Merge branch 'for-linus' of git://git.o-hand.com/linux-rpurdie-leds
[linux-2.6] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  *
25  * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
26  */
27
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40
41 /* Default simulator parameters values */
42 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
43     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
44     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
45     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
46 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
47 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
48 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
49 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
50 #endif
51
52 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
53 #define CONFIG_NANDSIM_ACCESS_DELAY 25
54 #endif
55 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
56 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
57 #endif
58 #ifndef CONFIG_NANDSIM_ERASE_DELAY
59 #define CONFIG_NANDSIM_ERASE_DELAY 2
60 #endif
61 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
62 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
63 #endif
64 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
65 #define CONFIG_NANDSIM_INPUT_CYCLE  50
66 #endif
67 #ifndef CONFIG_NANDSIM_BUS_WIDTH
68 #define CONFIG_NANDSIM_BUS_WIDTH  8
69 #endif
70 #ifndef CONFIG_NANDSIM_DO_DELAYS
71 #define CONFIG_NANDSIM_DO_DELAYS  0
72 #endif
73 #ifndef CONFIG_NANDSIM_LOG
74 #define CONFIG_NANDSIM_LOG        0
75 #endif
76 #ifndef CONFIG_NANDSIM_DBG
77 #define CONFIG_NANDSIM_DBG        0
78 #endif
79
80 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
81 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
82 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
83 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
84 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
85 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
86 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
87 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
88 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
89 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
90 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
91 static uint log            = CONFIG_NANDSIM_LOG;
92 static uint dbg            = CONFIG_NANDSIM_DBG;
93
94 module_param(first_id_byte,  uint, 0400);
95 module_param(second_id_byte, uint, 0400);
96 module_param(third_id_byte,  uint, 0400);
97 module_param(fourth_id_byte, uint, 0400);
98 module_param(access_delay,   uint, 0400);
99 module_param(programm_delay, uint, 0400);
100 module_param(erase_delay,    uint, 0400);
101 module_param(output_cycle,   uint, 0400);
102 module_param(input_cycle,    uint, 0400);
103 module_param(bus_width,      uint, 0400);
104 module_param(do_delays,      uint, 0400);
105 module_param(log,            uint, 0400);
106 module_param(dbg,            uint, 0400);
107
108 MODULE_PARM_DESC(first_id_byte,  "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
109 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
110 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
111 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
112 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
113 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
114 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
115 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
116 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
117 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
118 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
119 MODULE_PARM_DESC(log,            "Perform logging if not zero");
120 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
121
122 /* The largest possible page size */
123 #define NS_LARGEST_PAGE_SIZE    2048
124
125 /* The prefix for simulator output */
126 #define NS_OUTPUT_PREFIX "[nandsim]"
127
128 /* Simulator's output macros (logging, debugging, warning, error) */
129 #define NS_LOG(args...) \
130         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
131 #define NS_DBG(args...) \
132         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
133 #define NS_WARN(args...) \
134         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
135 #define NS_ERR(args...) \
136         do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
137
138 /* Busy-wait delay macros (microseconds, milliseconds) */
139 #define NS_UDELAY(us) \
140         do { if (do_delays) udelay(us); } while(0)
141 #define NS_MDELAY(us) \
142         do { if (do_delays) mdelay(us); } while(0)
143
144 /* Is the nandsim structure initialized ? */
145 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
146
147 /* Good operation completion status */
148 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
149
150 /* Operation failed completion status */
151 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
152
153 /* Calculate the page offset in flash RAM image by (row, column) address */
154 #define NS_RAW_OFFSET(ns) \
155         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
156
157 /* Calculate the OOB offset in flash RAM image by (row, column) address */
158 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
159
160 /* After a command is input, the simulator goes to one of the following states */
161 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
162 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
163 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
164 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
165 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
166 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
167 #define STATE_CMD_STATUS       0x00000007 /* read status */
168 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
169 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
170 #define STATE_CMD_READID       0x0000000A /* read ID */
171 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
172 #define STATE_CMD_RESET        0x0000000C /* reset */
173 #define STATE_CMD_MASK         0x0000000F /* command states mask */
174
175 /* After an addres is input, the simulator goes to one of these states */
176 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
177 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
178 #define STATE_ADDR_ZERO        0x00000030 /* one byte zero address was accepted */
179 #define STATE_ADDR_MASK        0x00000030 /* address states mask */
180
181 /* Durind data input/output the simulator is in these states */
182 #define STATE_DATAIN           0x00000100 /* waiting for data input */
183 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
184
185 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
186 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
187 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
188 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
189 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
190
191 /* Previous operation is done, ready to accept new requests */
192 #define STATE_READY            0x00000000
193
194 /* This state is used to mark that the next state isn't known yet */
195 #define STATE_UNKNOWN          0x10000000
196
197 /* Simulator's actions bit masks */
198 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
199 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
200 #define ACTION_SECERASE  0x00300000 /* erase sector */
201 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
202 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
203 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
204 #define ACTION_MASK      0x00700000 /* action mask */
205
206 #define NS_OPER_NUM      12 /* Number of operations supported by the simulator */
207 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
208
209 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
210 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
211 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
212 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
213 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
214 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
215 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
216 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
217 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
218
219 /* Remove action bits ftom state */
220 #define NS_STATE(x) ((x) & ~ACTION_MASK)
221
222 /*
223  * Maximum previous states which need to be saved. Currently saving is
224  * only needed for page programm operation with preceeded read command
225  * (which is only valid for 512-byte pages).
226  */
227 #define NS_MAX_PREVSTATES 1
228
229 /*
230  * A union to represent flash memory contents and flash buffer.
231  */
232 union ns_mem {
233         u_char *byte;    /* for byte access */
234         uint16_t *word;  /* for 16-bit word access */
235 };
236
237 /*
238  * The structure which describes all the internal simulator data.
239  */
240 struct nandsim {
241         struct mtd_partition part;
242
243         uint busw;              /* flash chip bus width (8 or 16) */
244         u_char ids[4];          /* chip's ID bytes */
245         uint32_t options;       /* chip's characteristic bits */
246         uint32_t state;         /* current chip state */
247         uint32_t nxstate;       /* next expected state */
248
249         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
250         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
251         uint16_t npstates;      /* number of previous states saved */
252         uint16_t stateidx;      /* current state index */
253
254         /* The simulated NAND flash pages array */
255         union ns_mem *pages;
256
257         /* Internal buffer of page + OOB size bytes */
258         union ns_mem buf;
259
260         /* NAND flash "geometry" */
261         struct nandsin_geometry {
262                 uint32_t totsz;     /* total flash size, bytes */
263                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
264                 uint pgsz;          /* NAND flash page size, bytes */
265                 uint oobsz;         /* page OOB area size, bytes */
266                 uint32_t totszoob;  /* total flash size including OOB, bytes */
267                 uint pgszoob;       /* page size including OOB , bytes*/
268                 uint secszoob;      /* sector size including OOB, bytes */
269                 uint pgnum;         /* total number of pages */
270                 uint pgsec;         /* number of pages per sector */
271                 uint secshift;      /* bits number in sector size */
272                 uint pgshift;       /* bits number in page size */
273                 uint oobshift;      /* bits number in OOB size */
274                 uint pgaddrbytes;   /* bytes per page address */
275                 uint secaddrbytes;  /* bytes per sector address */
276                 uint idbytes;       /* the number ID bytes that this chip outputs */
277         } geom;
278
279         /* NAND flash internal registers */
280         struct nandsim_regs {
281                 unsigned command; /* the command register */
282                 u_char   status;  /* the status register */
283                 uint     row;     /* the page number */
284                 uint     column;  /* the offset within page */
285                 uint     count;   /* internal counter */
286                 uint     num;     /* number of bytes which must be processed */
287                 uint     off;     /* fixed page offset */
288         } regs;
289
290         /* NAND flash lines state */
291         struct ns_lines_status {
292                 int ce;  /* chip Enable */
293                 int cle; /* command Latch Enable */
294                 int ale; /* address Latch Enable */
295                 int wp;  /* write Protect */
296         } lines;
297 };
298
299 /*
300  * Operations array. To perform any operation the simulator must pass
301  * through the correspondent states chain.
302  */
303 static struct nandsim_operations {
304         uint32_t reqopts;  /* options which are required to perform the operation */
305         uint32_t states[NS_OPER_STATES]; /* operation's states */
306 } ops[NS_OPER_NUM] = {
307         /* Read page + OOB from the beginning */
308         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
309                         STATE_DATAOUT, STATE_READY}},
310         /* Read page + OOB from the second half */
311         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
312                         STATE_DATAOUT, STATE_READY}},
313         /* Read OOB */
314         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
315                         STATE_DATAOUT, STATE_READY}},
316         /* Programm page starting from the beginning */
317         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
318                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
319         /* Programm page starting from the beginning */
320         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
321                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
322         /* Programm page starting from the second half */
323         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
324                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
325         /* Programm OOB */
326         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
327                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
328         /* Erase sector */
329         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
330         /* Read status */
331         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
332         /* Read multi-plane status */
333         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
334         /* Read ID */
335         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
336         /* Large page devices read page */
337         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
338                                STATE_DATAOUT, STATE_READY}}
339 };
340
341 /* MTD structure for NAND controller */
342 static struct mtd_info *nsmtd;
343
344 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
345
346 /*
347  * Allocate array of page pointers and initialize the array to NULL
348  * pointers.
349  *
350  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
351  */
352 static int alloc_device(struct nandsim *ns)
353 {
354         int i;
355
356         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
357         if (!ns->pages) {
358                 NS_ERR("alloc_map: unable to allocate page array\n");
359                 return -ENOMEM;
360         }
361         for (i = 0; i < ns->geom.pgnum; i++) {
362                 ns->pages[i].byte = NULL;
363         }
364
365         return 0;
366 }
367
368 /*
369  * Free any allocated pages, and free the array of page pointers.
370  */
371 static void free_device(struct nandsim *ns)
372 {
373         int i;
374
375         if (ns->pages) {
376                 for (i = 0; i < ns->geom.pgnum; i++) {
377                         if (ns->pages[i].byte)
378                                 kfree(ns->pages[i].byte);
379                 }
380                 vfree(ns->pages);
381         }
382 }
383
384 /*
385  * Initialize the nandsim structure.
386  *
387  * RETURNS: 0 if success, -ERRNO if failure.
388  */
389 static int init_nandsim(struct mtd_info *mtd)
390 {
391         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
392         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
393         int i;
394
395         if (NS_IS_INITIALIZED(ns)) {
396                 NS_ERR("init_nandsim: nandsim is already initialized\n");
397                 return -EIO;
398         }
399
400         /* Force mtd to not do delays */
401         chip->chip_delay = 0;
402
403         /* Initialize the NAND flash parameters */
404         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
405         ns->geom.totsz    = mtd->size;
406         ns->geom.pgsz     = mtd->writesize;
407         ns->geom.oobsz    = mtd->oobsize;
408         ns->geom.secsz    = mtd->erasesize;
409         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
410         ns->geom.pgnum    = ns->geom.totsz / ns->geom.pgsz;
411         ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
412         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
413         ns->geom.pgshift  = chip->page_shift;
414         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
415         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
416         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
417         ns->options = 0;
418
419         if (ns->geom.pgsz == 256) {
420                 ns->options |= OPT_PAGE256;
421         }
422         else if (ns->geom.pgsz == 512) {
423                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
424                 if (ns->busw == 8)
425                         ns->options |= OPT_PAGE512_8BIT;
426         } else if (ns->geom.pgsz == 2048) {
427                 ns->options |= OPT_PAGE2048;
428         } else {
429                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
430                 return -EIO;
431         }
432
433         if (ns->options & OPT_SMALLPAGE) {
434                 if (ns->geom.totsz < (64 << 20)) {
435                         ns->geom.pgaddrbytes  = 3;
436                         ns->geom.secaddrbytes = 2;
437                 } else {
438                         ns->geom.pgaddrbytes  = 4;
439                         ns->geom.secaddrbytes = 3;
440                 }
441         } else {
442                 if (ns->geom.totsz <= (128 << 20)) {
443                         ns->geom.pgaddrbytes  = 4;
444                         ns->geom.secaddrbytes = 2;
445                 } else {
446                         ns->geom.pgaddrbytes  = 5;
447                         ns->geom.secaddrbytes = 3;
448                 }
449         }
450
451         /* Detect how many ID bytes the NAND chip outputs */
452         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
453                 if (second_id_byte != nand_flash_ids[i].id)
454                         continue;
455                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
456                         ns->options |= OPT_AUTOINCR;
457         }
458
459         if (ns->busw == 16)
460                 NS_WARN("16-bit flashes support wasn't tested\n");
461
462         printk("flash size: %u MiB\n",          ns->geom.totsz >> 20);
463         printk("page size: %u bytes\n",         ns->geom.pgsz);
464         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
465         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
466         printk("pages number: %u\n",            ns->geom.pgnum);
467         printk("pages per sector: %u\n",        ns->geom.pgsec);
468         printk("bus width: %u\n",               ns->busw);
469         printk("bits in sector size: %u\n",     ns->geom.secshift);
470         printk("bits in page size: %u\n",       ns->geom.pgshift);
471         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
472         printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
473         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
474         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
475         printk("options: %#x\n",                ns->options);
476
477         if (alloc_device(ns) != 0)
478                 goto error;
479
480         /* Allocate / initialize the internal buffer */
481         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
482         if (!ns->buf.byte) {
483                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
484                         ns->geom.pgszoob);
485                 goto error;
486         }
487         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
488
489         /* Fill the partition_info structure */
490         ns->part.name   = "NAND simulator partition";
491         ns->part.offset = 0;
492         ns->part.size   = ns->geom.totsz;
493
494         return 0;
495
496 error:
497         free_device(ns);
498
499         return -ENOMEM;
500 }
501
502 /*
503  * Free the nandsim structure.
504  */
505 static void free_nandsim(struct nandsim *ns)
506 {
507         kfree(ns->buf.byte);
508         free_device(ns);
509
510         return;
511 }
512
513 /*
514  * Returns the string representation of 'state' state.
515  */
516 static char *get_state_name(uint32_t state)
517 {
518         switch (NS_STATE(state)) {
519                 case STATE_CMD_READ0:
520                         return "STATE_CMD_READ0";
521                 case STATE_CMD_READ1:
522                         return "STATE_CMD_READ1";
523                 case STATE_CMD_PAGEPROG:
524                         return "STATE_CMD_PAGEPROG";
525                 case STATE_CMD_READOOB:
526                         return "STATE_CMD_READOOB";
527                 case STATE_CMD_READSTART:
528                         return "STATE_CMD_READSTART";
529                 case STATE_CMD_ERASE1:
530                         return "STATE_CMD_ERASE1";
531                 case STATE_CMD_STATUS:
532                         return "STATE_CMD_STATUS";
533                 case STATE_CMD_STATUS_M:
534                         return "STATE_CMD_STATUS_M";
535                 case STATE_CMD_SEQIN:
536                         return "STATE_CMD_SEQIN";
537                 case STATE_CMD_READID:
538                         return "STATE_CMD_READID";
539                 case STATE_CMD_ERASE2:
540                         return "STATE_CMD_ERASE2";
541                 case STATE_CMD_RESET:
542                         return "STATE_CMD_RESET";
543                 case STATE_ADDR_PAGE:
544                         return "STATE_ADDR_PAGE";
545                 case STATE_ADDR_SEC:
546                         return "STATE_ADDR_SEC";
547                 case STATE_ADDR_ZERO:
548                         return "STATE_ADDR_ZERO";
549                 case STATE_DATAIN:
550                         return "STATE_DATAIN";
551                 case STATE_DATAOUT:
552                         return "STATE_DATAOUT";
553                 case STATE_DATAOUT_ID:
554                         return "STATE_DATAOUT_ID";
555                 case STATE_DATAOUT_STATUS:
556                         return "STATE_DATAOUT_STATUS";
557                 case STATE_DATAOUT_STATUS_M:
558                         return "STATE_DATAOUT_STATUS_M";
559                 case STATE_READY:
560                         return "STATE_READY";
561                 case STATE_UNKNOWN:
562                         return "STATE_UNKNOWN";
563         }
564
565         NS_ERR("get_state_name: unknown state, BUG\n");
566         return NULL;
567 }
568
569 /*
570  * Check if command is valid.
571  *
572  * RETURNS: 1 if wrong command, 0 if right.
573  */
574 static int check_command(int cmd)
575 {
576         switch (cmd) {
577
578         case NAND_CMD_READ0:
579         case NAND_CMD_READSTART:
580         case NAND_CMD_PAGEPROG:
581         case NAND_CMD_READOOB:
582         case NAND_CMD_ERASE1:
583         case NAND_CMD_STATUS:
584         case NAND_CMD_SEQIN:
585         case NAND_CMD_READID:
586         case NAND_CMD_ERASE2:
587         case NAND_CMD_RESET:
588         case NAND_CMD_READ1:
589                 return 0;
590
591         case NAND_CMD_STATUS_MULTI:
592         default:
593                 return 1;
594         }
595 }
596
597 /*
598  * Returns state after command is accepted by command number.
599  */
600 static uint32_t get_state_by_command(unsigned command)
601 {
602         switch (command) {
603                 case NAND_CMD_READ0:
604                         return STATE_CMD_READ0;
605                 case NAND_CMD_READ1:
606                         return STATE_CMD_READ1;
607                 case NAND_CMD_PAGEPROG:
608                         return STATE_CMD_PAGEPROG;
609                 case NAND_CMD_READSTART:
610                         return STATE_CMD_READSTART;
611                 case NAND_CMD_READOOB:
612                         return STATE_CMD_READOOB;
613                 case NAND_CMD_ERASE1:
614                         return STATE_CMD_ERASE1;
615                 case NAND_CMD_STATUS:
616                         return STATE_CMD_STATUS;
617                 case NAND_CMD_STATUS_MULTI:
618                         return STATE_CMD_STATUS_M;
619                 case NAND_CMD_SEQIN:
620                         return STATE_CMD_SEQIN;
621                 case NAND_CMD_READID:
622                         return STATE_CMD_READID;
623                 case NAND_CMD_ERASE2:
624                         return STATE_CMD_ERASE2;
625                 case NAND_CMD_RESET:
626                         return STATE_CMD_RESET;
627         }
628
629         NS_ERR("get_state_by_command: unknown command, BUG\n");
630         return 0;
631 }
632
633 /*
634  * Move an address byte to the correspondent internal register.
635  */
636 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
637 {
638         uint byte = (uint)bt;
639
640         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
641                 ns->regs.column |= (byte << 8 * ns->regs.count);
642         else {
643                 ns->regs.row |= (byte << 8 * (ns->regs.count -
644                                                 ns->geom.pgaddrbytes +
645                                                 ns->geom.secaddrbytes));
646         }
647
648         return;
649 }
650
651 /*
652  * Switch to STATE_READY state.
653  */
654 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
655 {
656         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
657
658         ns->state       = STATE_READY;
659         ns->nxstate     = STATE_UNKNOWN;
660         ns->op          = NULL;
661         ns->npstates    = 0;
662         ns->stateidx    = 0;
663         ns->regs.num    = 0;
664         ns->regs.count  = 0;
665         ns->regs.off    = 0;
666         ns->regs.row    = 0;
667         ns->regs.column = 0;
668         ns->regs.status = status;
669 }
670
671 /*
672  * If the operation isn't known yet, try to find it in the global array
673  * of supported operations.
674  *
675  * Operation can be unknown because of the following.
676  *   1. New command was accepted and this is the firs call to find the
677  *      correspondent states chain. In this case ns->npstates = 0;
678  *   2. There is several operations which begin with the same command(s)
679  *      (for example program from the second half and read from the
680  *      second half operations both begin with the READ1 command). In this
681  *      case the ns->pstates[] array contains previous states.
682  *
683  * Thus, the function tries to find operation containing the following
684  * states (if the 'flag' parameter is 0):
685  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
686  *
687  * If (one and only one) matching operation is found, it is accepted (
688  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
689  * zeroed).
690  *
691  * If there are several maches, the current state is pushed to the
692  * ns->pstates.
693  *
694  * The operation can be unknown only while commands are input to the chip.
695  * As soon as address command is accepted, the operation must be known.
696  * In such situation the function is called with 'flag' != 0, and the
697  * operation is searched using the following pattern:
698  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
699  *
700  * It is supposed that this pattern must either match one operation on
701  * none. There can't be ambiguity in that case.
702  *
703  * If no matches found, the functions does the following:
704  *   1. if there are saved states present, try to ignore them and search
705  *      again only using the last command. If nothing was found, switch
706  *      to the STATE_READY state.
707  *   2. if there are no saved states, switch to the STATE_READY state.
708  *
709  * RETURNS: -2 - no matched operations found.
710  *          -1 - several matches.
711  *           0 - operation is found.
712  */
713 static int find_operation(struct nandsim *ns, uint32_t flag)
714 {
715         int opsfound = 0;
716         int i, j, idx = 0;
717
718         for (i = 0; i < NS_OPER_NUM; i++) {
719
720                 int found = 1;
721
722                 if (!(ns->options & ops[i].reqopts))
723                         /* Ignore operations we can't perform */
724                         continue;
725
726                 if (flag) {
727                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
728                                 continue;
729                 } else {
730                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
731                                 continue;
732                 }
733
734                 for (j = 0; j < ns->npstates; j++)
735                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
736                                 && (ns->options & ops[idx].reqopts)) {
737                                 found = 0;
738                                 break;
739                         }
740
741                 if (found) {
742                         idx = i;
743                         opsfound += 1;
744                 }
745         }
746
747         if (opsfound == 1) {
748                 /* Exact match */
749                 ns->op = &ops[idx].states[0];
750                 if (flag) {
751                         /*
752                          * In this case the find_operation function was
753                          * called when address has just began input. But it isn't
754                          * yet fully input and the current state must
755                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
756                          * state must be the next state (ns->nxstate).
757                          */
758                         ns->stateidx = ns->npstates - 1;
759                 } else {
760                         ns->stateidx = ns->npstates;
761                 }
762                 ns->npstates = 0;
763                 ns->state = ns->op[ns->stateidx];
764                 ns->nxstate = ns->op[ns->stateidx + 1];
765                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
766                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
767                 return 0;
768         }
769
770         if (opsfound == 0) {
771                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
772                 if (ns->npstates != 0) {
773                         NS_DBG("find_operation: no operation found, try again with state %s\n",
774                                         get_state_name(ns->state));
775                         ns->npstates = 0;
776                         return find_operation(ns, 0);
777
778                 }
779                 NS_DBG("find_operation: no operations found\n");
780                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
781                 return -2;
782         }
783
784         if (flag) {
785                 /* This shouldn't happen */
786                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
787                 return -2;
788         }
789
790         NS_DBG("find_operation: there is still ambiguity\n");
791
792         ns->pstates[ns->npstates++] = ns->state;
793
794         return -1;
795 }
796
797 /*
798  * Returns a pointer to the current page.
799  */
800 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
801 {
802         return &(ns->pages[ns->regs.row]);
803 }
804
805 /*
806  * Retuns a pointer to the current byte, within the current page.
807  */
808 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
809 {
810         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
811 }
812
813 /*
814  * Fill the NAND buffer with data read from the specified page.
815  */
816 static void read_page(struct nandsim *ns, int num)
817 {
818         union ns_mem *mypage;
819
820         mypage = NS_GET_PAGE(ns);
821         if (mypage->byte == NULL) {
822                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
823                 memset(ns->buf.byte, 0xFF, num);
824         } else {
825                 NS_DBG("read_page: page %d allocated, reading from %d\n",
826                         ns->regs.row, ns->regs.column + ns->regs.off);
827                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
828         }
829 }
830
831 /*
832  * Erase all pages in the specified sector.
833  */
834 static void erase_sector(struct nandsim *ns)
835 {
836         union ns_mem *mypage;
837         int i;
838
839         mypage = NS_GET_PAGE(ns);
840         for (i = 0; i < ns->geom.pgsec; i++) {
841                 if (mypage->byte != NULL) {
842                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
843                         kfree(mypage->byte);
844                         mypage->byte = NULL;
845                 }
846                 mypage++;
847         }
848 }
849
850 /*
851  * Program the specified page with the contents from the NAND buffer.
852  */
853 static int prog_page(struct nandsim *ns, int num)
854 {
855         int i;
856         union ns_mem *mypage;
857         u_char *pg_off;
858
859         mypage = NS_GET_PAGE(ns);
860         if (mypage->byte == NULL) {
861                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
862                 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
863                 if (mypage->byte == NULL) {
864                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
865                         return -1;
866                 }
867                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
868         }
869
870         pg_off = NS_PAGE_BYTE_OFF(ns);
871         for (i = 0; i < num; i++)
872                 pg_off[i] &= ns->buf.byte[i];
873
874         return 0;
875 }
876
877 /*
878  * If state has any action bit, perform this action.
879  *
880  * RETURNS: 0 if success, -1 if error.
881  */
882 static int do_state_action(struct nandsim *ns, uint32_t action)
883 {
884         int num;
885         int busdiv = ns->busw == 8 ? 1 : 2;
886
887         action &= ACTION_MASK;
888
889         /* Check that page address input is correct */
890         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
891                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
892                 return -1;
893         }
894
895         switch (action) {
896
897         case ACTION_CPY:
898                 /*
899                  * Copy page data to the internal buffer.
900                  */
901
902                 /* Column shouldn't be very large */
903                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
904                         NS_ERR("do_state_action: column number is too large\n");
905                         break;
906                 }
907                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
908                 read_page(ns, num);
909
910                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
911                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
912
913                 if (ns->regs.off == 0)
914                         NS_LOG("read page %d\n", ns->regs.row);
915                 else if (ns->regs.off < ns->geom.pgsz)
916                         NS_LOG("read page %d (second half)\n", ns->regs.row);
917                 else
918                         NS_LOG("read OOB of page %d\n", ns->regs.row);
919
920                 NS_UDELAY(access_delay);
921                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
922
923                 break;
924
925         case ACTION_SECERASE:
926                 /*
927                  * Erase sector.
928                  */
929
930                 if (ns->lines.wp) {
931                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
932                         return -1;
933                 }
934
935                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
936                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
937                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
938                         return -1;
939                 }
940
941                 ns->regs.row = (ns->regs.row <<
942                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
943                 ns->regs.column = 0;
944
945                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
946                                 ns->regs.row, NS_RAW_OFFSET(ns));
947                 NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
948
949                 erase_sector(ns);
950
951                 NS_MDELAY(erase_delay);
952
953                 break;
954
955         case ACTION_PRGPAGE:
956                 /*
957                  * Programm page - move internal buffer data to the page.
958                  */
959
960                 if (ns->lines.wp) {
961                         NS_WARN("do_state_action: device is write-protected, programm\n");
962                         return -1;
963                 }
964
965                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
966                 if (num != ns->regs.count) {
967                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
968                                         ns->regs.count, num);
969                         return -1;
970                 }
971
972                 if (prog_page(ns, num) == -1)
973                         return -1;
974
975                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
976                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
977                 NS_LOG("programm page %d\n", ns->regs.row);
978
979                 NS_UDELAY(programm_delay);
980                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
981
982                 break;
983
984         case ACTION_ZEROOFF:
985                 NS_DBG("do_state_action: set internal offset to 0\n");
986                 ns->regs.off = 0;
987                 break;
988
989         case ACTION_HALFOFF:
990                 if (!(ns->options & OPT_PAGE512_8BIT)) {
991                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
992                                 "byte page size 8x chips\n");
993                         return -1;
994                 }
995                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
996                 ns->regs.off = ns->geom.pgsz/2;
997                 break;
998
999         case ACTION_OOBOFF:
1000                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1001                 ns->regs.off = ns->geom.pgsz;
1002                 break;
1003
1004         default:
1005                 NS_DBG("do_state_action: BUG! unknown action\n");
1006         }
1007
1008         return 0;
1009 }
1010
1011 /*
1012  * Switch simulator's state.
1013  */
1014 static void switch_state(struct nandsim *ns)
1015 {
1016         if (ns->op) {
1017                 /*
1018                  * The current operation have already been identified.
1019                  * Just follow the states chain.
1020                  */
1021
1022                 ns->stateidx += 1;
1023                 ns->state = ns->nxstate;
1024                 ns->nxstate = ns->op[ns->stateidx + 1];
1025
1026                 NS_DBG("switch_state: operation is known, switch to the next state, "
1027                         "state: %s, nxstate: %s\n",
1028                         get_state_name(ns->state), get_state_name(ns->nxstate));
1029
1030                 /* See, whether we need to do some action */
1031                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1032                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1033                         return;
1034                 }
1035
1036         } else {
1037                 /*
1038                  * We don't yet know which operation we perform.
1039                  * Try to identify it.
1040                  */
1041
1042                 /*
1043                  *  The only event causing the switch_state function to
1044                  *  be called with yet unknown operation is new command.
1045                  */
1046                 ns->state = get_state_by_command(ns->regs.command);
1047
1048                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1049
1050                 if (find_operation(ns, 0) != 0)
1051                         return;
1052
1053                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1054                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1055                         return;
1056                 }
1057         }
1058
1059         /* For 16x devices column means the page offset in words */
1060         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1061                 NS_DBG("switch_state: double the column number for 16x device\n");
1062                 ns->regs.column <<= 1;
1063         }
1064
1065         if (NS_STATE(ns->nxstate) == STATE_READY) {
1066                 /*
1067                  * The current state is the last. Return to STATE_READY
1068                  */
1069
1070                 u_char status = NS_STATUS_OK(ns);
1071
1072                 /* In case of data states, see if all bytes were input/output */
1073                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1074                         && ns->regs.count != ns->regs.num) {
1075                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1076                                         ns->regs.num - ns->regs.count);
1077                         status = NS_STATUS_FAILED(ns);
1078                 }
1079
1080                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1081
1082                 switch_to_ready_state(ns, status);
1083
1084                 return;
1085         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1086                 /*
1087                  * If the next state is data input/output, switch to it now
1088                  */
1089
1090                 ns->state      = ns->nxstate;
1091                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1092                 ns->regs.num   = ns->regs.count = 0;
1093
1094                 NS_DBG("switch_state: the next state is data I/O, switch, "
1095                         "state: %s, nxstate: %s\n",
1096                         get_state_name(ns->state), get_state_name(ns->nxstate));
1097
1098                 /*
1099                  * Set the internal register to the count of bytes which
1100                  * are expected to be input or output
1101                  */
1102                 switch (NS_STATE(ns->state)) {
1103                         case STATE_DATAIN:
1104                         case STATE_DATAOUT:
1105                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1106                                 break;
1107
1108                         case STATE_DATAOUT_ID:
1109                                 ns->regs.num = ns->geom.idbytes;
1110                                 break;
1111
1112                         case STATE_DATAOUT_STATUS:
1113                         case STATE_DATAOUT_STATUS_M:
1114                                 ns->regs.count = ns->regs.num = 0;
1115                                 break;
1116
1117                         default:
1118                                 NS_ERR("switch_state: BUG! unknown data state\n");
1119                 }
1120
1121         } else if (ns->nxstate & STATE_ADDR_MASK) {
1122                 /*
1123                  * If the next state is address input, set the internal
1124                  * register to the number of expected address bytes
1125                  */
1126
1127                 ns->regs.count = 0;
1128
1129                 switch (NS_STATE(ns->nxstate)) {
1130                         case STATE_ADDR_PAGE:
1131                                 ns->regs.num = ns->geom.pgaddrbytes;
1132
1133                                 break;
1134                         case STATE_ADDR_SEC:
1135                                 ns->regs.num = ns->geom.secaddrbytes;
1136                                 break;
1137
1138                         case STATE_ADDR_ZERO:
1139                                 ns->regs.num = 1;
1140                                 break;
1141
1142                         default:
1143                                 NS_ERR("switch_state: BUG! unknown address state\n");
1144                 }
1145         } else {
1146                 /*
1147                  * Just reset internal counters.
1148                  */
1149
1150                 ns->regs.num = 0;
1151                 ns->regs.count = 0;
1152         }
1153 }
1154
1155 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1156 {
1157         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1158         u_char outb = 0x00;
1159
1160         /* Sanity and correctness checks */
1161         if (!ns->lines.ce) {
1162                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1163                 return outb;
1164         }
1165         if (ns->lines.ale || ns->lines.cle) {
1166                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1167                 return outb;
1168         }
1169         if (!(ns->state & STATE_DATAOUT_MASK)) {
1170                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1171                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1172                 return outb;
1173         }
1174
1175         /* Status register may be read as many times as it is wanted */
1176         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1177                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1178                 return ns->regs.status;
1179         }
1180
1181         /* Check if there is any data in the internal buffer which may be read */
1182         if (ns->regs.count == ns->regs.num) {
1183                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1184                 return outb;
1185         }
1186
1187         switch (NS_STATE(ns->state)) {
1188                 case STATE_DATAOUT:
1189                         if (ns->busw == 8) {
1190                                 outb = ns->buf.byte[ns->regs.count];
1191                                 ns->regs.count += 1;
1192                         } else {
1193                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1194                                 ns->regs.count += 2;
1195                         }
1196                         break;
1197                 case STATE_DATAOUT_ID:
1198                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1199                         outb = ns->ids[ns->regs.count];
1200                         ns->regs.count += 1;
1201                         break;
1202                 default:
1203                         BUG();
1204         }
1205
1206         if (ns->regs.count == ns->regs.num) {
1207                 NS_DBG("read_byte: all bytes were read\n");
1208
1209                 /*
1210                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1211                  * new read operation cycle.
1212                  */
1213                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1214                         ns->regs.count = 0;
1215                         if (ns->regs.row + 1 < ns->geom.pgnum)
1216                                 ns->regs.row += 1;
1217                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1218                         do_state_action(ns, ACTION_CPY);
1219                 }
1220                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1221                         switch_state(ns);
1222
1223         }
1224
1225         return outb;
1226 }
1227
1228 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1229 {
1230         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1231
1232         /* Sanity and correctness checks */
1233         if (!ns->lines.ce) {
1234                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1235                 return;
1236         }
1237         if (ns->lines.ale && ns->lines.cle) {
1238                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1239                 return;
1240         }
1241
1242         if (ns->lines.cle == 1) {
1243                 /*
1244                  * The byte written is a command.
1245                  */
1246
1247                 if (byte == NAND_CMD_RESET) {
1248                         NS_LOG("reset chip\n");
1249                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1250                         return;
1251                 }
1252
1253                 /*
1254                  * Chip might still be in STATE_DATAOUT
1255                  * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1256                  * STATE_DATAOUT_STATUS_M state. If so, switch state.
1257                  */
1258                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1259                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1260                         || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1261                         switch_state(ns);
1262
1263                 /* Check if chip is expecting command */
1264                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1265                         /*
1266                          * We are in situation when something else (not command)
1267                          * was expected but command was input. In this case ignore
1268                          * previous command(s)/state(s) and accept the last one.
1269                          */
1270                         NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1271                                 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1272                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1273                 }
1274
1275                 /* Check that the command byte is correct */
1276                 if (check_command(byte)) {
1277                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1278                         return;
1279                 }
1280
1281                 NS_DBG("command byte corresponding to %s state accepted\n",
1282                         get_state_name(get_state_by_command(byte)));
1283                 ns->regs.command = byte;
1284                 switch_state(ns);
1285
1286         } else if (ns->lines.ale == 1) {
1287                 /*
1288                  * The byte written is an address.
1289                  */
1290
1291                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1292
1293                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
1294
1295                         if (find_operation(ns, 1) < 0)
1296                                 return;
1297
1298                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1299                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1300                                 return;
1301                         }
1302
1303                         ns->regs.count = 0;
1304                         switch (NS_STATE(ns->nxstate)) {
1305                                 case STATE_ADDR_PAGE:
1306                                         ns->regs.num = ns->geom.pgaddrbytes;
1307                                         break;
1308                                 case STATE_ADDR_SEC:
1309                                         ns->regs.num = ns->geom.secaddrbytes;
1310                                         break;
1311                                 case STATE_ADDR_ZERO:
1312                                         ns->regs.num = 1;
1313                                         break;
1314                                 default:
1315                                         BUG();
1316                         }
1317                 }
1318
1319                 /* Check that chip is expecting address */
1320                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1321                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1322                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1323                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1324                         return;
1325                 }
1326
1327                 /* Check if this is expected byte */
1328                 if (ns->regs.count == ns->regs.num) {
1329                         NS_ERR("write_byte: no more address bytes expected\n");
1330                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1331                         return;
1332                 }
1333
1334                 accept_addr_byte(ns, byte);
1335
1336                 ns->regs.count += 1;
1337
1338                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1339                                 (uint)byte, ns->regs.count, ns->regs.num);
1340
1341                 if (ns->regs.count == ns->regs.num) {
1342                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1343                         switch_state(ns);
1344                 }
1345
1346         } else {
1347                 /*
1348                  * The byte written is an input data.
1349                  */
1350
1351                 /* Check that chip is expecting data input */
1352                 if (!(ns->state & STATE_DATAIN_MASK)) {
1353                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1354                                 "switch to %s\n", (uint)byte,
1355                                 get_state_name(ns->state), get_state_name(STATE_READY));
1356                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1357                         return;
1358                 }
1359
1360                 /* Check if this is expected byte */
1361                 if (ns->regs.count == ns->regs.num) {
1362                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1363                                         ns->regs.num);
1364                         return;
1365                 }
1366
1367                 if (ns->busw == 8) {
1368                         ns->buf.byte[ns->regs.count] = byte;
1369                         ns->regs.count += 1;
1370                 } else {
1371                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1372                         ns->regs.count += 2;
1373                 }
1374         }
1375
1376         return;
1377 }
1378
1379 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1380 {
1381         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1382
1383         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1384         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1385         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1386
1387         if (cmd != NAND_CMD_NONE)
1388                 ns_nand_write_byte(mtd, cmd);
1389 }
1390
1391 static int ns_device_ready(struct mtd_info *mtd)
1392 {
1393         NS_DBG("device_ready\n");
1394         return 1;
1395 }
1396
1397 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1398 {
1399         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1400
1401         NS_DBG("read_word\n");
1402
1403         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1404 }
1405
1406 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1407 {
1408         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1409
1410         /* Check that chip is expecting data input */
1411         if (!(ns->state & STATE_DATAIN_MASK)) {
1412                 NS_ERR("write_buf: data input isn't expected, state is %s, "
1413                         "switch to STATE_READY\n", get_state_name(ns->state));
1414                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1415                 return;
1416         }
1417
1418         /* Check if these are expected bytes */
1419         if (ns->regs.count + len > ns->regs.num) {
1420                 NS_ERR("write_buf: too many input bytes\n");
1421                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1422                 return;
1423         }
1424
1425         memcpy(ns->buf.byte + ns->regs.count, buf, len);
1426         ns->regs.count += len;
1427
1428         if (ns->regs.count == ns->regs.num) {
1429                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1430         }
1431 }
1432
1433 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1434 {
1435         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1436
1437         /* Sanity and correctness checks */
1438         if (!ns->lines.ce) {
1439                 NS_ERR("read_buf: chip is disabled\n");
1440                 return;
1441         }
1442         if (ns->lines.ale || ns->lines.cle) {
1443                 NS_ERR("read_buf: ALE or CLE pin is high\n");
1444                 return;
1445         }
1446         if (!(ns->state & STATE_DATAOUT_MASK)) {
1447                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1448                         get_state_name(ns->state));
1449                 return;
1450         }
1451
1452         if (NS_STATE(ns->state) != STATE_DATAOUT) {
1453                 int i;
1454
1455                 for (i = 0; i < len; i++)
1456                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1457
1458                 return;
1459         }
1460
1461         /* Check if these are expected bytes */
1462         if (ns->regs.count + len > ns->regs.num) {
1463                 NS_ERR("read_buf: too many bytes to read\n");
1464                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1465                 return;
1466         }
1467
1468         memcpy(buf, ns->buf.byte + ns->regs.count, len);
1469         ns->regs.count += len;
1470
1471         if (ns->regs.count == ns->regs.num) {
1472                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1473                         ns->regs.count = 0;
1474                         if (ns->regs.row + 1 < ns->geom.pgnum)
1475                                 ns->regs.row += 1;
1476                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1477                         do_state_action(ns, ACTION_CPY);
1478                 }
1479                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1480                         switch_state(ns);
1481         }
1482
1483         return;
1484 }
1485
1486 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1487 {
1488         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1489
1490         if (!memcmp(buf, &ns_verify_buf[0], len)) {
1491                 NS_DBG("verify_buf: the buffer is OK\n");
1492                 return 0;
1493         } else {
1494                 NS_DBG("verify_buf: the buffer is wrong\n");
1495                 return -EFAULT;
1496         }
1497 }
1498
1499 /*
1500  * Module initialization function
1501  */
1502 static int __init ns_init_module(void)
1503 {
1504         struct nand_chip *chip;
1505         struct nandsim *nand;
1506         int retval = -ENOMEM;
1507
1508         if (bus_width != 8 && bus_width != 16) {
1509                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1510                 return -EINVAL;
1511         }
1512
1513         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1514         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1515                                 + sizeof(struct nandsim), GFP_KERNEL);
1516         if (!nsmtd) {
1517                 NS_ERR("unable to allocate core structures.\n");
1518                 return -ENOMEM;
1519         }
1520         chip        = (struct nand_chip *)(nsmtd + 1);
1521         nsmtd->priv = (void *)chip;
1522         nand        = (struct nandsim *)(chip + 1);
1523         chip->priv  = (void *)nand;
1524
1525         /*
1526          * Register simulator's callbacks.
1527          */
1528         chip->cmd_ctrl   = ns_hwcontrol;
1529         chip->read_byte  = ns_nand_read_byte;
1530         chip->dev_ready  = ns_device_ready;
1531         chip->write_buf  = ns_nand_write_buf;
1532         chip->read_buf   = ns_nand_read_buf;
1533         chip->verify_buf = ns_nand_verify_buf;
1534         chip->read_word  = ns_nand_read_word;
1535         chip->ecc.mode   = NAND_ECC_SOFT;
1536         chip->options   |= NAND_SKIP_BBTSCAN;
1537
1538         /*
1539          * Perform minimum nandsim structure initialization to handle
1540          * the initial ID read command correctly
1541          */
1542         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1543                 nand->geom.idbytes = 4;
1544         else
1545                 nand->geom.idbytes = 2;
1546         nand->regs.status = NS_STATUS_OK(nand);
1547         nand->nxstate = STATE_UNKNOWN;
1548         nand->options |= OPT_PAGE256; /* temporary value */
1549         nand->ids[0] = first_id_byte;
1550         nand->ids[1] = second_id_byte;
1551         nand->ids[2] = third_id_byte;
1552         nand->ids[3] = fourth_id_byte;
1553         if (bus_width == 16) {
1554                 nand->busw = 16;
1555                 chip->options |= NAND_BUSWIDTH_16;
1556         }
1557
1558         nsmtd->owner = THIS_MODULE;
1559
1560         if ((retval = nand_scan(nsmtd, 1)) != 0) {
1561                 NS_ERR("can't register NAND Simulator\n");
1562                 if (retval > 0)
1563                         retval = -ENXIO;
1564                 goto error;
1565         }
1566
1567         if ((retval = init_nandsim(nsmtd)) != 0) {
1568                 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1569                 goto error;
1570         }
1571
1572         if ((retval = nand_default_bbt(nsmtd)) != 0) {
1573                 free_nandsim(nand);
1574                 goto error;
1575         }
1576
1577         /* Register NAND as one big partition */
1578         add_mtd_partitions(nsmtd, &nand->part, 1);
1579
1580         return 0;
1581
1582 error:
1583         kfree(nsmtd);
1584
1585         return retval;
1586 }
1587
1588 module_init(ns_init_module);
1589
1590 /*
1591  * Module clean-up function
1592  */
1593 static void __exit ns_cleanup_module(void)
1594 {
1595         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
1596
1597         free_nandsim(ns);    /* Free nandsim private resources */
1598         nand_release(nsmtd); /* Unregisterd drived */
1599         kfree(nsmtd);        /* Free other structures */
1600 }
1601
1602 module_exit(ns_cleanup_module);
1603
1604 MODULE_LICENSE ("GPL");
1605 MODULE_AUTHOR ("Artem B. Bityuckiy");
1606 MODULE_DESCRIPTION ("The NAND flash simulator");
1607