2 * linux/mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers pcpu_unit_size apart.
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks can be determined from the address using the index field
42 * in the page struct. The index field contains a pointer to the chunk.
44 * To use this allocator, arch code should do the followings.
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/list.h>
60 #include <linux/module.h>
61 #include <linux/mutex.h>
62 #include <linux/percpu.h>
63 #include <linux/pfn.h>
64 #include <linux/slab.h>
65 #include <linux/spinlock.h>
66 #include <linux/vmalloc.h>
67 #include <linux/workqueue.h>
69 #include <asm/cacheflush.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
73 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
74 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
76 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
77 #ifndef __addr_to_pcpu_ptr
78 #define __addr_to_pcpu_ptr(addr) \
79 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
80 + (unsigned long)__per_cpu_start)
82 #ifndef __pcpu_ptr_to_addr
83 #define __pcpu_ptr_to_addr(ptr) \
84 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
85 - (unsigned long)__per_cpu_start)
89 struct list_head list; /* linked to pcpu_slot lists */
90 int free_size; /* free bytes in the chunk */
91 int contig_hint; /* max contiguous size hint */
92 struct vm_struct *vm; /* mapped vmalloc region */
93 int map_used; /* # of map entries used */
94 int map_alloc; /* # of map entries allocated */
95 int *map; /* allocation map */
96 bool immutable; /* no [de]population allowed */
97 struct page **page; /* points to page array */
98 struct page *page_ar[]; /* #cpus * UNIT_PAGES */
101 static int pcpu_unit_pages __read_mostly;
102 static int pcpu_unit_size __read_mostly;
103 static int pcpu_chunk_size __read_mostly;
104 static int pcpu_nr_slots __read_mostly;
105 static size_t pcpu_chunk_struct_size __read_mostly;
107 /* the address of the first chunk which starts with the kernel static area */
108 void *pcpu_base_addr __read_mostly;
109 EXPORT_SYMBOL_GPL(pcpu_base_addr);
112 * The first chunk which always exists. Note that unlike other
113 * chunks, this one can be allocated and mapped in several different
114 * ways and thus often doesn't live in the vmalloc area.
116 static struct pcpu_chunk *pcpu_first_chunk;
119 * Optional reserved chunk. This chunk reserves part of the first
120 * chunk and serves it for reserved allocations. The amount of
121 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
122 * area doesn't exist, the following variables contain NULL and 0
125 static struct pcpu_chunk *pcpu_reserved_chunk;
126 static int pcpu_reserved_chunk_limit;
129 * Synchronization rules.
131 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
132 * protects allocation/reclaim paths, chunks and chunk->page arrays.
133 * The latter is a spinlock and protects the index data structures -
134 * chunk slots, chunks and area maps in chunks.
136 * During allocation, pcpu_alloc_mutex is kept locked all the time and
137 * pcpu_lock is grabbed and released as necessary. All actual memory
138 * allocations are done using GFP_KERNEL with pcpu_lock released.
140 * Free path accesses and alters only the index data structures, so it
141 * can be safely called from atomic context. When memory needs to be
142 * returned to the system, free path schedules reclaim_work which
143 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
144 * reclaimed, release both locks and frees the chunks. Note that it's
145 * necessary to grab both locks to remove a chunk from circulation as
146 * allocation path might be referencing the chunk with only
147 * pcpu_alloc_mutex locked.
149 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
150 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
152 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
154 /* reclaim work to release fully free chunks, scheduled from free path */
155 static void pcpu_reclaim(struct work_struct *work);
156 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
158 static int __pcpu_size_to_slot(int size)
160 int highbit = fls(size); /* size is in bytes */
161 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
164 static int pcpu_size_to_slot(int size)
166 if (size == pcpu_unit_size)
167 return pcpu_nr_slots - 1;
168 return __pcpu_size_to_slot(size);
171 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
173 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
176 return pcpu_size_to_slot(chunk->free_size);
179 static int pcpu_page_idx(unsigned int cpu, int page_idx)
181 return cpu * pcpu_unit_pages + page_idx;
184 static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
185 unsigned int cpu, int page_idx)
187 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
190 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
191 unsigned int cpu, int page_idx)
193 return (unsigned long)chunk->vm->addr +
194 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
197 static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
200 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
203 /* set the pointer to a chunk in a page struct */
204 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
206 page->index = (unsigned long)pcpu;
209 /* obtain pointer to a chunk from a page struct */
210 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
212 return (struct pcpu_chunk *)page->index;
216 * pcpu_mem_alloc - allocate memory
217 * @size: bytes to allocate
219 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
220 * kzalloc() is used; otherwise, vmalloc() is used. The returned
221 * memory is always zeroed.
224 * Does GFP_KERNEL allocation.
227 * Pointer to the allocated area on success, NULL on failure.
229 static void *pcpu_mem_alloc(size_t size)
231 if (size <= PAGE_SIZE)
232 return kzalloc(size, GFP_KERNEL);
234 void *ptr = vmalloc(size);
236 memset(ptr, 0, size);
242 * pcpu_mem_free - free memory
243 * @ptr: memory to free
244 * @size: size of the area
246 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
248 static void pcpu_mem_free(void *ptr, size_t size)
250 if (size <= PAGE_SIZE)
257 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
258 * @chunk: chunk of interest
259 * @oslot: the previous slot it was on
261 * This function is called after an allocation or free changed @chunk.
262 * New slot according to the changed state is determined and @chunk is
263 * moved to the slot. Note that the reserved chunk is never put on
269 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
271 int nslot = pcpu_chunk_slot(chunk);
273 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
275 list_move(&chunk->list, &pcpu_slot[nslot]);
277 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
282 * pcpu_chunk_addr_search - determine chunk containing specified address
283 * @addr: address for which the chunk needs to be determined.
286 * The address of the found chunk.
288 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
290 void *first_start = pcpu_first_chunk->vm->addr;
292 /* is it in the first chunk? */
293 if (addr >= first_start && addr < first_start + pcpu_chunk_size) {
294 /* is it in the reserved area? */
295 if (addr < first_start + pcpu_reserved_chunk_limit)
296 return pcpu_reserved_chunk;
297 return pcpu_first_chunk;
300 return pcpu_get_page_chunk(vmalloc_to_page(addr));
304 * pcpu_extend_area_map - extend area map for allocation
305 * @chunk: target chunk
307 * Extend area map of @chunk so that it can accomodate an allocation.
308 * A single allocation can split an area into three areas, so this
309 * function makes sure that @chunk->map has at least two extra slots.
312 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
313 * if area map is extended.
316 * 0 if noop, 1 if successfully extended, -errno on failure.
318 static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
325 if (chunk->map_alloc >= chunk->map_used + 2)
328 spin_unlock_irq(&pcpu_lock);
330 new_alloc = PCPU_DFL_MAP_ALLOC;
331 while (new_alloc < chunk->map_used + 2)
334 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
336 spin_lock_irq(&pcpu_lock);
341 * Acquire pcpu_lock and switch to new area map. Only free
342 * could have happened inbetween, so map_used couldn't have
345 spin_lock_irq(&pcpu_lock);
346 BUG_ON(new_alloc < chunk->map_used + 2);
348 size = chunk->map_alloc * sizeof(chunk->map[0]);
349 memcpy(new, chunk->map, size);
352 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
353 * one of the first chunks and still using static map.
355 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
356 pcpu_mem_free(chunk->map, size);
358 chunk->map_alloc = new_alloc;
364 * pcpu_split_block - split a map block
365 * @chunk: chunk of interest
366 * @i: index of map block to split
367 * @head: head size in bytes (can be 0)
368 * @tail: tail size in bytes (can be 0)
370 * Split the @i'th map block into two or three blocks. If @head is
371 * non-zero, @head bytes block is inserted before block @i moving it
372 * to @i+1 and reducing its size by @head bytes.
374 * If @tail is non-zero, the target block, which can be @i or @i+1
375 * depending on @head, is reduced by @tail bytes and @tail byte block
376 * is inserted after the target block.
378 * @chunk->map must have enough free slots to accomodate the split.
383 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
386 int nr_extra = !!head + !!tail;
388 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
390 /* insert new subblocks */
391 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
392 sizeof(chunk->map[0]) * (chunk->map_used - i));
393 chunk->map_used += nr_extra;
396 chunk->map[i + 1] = chunk->map[i] - head;
397 chunk->map[i++] = head;
400 chunk->map[i++] -= tail;
401 chunk->map[i] = tail;
406 * pcpu_alloc_area - allocate area from a pcpu_chunk
407 * @chunk: chunk of interest
408 * @size: wanted size in bytes
409 * @align: wanted align
411 * Try to allocate @size bytes area aligned at @align from @chunk.
412 * Note that this function only allocates the offset. It doesn't
413 * populate or map the area.
415 * @chunk->map must have at least two free slots.
421 * Allocated offset in @chunk on success, -1 if no matching area is
424 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
426 int oslot = pcpu_chunk_slot(chunk);
430 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
431 bool is_last = i + 1 == chunk->map_used;
434 /* extra for alignment requirement */
435 head = ALIGN(off, align) - off;
436 BUG_ON(i == 0 && head != 0);
438 if (chunk->map[i] < 0)
440 if (chunk->map[i] < head + size) {
441 max_contig = max(chunk->map[i], max_contig);
446 * If head is small or the previous block is free,
447 * merge'em. Note that 'small' is defined as smaller
448 * than sizeof(int), which is very small but isn't too
449 * uncommon for percpu allocations.
451 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
452 if (chunk->map[i - 1] > 0)
453 chunk->map[i - 1] += head;
455 chunk->map[i - 1] -= head;
456 chunk->free_size -= head;
458 chunk->map[i] -= head;
463 /* if tail is small, just keep it around */
464 tail = chunk->map[i] - head - size;
465 if (tail < sizeof(int))
468 /* split if warranted */
470 pcpu_split_block(chunk, i, head, tail);
474 max_contig = max(chunk->map[i - 1], max_contig);
477 max_contig = max(chunk->map[i + 1], max_contig);
480 /* update hint and mark allocated */
482 chunk->contig_hint = max_contig; /* fully scanned */
484 chunk->contig_hint = max(chunk->contig_hint,
487 chunk->free_size -= chunk->map[i];
488 chunk->map[i] = -chunk->map[i];
490 pcpu_chunk_relocate(chunk, oslot);
494 chunk->contig_hint = max_contig; /* fully scanned */
495 pcpu_chunk_relocate(chunk, oslot);
497 /* tell the upper layer that this chunk has no matching area */
502 * pcpu_free_area - free area to a pcpu_chunk
503 * @chunk: chunk of interest
504 * @freeme: offset of area to free
506 * Free area starting from @freeme to @chunk. Note that this function
507 * only modifies the allocation map. It doesn't depopulate or unmap
513 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
515 int oslot = pcpu_chunk_slot(chunk);
518 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
521 BUG_ON(off != freeme);
522 BUG_ON(chunk->map[i] > 0);
524 chunk->map[i] = -chunk->map[i];
525 chunk->free_size += chunk->map[i];
527 /* merge with previous? */
528 if (i > 0 && chunk->map[i - 1] >= 0) {
529 chunk->map[i - 1] += chunk->map[i];
531 memmove(&chunk->map[i], &chunk->map[i + 1],
532 (chunk->map_used - i) * sizeof(chunk->map[0]));
535 /* merge with next? */
536 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
537 chunk->map[i] += chunk->map[i + 1];
539 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
540 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
543 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
544 pcpu_chunk_relocate(chunk, oslot);
548 * pcpu_unmap - unmap pages out of a pcpu_chunk
549 * @chunk: chunk of interest
550 * @page_start: page index of the first page to unmap
551 * @page_end: page index of the last page to unmap + 1
552 * @flush: whether to flush cache and tlb or not
554 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
555 * If @flush is true, vcache is flushed before unmapping and tlb
558 static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
561 unsigned int last = num_possible_cpus() - 1;
564 /* unmap must not be done on immutable chunk */
565 WARN_ON(chunk->immutable);
568 * Each flushing trial can be very expensive, issue flush on
569 * the whole region at once rather than doing it for each cpu.
570 * This could be an overkill but is more scalable.
573 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
574 pcpu_chunk_addr(chunk, last, page_end));
576 for_each_possible_cpu(cpu)
577 unmap_kernel_range_noflush(
578 pcpu_chunk_addr(chunk, cpu, page_start),
579 (page_end - page_start) << PAGE_SHIFT);
581 /* ditto as flush_cache_vunmap() */
583 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
584 pcpu_chunk_addr(chunk, last, page_end));
588 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
589 * @chunk: chunk to depopulate
590 * @off: offset to the area to depopulate
591 * @size: size of the area to depopulate in bytes
592 * @flush: whether to flush cache and tlb or not
594 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
595 * from @chunk. If @flush is true, vcache is flushed before unmapping
601 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
604 int page_start = PFN_DOWN(off);
605 int page_end = PFN_UP(off + size);
606 int unmap_start = -1;
607 int uninitialized_var(unmap_end);
611 for (i = page_start; i < page_end; i++) {
612 for_each_possible_cpu(cpu) {
613 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
621 * If it's partial depopulation, it might get
622 * populated or depopulated again. Mark the
627 unmap_start = unmap_start < 0 ? i : unmap_start;
632 if (unmap_start >= 0)
633 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
637 * pcpu_map - map pages into a pcpu_chunk
638 * @chunk: chunk of interest
639 * @page_start: page index of the first page to map
640 * @page_end: page index of the last page to map + 1
642 * For each cpu, map pages [@page_start,@page_end) into @chunk.
643 * vcache is flushed afterwards.
645 static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
647 unsigned int last = num_possible_cpus() - 1;
651 /* map must not be done on immutable chunk */
652 WARN_ON(chunk->immutable);
654 for_each_possible_cpu(cpu) {
655 err = map_kernel_range_noflush(
656 pcpu_chunk_addr(chunk, cpu, page_start),
657 (page_end - page_start) << PAGE_SHIFT,
659 pcpu_chunk_pagep(chunk, cpu, page_start));
664 /* flush at once, please read comments in pcpu_unmap() */
665 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
666 pcpu_chunk_addr(chunk, last, page_end));
671 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
672 * @chunk: chunk of interest
673 * @off: offset to the area to populate
674 * @size: size of the area to populate in bytes
676 * For each cpu, populate and map pages [@page_start,@page_end) into
677 * @chunk. The area is cleared on return.
680 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
682 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
684 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
685 int page_start = PFN_DOWN(off);
686 int page_end = PFN_UP(off + size);
688 int uninitialized_var(map_end);
692 for (i = page_start; i < page_end; i++) {
693 if (pcpu_chunk_page_occupied(chunk, i)) {
694 if (map_start >= 0) {
695 if (pcpu_map(chunk, map_start, map_end))
702 map_start = map_start < 0 ? i : map_start;
705 for_each_possible_cpu(cpu) {
706 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
708 *pagep = alloc_pages_node(cpu_to_node(cpu),
712 pcpu_set_page_chunk(*pagep, chunk);
716 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
719 for_each_possible_cpu(cpu)
720 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
725 /* likely under heavy memory pressure, give memory back */
726 pcpu_depopulate_chunk(chunk, off, size, true);
730 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
735 free_vm_area(chunk->vm);
736 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
740 static struct pcpu_chunk *alloc_pcpu_chunk(void)
742 struct pcpu_chunk *chunk;
744 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
748 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
749 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
750 chunk->map[chunk->map_used++] = pcpu_unit_size;
751 chunk->page = chunk->page_ar;
753 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
755 free_pcpu_chunk(chunk);
759 INIT_LIST_HEAD(&chunk->list);
760 chunk->free_size = pcpu_unit_size;
761 chunk->contig_hint = pcpu_unit_size;
767 * pcpu_alloc - the percpu allocator
768 * @size: size of area to allocate in bytes
769 * @align: alignment of area (max PAGE_SIZE)
770 * @reserved: allocate from the reserved chunk if available
772 * Allocate percpu area of @size bytes aligned at @align.
775 * Does GFP_KERNEL allocation.
778 * Percpu pointer to the allocated area on success, NULL on failure.
780 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
782 struct pcpu_chunk *chunk;
785 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
786 WARN(true, "illegal size (%zu) or align (%zu) for "
787 "percpu allocation\n", size, align);
791 mutex_lock(&pcpu_alloc_mutex);
792 spin_lock_irq(&pcpu_lock);
794 /* serve reserved allocations from the reserved chunk if available */
795 if (reserved && pcpu_reserved_chunk) {
796 chunk = pcpu_reserved_chunk;
797 if (size > chunk->contig_hint ||
798 pcpu_extend_area_map(chunk) < 0)
800 off = pcpu_alloc_area(chunk, size, align);
807 /* search through normal chunks */
808 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
809 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
810 if (size > chunk->contig_hint)
813 switch (pcpu_extend_area_map(chunk)) {
817 goto restart; /* pcpu_lock dropped, restart */
822 off = pcpu_alloc_area(chunk, size, align);
828 /* hmmm... no space left, create a new chunk */
829 spin_unlock_irq(&pcpu_lock);
831 chunk = alloc_pcpu_chunk();
833 goto fail_unlock_mutex;
835 spin_lock_irq(&pcpu_lock);
836 pcpu_chunk_relocate(chunk, -1);
840 spin_unlock_irq(&pcpu_lock);
842 /* populate, map and clear the area */
843 if (pcpu_populate_chunk(chunk, off, size)) {
844 spin_lock_irq(&pcpu_lock);
845 pcpu_free_area(chunk, off);
849 mutex_unlock(&pcpu_alloc_mutex);
851 return __addr_to_pcpu_ptr(chunk->vm->addr + off);
854 spin_unlock_irq(&pcpu_lock);
856 mutex_unlock(&pcpu_alloc_mutex);
861 * __alloc_percpu - allocate dynamic percpu area
862 * @size: size of area to allocate in bytes
863 * @align: alignment of area (max PAGE_SIZE)
865 * Allocate percpu area of @size bytes aligned at @align. Might
866 * sleep. Might trigger writeouts.
869 * Does GFP_KERNEL allocation.
872 * Percpu pointer to the allocated area on success, NULL on failure.
874 void *__alloc_percpu(size_t size, size_t align)
876 return pcpu_alloc(size, align, false);
878 EXPORT_SYMBOL_GPL(__alloc_percpu);
881 * __alloc_reserved_percpu - allocate reserved percpu area
882 * @size: size of area to allocate in bytes
883 * @align: alignment of area (max PAGE_SIZE)
885 * Allocate percpu area of @size bytes aligned at @align from reserved
886 * percpu area if arch has set it up; otherwise, allocation is served
887 * from the same dynamic area. Might sleep. Might trigger writeouts.
890 * Does GFP_KERNEL allocation.
893 * Percpu pointer to the allocated area on success, NULL on failure.
895 void *__alloc_reserved_percpu(size_t size, size_t align)
897 return pcpu_alloc(size, align, true);
901 * pcpu_reclaim - reclaim fully free chunks, workqueue function
904 * Reclaim all fully free chunks except for the first one.
909 static void pcpu_reclaim(struct work_struct *work)
912 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
913 struct pcpu_chunk *chunk, *next;
915 mutex_lock(&pcpu_alloc_mutex);
916 spin_lock_irq(&pcpu_lock);
918 list_for_each_entry_safe(chunk, next, head, list) {
919 WARN_ON(chunk->immutable);
921 /* spare the first one */
922 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
925 list_move(&chunk->list, &todo);
928 spin_unlock_irq(&pcpu_lock);
929 mutex_unlock(&pcpu_alloc_mutex);
931 list_for_each_entry_safe(chunk, next, &todo, list) {
932 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
933 free_pcpu_chunk(chunk);
938 * free_percpu - free percpu area
939 * @ptr: pointer to area to free
941 * Free percpu area @ptr.
944 * Can be called from atomic context.
946 void free_percpu(void *ptr)
948 void *addr = __pcpu_ptr_to_addr(ptr);
949 struct pcpu_chunk *chunk;
956 spin_lock_irqsave(&pcpu_lock, flags);
958 chunk = pcpu_chunk_addr_search(addr);
959 off = addr - chunk->vm->addr;
961 pcpu_free_area(chunk, off);
963 /* if there are more than one fully free chunks, wake up grim reaper */
964 if (chunk->free_size == pcpu_unit_size) {
965 struct pcpu_chunk *pos;
967 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
969 schedule_work(&pcpu_reclaim_work);
974 spin_unlock_irqrestore(&pcpu_lock, flags);
976 EXPORT_SYMBOL_GPL(free_percpu);
979 * pcpu_setup_first_chunk - initialize the first percpu chunk
980 * @get_page_fn: callback to fetch page pointer
981 * @static_size: the size of static percpu area in bytes
982 * @reserved_size: the size of reserved percpu area in bytes
983 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
984 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
985 * @base_addr: mapped address, NULL for auto
986 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
988 * Initialize the first percpu chunk which contains the kernel static
989 * perpcu area. This function is to be called from arch percpu area
990 * setup path. The first two parameters are mandatory. The rest are
993 * @get_page_fn() should return pointer to percpu page given cpu
994 * number and page number. It should at least return enough pages to
995 * cover the static area. The returned pages for static area should
996 * have been initialized with valid data. If @unit_size is specified,
997 * it can also return pages after the static area. NULL return
998 * indicates end of pages for the cpu. Note that @get_page_fn() must
999 * return the same number of pages for all cpus.
1001 * @reserved_size, if non-zero, specifies the amount of bytes to
1002 * reserve after the static area in the first chunk. This reserves
1003 * the first chunk such that it's available only through reserved
1004 * percpu allocation. This is primarily used to serve module percpu
1005 * static areas on architectures where the addressing model has
1006 * limited offset range for symbol relocations to guarantee module
1007 * percpu symbols fall inside the relocatable range.
1009 * @dyn_size, if non-negative, determines the number of bytes
1010 * available for dynamic allocation in the first chunk. Specifying
1011 * non-negative value makes percpu leave alone the area beyond
1012 * @static_size + @reserved_size + @dyn_size.
1014 * @unit_size, if non-negative, specifies unit size and must be
1015 * aligned to PAGE_SIZE and equal to or larger than @static_size +
1016 * @reserved_size + if non-negative, @dyn_size.
1018 * Non-null @base_addr means that the caller already allocated virtual
1019 * region for the first chunk and mapped it. percpu must not mess
1020 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
1021 * @populate_pte_fn doesn't make any sense.
1023 * @populate_pte_fn is used to populate the pagetable. NULL means the
1024 * caller already populated the pagetable.
1026 * If the first chunk ends up with both reserved and dynamic areas, it
1027 * is served by two chunks - one to serve the core static and reserved
1028 * areas and the other for the dynamic area. They share the same vm
1029 * and page map but uses different area allocation map to stay away
1030 * from each other. The latter chunk is circulated in the chunk slots
1031 * and available for dynamic allocation like any other chunks.
1034 * The determined pcpu_unit_size which can be used to initialize
1037 size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
1038 size_t static_size, size_t reserved_size,
1039 ssize_t dyn_size, ssize_t unit_size,
1041 pcpu_populate_pte_fn_t populate_pte_fn)
1043 static struct vm_struct first_vm;
1044 static int smap[2], dmap[2];
1045 size_t size_sum = static_size + reserved_size +
1046 (dyn_size >= 0 ? dyn_size : 0);
1047 struct pcpu_chunk *schunk, *dchunk = NULL;
1053 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1054 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1055 BUG_ON(!static_size);
1056 if (unit_size >= 0) {
1057 BUG_ON(unit_size < size_sum);
1058 BUG_ON(unit_size & ~PAGE_MASK);
1059 BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1062 BUG_ON(base_addr && populate_pte_fn);
1065 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1067 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
1070 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1071 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
1072 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
1073 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
1076 dyn_size = pcpu_unit_size - static_size - reserved_size;
1079 * Allocate chunk slots. The additional last slot is for
1082 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1083 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1084 for (i = 0; i < pcpu_nr_slots; i++)
1085 INIT_LIST_HEAD(&pcpu_slot[i]);
1088 * Initialize static chunk. If reserved_size is zero, the
1089 * static chunk covers static area + dynamic allocation area
1090 * in the first chunk. If reserved_size is not zero, it
1091 * covers static area + reserved area (mostly used for module
1092 * static percpu allocation).
1094 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1095 INIT_LIST_HEAD(&schunk->list);
1096 schunk->vm = &first_vm;
1098 schunk->map_alloc = ARRAY_SIZE(smap);
1099 schunk->page = schunk->page_ar;
1101 if (reserved_size) {
1102 schunk->free_size = reserved_size;
1103 pcpu_reserved_chunk = schunk;
1104 pcpu_reserved_chunk_limit = static_size + reserved_size;
1106 schunk->free_size = dyn_size;
1107 dyn_size = 0; /* dynamic area covered */
1109 schunk->contig_hint = schunk->free_size;
1111 schunk->map[schunk->map_used++] = -static_size;
1112 if (schunk->free_size)
1113 schunk->map[schunk->map_used++] = schunk->free_size;
1115 /* init dynamic chunk if necessary */
1117 dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1118 INIT_LIST_HEAD(&dchunk->list);
1119 dchunk->vm = &first_vm;
1121 dchunk->map_alloc = ARRAY_SIZE(dmap);
1122 dchunk->page = schunk->page_ar; /* share page map with schunk */
1124 dchunk->contig_hint = dchunk->free_size = dyn_size;
1125 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1126 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1129 /* allocate vm address */
1130 first_vm.flags = VM_ALLOC;
1131 first_vm.size = pcpu_chunk_size;
1134 vm_area_register_early(&first_vm, PAGE_SIZE);
1137 * Pages already mapped. No need to remap into
1138 * vmalloc area. In this case the first chunks can't
1139 * be mapped or unmapped by percpu and are marked
1142 first_vm.addr = base_addr;
1143 schunk->immutable = true;
1145 dchunk->immutable = true;
1150 for_each_possible_cpu(cpu) {
1151 for (i = 0; i < pcpu_unit_pages; i++) {
1152 struct page *page = get_page_fn(cpu, i);
1156 *pcpu_chunk_pagep(schunk, cpu, i) = page;
1159 BUG_ON(i < PFN_UP(static_size));
1164 BUG_ON(nr_pages != i);
1168 if (populate_pte_fn) {
1169 for_each_possible_cpu(cpu)
1170 for (i = 0; i < nr_pages; i++)
1171 populate_pte_fn(pcpu_chunk_addr(schunk,
1174 err = pcpu_map(schunk, 0, nr_pages);
1176 panic("failed to setup static percpu area, err=%d\n",
1180 /* link the first chunk in */
1181 pcpu_first_chunk = dchunk ?: schunk;
1182 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1185 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
1186 return pcpu_unit_size;
1190 * Embedding first chunk setup helper.
1192 static void *pcpue_ptr __initdata;
1193 static size_t pcpue_size __initdata;
1194 static size_t pcpue_unit_size __initdata;
1196 static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
1198 size_t off = (size_t)pageno << PAGE_SHIFT;
1200 if (off >= pcpue_size)
1203 return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
1207 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1208 * @static_size: the size of static percpu area in bytes
1209 * @reserved_size: the size of reserved percpu area in bytes
1210 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1211 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
1213 * This is a helper to ease setting up embedded first percpu chunk and
1214 * can be called where pcpu_setup_first_chunk() is expected.
1216 * If this function is used to setup the first chunk, it is allocated
1217 * as a contiguous area using bootmem allocator and used as-is without
1218 * being mapped into vmalloc area. This enables the first chunk to
1219 * piggy back on the linear physical mapping which often uses larger
1222 * When @dyn_size is positive, dynamic area might be larger than
1223 * specified to fill page alignment. Also, when @dyn_size is auto,
1224 * @dyn_size does not fill the whole first chunk but only what's
1225 * necessary for page alignment after static and reserved areas.
1227 * If the needed size is smaller than the minimum or specified unit
1228 * size, the leftover is returned to the bootmem allocator.
1231 * The determined pcpu_unit_size which can be used to initialize
1232 * percpu access on success, -errno on failure.
1234 ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1235 ssize_t dyn_size, ssize_t unit_size)
1239 /* determine parameters and allocate */
1240 pcpue_size = PFN_ALIGN(static_size + reserved_size +
1241 (dyn_size >= 0 ? dyn_size : 0));
1243 dyn_size = pcpue_size - static_size - reserved_size;
1245 if (unit_size >= 0) {
1246 BUG_ON(unit_size < pcpue_size);
1247 pcpue_unit_size = unit_size;
1249 pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
1251 pcpue_ptr = __alloc_bootmem_nopanic(
1252 num_possible_cpus() * pcpue_unit_size,
1253 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
1257 /* return the leftover and copy */
1258 for_each_possible_cpu(cpu) {
1259 void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
1261 free_bootmem(__pa(ptr + pcpue_size),
1262 pcpue_unit_size - pcpue_size);
1263 memcpy(ptr, __per_cpu_load, static_size);
1266 /* we're ready, commit */
1267 pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
1268 pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
1270 return pcpu_setup_first_chunk(pcpue_get_page, static_size,
1271 reserved_size, dyn_size,
1272 pcpue_unit_size, pcpue_ptr, NULL);