4 * Copyright IBM Corp. 2006
5 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
8 #include <linux/bootmem.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
20 static DEFINE_MUTEX(vmem_mutex);
22 struct memory_segment {
23 struct list_head list;
28 static LIST_HEAD(mem_segs);
30 static void __ref *vmem_alloc_pages(unsigned int order)
32 if (slab_is_available())
33 return (void *)__get_free_pages(GFP_KERNEL, order);
34 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
37 static inline pud_t *vmem_pud_alloc(void)
42 pud = vmem_alloc_pages(2);
45 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
50 static inline pmd_t *vmem_pmd_alloc(void)
55 pmd = vmem_alloc_pages(2);
58 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
63 static pte_t __ref *vmem_pte_alloc(void)
67 if (slab_is_available())
68 pte = (pte_t *) page_table_alloc(&init_mm);
70 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
73 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
74 PTRS_PER_PTE * sizeof(pte_t));
79 * Add a physical memory range to the 1:1 mapping.
81 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83 unsigned long address;
91 for (address = start; address < start + size; address += PAGE_SIZE) {
92 pg_dir = pgd_offset_k(address);
93 if (pgd_none(*pg_dir)) {
94 pu_dir = vmem_pud_alloc();
97 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
100 pu_dir = pud_offset(pg_dir, address);
101 if (pud_none(*pu_dir)) {
102 pm_dir = vmem_pmd_alloc();
105 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
108 pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
109 pm_dir = pmd_offset(pu_dir, address);
112 if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
113 (address + HPAGE_SIZE <= start + size) &&
114 (address >= HPAGE_SIZE)) {
115 pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
116 pmd_val(*pm_dir) = pte_val(pte);
117 address += HPAGE_SIZE - PAGE_SIZE;
121 if (pmd_none(*pm_dir)) {
122 pt_dir = vmem_pte_alloc();
125 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
128 pt_dir = pte_offset_kernel(pm_dir, address);
133 flush_tlb_kernel_range(start, start + size);
138 * Remove a physical memory range from the 1:1 mapping.
139 * Currently only invalidates page table entries.
141 static void vmem_remove_range(unsigned long start, unsigned long size)
143 unsigned long address;
150 pte_val(pte) = _PAGE_TYPE_EMPTY;
151 for (address = start; address < start + size; address += PAGE_SIZE) {
152 pg_dir = pgd_offset_k(address);
153 pu_dir = pud_offset(pg_dir, address);
154 if (pud_none(*pu_dir))
156 pm_dir = pmd_offset(pu_dir, address);
157 if (pmd_none(*pm_dir))
160 if (pmd_huge(*pm_dir)) {
161 pmd_clear_kernel(pm_dir);
162 address += HPAGE_SIZE - PAGE_SIZE;
166 pt_dir = pte_offset_kernel(pm_dir, address);
169 flush_tlb_kernel_range(start, start + size);
173 * Add a backed mem_map array to the virtual mem_map array.
175 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
177 unsigned long address, start_addr, end_addr;
185 start_addr = (unsigned long) start;
186 end_addr = (unsigned long) (start + nr);
188 for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
189 pg_dir = pgd_offset_k(address);
190 if (pgd_none(*pg_dir)) {
191 pu_dir = vmem_pud_alloc();
194 pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
197 pu_dir = pud_offset(pg_dir, address);
198 if (pud_none(*pu_dir)) {
199 pm_dir = vmem_pmd_alloc();
202 pud_populate_kernel(&init_mm, pu_dir, pm_dir);
205 pm_dir = pmd_offset(pu_dir, address);
206 if (pmd_none(*pm_dir)) {
207 pt_dir = vmem_pte_alloc();
210 pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
213 pt_dir = pte_offset_kernel(pm_dir, address);
214 if (pte_none(*pt_dir)) {
215 unsigned long new_page;
217 new_page =__pa(vmem_alloc_pages(0));
220 pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
224 memset(start, 0, nr * sizeof(struct page));
227 flush_tlb_kernel_range(start_addr, end_addr);
232 * Add memory segment to the segment list if it doesn't overlap with
233 * an already present segment.
235 static int insert_memory_segment(struct memory_segment *seg)
237 struct memory_segment *tmp;
239 if (seg->start + seg->size > VMEM_MAX_PHYS ||
240 seg->start + seg->size < seg->start)
243 list_for_each_entry(tmp, &mem_segs, list) {
244 if (seg->start >= tmp->start + tmp->size)
246 if (seg->start + seg->size <= tmp->start)
250 list_add(&seg->list, &mem_segs);
255 * Remove memory segment from the segment list.
257 static void remove_memory_segment(struct memory_segment *seg)
259 list_del(&seg->list);
262 static void __remove_shared_memory(struct memory_segment *seg)
264 remove_memory_segment(seg);
265 vmem_remove_range(seg->start, seg->size);
268 int vmem_remove_mapping(unsigned long start, unsigned long size)
270 struct memory_segment *seg;
273 mutex_lock(&vmem_mutex);
276 list_for_each_entry(seg, &mem_segs, list) {
277 if (seg->start == start && seg->size == size)
281 if (seg->start != start || seg->size != size)
285 __remove_shared_memory(seg);
288 mutex_unlock(&vmem_mutex);
292 int vmem_add_mapping(unsigned long start, unsigned long size)
294 struct memory_segment *seg;
297 mutex_lock(&vmem_mutex);
299 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
305 ret = insert_memory_segment(seg);
309 ret = vmem_add_mem(start, size, 0);
315 __remove_shared_memory(seg);
319 mutex_unlock(&vmem_mutex);
324 * map whole physical memory to virtual memory (identity mapping)
325 * we reserve enough space in the vmalloc area for vmemmap to hotplug
326 * additional memory segments.
328 void __init vmem_map_init(void)
330 unsigned long ro_start, ro_end;
331 unsigned long start, end;
334 INIT_LIST_HEAD(&init_mm.context.crst_list);
335 INIT_LIST_HEAD(&init_mm.context.pgtable_list);
336 init_mm.context.noexec = 0;
337 ro_start = ((unsigned long)&_stext) & PAGE_MASK;
338 ro_end = PFN_ALIGN((unsigned long)&_eshared);
339 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
340 start = memory_chunk[i].addr;
341 end = memory_chunk[i].addr + memory_chunk[i].size;
342 if (start >= ro_end || end <= ro_start)
343 vmem_add_mem(start, end - start, 0);
344 else if (start >= ro_start && end <= ro_end)
345 vmem_add_mem(start, end - start, 1);
346 else if (start >= ro_start) {
347 vmem_add_mem(start, ro_end - start, 1);
348 vmem_add_mem(ro_end, end - ro_end, 0);
349 } else if (end < ro_end) {
350 vmem_add_mem(start, ro_start - start, 0);
351 vmem_add_mem(ro_start, end - ro_start, 1);
353 vmem_add_mem(start, ro_start - start, 0);
354 vmem_add_mem(ro_start, ro_end - ro_start, 1);
355 vmem_add_mem(ro_end, end - ro_end, 0);
361 * Convert memory chunk array to a memory segment list so there is a single
362 * list that contains both r/w memory and shared memory segments.
364 static int __init vmem_convert_memory_chunk(void)
366 struct memory_segment *seg;
369 mutex_lock(&vmem_mutex);
370 for (i = 0; i < MEMORY_CHUNKS; i++) {
371 if (!memory_chunk[i].size)
373 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
375 panic("Out of memory...\n");
376 seg->start = memory_chunk[i].addr;
377 seg->size = memory_chunk[i].size;
378 insert_memory_segment(seg);
380 mutex_unlock(&vmem_mutex);
384 core_initcall(vmem_convert_memory_chunk);