 kfree(mtd->eraseregions);
2359 MODULE_LICENSE("GPL");
2360 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
2361 MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
2362 MODULE_ALIAS("cfi_cmdset_0003");
2363 MODULE_ALIAS("cfi_cmdset_0200");